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1 Introduction

Let M be a boundaryless, smooth (not necessarily closed) differentiable manifold in Rk,
and let f : R × M → Rk be a T -periodic Carathéodory tangent vector field on M .
Consider the following ordinary differential equation on M :

ẋ = λf(t, x), (1.1)

where λ ≥ 0 is a real parameter. We deal with the problem of the existence of T -periodic
solutions of (1.1), with a special attention to the case of small values of λ. Clearly, when
λ = 0, any point in M may be regarded as a constant solution of (1.1). Thus, it is natural
to think about M as a subset of the set X of all the pairs (λ, x), called T -pairs of (1.1),
with λ ≥ 0 and x a T -periodic Carathéodory solution of (1.1) corresponding to the value
λ of the parameter. In other words, (λ, x) ∈ X means that x is an absolutely continuous,
T -periodic real map into M , such that ẋ(t) = λf(t, x(t)) for almost all t ∈ R. As usual,
let CT (Rk) := CT (R,Rk) denote the Banach space of all the T -periodic, continuous,
Rk-valued real functions, endowed with the standard norm of uniform convergence. Since
any solution of (1.1) is (in particular) continuous, the set X will be considered embedded
in the metric space [0,∞) × CT (M), where CT (M) is the subset of CT (Rk) of those
functions whose image lies in M . We will prove that X is closed in this space, no matter
whether or not M is closed in Rk (for example, M could be an open subset of Rk). This
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does not necessarily happen (even when M = Rk) in the space one could think is the
most natural one in the Carathéodory case; i.e. [0,∞)×L1

T (M), where L1
T (M) stands for

the set of L1
loc, T -periodic maps x : R → M , with the distance inherited by the Banach

space L1
T (Rk) ∼= L1((0, T ),Rk). Nevertheless, we will show that the topology induced

on X by either one of these two spaces is the same. Moreover, with this topology, X
is locally compact and M is closed when regarded as a subset of X (via the embedding
p 7→ (0, p̂), where p̂(t)≡p). With this identification in mind, M will be called the set of
trivial T -pairs. Thus, it is natural to say that an element p0 ∈ M is a bifurcation point
for (1.1) if it lies in the closure of the set X\M of the nontrivial T -pairs.

It is easy to see that a necessary condition for p0 ∈M to be a bifurcation point is that
the autonomous tangent vector field w : M → Rk, given by

w(p) =
1

T

∫ T

0
f(t, p) dt,

vanishes at p0. Moreover, under the assumption that w is C1 and w(p0) = 0, a suffi-
cient condition is given by the injectivity of the derivative w′(p0) : Tp0(M) → Rk (here
Tp0(M) ⊂ Rk stands for the tangent space of M at p0). The above sufficient condition
is a direct consequence of our main result, which is an extension of a theorem in [6]
regarding the continuous case: a Rabinowitz type global bifurcation result in the space
[0,∞)×CT (M) (Theorem 2.2 below) which involves the Hopf index (degree) of the asso-
ciated autonomous tangent vector field w. Another condition ensuring the existence of a
T -periodic solution to the equation

ẋ = f(t, x), (1.2)

(see Corollary 3.2) will be deduced from the same theorem.

2 Branches of Periodic Orbits

Let M be a (not necessarily closed) boundaryless smooth manifold in the space Rk with
standard Euclidean norm |·|. For any p ∈ M , let Tp(M) ⊂ Rk denote the tangent space
of M at p. Consider in M the first order parametrized differential equation

ẋ = λf(t, x), λ ≥ 0, (2.1)

where f : R ×M → Rk is a T -periodic Carathéodory tangent vector field on M , i.e. f
satisfies the following conditions:

1) for each p ∈M , the map t 7→ f(t, p) is Lebesgue measurable on R;

2) for almost all t ∈ R, the map p 7→ f(t, p) is continuous on M ;

3) for any compact set K ⊂ M , there exists γ
K

in the space L1
T (R) of the L1

loc,
T -periodic real functions such that |f(t, p)| ≤ γ

K
(t) for a.a. t ∈ R and all p ∈ K;
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4) for any p ∈M , one has f(t+ T, p) = f(t, p) ∈ Tp(M) a.e. in R.

Observe that conditions 1), 2) and 3) are the usual Carathéodory type assumptions,
while condition 4) says that f is a time-dependent vector field which is tangent to M and
T -periodic with respect to the first variable.

