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Abstract. We obtain a necessary as well as a sufficient condition for the

existence of bifurcation points of a coincidence equation, and, in particular,
of a parametrized fixed point problem. In both cases the trivial solutions are

assumed to form a finite dimensional submanifold of a Banach manifold. An

application is given to a delay differential equation on a manifold: we detect
periodic solutions that rotate close to an equilibrium point.

1. Introduction

Let f, h : X → Y be continuous maps between Banach manifolds. Consider the
coincidence equation

(1.1) f(x) = h(x).

We regard a submanifold M of X as the set of trivial solutions of (1.1). An element
p ∈ M is called a bifurcation point (from M) if any neighborhood of p contains
nontrivial solutions of (1.1). We are interested in finding and proving necessary as
well as sufficient conditions for a point p ∈M to be of bifurcation.

The results obtained in this paper can be considered generalizations of those
proved in [4] and [6]. In fact, X and Y are Banach spaces in [4] and finite dimen-
sional manifolds in [6].

A particular case of (1.1) is the following fixed point equation depending on a
real parameter λ:

(1.2) z = h(λ, z).

In this case X = R×Z, Y = Z, f is the projection π2 onto the second factor Z, and
a coincidence point x is a pair (λ, z) with z a fixed point of the partial map h(λ, ·).
The manifold of trivial solutions is M = {0} ×M0, where M0 is a submanifold of
Z, contained in the set of fixed points of h(0, ·).

The obtained results are applied to determine conditions for the existence of
small oscillations of the parametrized delay differential equation

(1.3) x′(t) = λF (t, x(t), x(t− 1)).

The map F is assumed to be periodic in the first variable and tangent to a manifold
N in the second one.

The paper is articulated in five different sections.
After this Introduction, we present some preliminaries (Section 2). Our readers

should pay particular attention to the definition of coincidence Hessian, H(f, h)(p),
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of the pair of functions (f, h), evaluated at a coincidence point p ∈ X of (1.1).
This is an intrinsically defined symmetric bilinear operator from the kernel to the
cokernel of

(f ′(p)− h′(p)) : TpN → Tf(p)N.

As usual TpN and Tf(p)N denote the tangent spaces of N at p and f(p) (= h(p)),
respectively. The Hessian H(f, h)(p) is a well defined substitute of what, when
X and Y are Banach spaces, is the bilinear operator f ′′(p) − h′′(p). In fact, as
well known, the second derivative is not intrinsically defined in the framework of
manifolds. Theorem 2.3 provides a practical way of computing H(f, h)(p) in the
case when X and Y are embedded in Banach spaces.

Section 3 contains two theoretical results, namely a necessary condition (Theo-
rem 3.5) and a sufficient condition (Theorem 3.7) for a coincidence point p ∈ M
of (1.1) to be of bifurcation. The coincidence Hessian H(f, h)(p) plays a crucial
role in the statement of the sufficient condition, which, in the framework of Banach
spaces, can be expressed (as in [4]) in terms of second derivatives (see Theorem
3.2).

Section 4 contains bifurcations results for the parametrized fixed point equation
(1.2). Corollaries 4.1 and 4.2 are the natural reformulations of Theorems 3.5 and
3.7 for this particular case. Some additional results of this section, particularly
Theorems 4.5 and 4.6, will facilitate the application contained in the next section.

Finally, in Section 5, we study the delay differential equation (1.3). We assume,
for simplicity, that F is T -periodic in the first variable with T ≥ 1. We present a
possibile way of proving the existence, for small values of λ, of periodic solutions
of period T rotating around equilibria where bifurcation takes place. The existence
result expressed in Theorem 5.2 could be established also when T < 1, using a more
elaborate computation. We have selected not to do so in this paper, and to focus
on a straightforward application of our abstract results.

2. Notation and Preliminaries

We shall assume that all Banach spaces are real and all manifolds are smooth
and modeled on Banach spaces. Although most of the statements make sense with
less regularity, we are not interested, in this paper, in a more general setting.

Given two manifolds X and Y , and a C1 map f : X → Y , the (first) derivative of
f at x ∈ X will be denoted either by Df(x) or f ′(x), whichever is more convenient.
It is well-known that f ′(x) is a linear operator sending the tangent space TxX of
X at x into the tangent space Tf(x)Y of Y at f(x).

When X = X1×X2, the partial derivative with respect to the first (respectively,
the second) variable at (x1, x2) will be indicated with ∂1f(x1, x2) (respectively,
∂2f(x1, x2)). Thus, for any pair of tangent vectors (u1, u2) ∈ Tx1X1 × Tx2X2, one
has

Df(x1, x2)(u1, u2) = ∂1f(x1, x2)u1 + ∂2f(x1, x2)u2.

In particular, when X1 = R, the partial derivative ∂1f(x1, x2), which is actually
a linear operator from R to the tangent space Tf(x1,x2)Y , will be identified with
the tangent vector ∂1f(x1, x2)(1) ∈ Tf(x1,x2)Y . With this notation, for the (total)
derivative Df(x1, x2), one has the equality

Df(x1, x2)(u1, u2) = u1∂1f(x1, x2) + ∂2f(x1, x2)u2,

where (u1, u2) ∈ R× Tx2X2.
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When X and Y are Banach spaces, the second derivative of a C2 map f : X → Y
at x ∈ X is a symmetric bilinear operator from X to Y , i.e. an element of the space
L2
s(X,Y ), and will be denoted either by D2f(x) or f ′′(x). The following is a

practical method for its computation. Given u, v ∈ X, consider the function of two
real variables σ(r, s) = f(x+ ru+ sv). Then, it is easy to see that

f ′′(x)(u, v) =
∂2σ

∂r∂s
(0, 0).

However, the second derivative of f at x ∈ X is not intrinsically defined when
X and Y are differentiable manifolds, since only part of this derivative is inde-
pendent of the coordinates. In this case, one can define (see e.g. [1]) an intrinsic
symmetric bilinear operator Hf(x), called the Hessian of f at x, from Ker f ′(x) to
coKer f ′(x) = Tf(x)Y/ Im f ′(x), i.e. an element of L2

s(Ker f ′(x), coKer f ′(x)).
Given x ∈ X, the operator Hf(x) is defined as follows. Consider two charts

ϕ : U ⊆ X → E and ψ : V ⊆ Y → F about x and y = f(x). Then

(2.1) Hf(x)(u, v) = Πψ′(y)−1f̂ ′′(ϕ(x))(ϕ′(x)u, ϕ′(x)v),

where u, v ∈ Ker f ′(x), f̂ is the composition ψfϕ−1, and Π: TyY → TyY/ Im f ′(x)
is the canonical projection. It can be shown (see [6]) that (2.1) does not depend on
the choice of the charts ϕ and ψ. Thus, Hf(x) ∈ L2

s(Ker f ′(x), coKer f ′(x)) is well
defined.

