A NEW THEME IN NONLINEAR ANALYSIS: CONTINUATION AND BIFURCATION OF THE UNIT EIGENVECTORS OF A PERTURBED LINEAR OPERATOR

RAFFAELE CHIAPPINELLI, MASSIMO FURI, AND MARIA PATRIZIA PERA

Abstract. TBA

1. Introduction and statement of the results

Let T be a bounded linear operator acting in a real Banach space X and let S be the unit sphere in X. Suppose that u_{0} is a unit eigenvector of T, that is $u_{0} \in S$ and $T u_{0}=\lambda_{0} u_{0}$ for some $\lambda_{0} \in \mathbb{R}$; we say in this case that u_{0} is a unit λ_{0}-eigenvector of T. Also let $B: U \rightarrow X$ be a (possibly nonlinear) continuous operator defined in a neighborhood U of S and for ϵ small consider the perturbed "eigenvalue" problem

$$
\begin{equation*}
T u+\epsilon B(u)=\lambda u, \quad u \in S \tag{1.1}
\end{equation*}
$$

Definition 1.1. Let u_{0} be a unit λ_{0}-eigenvector of T. We say that u_{0} is continuable as a unit eigenvector of $T+\epsilon B(\epsilon \neq 0)$ if there exists a continuous function $\epsilon \mapsto$ $(\lambda(\epsilon), u(\epsilon))$ of an interval $\left(-\epsilon_{0}, \epsilon_{0}\right)$ into $\mathbb{R} \times S$ such that $T u(\epsilon)+\epsilon B(u(\epsilon))=\lambda(\epsilon) u(\epsilon)$ for $|\epsilon|<\epsilon_{0}$ and $(\lambda(0), u(0))=\left(\lambda_{0}, u_{0}\right)$.

For example, u_{0} is continuable if it is an "eigenvector" of B too: for if $B\left(u_{0}\right)=$ μu_{0} for some $\mu \in \mathbb{R}$, then putting $(\lambda(\epsilon), u(\epsilon))=\left(\lambda_{0}+\epsilon \mu, u_{0}\right)$ for $\epsilon \in \mathbb{R}$ yields the required continuous family. On the other hand, putting $X=\mathbb{R}^{2}, T$ the zero operator, $B(x, y)=(-y, x)$ for $(x, y) \in \mathbb{R}^{2}$, we see that no 0 -eigenvector of T (that is, no vector in \mathbb{R}^{2}) is continuable, for the perturbed linear operator $T+\epsilon B$ has no (real) eigenvalue for $\epsilon \neq 0$.

Assuming that λ_{0} be an isolated eigenvalue of finite (geometric and algebraic) multiplicity, we have discussed in [2] and [3] conditions for the continuability of a unit λ_{0}-eigenvector of T. In particular, in [2] it was essentially shown that when λ_{0} is a simple eigenvalue, then if B is Lipschitz continuous each of the two unit λ_{0}-eigenvectors is continuable (in a Lipschitz continuous fashion): see Theorem 2 and Remark 2.1 of [2]. While in [3], we have considered the case in which λ_{0} has multiplicity greater than one, and have given - for B of class C^{2} - necessary as well as sufficient conditions for continuability of a given unit eigenvector in the C^{1} sense: see Theorem 2.2 and Remark 3.6 of [3].

To obtain further information about the solutions of (1.1) it is useful to introduce a second concept, which relaxes the requirements in Definition 1.1.

Definition 1.2. Let u_{0} be a unit λ_{0}-eigenvector of T. We say that u_{0} is a bifurcation point for the unit eigenvectors of $T+\epsilon B(\epsilon \neq 0)$ - or simply a bifurcation point for (1.1) - if any neighborhood of $\left(0, \lambda_{0}, u_{0}\right)$ in $\mathbb{R} \times \mathbb{R} \times X$ contains a solution (ϵ, λ, u) of (1.1) with $\epsilon \neq 0$.

Definition 1.2 expresses the property for a unit eigenvector of T of being persistent under sufficiently small perturbations of T, and can be equivalently formulated as follows: there exists a sequence $\left\{\left(\epsilon_{n}, \lambda_{n}, u_{n}\right)\right\}$ in $\mathbb{R} \backslash\{0\} \times \mathbb{R} \times S$ which converges to ($0, \lambda_{0}, u_{0}$) and such that $T u_{n}+\epsilon_{n} B\left(u_{n}\right)=\lambda_{n} u_{n}, \forall n \in \mathbb{N}$. To appreciate better this Definition, it is useful to adopt as in [3] the general point of view in bifurcation theory introduced in [8]. A solution of (1.1) is a point $p=(\epsilon, \lambda, u) \in \mathbb{R} \times \mathbb{R} \times X$ such that $F(p)=0$, where F is the map of $\mathbb{R} \times \mathbb{R} \times X$ into $X \times \mathbb{R}$ defined via

$$
\begin{equation*}
F(\epsilon, \lambda, u)=\left(T u+\epsilon B(u)-\lambda u,\|u\|^{2}-1\right) \tag{1.2}
\end{equation*}
$$

$(\|\cdot\|$ is the norm in $X)$. Put

$$
\begin{equation*}
S_{0} \equiv S \bigcap \operatorname{Ker}\left(T-\lambda_{0} I\right) \tag{1.3}
\end{equation*}
$$

where I denotes the identity in X, and consider the subset

$$
\begin{equation*}
M \equiv\{0\} \times\left\{\lambda_{0}\right\} \times S_{0} \tag{1.4}
\end{equation*}
$$

of $\mathbb{R} \times \mathbb{R} \times X$ as the set of trivial solutions of (1.1), or the trivial zeroes of F. Assuming that λ_{0} be an isolated eigenvalue, and considering solutions of (1.1) with λ near λ_{0}, we see that M is precisely the set of triples $(\epsilon, \lambda, u) \in \mathbb{R} \times \mathbb{R} \times X$ solving (1.1) for $\epsilon=0$. Solutions (ϵ, λ, u) with $\epsilon \neq 0$ are therefore the nontrivial solutions of (1.1), and Definition 1.2 expresses - identifying u_{0} with $p_{0} \equiv\left(0, \lambda_{0}, u_{0}\right)$ and using the terminology of [8] - that $p_{0} \in M$ is a bifurcation point (from M) for the equation $F(p)=0$.