A pair (λ, x), where λ is a nonnegative real number and x : R → M is an absolutely
continuous T -periodic map, will be called a T -pair of (2.1) if ẋ(t) = λf(t, x(t)) a.e. in R.
The set of all the T -pairs of (2.1) will be denoted by X. In what follows, it is convenient
to consider X as a subspace of [0,∞) × CT (M), and not of [0,∞) × L1

T (M), as one
might suppose. The reason is that X is closed in the first space (as shown below) and
not in the second one (see Example 2.5). To prove that X is closed in [0,∞) × CT (M),
consider a sequence {(λn, xn)} in X converging to (λ, x) ∈ [0,∞) × CT (M). One has
ẋn(t) = λnf(t, xn(t)), a.e. in R or, equivalently,

xn(t) = xn(0) + λn

∫ t

0
f(s, xn(s)) ds, ∀t ∈ R,

which clearly makes sense since we have assumed M embedded in Rk. Since xn(t) con-
verges to x(t) uniformly in R, there exists a compact subset K of M such that xn(t) ∈ K
for any n ∈ N and all t ∈ R. Hence, by the Carathéodory assumption 3), the sequence
{f(·, xn(·))} is dominated by an L1

T function; so that, by the Lebesgue Convergence The-
orem, one can pass to the limit in the above equality obtaining

x(t) = x(0) + λ
∫ t

0
f(s, x(s)) ds, ∀t ∈ R.

Thus (λ, x) ∈ X, and this proves that X is closed in [0,∞)× CT (M).

Observe that the space [0,∞)×CT (M) is not necessarily complete, unless M is closed
in Rk. However, due to the fact that M (as a manifold) is locally compact, one can easily
prove that [0,∞)×CT (M) is always locally complete. Consequently X, as a closed subset
of this space, is locally complete as well. Moreover, X is locally totally bounded since,
as a consequence of Ascoli’s theorem, a subset of CT (M) is totally bounded if (and only
if) it is bounded and equicontinuous. Now, by recalling that a metric space is compact if
and only if it is totally bounded (i.e. precompact) and complete, one can observe that X
is actually locally compact. This fact will turn out to be useful in the sequel.

In what follows, it will be convenient to consider the commutative diagram

M −→ [0,∞)×M
↓ ↓

CT (M) −→ [0,∞)× CT (M),

where the horizontal arrows are obtained by associating to p ∈M or, respectively, to x ∈
CT (M) the element (0, p) ∈ [0,∞)×M or (0, x) ∈ [0,∞)×CT (M), and the vertical ones
are defined by regarding any p ∈M as the constant map p̂(t)≡p. With this identification,
if A is any subset of [0,∞)× CT (M), A ∩M will denote the set {p ∈M : (0, p̂) ∈ A}.
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Since any element p ∈M may be viewed as a constant solution of (2.1) corresponding
to the value λ = 0 of the parameter, the whole manifold M will be regarded as a subset of
the set X of the T -pairs of (2.1). We point out that, despite the fact that [0,∞)×CT (M)
may not be closed in [0,∞) × CT (Rk), M is always closed in [0,∞) × CT (M), as well
as in X. Any p ∈ M will be called a trivial solution of (2.1) and, consequently, any
(λ, x) ∈ X\M , i.e. with λ > 0, will be a nontrivial solution. A trivial solution p ∈M will
be called a bifurcation point of (2.1) if it lies in the closure of X\M .

Let us associate to f the mean value (autonomous) vector field w : M → Rk given by

w(p) =
1

T

∫ T

0
f(t, p) dt. (2.2)

Observe that, the Carathéodory assumptions on f and the Lebesgue Convergence Theo-
rem yield the continuity of w.

The mean value vector field introduced above provides the following necessary condi-
tion for p ∈M to be of bifurcation.

Theorem 2.1 Let f : R×M → Rk be a T -periodic Carathéodory tangent vector field on
M and w : M → Rk be the mean value autonomous vector field given by (2.2). If p0 is a
bifurcation point for the equation (2.1), then w(p0) = 0.