Notice that, when X and Y are Banach spaces, x ∈ X and u, v ∈ Ker f ′(x),
then the classical second derivative f ′′(x)(u, v) belongs to the equivalence class
Hf(x)(u, v).

An interesting special case, that justifies the appellative “Hessian”, arises when
f is a real function on X and x ∈ X is a critical point of f . In this case Ker f ′(x) =
TxX and coKer f ′(x) = R. Thus Hf(x) is the classical Hessian, which can be
regarded either as a symmetric bilinear form or as a quadratic form on the tangent
space TxX.

The following theorem provides a practical way of finding an element of the
equivalence class Hf(x)(u, v) when X and Y are embedded in Banach spaces.

Theorem 2.1. Let f : X → Y be a C2 map between two manifolds. Assume that
X and Y are embedded in Banach spaces Ě and F̌ respectively. Given p ∈ X and
u, v ∈ Ker f ′(p) ⊆ TpX, let α, β : (−ε, ε)→ Ě be two C1 curves such that α(τ) ∈ X,
β(τ) ∈ Tα(τ)X ⊆ Ě, α(0) = p, α′(0) = u, and β(0) = v. Consider the curve

γ : (−ε, ε)→ F̌ , γ(τ) = f ′(α(τ))β(τ).

Then the vector γ′(0) is tangent to Y at f(p), and it is a representative of the
equivalence class Hf(p)(u, v).

Proof. Let ϕ : U → E and ψ : V → F be two charts about p and q = f(p) respec-
tively. We may assume, without loss of generality, that U = X, V = Y , ϕ(X) = E,
and ψ(Y ) = F . Moreover, we may also suppose that F is a subspace of a Banach
space G and that ψ is the restriction to Y as domain and to F as codomain of a
diffeomorphism Ψ: F̌ → G. We shall use the following maps and elements:

1. p0 = ϕ(p), u0 = ϕ′(p)u, v0 = ϕ′(p)v;
2. f̂ : E → F , ξ 7→ ψ(f(ϕ−1(ξ)));
3. f̌ : E → F̌ , ξ 7→ f(ϕ−1(ξ)).
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Notice that f̂ cannot be regarded as the composition of f̌ and ψ, since ψ is not
globally defined on the codomain F̌ of f̌ . However, in what follows, it is convenient
to consider f̂ as the composition of two maps between Banach spaces, namely f̌ and
Ψ. Taking (2.1) into account we obtain that a vector w ∈ TqY is a representative
of Hf(p)(u, v) iff

ψ′(q)w − f̂ ′′(p0)(u0, v0) ∈ Im f̂ ′(p0).

Hence, we compute f̂ ′′(p0)(u0, v0). We obtain

f̂ ′′(p0)(u0, v0) = Ψ′′(f̌(p0))(f̌ ′(p0)u0, f̌
′(p0)v0) + Ψ′(f̌(p0))f̌ ′′(p0)(u0, v0).

Since Ψ′′(f̌(p0)) is a bilinear operator and u0, v0 ∈ Ker f̌ ′(p0), it follows that

Ψ′′(f̌(p0))(f̌ ′(p0)u0, f̌
′(p0)v0) = 0

and, consequently,

f̂ ′′(p0)(u0, v0) = Ψ′(f̌(p0))f̌ ′′(p0)(u0, v0).

From the left-hand-side of this equality we derive that

Ψ′(f̌(p0))f̌ ′′(p0)(u0, v0) ∈ F.
Therefore, since Ψ′(f̌(p0)) : F̌ → G is an isomorphism that maps TqY onto F , the
vector w = f̌ ′′(p0)(u0, v0) belongs to TqY . Hence, f̂ ′′(p0)(u0, v0) = ψ′(q)w. This
implies that w is a representative of Hf(p)(u, v).

It remains to prove that γ′(0) − w belongs to Im f ′(p), which coincides with
Im f̌ ′(p0)). Let

α0(τ) = ϕ(α(τ)), β0(τ) = ϕ′(α(τ))β(τ)
and set γ0(τ) = f̌ ′(α0(τ))β0(τ). Hence,

γ′0(0) = f̌ ′′(α0(0))(α′0(0), β0(0)) + f̌ ′(α0(0))β′0(0)

= f̌ ′′(p0)(u0, v0) + f̌ ′(p0)β′0(0) = w + f̌ ′(p0)β′0(0).
Therefore,

γ′0(0)− w ∈ Im f̌ ′(p0) = Im f ′(p).
The final result follows from the easily verified equality γ0(τ) = γ(τ). �

The following property of Hf will be useful in the sequel.

Lemma 2.2. Let f : X → Y be a C2 map between two manifolds and assume that
f is constant on a submanifold M of X. Let p be an element of M and u, v ∈ TpM .
Then, u, v ∈ Ker f ′(p) and Hf(p)(u, v) = 0.

Proof. By assumption, f is constant on the submanifold M of X. Therefore, TpM
is a subspace of Ker f ′(p). Moreover, according to the definition introduced in
(2.1), the map f̂ : ϕ(U) → ψ(V ) is constant on ϕ(U ∩M). We may assume that
ϕ maps U ∩M into a subspace E0 of E. Therefore, the vectors ϕ′(p)u and ϕ′(p)v
belong to E0. Hence, the map σ̂(r, s) = f̂(ϕ(p) + rϕ′(p)u + sϕ′(p)v) is constant.
Consequently,

f̂ ′′(ϕ(p))(ϕ′(p)u, ϕ′(p)v) =
∂2σ̂

∂r∂s
(0, 0) = 0.