Very recently, we have proved the existence of at least one bifurcation point for the unit eigenvectors of $T+\epsilon B$ under the assumptions that T be a self-adjoint operator in a Hilbert space, that B be of class C^{1} and that one of the following conditions be satisfied:

- the multiplicity of λ_{0} is odd;
- B is a gradient operator.

Our aim in the present paper is to explain these results - proved in [4] and [5] respectively - also in connection with the older ones [3], and in particular to make available the main idea followed in the (yet unpublished) paper [5] to deal with the variational case.

We first set our problem in the context of perturbations of (linear) Fredholm operators of index zero: this turns out to be a sufficiently general [functionalanalytic] framework in order to state our results on a common ground, compare their strength and appreciate the different assumptions. We also indicate the main points of the proofs. This is done in Section 2, while Section 3 is addressed to exhibit some simple examples of our problem in the euclidean space \mathbb{R}^{3}. Working in this context - and even with a linear B - gives some concrete evidence of the conditions involved on T and B, and may thus help for a better understanding of the ideas before expressed in infinite-dimensional Banach spaces.

2. Finite-dimensional reduction. Necessary conditions and sufficient CONDITIONS FOR BIFURCATION

Consider equation (1.1) for a bounded linear operator $T: X \rightarrow X, X$ a real Banach space. We suppose in the sequel that:

- λ_{0} is an isolated eigenvalue of T.

As already said, this ensures that for $\epsilon=0$ and λ near λ_{0}, the only solutions of (1.1) are those with $\lambda=\lambda_{0}$, that is the trivial ones. Now set

$$
A=T-\lambda_{0} I, \quad \delta=\lambda-\lambda_{0}
$$

and write the equation in (1.1) as

$$
\begin{equation*}
A u+\epsilon B(u)=\delta u \tag{2.1}
\end{equation*}
$$

We assume the following hypotheses upon A.
HA1) A is a Fredholm operator of index zero, that is,

- $\operatorname{Ker} A=\{u \in X: A u=0\}$ is of finite dimension; in words, λ_{0} is an eigenvalue of finite geometric multiplicity;
- $\operatorname{Im} A=\{A u: u \in X\}$ is closed and of finite codimension;
- $\operatorname{dim} \operatorname{Ker} A=\operatorname{codim} \operatorname{Im} A$.

HA2) $\operatorname{Ker} A \cap \operatorname{Im} A=\{0\}$.
It follows from HA1) and HA2) that

$$
\begin{equation*}
E=\operatorname{Ker} A \oplus \operatorname{Im} A \tag{2.2}
\end{equation*}
$$

and that the projections $P, Q=I-P$ onto $\operatorname{Ker} A, \operatorname{Im} A$ respectively corresponding to this direct sum are continuous.
It is useful to recall two typical situations in which the above assumptions are satisfied:

- $T: X \rightarrow X$ is compact, $\lambda_{0} \neq 0$ (ensuring HA1)) and $\operatorname{Ker} A=\operatorname{Ker} A^{2}$ (ensuring HA2). The last condition also implies that $\operatorname{Ker} A^{n}=\operatorname{Ker} A^{n+1}$ for all $n \in \mathbb{N}$, and therefore that the geometric multiplicity of λ_{0} equals its algebraic multiplicity $\operatorname{dim} \bigcup_{n=1}^{\infty} \operatorname{Ker} A^{n}$.
- $X=H$, a Hilbert space, $T: H \rightarrow H$ is self-adjoint (that is, $\langle T x, y\rangle=$ $\langle x, T y\rangle$ for all $x, y \in H,\langle.,$.$\rangle denoting the scalar product in H$) and $\operatorname{dim} \operatorname{Ker} A<\infty$. Indeed self-adjointness of T implies that $\operatorname{Ker} A=\operatorname{Im} A^{\perp} \equiv$ $\{x \in H:\langle x, y\rangle=0 \forall y \in \operatorname{Im} A\}$, and it follows that $H=\operatorname{Ker} A \oplus \overline{\operatorname{Im} A}$, where the sum is orthogonal. However as λ_{0} is isolated by assumption, $\operatorname{Im} A$ is closed (see e.g. [7, pg. 1395]) and therefore $H=\operatorname{Ker} A \oplus \operatorname{Im} A$. Self-adjointness also implies that $\operatorname{Ker} A=\operatorname{Ker} A^{2}$, so that the geometric and algebraic multiplicity of λ_{0} always coincide in this case.

Writing $u=P u+Q u \equiv v+w$ according to (2.2) and applying in turn P, Q to both members of (2.1), we see that the latter equation is equivalent to the following two:

$$
\begin{gather*}
\epsilon P B(v+w)=\delta v \tag{2.3}\\
A w+\epsilon Q B(v+w)=\delta w . \tag{2.4}
\end{gather*}
$$

This decomposition (the so-called Lyapounov-Schmidt method) reveals easily a necessary condition for bifurcation as soon as B satisfies the following "minimal" regularity asumption:

HB0) B is continuous in a neighborhood of S.
Proposition 2.1. Suppose that HA1), HA2) and HB0) are satisfied. If $v_{0} \in S_{0}=$ $S \cap \operatorname{Ker}\left(T-\lambda_{0} I\right)$ is a bifurcation point for (1.1), then there exists $\mu_{0} \in \mathbb{R}$ such that

$$
\begin{equation*}
P B\left(v_{0}\right)=\mu_{0} v_{0} \tag{2.5}
\end{equation*}
$$