Proof. Let p0 be a bifurcation point for the equation (2.1). Then, there exists a
sequence {(λn, xn)} of nontrivial T -pairs of (2.1) such that λn → 0 and xn(t) → p0

uniformly in R. Now, by integrating from 0 to T the equality

ẋn(t) = λnf(t, xn(t)), t ∈ R,

one obtains

0 = xn(T )− xn(0) = λn

∫ T

0
f(t, xn(t)) dt,

which implies, λn being nonzero, ∫ T

0
f(t, xn(t)) dt = 0.

Since {xn(t)} converges to p0 uniformly in R, there exists a compact set K ⊂ M such
that xn(t) ∈ K for all n ∈ N and t ∈ R. Now, using the Lebesgue Theorem, one gets

w(p0) =
1

T

∫ T

0
f(t, p0) dt = 0,

as claimed. 2

In what follows, given an open subset Ω of [0,∞) × CT (M), by a bifurcating branch
of (2.1) in Ω, we mean a connected component of Ω ∩ (X \M), whose closure in X (or,
equivalently, in [0,∞)× CT (M)) intersects Ω ∩M . A global bifurcating branch in Ω is a
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bifurcating branch which is not relatively compact in Ω∩X. In particular, if M is closed
in Rk and Ω = [0,∞)×CT (M), as we shall see later, any global bifurcating branch must
be unbounded.

Our aim below is to provide conditions detecting those elements p ∈ M which are
emanating points of global bifurcating branches of solutions. A sufficient condition can
be obtained in terms of the index of the mean value vector field w.

Let us recall that, to any continuous tangent vector field w : M → Rk which is
admissible on M , i.e. such that the set {p ∈M : w(p) = 0} is compact, one can associate
an integer χ(w), called the Hopf index (or Euler characteristic, or rotation, or degree)
of w, which, roughly speaking, counts (algebraically) the number of zeros of w (see e.g.
[7], [9], [10], [11], and [4] for an equivalent definition based on fixed point index theory).
In what follows, to emphasize that the index of a tangent vector field on M reduces,
in the flat case, to the classical Brouwer degree (with respect to zero), the integer χ(w)
will be called the (global) degree of the vector field w and denoted by deg(w). Since any
open subset U of a manifold M is still a manifold, the degree of the restriction of w to
U makes sense, provided that w is admissible on U , i.e. the set {p ∈ U : w(p) = 0} is
compact. This condition is clearly satisfied if U is a relatively compact open subset of M
and w(p) 6= 0 for all p ∈ ∂U . The degree of the restriction of w to U , when defined, will
be denoted by deg(w,U).

We are now in a position to state our sufficient condition for the existence of a global
bifurcating branch of nontrivial solutions pairs. Clearly, this result provides also a suffi-
cient condition for the existence of a bifurcation point in a given open subset of M.

Theorem 2.2 Let f : R×M → Rk be a T -periodic Carathéodory tangent vector field on
M and w : M → Rk be the mean value autonomous vector field given by

w(p) =
1

T

∫ T

0
f(t, p) dt.

Let Ω be an open subset of [0,∞)×CT (M) and assume that deg(w,Ω∩M) is defined and
nonzero. Then, the equation (2.1) admits in Ω a connected set Γ of nontrivial T -pairs
whose closure in Ω is noncompact and meets Ω∩M in the set of zeros of w. In addition,
if M is a closed submanifold of Rk, then Γ cannot be contained in a bounded and complete
subset of Ω.

The proof of Theorem 2.2 requires two preliminary results (Theorem 2.3 and Lemma
2.4 below). The first one is an abstract finite dimensional global result for an equation
of the form ϕ(λ, p) = p, where ϕ is a map defined on an open subset of [0,∞)×M with
values in M . The proof is omitted, since it is the same as the one (based on intersection
theory) given in [5] for the special case of C1 maps.

Theorem 2.3 Let D be an open subset of [0,∞) ×M containing {0} ×M and let ϕ :
D → M be a continuous map satisfying ϕ(0, p) = p for all p ∈ M . Assume that ϕ has
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continuous derivative with respect to λ at λ = 0 and denote by v : M → Rk the tangent
vector field

v(p) =
∂ϕ

∂λ
(0, p).

Given an open subset W of D, assume that v is admissible in the slice

W0 = {p ∈M : (0, p) ∈ W}

and that deg(v,W0) is nonzero. Then, the equation ϕ(λ, p) = p admits in W a connected
branch of solutions (λ, p), with λ > 0, whose closure (in [0,∞) ×M) meets {0} × {p ∈
W0 : v(p) = 0} and is not contained in any compact subset of W .