This clearly implies

Hf(p)(u, v) = Πψ′(q)−1f̂ ′′(ϕ(p))(ϕ′(p)u, ϕ′(p)v) = 0,

where q = f(p). The above equality proves the lemma. �
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Let, as above, X and Y be two manifolds, and let f, h : X → Y be of class C2. In
the particular case when X and Y are Banach spaces, given p ∈ X, the expression

(2.2) H(f, h)(p)(u, v) := H(f − h)(p)(u, v),

makes sense provided that u, v ∈ Ker(f ′(p)− h′(p)). However, (2.2) is meaningless
in the general case, since the difference f − h may not be defined. Nevertheless,
assume that p is a coincidence point of the pair (f, h), that is, p is a solution of the
equation f(x) = h(x). Then, given u and v in the subspace Ker f ′(p)∩Kerh′(p) of
Ker(f ′(p)− h′(p)), we can define

H(f, h)(p)(u, v) := Hf(p)(u, v)−Hh(p)(u, v),

since both Hf(p)(u, v) and Hh(p)(u, v) make sense. We would like to extend the
bilinear operator H(f, h)(p) to the space Ker(f ′(p)−h′(p)) in such a way that when
X and Y are Banach spaces we obtain

(2.3) H(f, h)(p) = H(f − h)(p).

Using the guidelines provided by (2.1) we define the coincidence Hessian of the
pair (f, h) by

(2.4) H(f, h)(p)(u, v) = Πψ′(q)−1ĝ′′(ϕ(p))(ϕ′(p)u, ϕ′(p)v),

where, ĝ = ψfϕ−1 − ψhϕ−1, q = f(p) = h(p), and u, v ∈ Ker(f ′(p)− h′(p)).

When X and Y are embedded in Banach spaces, the coincidence Hessian of (f, h)
can be evaluated in a manner similar to the method outlined in Theorem 2.1. The
following theorem provides a practical way for finding an element of the equivalence
classH(f, h)(p)(u, v). The result will be used in the application presented in Section
5, and the proof is omitted since it can be carried out as in Theorem 2.1.

Theorem 2.3. Let f, h : X → Y be C2 maps between manifolds. Assume that X
and Y are embedded in Banach spaces Ě and F̌ respectively. Given p ∈ X such
that f(p) = h(p) and u, v ∈ Ker(f ′(p) − h′(p)) ⊆ TpX, let α, β : (−ε, ε) → Ě be
two C1 curves such that α(τ) ∈ X, β(τ) ∈ Tα(τ)X ⊆ Ě, α(0) = p, α′(0) = u, and
β(0) = v. Consider the curve

γ : (−ε, ε)→ F̌ , γ(τ) =
(
f ′(α(τ))− h′(α(τ))

)
β(τ).

Then the vector γ′(0) is tangent to Y at f(p) = h(p) and it is a representative of
the equivalence class H(f, h)(p)(u, v).

The following result for the coincidence Hessian is the analog of Lemma 2.2. Its
proof will be omitted, since it repeats, almost verbatim, the proof of Lemma 2.2.

Lemma 2.4. Let f, h : X → Y be C2 maps between manifolds and assume that
f(x) = h(x) for every x in a submanifold M of X. Let p be an element of M and
u, v ∈ TpM . Then, u, v ∈ Ker(f ′(p)− h′(p)) and H(f, h)(p)(u, v) = 0.

We conclude this section by recalling some known facts about Fredholm maps.
Let L : E → F be a bounded linear operator between Banach spaces. Recall that
ImL is closed whenever F/ ImL is finite dimensional, and L is said to be Fredholm
if

dim KerL + dimF/ ImL < +∞.
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In this case, the index of L is the integer

indL = dim KerL− dimF/ ImL.

As well-known, the set of Fredholm operators of a given index is open in the space
of bounded linear operators.

Let f : X → Y be a C1 map between two manifolds. Recall that f is Fredholm
at x ∈ X if the derivative f ′(x) is a Fredholm operator (from TxX to Tf(x)Y ). The
map f is said to be Fredholm (of index n) if it is Fredholm (of index n) at every
x ∈ X.

3. General bifurcation

Let X and Y be manifolds, and f, h : X → Y be continuous. Denote by S the
solution set of the coincidence equation

(3.1) f(x) = h(x).

Suppose that one would like to regard a distinguished subset M of S as the set of
trivial solutions of (3.1). Consequently, S \M is the set of nontrivial solutions.
According to this terminology, a trivial solution p ∈M will be called a bifurcation
point (from M) for (3.1) if any neighborhood of p contains elements of S \M .

Actually, some structure is required on the set M. For instance, we may assume
that

• the set M of trivial solutions of (3.1) is a manifold.
Our purpose is to prove a necessary condition (Theorem 3.5) and a sufficient condi-
tion (Theorem 3.7) for the coincidence equation (3.1) to possess bifurcation (from
M). To this end, we will make use of two results for Fredholm maps between
Banach spaces, namely Theorem 3.1 and Theorem 3.2 below (see [4]).

To better understand the meaning of Theorem 3.1, observe that, when g is a
C1 map between Banach spaces and M is a differentiable manifold contained in
g−1(0), then TxM ⊆ Ker g′(x) for all x ∈M . Therefore, if g is Fredholm at a point
x ∈M , then Ker g′(x) is finite dimensional and, consequently, so is M .

Theorem 3.1. Let g : U ⊆ E → F be a C1 map defined on an open subset U of
a Banach space E into a Banach space F , and let M be a manifold contained in
g−1(0). Let p ∈ M be a bifurcation point (from M) for the equation g(x) = 0 and
assume that g is Fredholm at p. Then Ker g′(p) 6= TpM .

Theorem 3.2. Let g, U, E, F and M be as in Theorem 3.1 with the additional
assumption that g is C2 on U . Let p ∈ M be such that g is Fredholm at p and
dim Ker g′(p) = dimM+1. Denote by Π: F → F/ Im g′(p) the canonical projection
and assume that there exists v ∈ Ker g′(p) \ TpM such that the linear operator
Av : TpM → F/ Im g′(p) given by

Avu = Π g′′(p)(u, v)

is onto. Then p is a bifurcation point (from M) for the equation g(x) = 0. More
precisely, there exists a C1 curve δ : (−r, r) → g−1(0) such that δ(0) = p and
δ(s) /∈M for 0 < |s| < r.

Remark 3.3. The assumptions in Theorem 3.2 imply that the index of g at p is
positive. In fact, from the surjectivity of Av, we get

dim(F/ Im g′(p)) ≤ dimTpM = dimM
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Therefore, taking into account that dim Ker g′(p) = dimM + 1, it follows that

ind g′(p) = dim Ker g′(p)− dim(F/ Im g′(p)) ≥ 1,

as claimed.

Remark 3.4. In Theorem 3.2 the surjectivity of the map Av is equivalent to the
assumption

u ∈ TpM and g′′(p)(u, v) ∈ Im g′(p) =⇒ u = 0,
provided that ind g′(p) = 1.