Proof. If $v_{0} \in S_{0}$ is a bifurcation point, there exists by definition a sequence $\left(\delta_{n}, \epsilon_{n}, u_{n}\right) \in \mathbb{R} \times \mathbb{R} \times S$, with $\epsilon_{n} \neq 0$ for each $n \in \mathbb{N}$, such that $\left(\delta_{n}, \epsilon_{n}, u_{n}\right) \rightarrow$ $\left(0,0, v_{0}\right)$ as $n \rightarrow \infty$ and

$$
\begin{equation*}
A u_{n}+\epsilon_{n} B\left(u_{n}\right)=\delta_{n} u_{n}, \quad \forall n \in \mathbb{N} \tag{2.6}
\end{equation*}
$$

Then putting $v_{n}=P u_{n}, w_{n}=Q u_{n}$ we have $v_{n} \rightarrow P v_{0}=v_{0}, w_{n} \rightarrow Q v_{0}=0$ and moreover from (2.3)

$$
P B\left(v_{n}+w_{n}\right)=\frac{\delta_{n}}{\epsilon_{n}} v_{n} .
$$

We claim that the sequence $\left(\delta_{n} / \epsilon_{n}\right)$ is bounded. For otherwise, since $\left\|v_{n}\right\| \rightarrow\left\|v_{0}\right\|=$ 1 , it would follow (passing if necessary to a subsequence) that $\left\|\frac{\delta_{n}}{\epsilon_{n}} v_{n}\right\| \rightarrow+\infty$, contradicting the boundedness of the sequence $P B\left(v_{n}+w_{n}\right)$ which in fact converges to $P B\left(v_{0}\right)$. Hence we can assume (again through a subsequence) that $\left(\delta_{n} / \epsilon_{n}\right)$ converges to some μ_{0}, so that in the limit we obtain (2.5).

1. Comment: For B of class C^{1}, the above condition was proved in [3].
2. Necessary condition is not sufficient: see Example 3.3.

In order to discuss sufficient conditions for bifurcation, we shall henceforth strengthen HB0) as follows:

HB1) B is of class C^{1} in a neighborhood of S.

Indeed put

$$
N=\operatorname{Ker} A, \quad W=\operatorname{Im} A
$$

and identify X with $N \times W$. Then HB1) guarantees, via the Implicit Function Theorem, that given any $v_{0} \in S_{0} \subset N$, equation (2.4) - the so-called complementary equation - can be solved uniquely w.r.t. w for each given (δ, ϵ, v) in a neighborhood $U_{0} \subset \mathbb{R} \times \mathbb{R} \times N$ of $\left(0,0, v_{0}\right)$. Moreover if $w(\delta, \epsilon, v)$ denotes the solution corresponding to $(\delta, \epsilon, v) \in U_{0}$, then $w(0,0, v)=0$ for any v and the mapping $(\delta, \epsilon, v) \rightarrow w(\delta, \epsilon, v)$ of U_{0} into W is of class C^{1} in U_{0}. Therefore by definition

$$
\begin{equation*}
A w(\delta, \epsilon, v)+\epsilon Q B(v+w(\delta, \epsilon, v))=\delta w(\delta, \epsilon, v) \tag{2.7}
\end{equation*}
$$

for any $(\delta, \epsilon, v) \in U_{0}$; and we see from (2.3) that in order to solve our problem (1.1), it is enough to find $(\delta, \epsilon, v) \in U_{0}$ satisfying the finite-dimensional equation (the bifurcation equation)

$$
\begin{equation*}
\epsilon P B(v+w(\delta, \epsilon, v))=\delta v \tag{2.8}
\end{equation*}
$$

and the additional normalization constraint

$$
\begin{equation*}
v+w(\delta, \epsilon, v) \in S \tag{2.9}
\end{equation*}
$$

At this stage, in order to prove that a given $v_{0} \in S_{0}$ - satisfying (2.5) - is indeed a bifurcation point, we need find a sequence $\left(\delta_{n}, \epsilon_{n}, v_{n}\right)$ of solutions of the above $\operatorname{system}(2.8)-(2.9)$, with $\epsilon_{n} \neq 0$ for each $n \in \mathbb{N}$, such that $\left(\delta_{n}, \epsilon_{n}, v_{n}\right) \rightarrow\left(0,0, v_{0}\right)$ as $n \rightarrow \infty$. While if for each sufficiently small ϵ we find $\delta(\epsilon), v(\epsilon)$ - depending continuously upon ϵ - such that $(\delta(0), v(0))=\left(0, v_{0}\right)$ and $(\delta(\epsilon), \epsilon, v(\epsilon))$ solves (2.8) - (2.9), then so much the better as v_{0} will be continuable by means of the equation

$$
\begin{equation*}
u(\epsilon)=v(\epsilon)+w(\delta(\epsilon), \epsilon, v(\epsilon)) . \tag{2.10}
\end{equation*}
$$

[ChiFuPe1]

When B and the space X (that is, its norm) are sufficiently smooth, the Implicit Function Theorem can be further employed to perform such construction and yield a sufficient condition for continuation.

Theorem 2.1. For $x \in X$, put $g(x)=\|x\|^{2}-1$. Suppose that B and g are of class C^{2} in an open neighborhood of $S=g^{-1}(0)$ and that HA1) and HA2) are satisfied. Let $v_{0} \in S_{0}$ be such that $P B\left(v_{0}\right)=\mu_{0} v_{0}$, let $V=\left\{h \in X: g^{\prime}\left(v_{0}\right) h=0\right\}$ and let π be a continuous projection of X onto V. If v_{0} satisfies the condition:

$$
\begin{equation*}
h \in N \cap V, \quad \pi P B^{\prime}\left(v_{0}\right) h=\mu_{0} h \Rightarrow h=0, \tag{2.11}
\end{equation*}
$$

then v_{0} is continuable.

Remark 2.1. V is the tangent space to S at v_{0}, and likewise $N \cap V$ is the tangent space to $S_{0}=N \cap S$ at v_{0}. The condition (2.11) means that the map $\pi P B^{\prime}\left(v_{0}\right)-\mu_{0} I$, restricted to $N \cap V$, is an isomorphism of $N \cap V$ onto iself.