The connectivity result stated below (see e.g. [5]) turns out to be crucial in the proof
of our main result.

Lemma 2.4 Let Y be a locally compact Hausdorff space and let Y0 be a compact subset
of Y . Assume that any compact subset of Y containing Y0 has nonempty boundary. Then
Y \Y0 contains a not relatively compact component whose closure intersects Y0.

Proof of Theorem 2.2. Assume first that, for each compact subset K of M , there exists
α
K
∈ L1

T (R) such that
|f(t, p2)− f(t, p1)|≤α

K
(t)|p2 − p1| (2.3)

for a.a. t ∈ R and for all p1, p2 ∈ K. This assumption guarantees the uniqueness of the
solution of the Cauchy problem associated to equation (2.1) (see e.g. [8], [1]).

Consider the set D defined by

{(λ, p) ∈ [0,∞)×M : the solution x(·) of (2.1) satisfying x(0) = p is defined in [0, T ]}

and let ϕ : D → M be the operator which associates to any (λ, p) ∈ D the value x(T )
of the solution x(·) of (2.1) with initial condition x(0) = p. By known properties of
differential equations it turns out that D is an open set containing {0} ×M and ϕ is
continuous in D. Let us show that ϕ has continuous derivative with respect to λ at λ = 0
and that

∂ϕ

∂λ
(0, p) = Tw(p).

In fact, given (λ, p) ∈ D, let ψ(λ, p, t) denote the value at time t ∈ [0, T ] of the solution
of (2.1) with initial condition p. Clearly

ϕ(λ, p) = p+ λ
∫ T

0
f(t, ψ(λ, p, t)) dt,

and
ϕ(λ, p)− ϕ(0, p)

λ
=
ϕ(λ, p)− p

λ
=
∫ T

0
f(t, ψ(λ, p, t)) dt.
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Take any sequence λn → 0, n ∈ N. The continuous dependence on data (see e.g. [1])
ensures that the sequence {ψ(λn, p, t)} tends uniformly in [0, T ] to the constant solution
ψ(0, p, t)≡p. Consequently, recalling the Carathéodory assumptions on f , one has

∂ϕ

∂λ
(0, p) = lim

λ→0

ϕ(λ, p)− p
λ

=
∫ T

0
f(t, p) dt = Tw(p),

as claimed.
Consider the set

S = {(λ, p) ∈ D : ϕ(λ, p) = p}

which is locally compact, since it is closed in the locally compact set D. Moreover, the
fact ϕ(0, p) = p for any p ∈ M , implies that any pair (0, p), with p ∈ M , belongs to S.
Hence, by recalling the embedding M↪→[0,∞)×M , we will regard M as a closed subset
of S.

In the setX ⊂ [0,∞)×CT (M) of all T -pairs of (2.1), let us consider the map h : X → S
given by h(λ, x) = (λ, x(0)). Clearly h is continuous, onto and, by the assumption on f ,
it is also one-to-one. Moreover, the continuous dependence on data ensures the continuity
of its inverse h−1 : S → X. Let Ω be the open subset of [0,∞) × CT (M) considered in
the statement of the theorem. Clearly, the set SΩ = h(Ω ∩X) is open in S. Thus, there
exists an open subset W of D such that SΩ = W ∩S. Our aim is to apply Theorem 2.3 to
the equation ϕ(λ, p) = p in W . To this end observe that, according to the identifications
M↪→X and M↪→S, the restriction of the homeomorphism h to M turns out to be the
identity. Hence, the set Ω∩M and the slice W0 can be identified, so that the assumption
deg(w,Ω ∩M) 6= 0 is equivalent to

deg(
∂ϕ

∂λ
(0, ·),W0) 6= 0,

where, as proved above,
∂ϕ

∂λ
(0, p) = Tw(p)

for all p ∈ M . Consequently, by Theorem 2.3, there exists a connected subset Σ of
W ∩(S\M) whose closure in [0,∞)×M meets {p ∈ W0 : w(p) = 0} and it is not contained
in any compact subset of W . This means that the closure of Σ in the topological space
SΩ is not compact. Set Γ = h−1(Σ) and observe that Γ is a connected set of nontrivial
T -pairs in Ω, whose closure in Ω is noncompact and meets Ω ∩ M in w−1(0). Hence,
the existence in Ω of a global branch of T -pairs possessing all the required properties is
completely proved in the case of f satisfying assumption (2.3).