To see this, it is enough to observe that, from the assumption that g′(p) is
Fredholm of index 1 and that dim Ker g′(p) = dimM + 1, we obtain

dim(F/ Im g′(p)) = dimTpM.

Consequently, the map Av acts between two finite dimensional spaces of the same
dimension. Therefore, Av is one-to-one if and only if it is onto.

Let us now go back to the coincidence equation (3.1) and assume f and h at
least C1 in a neighborhood of M . Observe first that, since any x ∈M is a solution
of (3.1), each Fréchet derivative, f ′(x) and h′(x), maps the tangent space TxX into
Tf(x)Y. Thus, the same occurs for the difference f ′(x) − h′(x). Moreover, for any
x ∈M , the following inclusion holds:

(3.2) TxM ⊆ Ker(f ′(x)− h′(x)).

To see this, observe that the above inclusion is invariant under diffeomorphisms.
Therefore, one can regard X and Y as Banach spaces. Thus, the manifold M can
be considered as a subset of g−1(0), where g = f − h. Now, the fact that g is
constant on M implies, as already observed, that TxM ⊆ Ker g′(x), for all x ∈M ,
as claimed.

We now establish two theorems, that will be particularly helpful in proving the
results of the next section.

Theorem 3.5 (Necessary Condition). Let f, h : X → Y and M be as above, with f
and h of class C1 on a neighborhood of M . Assume that p ∈M is a bifurcation point
for the equation (3.1), and that the linear operator f ′(p)− h′(p) : TpX → Tf(p)Y is
Fredholm. Then,

Ker(f ′(p)− h′(p)) 6= TpM.

Proof. The notion of bifurcation and the thesis of this theorem are invariant under
diffeomorphisms. Therefore, we can regard X and Y as Banach spaces. The as-
sertion now follows from a straightforward application of Theorem 3.1 to the map
g = f − h. �

Remark 3.6. As a consequence of (3.2), the above necessary condition implies that
TpM is strictly contained in Ker(f ′(p)−h′(p)). Thus, the assertion in Theorem 3.5
can also be stated as follows:

there exists v 6∈ TpM such that f ′(p)v = h′(p)v.

Theorem 3.7 (Sufficient Condition). Let f, h : X → Y and M be as above. Assume
that f and h are C2 in a neighborhood of M . Let p ∈ M be such that the linear
operator

f ′(p)− h′(p) : TpX → Tf(p)Y
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is Fredholm and dim Ker(f ′(p) − h′(p)) = dimM + 1. Assume that there exists a
vector

v ∈ Ker(f ′(p)− h′(p)) \ TpM
such that the linear operator

Lv : TpM → Tf(p)Y/ Im(f ′(p)− h′(p)), u 7→ H(f, h)(p)(u, v),

is onto. Then p is a bifurcation point (from M) for equation (3.1). More precisely,
there exists a C1 curve δ : (−r, r) → X such that δ(0) = p, f(δ(s)) = h(δ(s))
whenever |s| < r, and δ(s) /∈M for 0 < |s| < r.

Proof. As in the proof of Theorem 3.5, we may assume that X and Y are Banach
spaces. Let g = f −h. Then M ⊆ g−1(0) and v ∈ Ker g′(p) \TpM . Moreover, from
the equality (2.3) we have H(f, h)(p) = Hg(p). Consequently, the operator

u ∈ TpM 7→ Hg(p)(u, v) ∈ F/ Im g′(p)

is onto. This implies, by Theorem 3.2, the existence of a curve δ : (−r, r) → X as
stated. In particular, p is a bifurcation point. �

Remark 3.8. As in Remark 3.4, the surjectivity of the linear map Lv defined in
Theorem 3.7 is equivalent to the assumption

Lvu = 0 =⇒ u = 0,

provided that ind(f ′(p)− h′(p)) = 1.

The following result shows that in Theorem 3.7 the vector v can be any element
of Ker(f ′(p)− h′(p)) \ TpM .

Theorem 3.9. Let Lv be the linear operator defined in Theorem 3.7. Then, given
v1 ∈ Ker(f ′(p)− h′(p)) \ TpM , there exists α 6= 0 such that Lv1 = αLv.

Proof. Let v1 ∈ Ker(f ′(p)−h′(p))\TpM . By assumption, dim Ker(f ′(p)−h′(p)) =
dimM + 1. Thus, there exists α 6= 0 and w ∈ TpM such that v1 = αv + w. Recall
that the bilinear operator H(f, h)(p) vanishes on any pair of vectors in TpM (see
Lemma 2.4). Hence, given any u ∈ TpM , we obtain

H(f, h)(p)(u, v1) = H(f, h)(p)(u, αv + w)

= αH(f, h)(p)(u, v) +H(f, h)(p)(u,w) = αH(f, h)(p)(u, v),
and this proves the assertion. �

4. Bifurcation of fixed points

In this section we are concerned with bifurcation for the n parametrized fixed
point equation

(4.1) z = h(λ, z),

where z belongs to a manifold Z and h is a Z-valued map defined on R × Z (or,
more generally, on a neighborhood of {0}×Z). Given λ ∈ R, denote by hλ : Z → Z
the partial map hλ(·) = h(λ, ·). We use the notation Fixhλ to indicate the subset
of Z of the fixed points of hλ. In addition, we define

S = {(λ, z) ∈ R× Z : z = h(λ, z)}
and we assume that

• there exists a submanifold M0 of Z such that z = h(0, z) for all z ∈M0.
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In other words, M0 is a subset of Fixh0, and we can think of M := {0} ×M0 ⊆ S
as the set of trivial solutions of (4.1). Let us point out that M0 could be strictly
contained in Fixh0. In fact, this is precisely the situation that occurs in the case
when h0 is the Poincaré T -translation operator generated by a T -periodic second
order differential equation on a manifold (see e.g. [6]).

Clearly, equation (4.1) is a particular case of the coincidence equation (3.1) with
X = R× Z, Y = Z and f = π2, where

π2 : R× Z → Z, (λ, z) 7→ z

denotes the projection onto the second factor Z.
We say that an element p ∈ M0 is a bifurcation point (from M0) of (4.1) if any

neighborhood of (0, p) contains nontrivial solutions of (4.1), i.e. pairs (λ, z) ∈ S\M .
In other words, p ∈ M0 is a bifurcation point if, according to the terminology of
Section 3, the element (0, p) ∈ {0} ×M0 is a bifurcation point for the coincidence
equation

π2(λ, z) = h(λ, z).