Reference to: i)More general versions of Theorem 2.1;
 ii)Applications to BVP.

Theorem 2.1 ia a special case of Theorem 3.4 in [3], where it is shown that similar results hold when the operators involved act between different Banach spaces, and when the unit sphere S is replaced by more general manifolds $M=g^{-1}(0)$ given as level sets of a C^{2} functional g.

In turn, Theorem 3.4 of [3] is an application to Banach space operator equations of results formulated in [8] in the context of general bifurcation theory. This considers a $C^{1} \operatorname{map} f$ defined in an open set U of a Banach space E and with values in a Banach space F. Given a differentiable manifold $M \subseteq f^{-1}(0)$, regard M as the set of trivial solutions of the equation $f(u)=0$, so that $f^{-1}(0) \backslash M$ represents the set of nontrivial solutions. An element $p \in M$ is a bifurcation point (from M) of $f(u)=0$ if any neighborhood of p contains elements of $f^{-1}(0) \backslash M$. Necessary as well as sufficient conditions for bifurcation are proved in [8] in essentially geometrical terms, starting from the observation that the condition $M \subseteq f^{-1}(0)$ implies that, for any $u \in M$, the tangent space $T_{u} M$ of M at u is contained in the kernel of $f^{\prime}(u)$.

In particular when f is a C^{2} Fredholm map of index 1 , and $p \in M$ is such that $\operatorname{dim} \operatorname{Ker} f^{\prime}(p)=\operatorname{dim} T_{p} M+1$, then a sufficient "transversality" condition for $p \in M$ to be a bifurcation point is provided in [8], which extends that contained in the Crandall-Rabinowitz Bifurcation Theorem [6], in which $\operatorname{dim} M=1$. For these general conditions see, for instance, Theorem 2.2 of [3] and the comments accompanying it.

Moreover in [3], the results about (1.1) are applied to show the existence of 2π-periodic solutions of the differential equation

$$
x^{\prime \prime}+x+\epsilon\left(t x+x^{2}\right)=\lambda x
$$

normalized by

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2}(t) d t=1
$$

and in particular to study the continuability of a given trivial (i.e., obtained for $\epsilon=$ $\lambda=0$) normalized solution: that is, of a solution of the type $x(t)=c \sin t+d \cos t$, with $c^{2}+d^{2}=1$.

Proposition 2.1 and Theorem 2.1 are results of local nature, as they give conditions upon an individual point $v_{0} \in S_{0}$ to be a bifurcation point for (1.1). A related question is: under which conditions (on A, B, etc.) does S_{0} possess at least one bifurcation point? We are able to give some partial answer to this problem in the special case that

$$
X=H, \text { a Hilbert space and } T: H \rightarrow H \text { is self-adjoint. }
$$

[ChiFuPe2]

Recall that in this case the assumptions HA1) and HA2) about the linear part $A=T-\lambda_{0} I$ of our equation are satisfied - provided of course that λ_{0} be isolated and of finite multiplicity, as we have always assumed. Here is our first result [4]:

Theorem 2.2. Consider the problem (1.1) where T is a bounded self-adjoint operator acting in a real Hilbert space and B satisfies the assumption HB1). If λ_{0} is an isolated eigenvalue of T of odd multiplicity, then $S_{0}=S \cap \operatorname{Ker}\left(T-\lambda_{0} I\right)$ possesses at least one bifurcation point.

Sketch of the proof. Topological methods

The proof of this result relies on the fact that the Euler-Poincaré characteristic of the even dimensional sphere S_{0} is nonzero, and this implies that any self-map of this sphere has a fixed point if it is homotopic to the identity: for this matter see, for instance, [1] or [9]. Therefore, the methods employed are of topological nature, and quite different from those used in [2] and [3], which rely almost entirely upon the Implicit Function Theorem.

Nevertheless, it is precisely with a strengthened version of this Theorem that we start our work in [4], to the aim of solving the complementary equation "globally" with respect to S_{0}. Indeed for $\eta>0$, consider the (compact) neighborhood of S_{0}

$$
M=\{v \in N:|\|v\|-1| \leq \eta\}
$$

Taking $\eta>0$ small, we can assume that B be of class C^{1} in an open neighborhood of $M \times\{0\} \subset N \times W$, and then it follows from Lemma 2.2 of [4] that the function $w=$ $w(\delta, \epsilon, v)$ obtained solving (2.4) is defined and of class C^{1} in an open neighborhood U_{1} of $\{0\} \times\{0\} \times M \subset \mathbb{R} \times \mathbb{R} \times N$.
Once this is done, a further reduction can be made on "eliminating δ " from our equations. Indeed in the present Hilbert space context, taking scalar product in (2.8) we get

$$
\begin{equation*}
\langle\epsilon P B(v+w(\delta, \epsilon, v)), v\rangle=\delta\|v\|^{2} . \tag{2.12}
\end{equation*}
$$

Dividing both members of (2.12) by $\|v\|^{2}$ and applying again Lemma 2.2 of [4] to the resulting equation, we see that δ can be written as a C^{1} function $\delta(\epsilon, v)$ of (ϵ, v), defined in an open subset V of $\mathbb{R} \times(N \backslash\{0\})$ containing $\{0\} \times M$ and such that $\delta(0, v)=0$ for any v, and $(\delta(\epsilon, v), \epsilon, v) \in U_{1}$ for $(\epsilon, v) \in V$.