Let us now consider the case when the assumption (2.3) is not necessarily satisfied.
Let Z = {p ∈ M : w(p) = 0}. As a consequence of the necessary condition proved in
Theorem 2.1, the set (X\M)∪Z is closed in X. Therefore, since as previously observed
the solution set X is locally compact, it follows that (X\M)∪Z is locally compact as
well. Let Y0 denote the (compact) set of zeros of w in Ω ∩M , i.e. Y0 = Ω ∩ Z. Put
Y = ((Ω∩X)\M)∪Y0 and observe that Y is locally compact. In fact, Y clearly coincides
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with the set Ω∩ ((X\M)∪Z), which is locally compact as intersection of an open set with
a locally compact set. Let us apply Lemma 2.4 to the pair (Y, Y0). In order to verify all
the assumptions, we need only to show that any compact subset of Y containing Y0 has
nonempty boundary. Assume the contrary. Thus, there exists a relatively open, compact
subset C of Y containing Y0. Consequently, one can find an open subset G of Ω such
that G ∩ Y = C, ∂G ∩ Y = ∅. Moreover, since the set {(λ, x(t)) ∈ [0,∞)×M : (λ, x) ∈
C, t ∈ R} is compact, one can assume that G is such that {(λ, x(t)) ∈ [0,∞) ×M :
(λ, x) ∈ G, t ∈ R} is contained in a compact subset K̃ of [0,∞)×M . This implies that
G is bounded with complete closure. Without loss of generality, we may also suppose
the closure of G contained in Ω. Hence, in particular, G ∩M is relatively compact with
closure contained in Ω ∩M .

Let us now approximate f by a sequence {fn} of T -periodic equi-Carathéodory tangent
vector fields on M satisfying assumption (2.3) and such that, if pn → p, then fn(t, pn)→
f(t, p) for a.a. t ∈ R. For instance, given n ∈ N, one can define fn as follows:

fn(t, p) = πp

(∫
M
ϕn(p, q)f(t, q) dq

)
,

where πp : Rk → Tp(M) is the orthogonal projection and ϕn : M ×M → R is a smooth
convolution kernel (i.e. a mollifier) such that ϕ(p, q) = 0 whenever |p− q| > 1/n.

For any n ∈ N, let

wn(p) =
1

T

∫ T

0
fn(t, p) dt

be the mean value vector field associated to fn. The assumptions on fn guarantee that
the sequence {wn(p)} converges uniformly to w(p) on compact subsets of M . Moreover,
since the zeros of w in Ω∩M lie in a compact subset of G∩M , it is easy to see that, for
n large enough, the homotopy

(p, τ) 7→ τwn(p) + (1− τ)w(p), 0≤τ≤1,

is admissible for the degree in G ∩ M . Thus, deg(wn, G ∩ M) is well-defined and, by
the homotopy invariance property of the degree, it is equal to deg(w,G ∩ M), which,
by excision, coincides with deg(w,Ω ∩M). This implies that deg(wn, G ∩M) is nonzero.
Therefore, by the first part of the proof, for n sufficiently large, any equation ẋ = λfn(t, x)
has in Ω a connected set of nontrivial solutions pairs Γn, whose closure in Ω is noncompact
and meets Ω ∩M in w−1

n (0). Since the closure of G is a bounded and complete subset of
Ω, any Γn must intersect the complement of G in Ω, which implies the existence of a pair
(λn, xn) ∈ ∂G ∩ Γn.

Now, any function xn satisfies

ẋn(t) = λnfn(t, xn(t)), for a.a. t ∈ R

or, equivalently,

xn(t) = xn(0) + λn

∫ t

0
fn(s, xn(s)) ds, for all t ∈ R.
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Therefore, since for any n ∈ N and t ∈ R the pair (λn, xn(t)) belongs to the compact
set K̃ ⊂ [0,∞) × M introduced above, there exists a function γ ∈ L1