We emphasize the fact that, in the present context, a pair of the form (0, z), with
z ∈ Fixh0 \M0, must be considered a nontrivial solution.

In this section, we are interested in establishing a necessary as well as a sufficient
condition for equation (4.1) to have bifurcation from M0. To this end, let z ∈ M0

and assume that h is C1 in a neighborhood of (0, z). Denote by Iz the identity
map on the tangent space TzZ. Since z is a fixed point of h0, the partial derivative
∂2h(0, z) of h at (0, z), which coincides with the derivative h′0(z) of the partial map
h0 at z, sends TzZ into itself. Consequently, the same is true for the linear operator
Iz−h′0(z). Also observe that the partial derivative ∂2π2(0, z) : TzZ → TzZ coincides
with Iz, since the partial map π2(0, ·) is the identity on Z.

The following conditions for bifurcation of (4.1) are straightforward consequences
of Theorems 3.5 and 3.7.

Corollary 4.1. Let h : R × Z → Z and M0 be as above with h of class C1 on a
neighborhood of {0} ×M0. Assume that p ∈ M0 is a bifurcation point of (4.1),
and the linear operator (Dπ2(0, p)−Dh(0, p)) : R×TpZ → TpZ is Fredholm. Then
there exists (µ,w) ∈ (R× TpZ) \ ({0} × TpM0) such that

w − µ∂1h(0, p)− ∂2h(0, p)w = 0.

Proof. The assumption that (0, p) is a bifurcation point for the coincidence equation
π2(λ, z) = h(λ, z) implies, by Theorem 3.5,

Ker(Dπ2(0, p)−Dh(0, p)) 6= {0} × TpM0.

As already observed in Remark 3.6, this means that the tangent space of M =
{0}×M0 at (0, p) is strictly contained in the kernel of Dπ2(0, p)−Dh(0, p). Thus,
there exists (µ,w) ∈ Ker(Dπ2(0, p)−Dh(0, p)) which does not belong to T(0,p)M =
{0} × TpM0. This means

Dπ2(0, p)(µ,w)−Dh(0, p)(µ,w) = w − (µ∂1h(0, p) + ∂2h(0, p)w) = 0,

which is our assertion. �

Corollary 4.2. Assume that h is C2 on a neighborhood of {0} ×M0. Let p ∈M0

be such that dim Ker(Dπ2(0, p) −Dh(0, p)) = dimM0 + 1, and the linear operator
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(Dπ2(0, p) − Dh(0, p)) : R × TpZ → TpZ is Fredholm. Suppose that there exists
(µ,w) ∈ (R× TpZ) \ ({0} × TpM0) such that

w − µ∂1h(0, p)− ∂2h(0, p)w = 0.

If the linear operator

u ∈ TpM0 7→ H(π2, h)(0, p)((0, u), (µ,w)) ∈ TpZ/ Im(Dπ2(0, p)−Dh(0, p))

is onto, then p is a bifurcation point of (4.1) from M0.

Proof. Consider the coincidence equation π2(λ, z) = h(λ, z), and observe that the
equality

w − µ∂1h(0, p)− ∂2h(0, p)w = 0
implies that the vector v = (µ,w) belongs to Ker(Dπ2(0, p) − Dh(0, p)) and it is
not tangent to M = {0} ×M0. The result now follows from Theorem 3.7. �

Remark 4.3. In the case of the bifurcation equation (4.1), similar arguments to
those in Remarks 3.4 and 3.8 prove that, in Corollary 4.2, the condition that the
map u ∈ TpM0 7→ H(π2, h)(0, p)((0, u), (µ,w)) is onto is equivalent to assuming
that

u ∈ TpM0 7→ H(π2, h)(0, p)((0, u), (µ,w))
is injective, provided that ind(Dπ2(0, p)−Dh(0, p)) = 1.

As already pointed out, the manifold M0 may be strictly contained in the set
Fixh0. Thus, some nontrivial solution (λ, z) of (4.1) may have λ = 0. However, an
extra condition yielding that any nontrivial solution sufficiently close to {0} ×M0

has λ 6= 0 turns out to be satisfied, for instance, in many applications to differential
equations. Lemma 4.4 below shows that such a condition can be obtained by
assuming that

(H) ∀z ∈M0, Iz − h′0(z) is Fredholm and its kernel coincides with TzM0.

Lemma 4.4. Assume that h is C1 on a neighborhood of (0, p) ∈ {0}×M0 and that
the following condition is satisfied:

(Hp) the operator Ip − h′0(p) is Fredholm and TpM0 = Ker(Ip − h′0(p)).

Then, any non-trivial solution (λ, z) of (4.1), which is sufficiently close to (0, p),
has λ 6= 0. Consequently, if (H) is satisfied, there exists W ⊆ Z which is an
isolating neighborhood of M0, i.e. M0 = Fixh0 ∩W .

Proof. Assume, by contradiction, that in any neighborhood of (0, p) in R×Z there
exists a solution (0, z) of (4.1) with z ∈ Fixh0 \ M0. This means that p is a
bifurcation point, relatively to the manifold Z, for the coincidence equation z =
h(0, z). Therefore, by applying Theorem 3.5 to h0 = h(0, ·), to the identity of Z and
to M0, one gets dim Ker(Ip−h′0(p)) > dimTpM0. This contradicts condition (Hp),
and the first assertion is proved. The last statement is a trivial consequence. �

The following necessary condition for bifurcation of fixed points is a consequence
of Corollary 4.1 and assumption (Hp).

Theorem 4.5 (Necessary condition). Suppose that h : R × Z → Z is C1 on a
neighborhood of {0} ×M0. Assume that p ∈M0 is a bifurcation point of (4.1) and
(Hp) is satisfied. Then the vector ∂1h(0, p) belongs to the image of the operator
(Ip − h′0(p)) : TpZ → TpZ.
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Proof. The operator Dπ2(0, p)−Dh(0, p) : R×TpZ → TpZ is Fredholm, since so is
its restriction Ip−h′0(p) to the finite codimensional subspace {0}×TpZ of R×TpZ.
Therefore, by Corollary 4.1, there exists (µ,w) ∈ (R × TpZ) \ ({0} × TpM0) such
that

w − µ∂1h(0, p)− ∂2h(0, p)w = 0.