Put for convenience $\phi(\epsilon, v) \equiv w(\delta(\epsilon, v), \epsilon, v)$. Then we see - from (2.8) and the normalization condition (2.9) - that in order to solve (1.1) it is enough to find $(\epsilon, v) \in V$ such that

$$
\begin{equation*}
\epsilon P B(v+\phi(\epsilon, v))=\delta(\epsilon, v) v \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\|v+\phi(\epsilon, v)\|^{2}\right]=\|v\|^{2}+\|\phi(\epsilon, v)\|^{2}=1 \tag{2.14}
\end{equation*}
$$

Under the assumptions of Theorem 2.2, we show that a stronger result holds: namely, for any sufficiently small ϵ there exists $v_{\epsilon} \in M$ such that $\left(\epsilon, v_{\epsilon}\right)$ satisfies (2.13) and (2.14). To this purpose, assume for simplicity that $\lambda_{0}=1$. Then adding v to both sides of (2.13) and putting $h(\epsilon, v)=1+\delta(\epsilon, v)$ we get

$$
\begin{equation*}
v+\epsilon P B(v+\phi(\epsilon, v))=h(\epsilon, v) v \tag{2.15}
\end{equation*}
$$

Fix $\epsilon \neq 0$ and let σ be the radial projection of $N \backslash\{0\}$ onto its unit sphere S_{0}, defined putting $\sigma(v)=v /\|v\|$ for $v \in N, v \neq 0$. Then looking for solutions $v \in M$ of (2.15) is equivalent to finding $v \in M$ such that

$$
\begin{equation*}
\sigma(v+\epsilon P B(v+\phi(\epsilon, v)))=\frac{v}{\|v\|} \tag{2.16}
\end{equation*}
$$

On the other hand, using (2.14) this last equation becomes

$$
\begin{equation*}
f_{\epsilon}(v) \equiv \sqrt{1-\|\phi(\epsilon, v)\|^{2}} \sigma(v+\epsilon P B(v+\phi(\epsilon, v)))=v \tag{2.17}
\end{equation*}
$$

which is a fixed point equation for the map $f_{\epsilon}: M \rightarrow M$. The Lefschetz number of f_{ϵ} equals the Euler-Poincaré characteristic of S_{0} [4], and thus is not zero since S_{0} is even dimensional. By the Lefschetz fixed point theorem [1], there exists $v_{\epsilon} \in M$ such that $f_{\epsilon}\left(v_{\epsilon}\right)=v_{\epsilon}$.
Now fix a sequence $\left(\epsilon_{n}\right)$ with $\epsilon_{n} \rightarrow 0$ and $\epsilon_{n} \neq 0$ forall $n \in \mathbb{N}$ and put $v_{n} \equiv v_{\epsilon_{n}}$; also let

$$
\delta_{n} \equiv \delta\left(\epsilon_{n}, v_{n}\right), \quad u_{n} \equiv v_{n}+\phi\left(\epsilon_{n}, v_{n}\right)
$$

By the compactness of M we can assume - passing if necessary to a subsequence - that $v_{n} \rightarrow v_{0}$. It follows that $\phi\left(\epsilon_{n}, v_{n}\right) \rightarrow \phi\left(0, v_{0}\right)=0$, which implies by (2.14) that $\left\|v_{n}\right\| \rightarrow 1$ and therefore that $v_{0} \in S$. Moreover since $\left(\delta_{n}, \epsilon_{n}, u_{n}\right)$ solves (1.1) for any n and $u_{n} \rightarrow v_{0}$, it follows that $v_{0} \in S_{0}$ and is a bifurcation point for (1.1).

[ChiFuPe3]

(HBG) B is a gradient operator in neighborhood of S

that is, there exists a differentiable functional b defined on a open neighborhood U of S such that

$$
\begin{equation*}
\langle B(x), y\rangle=b^{\prime}(x) y \quad \text { for all } \quad x \in U, y \in H \tag{2.18}
\end{equation*}
$$

Here $b^{\prime}(x)$ denotes the (Fréchet) derivative of b at the point $x \in U$.
Theorem 2.3. Suppose that $T: H \rightarrow H$ is a bounded self-adjoint operator, and suppose that B satisfies (HB1) and (HBG). If λ_{0} is an isolated eigenvalue of T of finite multiplicity, then S_{0} possesses at least one bifurcation point.

Sketch of the proof. Variational methods

To indicate the main points of the proof, we keep the same notations as before and put in addition

$$
F_{\epsilon}(u) \equiv A u+\epsilon B(u), \quad \delta_{\epsilon}(v) \equiv \delta(\epsilon, v), \quad \phi_{\epsilon}(v) \equiv \phi(\epsilon, v)
$$

so that the system (2.13)-(2.14) in the unknowns ϵ and v can be written

$$
\begin{equation*}
P F_{\epsilon}\left(v+\phi_{\epsilon}(v)\right)=\delta_{\epsilon}(v) v, \quad\left\|v+\phi_{\epsilon}(v)\right\|^{2}=1 \tag{2.19}
\end{equation*}
$$

Under the assumptions of Theorem [.] we show that for any ϵ small there exist (at least) two distinct solutions $v=v_{\epsilon}, z=z_{\epsilon}$ of (2.19). To this aim, let $B=\nabla b-$ that is, suppose that (2.18) holds; then $F_{\epsilon}=\nabla f_{\epsilon}$ with

$$
f_{\epsilon}(u)=\frac{1}{2}\langle A u, u\rangle+\epsilon b(u) .
$$

We follow an idea of Stuart [11] to show that for fixed ϵ, the solutions v of (2.19) are precisely the critical points of the functional α_{ϵ} defined by

$$
\begin{equation*}
\alpha_{\epsilon}(v)=f_{\epsilon}\left(v+\phi_{\epsilon}(v)\right)=\frac{1}{2}\left\langle A \phi_{\epsilon}(v), \phi_{\epsilon}(v)\right\rangle+\epsilon b\left(v+\phi_{\epsilon}(v)\right) \tag{2.20}
\end{equation*}
$$

over the manifold defined by the norm constraint, that is

$$
\begin{equation*}
M_{\epsilon}=\left\{v \in N:\left\|v+\phi_{\epsilon}(v)\right\|^{2}=1\right\} . \tag{2.21}
\end{equation*}
$$

Once this is done, the compactness of M_{ϵ} implies the existence of $v_{\epsilon}, z_{\epsilon} \in M_{\epsilon}$ such that

$$
\begin{equation*}
\alpha_{\epsilon}\left(v_{\epsilon}\right)=\min _{v \in M_{\epsilon}} \alpha_{\epsilon}(v), \quad \alpha_{\epsilon}\left(z_{\epsilon}\right)=\max _{v \in M_{\epsilon}} \alpha_{\epsilon}(v) \tag{2.22}
\end{equation*}
$$

and therefore implies that (for each ϵ), v_{ϵ} and z_{ϵ} solve (2.19).
Using for instance v_{ϵ} and reasoning as in the proof of Theorem 2.2, we can then construct a sequence ($\delta_{n}, \epsilon_{n}, u_{n}$) of solutions to (1.1), with u_{n} converging to some $v_{0} \in S_{0}$ which is therefore a bifurcation point.