T (R) such that
|ẋn(t)|≤γ(t), for all n ∈ N and a.a. t ∈ R. Consequently, the sequence {xn} is equicon-
tinuous, so that, because of Ascoli’s theorem, it is totally bounded. Hence, without loss
of generality, we may assume {(λn, xn)} converging to (λ0, x0) ∈ ∂G. This implies that
fn(s, xn(s))→ f(s, x0(s)) a.e. in R. Therefore, x0 is a T -periodic solution of the integral
equation

x(t) = x(0) + λ0

∫ t

0
f(s, x(s)) ds,

which is equivalent to the differential equation ẋ = λ0f(t, x).
Thus, (λ0, x0) is a T -pair of (2.1) that, if λ0 > 0, clearly belongs to Y . Otherwise,

if λ0 = 0, then x0 is a constant function, say x0(t)≡p0. An argument similar to the one
used in proving the necessary condition for bifurcation given in Theorem 2.1, shows that
w(p0) = 0, i.e. p0 ∈ Y0. Therefore, in any case, (λ0, x0) ∈ ∂G∩Y , which is a contradiction.
Consequently, a straightforward application of Lemma 2.4 to the pair (Y, Y0) implies the
first part of our assertion.

Assume now that M is a closed submanifold of Rk and let Γ ⊂ Ω be the global
branch obtained above. Suppose Γ bounded. We need to show that its closure in Ω is not
complete. In fact, since Γ is bounded and M is closed, the set {(λ, x(t)) ∈ [0,∞) ×M :
(λ, x) ∈ Γ, t ∈ [0, T ]} is contained in a compact subset of [0,∞)×M . Hence, as above,
by Ascoli’s theorem, Γ is totally bounded. Consequently, the closure of Γ in Ω is not
complete since, otherwise, it would be compact. 2

We point out that, throughout the paper, the set X of T -pairs of (2.1) is considered
as a subspace of the metric space [0,∞)×CT (M). We have a good reason to do this: as
pointed out above, X is closed in [0,∞)×CT (M), as it happens in the less general case of
a continuous tangent vector field. However, one could expect that, in the Carathéodory
context, the natural setting for X would be [0,∞)×L1

T (M). Unfortunately, X is not nec-
essarily closed in this space. To convince oneself about this peculiarity, one can consider
in R the simple case of a (non-parametrized) differential equation

ẋ = f(t, x),

with f : [−1, 1]×R→ R continuous, where the set of those solutions which happen to be
globally defined in [−1, 1] is not closed in the Banach space L1((−1, 1),R) (but, certainly,
closed in C([−1, 1],R)).

The following example enlightens this phenomenon.

Example 2.5 Consider the family of (bell shaped) real functions, ξc : [−1, 1]→ R, given
by

ξc(t) =
1

3
√
t2 + c2 + 2c

, c > 0.
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These may be regarded as global solutions of a time-dependent scalar differential equation
ẋ = f(t, x). In fact, it is sufficient to define f : [−1, 1]×R→ R by

f(t, x) =

{
ξ′c(t,x)(t), if 0≤x≤1/

3
√
t2

ψ(t, x), otherwise,

where c = c(t, x) is the (unique) solution of the equation x = 1/( 3
√
t2 + c2+2c), t ∈ [−1, 1],

0≤x≤1/
3
√
t2, and ψ is any continuous extension of the map (t, x) 7→ ξ′c(t,x)(t), t ∈ [−1, 1],

0≤x≤1/
3
√
t2, whose existence is guaranteed by Tietze’s theorem. Now, observe that the

sequence of solutions {ξ1/n} converges in L1 to the function t 7→ 1/
3
√
t2, which is not a

solution of the above equation (in the Carathéodory sense), since it does not admit a
continuous extension to the whole interval [−1, 1].

In spite of the fact that the set X is closed in [0,∞)× CT (M) and not necessarily in
[0,∞)× L1

T (M), we want to show that the topologies induced on X by these two spaces
coincide. In fact, since the topology of L1

T (M) is weaker than that of CT (M), it is enough
to prove that if {(λn, xn)} is a sequence in X converging in [0,∞) × L1

T (M) to a pair
(λ, x) ∈ X, then {xn} converges to x in CT (M). Without loss of generality, we may
assume that xn(t) → x(t) a.e. in R. Since M is locally compact and x is a T -periodic
continuous function, there exists ε > 0 such that the set

Kε = {p ∈M : |x(t)− p| ≤ ε, for some t ∈ [0, T ]}

is a compact subset of M . Choose r > 0 in such a way that 0≤λn≤r for any n ∈ N. By
recalling the Carathéodory assumptions on f , one can find a function γε ∈ L1

T (R) such
that |f(t, p)|≤γε(t) for all p ∈ Kε and a.a. t ∈ R. Thus, there exists δ = δ(ε) such that
for ϑ, τ ∈ [0, T ] with 0≤τ − ϑ < δ one has∫ τ

ϑ
γε(t) dt <

ε

3r
.