This implies that µ∂1h(0, p) lies in the image of Ip − h′0(p). Hence, it is enough
to show that µ 6= 0. If this were not the case, w would belong to the kernel of
Ip−h′0(p) and, by assumption (Hp), this would imply w ∈ TpM0, contradicting the
fact that (µ,w) /∈ {0} × TpM0. �

The following sufficient condition for bifurcation of fixed points derives from
Corollary 4.2. The main trust of the second part of the result is to show that
condition (Hp) can be derived from its assumptions.

Theorem 4.6 (Sufficient condition). Assume that h is C2 on a neighborhood of
{0} ×M0. Let p ∈M0 be such that the operator

Ip − h′0(p) : TpZ → TpZ

is Fredholm of index zero. Suppose that there exists w ∈ TpZ such that

w − ∂1h(0, p)− ∂2h(0, p)w = 0.

If the linear operator

u ∈ TpM0 7→ H(π2, h)(0, p)((0, u), (1, w)) ∈ TpZ/ Im(Ip − h′0(p))

is injective, then p is a bifurcation point of (4.1) from M0.
Moreover any nontrivial solution (λ, z) of (4.1) close to (0, p) has λ 6= 0.

Proof. The operator (Dπ2(0, p)−Dh(0, p)) : R× TpZ → TpZ is Fredholm of index
one, since its restriction Ip − h′0(p) to the one codimensional subspace {0} × TpZ
of R× TpZ in Fredholm of index zero. Now notice that

Im(Ip − h′0(p)) = Im(Dπ2(0, p)−Dh(0, p)),

since the vector (1, w), which does not belong to {0} × TpZ, is mapped into zero.
Consequently, dim Ker(Dπ2(0, p)−Dh(0, p)) = dimM0 + 1.

We apply Corollary 4.2 with (µ,w) = (1, w). The assumption that the operator

u ∈ TpM0 7→ H(π2, h)(0, p)((0, u), (1, w)) ∈ TpZ/ Im(Ip − h′0(p))

is injective is equivalent to its surjectivity (see Remark 4.3). Thus p is a bifurcation
point of (4.1), since

TpZ/ Im(Ip − h′0(p)) = TpZ/ Im(Dπ2(0, p)−Dh(0, p)).

In order to prove the last assertion, according to Lemma 4.4 it is enough to show
that our assumptions guarantee the validity of condition (Hp).

Recall first that dim Ker(Dπ2(0, p)−Dh(0, p)) = dimM0+1. Since (1, w) belongs
to Ker(Dπ2(0, p)−Dh(0, p)) but it does not belong to {0} × TpM0 we obtain that

dim
(

Ker(Dπ2(0, p)−Dh(0, p)) ∩ ({0} × TpZ)
)
< dimM0 + 1.

Hence,

dim
(

Ker(Dπ2(0, p)−Dh(0, p)) ∩ ({0} × TpZ)
)
≤ dimM0.
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Moreover, the inclusion

({0} × TpM0) ⊆ Ker(Dπ2(0, p)−Dh(0, p)) ∩ ({0} × TpZ)

and the previous inequality regarding the dimension, imply that

Ker(Dπ2(0, p)−Dh(0, p)) ∩ ({0} × TpZ) = {0} × TpM0.

Consequently, (Hp) follows noting that

Ker(Dπ2(0, p)−Dh(0, p)) ∩ ({0} × TpZ) = {0} ×Ker(Ip − h′0(p)).

In conclusion, by Lemma 4.4, any nontrivial solution (λ, z) of (4.1) close to (0, p)
has λ 6= 0. �

5. Applications to differential equations

In this section we give an application of our results to a parametrized first order
differential equation with delay.

Let N be an m-dimensional manifold in Rk and let F : R × N × N → Rk be a
continuous map. We say that F is tangent to N in the second variable or, for short,
that F is a vector field on N , if F (t, p, q) ∈ TpN for all (t, p, q) ∈ R×N ×N .

Given a vector field F onN , consider the following parametrized delay differential
equation:

(5.1) x′(t) = λF (t, x(t), x(t− 1)), λ ∈ R.

By a solution of (5.1), corresponding to a given value of λ, we shall mean a con-
tinuous function x : J → N , defined on a (possibly unbounded) real interval with
length greater than 1, which is of class C1 on the subinterval (inf J + 1, sup J) of J
and verifies x′(t) = λF (t, x(t), x(t− 1)) for all t ∈ J with t > inf J + 1.

Assume that F is smooth and T -periodic in the first variable. A pair (λ, x) will
be called a T -periodic pair if x(·) is a T -periodic solution of (5.1) defined on the
whole real line and corresponding to λ. A T -periodic pair of the type (0, x) is said
to be trivial. In this case the function x is constant.

The set of T -periodic pairs is regarded as a subset of R×CT (N), where CT (N)
is the manifold of continuous T -periodic maps from R to N . In CT (N) we consider
the topology induced by the Banach space CT (Rk) of continuous T -periodic Rk-
valued maps with the standard supremum norm. The manifold N is regarded as
the set of trivial T -periodic pairs, meaning that any p ∈ N is identified with (0, p̄),
where p̄(t) = p for all t ∈ R.

An element p ∈ N is called a bifurcation point of equation (5.1) if every neigh-
borhood of (0, p̄) in R×CT (N) contains nontrivial T -periodic pairs (i.e. T -periodic
pairs (λ, x) with λ 6= 0). Roughly speaking, p is a bifurcation point if, for λ 6= 0
sufficiently small, there are T -periodic orbits of (5.1) rotating arbitrarily close to p.

The following two results provide a necessary condition (Theorem 5.1) and a
sufficient condition (Theorem 5.2) for an element p ∈ N to be a bifurcation point
of (5.1). The tangent vector field ω : N → Rk defined by

ω(p) =
1
T

∫ T

0

F (t, p, p) dt

plays a crucial role in the statements of these conditions.

Theorem 5.1. Assume that p ∈ N is a bifurcation point of (5.1). Then, ω(p) = 0.
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Theorem 5.2. Assume that p ∈ N is a nondegenerate zero of ω. Then, p is a
bifurcation point of (5.1).

Although these two results can be proved without any restriction on the period
T , we shall assume, for the sake of simplicity, that T ≥ 1.

Before proving Theorems 5.1 and 5.2 we present some preliminary notions. Let
Ñ denote the set of continuous functions from [−1, 0] to N ⊆ Rk, endowed with the
topology induced by the Banach space C([−1, 0],Rk) with the supremum norm. It
is known that Ñ is a (smooth) infinite dimensional manifold (see e.g. [3]). A pair
(λ, ξ) ∈ R × Ñ will be called a T -starting pair of (5.1) if there exists x ∈ CT (N)
such that x(t) = ξ(t) for all t ∈ [−1, 0] and (λ, x) is a T -periodic pair. A T -starting
pair of the type (0, ξ) will be called trivial. Notice that in this case the map ξ must
be constant, being the restriction of a constant map defined on R.