Remark 2.2. It would be interesting to establish conditions guaranteeing that there are (at least) two different bifurcation points.

3. Examples in \mathbb{R}^{3}

In this Section we consider (2.1) in the very special case that $X=\mathbb{R}^{3}$ and that (besides A) also the perturbing term B is linear. Moreover we keep fixed a very simple A, namely - writing $u=(x, y, z)$ for $u \in \mathbb{R}^{3}$ - the projection onto the z-axis:

$$
A(x, y, z)=(0,0, z)
$$

Thus, representing A with the corresponding 3×3 matrix in the canonical basis,

$$
A=\left(\begin{array}{lll}
0 & 0 & 0 \tag{3.1}\\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Consider at first a generic B :

$$
B=\left(\begin{array}{lll}
a & b & m \tag{3.2}\\
c & d & n \\
p & q & r
\end{array}\right)
$$

Then (2.1) is

$$
\left\{\begin{array}{r}
\epsilon(a x+b y+m z)=\delta x \tag{3.3}\\
\epsilon(c x+d y+n z)=\delta y \\
z+\epsilon(p x+q y+r z)=\delta z
\end{array}\right.
$$

The last equation can be solved in z to yield

$$
\begin{equation*}
z=z(\delta, \epsilon, x, y)=\frac{\epsilon}{\delta-(1+\epsilon r)}(p x+q y) \tag{3.4}
\end{equation*}
$$

and we are thus reduced to solve the system (in the unknowns δ, ϵ, x, y)

$$
\left\{\begin{array}{l}
a x+b y+m z(\delta, \epsilon, x, y)=(\delta / \epsilon) x \tag{3.5}\\
c x+d y+n z(\delta, \epsilon, x, y))=(\delta / \epsilon) y
\end{array}\right.
$$

Example 3.1. Consider

$$
B=\left(\begin{array}{lll}
a & b & m \tag{3.6}\\
c & d & n \\
0 & 0 & r
\end{array}\right)
$$

that is,

$$
B(x, y, z)=(a x+b y+m z, c x+d y+n z, r z)
$$

We see from (3.4) that in this case $z(\delta, \epsilon, x, y) \equiv 0$, so that the bifurcation system reduces to

$$
\left\{\begin{array}{l}
a x+b y=(\delta / \epsilon) x \tag{3.7}\\
c x+d y=(\delta / \epsilon) y
\end{array}\right.
$$

The solutions $(x, y) \neq(0,0)$ of this system [- if any -] are the eigenvectors of the reduced 2×2 matrix

$$
\hat{B} \equiv\left(\begin{array}{ll}
a & b \tag{3.8}\\
c & d
\end{array}\right)
$$

corresponding to real eigenvalues. Suppose first that \hat{B} has two real eigenvalues μ_{1}, μ_{2} with $\mu_{1} \neq \mu_{2}$. If v_{1}, v_{2} are corresponding normalized eigenvectors, then the bifurcation branches defined putting

$$
\begin{equation*}
\delta_{i}(\epsilon)=\epsilon \mu_{i}, \quad u_{i}(\epsilon)=v_{i} \quad(i=1,2) \tag{3.9}
\end{equation*}
$$

provide a (trivial) continuation of v_{i} as solution of (1.1) for $\epsilon \neq 0$; the same clearly holds for $-v_{i}$. Thus each eigenvector of \hat{B} is continuable as a unit eigenvector of $A+\epsilon B$.

The same conclusion holds true when $\mu_{1}=\mu_{2} \equiv \mu_{0}$, save that either the geometric multiplicity of μ_{0} is two - in which case all vectors of \mathbb{R}^{2} are eigenvectors of \hat{B} - or it is one, and there is (modulo reflections) just one normed eigenvector v_{0} of \hat{B}.

Remark 3.1. If \hat{B} has no real eigenvalue there cannot be bifurcation points. On the grounds of Proposition 2.1, this holds for any B (and not only for B as in (3.6)).

Example 3.2. Consider

$$
B=\left(\begin{array}{lll}
a & b & 0 \tag{3.10}\\
c & d & 0 \\
p & q & r
\end{array}\right)
$$

that is,

$$
B(x, y, z)=(a x+b y, c x+d y, p x+q y+r z)
$$

This time $z(\delta, \epsilon, x, y)$ is given by its general expression (3.4), however since $m=$ $n=0$ this does not affect the bifurcation system - which maintains its reduced form (3.7) - nor the conclusion that each eigenvector of \hat{B} is a bifurcation point. The difference with Ex.1.1 is that here the solutions of the full system (3.3) have a nonzero z-component, and consequently the bifurcation branch continuing a given eigenvector $v_{0}=\left(x_{0}, y_{0}\right)$ of \hat{B} corresponding to the eigenvalue μ_{0} is a bit less trivial as is given by the equations

$$
\begin{equation*}
\delta(\epsilon)=\epsilon \mu_{0}, \quad u(\epsilon)=\left(x_{0}, y_{0}, z\left(\epsilon \mu_{0}, \epsilon, x_{0}, y_{0}\right)\right) \tag{3.11}
\end{equation*}
$$