Hence, if ξ is any solution of ẋ = λf(t, x) corresponding to λ ∈ [0, r] and satisfying
|ξ(t)− x(t)| < ε for all t ∈ [ϑ, τ ], then

|ξ(τ)− ξ(ϑ)|≤λ
∫ τ

ϑ
|f(t, ξ(t))| dt≤r

∫ τ

ϑ
γε(t) dt <

ε

3
.

Now, take a finite number of points in [0, T ], say t0, t1, . . ., tN , such that xn(ti)→ x(ti) as
n→∞ and |ti − tj| < δ for i, j = 0, 1, . . ., N . Assume also |t0| < δ/2 and |tN − T | < δ/2.
Let us show that, if n ∈ N is such that |xn(ti) − x(ti)| < ε/3 for i = 0, 1, . . ., N , then
|xn(t)−x(t)|≤ε for all t ∈ [0, T ]. In fact, given t ∈ [0, T ] and i ∈ {0, . . ., N} with |t−ti|≤δ,
one clearly has

|xn(t)−x(t)|≤|xn(t)−xn(ti)|+ |xn(ti)−x(ti)|+ |x(ti)−x(t)| < |xn(t)−xn(ti)|+ε/3+ε/3.

Moreover, it is easy to show that |xn(s)−x(s)|≤ε for all s in the interval with end points
t, ti. Hence, one obtains |xn(t)− xn(ti)| < ε/3, so that |xn(t)− x(t)| < ε. Thus, {xn(t)}
converges to x(t) uniformly in [0, T ], as claimed.
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Remark 2.6 Results analogous to the ones obtained throughout the paper are still valid
for an equation of the form ẋ = λf(λ, t, x), with f continuous with respect to λ, provided
the vector field w is replaced by w1(p) = 1

T

∫ T
0 f(0, t, p) dt. Observe that this includes

the case of a vector field (λ, t, p) 7→ g(λ, t, p) satisfying g(0, t, p) = 0 and continuously
differentiable with respect to λ, with (λ, t, p) 7→ ∂g

∂λ
(λ, t, p) a Carathéodory map. In fact

g(λ, t, p) can be written in the form λf(λ, t, p) by defining

f(λ, t, p) =
∫ 1

0

∂g

∂λ
(sλ, t, p) ds.

3 Some consequences

We give now some corollaries illustrating the global bifurcation result expressed in Theo-
rem 2.2. A first straightforward application is the following existence result for T -periodic
solutions on compact manifolds.

Corollary 3.1 Let f be as in Theorem 2.2. If M is compact with nonzero Euler-Poincaré
characteristic, then there exists a connected branch of T -pairs whose projection on the
λ-axis is [0,∞).

Proof. By the Poincaré-Hopf theorem the degree, deg(w), of the mean value au-
tonomous vector field w associated to f coincides with the Euler-Poincaré character-
istic χ(M) of M . Thus, applying the last assertion of Theorem 2.2 to the open set
Ω = [0,∞)×CT (M), one gets the existence of an unbounded connected set Γ of nontriv-
ial T -pairs whose closure Γ meets the slice λ = 0. The assertion now follows from the fact
that the metric space CT (M) is bounded and, consequently, the projection on the λ-axis
of Γ must be a connected unbounded subset of [0,∞) containing 0. 2

The following continuation principle for periodic solutions extends Corollary 2.5 in
[6], in which f is continuous, and Theorem 2.4 in [4], in which f is continuous and the
open set Ω0 has the special form Ω0 = {x ∈ CT (M) : x(t) ∈ V for all t ∈ [0, T ]}, with
V a relatively compact open subset of M . We point out that an interesting extension of
the last mentioned result has been obtained in [2], Corollary 2, in the case when M is a
complete Euclidean Neighborhood Retract.