Clearly, the map ρ : (λ, x) 7→ (λ, ξ) which associates to a T -periodic pair (λ, x)
the corresponding T -starting pair (λ, ξ) is continuous, ξ being the restriction of x to
the interval [−1, 0]. Moreover, since F is smooth, ρ is actually a homeomorphism
between the set Γ ⊆ R × CT (N) of T -periodic pairs and the set Σ ⊆ R × Ñ of
T -starting pairs.

Given p ∈ N , by p̂ we denote the map t 7→ p, t ∈ [−1, 0], and by N̂ the finite
dimensional submanifold of Ñ of constant maps. Notice that p̂ 6= p̄, since, we recall,
the constant function p̄ is defined on the whole real line. With this notation, a trivial
T -periodic pair is of the form (0, p̄), and the corresponding trivial T -starting pair
is (0, p̂); that is, ρ(0, p̄) = (0, p̂). Clearly, N can be identified in a natural way both
with the set {0} × {p̄ : p ∈ N} ⊆ Γ of trivial T -periodic pairs and with the set
{0} × N̂ ⊆ Σ of trivial T -starting pairs. In other words, the restriction of the map
ρ to {0} × {p̄ : p ∈ N} as domain and to {0} × N̂ as codomain can be regarded as
the identity on N . Therefore, an element p ∈ N is a bifurcation point for (5.1) if
and only if (0, p̂) lies in the closure of the set Σ \ ({0}× N̂) of nontrivial T -starting
pairs of (5.1).

In order to prove the two results stated above we will apply Theorems 4.5 and
4.6 to a Poincaré-type T -translation operator P : D → Ñ , where D is an open
neighborhood of {0} × Ñ in R× Ñ . From the definition of P it will turn out (see
Lemma 5.3) that (λ, ξ) is a T -starting pair if and only if it is a solution of the
equation

(5.2) ξ = P (λ, ξ).

Moreover, it will be clear that the manifold N̂ coincides with the set of fixed points
of the partial map P0 = P (0, ·). Therefore, taking into account the properties of
the map ρ, we can say that p ∈ N is a bifurcation point of the delay equation (5.1)
if and only if p̂ is a bifurcation from N̂ of (5.2).

We now describe how P is defined. Given λ ∈ R and ξ ∈ Ñ , consider the
following delay differential (initial value) problem in N :

(5.3)
{
x′(t) = λF (t, x(t), x(t− 1)), t > 0,
x(t) = ξ(t), t ∈ [−1, 0].

Let

D =
{

(λ, ξ) ∈ R× Ñ : the maximal solution of (5.3) is defined on [−1, T ]
}
.
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An argument analogous to that given in [8] for the ODE case shows that D is open
in R× Ñ , and clearly contains {0} × Ñ .

Denote by x(λ,ξ) the maximal solution of problem (5.3) corresponding to (λ, ξ) ∈
D and let

P : D → Ñ

be the Poincaré-type operator defined by P (λ, ξ)(t) = x(λ,ξ)(t+ T ), t ∈ [−1, 0].
It can be shown that the smoothness of F implies that P is smooth.

The following lemma regards a property of P mentioned above. The proof is
standard and will be omitted.

Lemma 5.3. The fixed points of P (λ, ·) correspond to the T -periodic solutions of
the equation (5.1) in the following sense: ξ is a fixed point of P (λ, ·) if and only if
it is the restriction to [−1, 0] of a T -periodic solution corresponding to λ.

Observe that, as a consequence of Lemma 5.3, the submanifold N̂ of Ñ coincides
with the set of fixed points of the partial map P0.

We now apply Theorems 4.5 and 4.6 with Z = Ñ , M0 = N̂ , and h = P . Since
we are dealing with local bifurcation, we shall assume, without loss of generality,
that the open set D coincides with R× Ñ .

Given any p ∈ N , let us compute the action of the linear map

(Ip̂ − P ′0(p̂)) : Tp̂Ñ → Tp̂Ñ ,

where the tangent space of Ñ at p̂ is given by

Tp̂Ñ =
{
η ∈ C([−1, 0],Rk) : η(t) ∈ TpN, t ∈ [−1, 0]

}
.

We need to evaluate the derivative of P0 at p̂. Since P (0, ξ)(t) = x(0,ξ)(t + T ),
where {

x′(0,ξ)(t) = 0, t > 0,
x(0,ξ)(t) = ξ(t), t ∈ [−1, 0],

we obtain

x(0,ξ)(t) =
{
ξ(t) for − 1 ≤ t ≤ 0,
ξ(0) for t ≥ 0.

Taking into account that T ≥ 1, we get P (0, ξ)(t) = ξ(0) for t ∈ [−1, 0]. Hence,
given η ∈ Tp̂Ñ , we arrive at

P ′0(p̂)η = η̂(0),

where η̂(0) is the constant map t 7→ η(0). Consequently,

(Ip̂ − P ′0(p̂))η = η − η̂(0),

and the kernel of Ip̂ − P ′0(p̂) is the subspace Tp̂N̂ of Tp̂Ñ of constant TpN -valued
functions. Moreover, one can easily verify that its image is the space of functions
that vanish for t = 0, and the operator is the identity on its image. In other words,
Ip̂ − P ′0(p̂) is a projector with finite dimensional kernel. Therefore, it is Fredholm
of index zero.

Proof of Theorem 5.1. As observed above Ip̂ − P ′0(p̂) is Fredholm and

Ker(Ip̂ − P ′0(p̂)) = Tp̂N̂ .

Thus, condition (Hp̂) is verified. Consequently, the vector ∂1P (0, p̂), which is a
function from [−1, 0] to TpN ⊆ Rk, belongs, by Theorem 4.5, to the image of the
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operator Ip̂ −P ′0(p̂). To compute the partial derivative ∂1P (0, p̂) we need to derive
at λ = 0 the partial map λ 7→ P (λ, p̂). Recall that P (λ, p̂)(t) = x(λ,p̂)(t+T ), where
x(λ,p̂)(t) is such that

(5.4)
{
x′(λ,p̂)(t) = λF (t, x(λ,p̂)(t), x(λ,p̂)(t− 1)), t > 0,
x(λ,p̂)(t) = p, t ∈ [−1, 0].