Remark 3.2. The above examples can be clearly seen in the context of Equation (2.1). We keep the notations used in Section 2 for $N=\operatorname{Ker} A, W=\operatorname{Im} A$ as well as for the projections P, Q onto these subspaces. Pick a $v_{0} \in S_{0}$ and consider the complementary equation (2.4) with $v=v_{0}$:

$$
\begin{equation*}
A w+\epsilon Q B\left(v_{0}+w\right)=\delta w \tag{3.12}
\end{equation*}
$$

If we suppose that

$$
\begin{equation*}
Q B\left(v_{0}\right)=0, \tag{3.13}
\end{equation*}
$$

then $w=0$ solves (3.12); by uniqueness, it follows that $w\left(\delta, \epsilon, v_{0}\right)=0$ for any δ and ϵ. The bifurcation equation (2.8) thus reduces (for $v=v_{0}$) to

$$
\begin{equation*}
\epsilon P B\left(v_{0}\right)=\delta v_{0} \tag{3.14}
\end{equation*}
$$

which is precisely - via the position $\delta=\epsilon \mu_{0}$ - the necessary condition (2.5). This remark is not new, for (3.13) and (2.5) are equivalent to say that $B\left(v_{0}\right)=\mu_{0} v_{0}$ and in this case, as already noted in the Introduction, we can immediately solve (2.1) for all ϵ. Perhaps more interesting is to observe that requiring the condition (3.13) for all $v_{0} \in S_{0}$ amounts to requiring that B map S_{0} into N and therefore - when B is linear, of course - that B map N into itself, i.e., that N be an invariant subspace for B. Indeed, this is what happens in Example 1.1.

Consider instead the dual situation in which W, rather than N, is an invariant subspace for B; the B in Example 1.2 is chosen to enjoy this property. This is expressed by the condition that $P B(w)=0$ for any $w \in W$; so that if we pick a $v_{0} \in S_{0}$ satisfying the necessary condition (2.5), then we have in particular

$$
\begin{equation*}
\epsilon P B\left(v_{0}+w\left(\epsilon \mu_{0}, \epsilon, v_{0}\right)\right)=\epsilon P B\left(v_{0}\right)=\epsilon \mu_{0} v_{0} \tag{3.15}
\end{equation*}
$$

for any ϵ. This shows that $\left(\epsilon \mu_{0}, \epsilon, v_{0}\right)$ is a solution of (2.8) for any ϵ, implying that v_{0} is continuable via the equations

$$
\begin{equation*}
\delta(\epsilon)=\epsilon \mu_{0}, \quad u(\epsilon)=v_{0}+w\left(\epsilon \mu_{0}, \epsilon, v_{0}\right) \tag{3.16}
\end{equation*}
$$

Of course, in order to have unit eigenvectors we shall take $U(\epsilon) \equiv u(\epsilon) /\|u(\epsilon)\|$ rather than $u(\epsilon)$ itself and use the linearity of the equation.

Example 3.3. Here we consider the case

$$
B=\left(\begin{array}{lll}
0 & b & 0 \tag{3.17}\\
c & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

For such a $B,(3.4)$ becomes

$$
\begin{equation*}
z=z(\delta, \epsilon, x, y)=\frac{\epsilon}{\delta-1} x \tag{3.18}
\end{equation*}
$$

and the bifurcation system (3.5) is

$$
\left\{\begin{align*}
b y & =(\delta / \epsilon) x \tag{3.19}\\
c x+\frac{\epsilon}{\delta-1} x & =(\delta / \epsilon) y .
\end{align*}\right.
$$

We have to distiguish the following cases:

- $b c>0$
- $b>0($ or $b<0)$ and $c=0$
- $b=c=0$
- $b c<0$.

The last case is out of interest, for the reduced matrix \hat{B}

$$
\hat{B} \equiv\left(\begin{array}{ll}
0 & b \tag{3.20}\\
c & 0
\end{array}\right)
$$

then has no real eigenvalue.

- Case $b c>0$:
[Suppose thus that $b c>0$]. Then the first equation in (3.19) yields

$$
\begin{equation*}
y=\frac{\delta}{\epsilon b} x \tag{3.21}
\end{equation*}
$$

so that the solutions $u=(x, y, z)$ of the full system (3.3) have the form

$$
\begin{equation*}
u=x\left(1, \frac{\delta}{\epsilon b}, \frac{\epsilon}{\delta-1}\right) \tag{3.22}
\end{equation*}
$$

Moreover replacing (3.21) in the second equation of the system (3.19) gives the condition

$$
\begin{equation*}
c+\frac{\epsilon}{\delta-1}=\frac{\delta^{2}}{\epsilon^{2} b} \tag{3.23}
\end{equation*}
$$

provided that $x \neq 0$; however, (3.22) implies that $u=0$ if $x=0$, and we look for solutions $u \neq 0$. (Note that the above equations make sense whenever $b \neq 0$, however since the l.h.s. of (3.23) has - for ϵ small and $c \neq 0$ - the sign of c, it follows that b and c must have the same sign in order that (real) solutions to (3.23) exist).

Now the latter equation - expressing the eigenvalues in function of the parameter ϵ - can be written equivalently as

$$
\begin{equation*}
(\delta-1)\left(\delta^{2}-\epsilon^{2} b c\right)=\epsilon^{3} b \tag{3.24}
\end{equation*}
$$

and by direct inspection we then find that it has for each ϵ three real solutions $\delta_{i}(\epsilon), 1 \leq i \leq 3$, with the property

$$
\begin{equation*}
\delta_{i}(\epsilon) \rightarrow 0, i=1,2 ; \quad \delta_{3}(\epsilon) \rightarrow 1 \quad(\epsilon \rightarrow 0) \tag{3.25}
\end{equation*}
$$