Corollary 3.2 Let f and w be as in Theorem 2.2. Let Ω0 be a bounded open subset of
CT (M) with complete closure and such that the family of maps {f(·, x(·)) ∈ L1

T (M) : x ∈
Ω0} is dominated by a function in L1

T (R). Assume that deg(w,M ∩ Ω0) is defined and
nonzero. Then, the equation (2.1) has in [0,∞) × Ω0 a connected branch of nontrivial
T -pairs whose closure in [0,∞)×CT (M) meets M ∩Ω0 in w−1(0) and is either unbounded
(with respect to λ) or intersects [0,∞)× ∂Ω0. In particular, the equation ẋ = f(t, x) has
a T -periodic solution in Ω0, provided that in addition w(p) 6= 0 for all p ∈ M ∩ ∂Ω0 and
the following a priori bound is satisfied:

• if (λ, x) is a T -pair of (2.1) in (0, 1]× Ω0, then x 6 ∈ ∂Ω0.
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Proof. Apply Theorem 2.2 to the open set Ω = [0,∞)×Ω0. Then, there exists in Ω a
connected bifurcating branch Γ of nontrivial T -pairs whose closure in Ω is noncompact.
Suppose Γ bounded with respect to λ. Hence, as in the last part of the proof of Theorem
2.2, Γ turns out to be totally bounded. Consequently, since Ω0 has complete closure, the
closure Γ of Γ in [0,∞)×CT (M) must be compact. On the other hand, since by Theorem
2.2 Γ∩Ω is not compact, if Γ is bounded, Γ must contain a pair (λ, x) ∈ [0,∞)× ∂Ω0, as
claimed.

Assume now, in particular, w(p) 6= 0 for all p ∈ M ∩ ∂Ω0 and Γ ∩ ((0, 1]× ∂Ω0) = ∅.
This means that Γ must intersect either {0} × ∂Ω0 or {1} ×Ω0. Because of Theorem 2.1
(and the assumption w(p) 6= 0 on M ∩ ∂Ω0) the first situation does not occur. 2

Corollary 3.3 below extends a result in [6] in which f is continuous. It contains also a
theorem in [3] regarding the flat case (i.e. when M is an open subset of Rk) and obtained
as an application of some abstracts results involving nonlinear compact perturbations of
linear Fredholm operators of index zero.

Corollary 3.3 Let f and w be as in Theorem 2.2, and let U be an open subset of M .
If deg(w,U) is defined and nonzero, then the equation (2.1) admits in [0,∞)× CT (M) a
connected branch of nontrivial T -pairs whose closure meets U in a zero of w and is not
contained in any compact subset of ([0,∞) × CT (M)) \ (M \ U). In addition, if M is
closed in Rk, the closure of this branch satisfies at least one of the following properties:

a) it is unbounded;

b) it contains a bifurcation point in M\U .

Proof. Since M is closed in [0,∞)× CT (M), the set

Ω = ([0,∞)× CT (M)) \ (M \ U)

is open in [0,∞) × CT (M). Observe that Ω ∩ M = U . The assertion now follows
immediately from Theorem 2.2. In particular, if M is closed, [0,∞)×CT (M) is a complete
metric space. Thus the closure of the branch in [0,∞)×CT (M) is complete. Therefore, if
bounded, as a consequence of the last assertion of Theorem 2.2, this closure must contain
a bifurcation point in M \ U . 2

In Theorem 2.1, we have proved that a necessary condition for p ∈ M to be a bi-
furcation point is that the mean value vector field w vanishes at p. The following direct
consequence of the above Corollary provides a sufficient condition for an open subset on
M to contain bifurcation points.

Corollary 3.4 Let f and w be as in Theorem 2.2, and let U be an open subset of M .
If deg(w,U) is defined and nonzero, then the equation (2.1) admits at least a bifurcation
point in U .

As an easy consequence of Corollary 3.4 we get the following sufficient condition for a
point p ∈M to be of bifurcation.
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Corollary 3.5 Let p be a zero of the mean value vector field w. Assume that w is differ-
entiable at p and that w′(p) : Tp(M) → Rk is one-to-one. Then p is a bifurcation point
of the equation (2.1).

Proof. The assumption w(p) = 0 implies that w′(p) maps Tp(M) into itself (see e.g.
[10]). Consequently, w′(p) is an automorphism of Tp(M) and detw′(p) is well defined and
nonzero. This implies that p is an isolated zero. Thus, there exists an open neighborhood
U of p in M such that deg(w,U) = sign detw′(p) 6= 0. 2
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