Thus,

x(λ,p̂)(t) = p+ λ

∫ t

0

F (s, x(λ,p̂)(s), x(λ,p̂)(s− 1)) ds,

and

P (λ, p̂)(t) = p+ λ

∫ t+T

0

F (s, x(λ,p̂)(s), x(λ,p̂)(s− 1)) ds,

which makes sense since N is contained in Rk. It follows that

(5.5) P (λ, p̂) = p̂+ λG(λ),

where, given λ, G(λ) ∈ C([−1, 0],Rk) is the function

G(λ)(t) =
∫ t+T

0

F (s, x(λ,p̂)(s), x(λ,p̂)(s− 1)) ds.

Incidentally, we observe that, even though p̂ + λG(λ) is N -valued, this is not the
case for G(λ).

From (5.5), we derive

∂1P (0, p̂)(t) = G(0)(t) =
∫ t+T

0

F (s, p, p) ds.

Recalling that the image of Ip̂−P ′0(p̂) is the space of functions that vanish for t = 0,
we get

0 =
∫ T

0

F (s, p, p) ds = Tω(p).

This completes the proof. �

Proof of Theorem 5.2. Let p ∈ N be a nondegenerate zero of ω. Our goal is to
show that the assumptions of Theorem 4.6 are satisfied.

As already seen (just before the proof of Theorem 5.1), the operator Ip̂ − P ′0(p̂)
is Fredholm of index zero. Let us show that the condition ω(p) = 0 implies the
existence of w ∈ Tp̂Ñ such that

(5.6) w − ∂1P (0, p̂)− ∂2P (0, p̂)w = 0.

Recalling that

∂1P (0, p̂)(t) =
∫ t+T

0

F (s, p, p) ds

and
(∂2P (0, p̂)η)(t) = (P ′0(p̂)η)(t) = η(0),

we need to find w such that

w(t)−
∫ t+T

0

F (s, p, p) ds− w(0) = 0.
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Define the vector w ∈ Tp̂Ñ by

w(t) =
∫ t+T

0

F (s, p, p) ds

and observe that

w(0) =
∫ T

0

F (s, p, p) ds = Tω(p) = 0.

Hence w satisfies equation (5.6).
In order to apply Theorem 4.6 we need to show that the linear operator

ŷ ∈ Tp̂N̂ 7→ H(π2, P )(0, p̂)((0, ŷ), (1, w)) ∈ Tp̂Ñ/ Im(Ip̂ − P ′0(p̂))

is injective. That is, we need to show that, given any y ∈ TpN , if a representative
of the class H(π2, P )(0, p̂)((0, ŷ), (1, w)) belongs to Im(Ip̂ − P ′0(p̂)), then y = 0 (or,
equivalently, ŷ = 0).

To compute the coincidence Hessian H(π2, P ) we apply Theorem 2.3. For this
purpose, notice that the source and target manifolds R× Ñ and Ñ are embedded
in the Banach spaces Ě = R× C([−1, 0],Rk) and F̌ = C([−1, 0],Rk), respectively.

Observe that (5.6) is the difference of two derivatives at the point (0, p̂), applied
to the vector (1, w), i.e.

w − ∂1P (0, p̂)− ∂2P (0, p̂)w = Dπ2(0, p̂)(1, w)−DP (0, p̂)(1, w).

Analogously, given any q ∈ N , µ ∈ R, and η ∈ Tq̂Ñ we obtain

Dπ2(0, q̂)(µ, η)−DP (0, q̂)(µ, η) = η − µ∂1P (0, q̂)− ∂2P (0, q̂)η,

where, as can be easily checked,

∂1P (0, q̂)(t) =
∫ t+T

0

F (s, q, q) ds,

and
(∂2P (0, q̂)η)(t) = (P ′0(q̂)η)(t) = η(0).

Given any y ∈ TpN , let ν(·) : (−ε, ε) → N be a C1 curve such that ν(0) = p and
ν′(0) = y. Define σ(·) : (−ε, ε)→ C([−1, 0],Rk) by

σ(τ)(t) =
∫ t+T

0

F (s, ν(τ), ν(τ)) ds,

and observe that σ(0) = w and σ(τ)(t) belongs to Tν(τ)N for all for all τ ∈ (−ε, ε)
and all t ∈ [−1, 0]. Hence, σ(τ) ∈ Tdν(τ)Ñ , ∀τ ∈ (−ε, ε).

We now apply Theorem 2.3 with

α(τ) = (0, ν̂(τ)), β(τ) = (1, σ(τ)).

Consequently, the curve γ : (−ε, ε)→ C([−1, 0],Rk) in Theorem 2.3 is given by

γ(τ) = Dπ2(α(τ))β(τ)−DP (α(τ))β(τ) = σ(τ)− ∂1P (0, ν̂(τ))− ∂2P (0, ν̂(τ))σ(τ).

Hence

γ(τ)(t) = σ(τ)(t)−
∫ t+T

0

F (s, ν(τ), ν(τ)) ds− σ(τ)(0) = −σ(τ)(0).

Incidentally, we observe that, given τ ∈ (−ε, ε), γ(τ) is a constant function from
[−1, 0] to Rk. Thus, γ can be regarded as a curve in Rk.
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According to Theorem 2.3, we obtain that

γ′(0)(t) = −σ′(0)(0) =
∫ T

0

(
∂2F (s, p, p) + ∂3F (s, p, p)

)
y ds = Tω′(p)y

lies in the equivalence class H(π2, P )(0, p̂)((0, ŷ), (1, w)). It remains to prove that
the condition γ′(0) ∈ Im(Ip̂ − P ′0(p̂)) implies y = 0. This is true since, by assump-
tion, the operator ω′(p) : TpN → Rk is injective (it is actually an automorphism of
TpN), the function γ′(0) : [−1, 0]→ Rk is constant, and any function in the image
of the operator Ip̂ − P ′0(p̂) vanishes for t = 0. �

Our final comment regards a result which is more precise than the one stated
in Theorem 5.2. That is, taking into account Theorem 3.7, one could prove the
existence of a C1 curve δ : (−r, r)→ R× CT (Rk), s 7→ (λs, xs), with the following
properties:

• (λs, xs) is a T -periodic pair for s ∈ (−r, r);
• δ(0) = (λ0, x0) = (0, p̂);
• λs 6= 0 for 0 < |s| < r.
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