Therefore, using (3.23) in (3.22), we see that the eigenvectors of interest are given by the formula

$$
\begin{equation*}
u(\epsilon)=x\left(1, \frac{\delta}{\epsilon b}, \frac{\delta^{2}}{\epsilon^{2} b}-c\right) \quad(x \neq 0) \tag{3.26}
\end{equation*}
$$

where $\delta=\delta_{i}(\epsilon), i=1,2$. Equation (3.26) shows that the ratio δ / ϵ is the significant parameter here. Now since $\epsilon /(\delta-1)$ approaches zero as $\epsilon \rightarrow 0$, it follows from (3.23) that $\delta^{2} /\left(\epsilon^{2} b\right) \rightarrow c$ as $\epsilon \rightarrow 0$, and therefore

$$
\begin{equation*}
\frac{\delta}{\epsilon} \rightarrow \pm \sqrt{b c} \equiv \pm \mu_{0} \quad(\epsilon \rightarrow 0) \tag{3.27}
\end{equation*}
$$

Thus if we let in (3.26) $x=1$ and $\delta=\delta_{i}(\epsilon)(i=1,2)$, and denote with $u_{i}(\epsilon)$ the corresponding vector, then as $\epsilon \rightarrow 0$

$$
\begin{equation*}
u_{i}(\epsilon)=\left(1, \frac{\delta_{i}(\epsilon)}{\epsilon b}, \frac{\delta_{i}^{2}(\epsilon)}{\epsilon^{2} b}-c\right) \rightarrow\left(1, \pm \frac{\mu_{0}}{b}, 0\right) \equiv u_{ \pm} \tag{3.28}
\end{equation*}
$$

where the signs + and - refer to $i=1$ and $i=2$ respectively. It follows that if $U_{i}(\epsilon), U_{ \pm}$denote the normalized vectors corresponding respectively to $u_{i}(\epsilon)$ and $u_{ \pm}$, then

$$
\begin{equation*}
U_{1}(\epsilon) \rightarrow U_{+}, \quad U_{2}(\epsilon) \rightarrow U_{-} \quad(\epsilon \rightarrow 0) \tag{3.29}
\end{equation*}
$$

and this finally shows that $U_{ \pm}$(together of course with their opposites $-U_{ \pm}$) are the bifurcation points in this case.

Conclusions ($b c>0$):
Since $\mu_{0}>0$ in this case, we thus have precisely four bifurcation points. Note that $\pm \mu_{0}$ are precisely the eigenvalues of the matrix in (3.20) and $U_{ \pm}$(together with their opposites $-U_{ \pm}$) the corresponding unit eigenvectors. Thus also in this case (as in the Examples 1.1 and 1.2), every $v_{0} \in S_{0}$ satisfying the necessary condition (2.5) is in fact a bifurcation point.

- Case $b>0$ (or $b<0$) and $c=0$:

The previous analysis remains true save that in this case $\mu_{0}=0$. Therefore,

$$
U_{ \pm}=(1,0,0) \equiv e_{1}
$$

is the only bifurcation point (modulo reflections). However, it is important to note that there exist two distinct bifurcation branches bifurcating from e_{1} : indeed it is easily seen from (3.24) that $\delta_{1}(\epsilon) \neq \delta_{2}(\epsilon)$ for each $\epsilon \neq 0$, and this shows - via the formula (3.28) - that $u_{1}(\epsilon) \neq u_{2}(\epsilon)$ for $\epsilon \neq 0$.

- Case $b=c=0$:

The situation is quite different when $b=c=0$. Indeed in this case the bifurcation system (3.19) reduces to

$$
\left\{\begin{array}{l}
0=\delta x \tag{3.30}\\
\frac{\epsilon^{2}}{\delta-1} x=\delta y .
\end{array}\right.
$$

Solutions $(x, y) \neq(0,0)$ of (3.30) exist only for $\delta=0$, in which case they are (for $\epsilon \neq 0$)

$$
(0, y), \quad y \neq 0
$$

Thus, the only nontrivial normalized solution of the full system (3.3) are (for any $\epsilon \neq 0$)

$$
(0, \pm 1,0) \equiv \pm e_{2}
$$

This shows that $\pm e_{2}$ are also the only bifurcation points of the system in this case (and we have the trivial bifurcation branch $\delta(\epsilon)=0, U_{\epsilon}= \pm e_{2}$). On the other hand, as $\hat{B}=0$, any $v=(x, y) \in N=\mathbb{R}^{2}$ satisfies the necessary condition with $\mu_{0}=0$.

References

[1] Brown R. F., The Lefschetz Fixed Point Theorem, Scott and Foresman, 1971.
[2] Chiappinelli R., Isolated Connected Eigenvalues in Nonlinear Spectral Theory, Nonlinear Funct. Anal. Appl. 8 (2003), 557-579.
[3] Chiappinelli R. - Furi M. - Pera M.P., Normalized Eigenvectors of a Perturbed Linear Operator via General Bifurcation, Glasgow Mathematical Journal 50 (2008), 303-318.
[4] Chiappinelli R. - Furi M. - Pera M.P., Topological persistence of the normalized eigenvectors of a perturbed self-adjoint operator, Applied Mathematics Letters 23 (2010), 193-197.
[5] Chiappinelli R. - Furi M. - Pera M.P., A bifurcation problem for a class of perturbed selfadjoint operators (2010), to appear.
[6] Crandall M.G., Rabinowitz P.H., Bifurcation from Simple Eigenvalues, J. Funct. Anal. 8 (1971), 321-340.
[7] Dunford N. - Schwartz J., Linear Operators, part II, Interscience Publishers John Wiley \& Sons, New York-London, 1963.
[8] Furi M., Martelli M., Pera M.P., General Bifurcation Theory: Some Local Results and Applications, Differential Equations and Applications to Biology and to Industry, Cooke K., Cumberbatch E., Martelli M., Tang B. and Thieme H. Editors, World Scientific, 1996, 101115.
[9] Granas A. - Dugundji J., Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
[10] Lefschetz S., Manifolds with a boundary and their transformations, Trans. AMS 29 (1927), 429-462.
[11] C.A. Stuart, An introduction to bifurcation theory based on differential calculus, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, pp. 76-135, Res. Notes in Math. Vol. 39, Pitman, 1979.

Raffaele Chiappinelli - Dipartimento di Scienze Matematiche ed Informatiche, Pian dei Mantellini 44, I-53100 Siena, Italy - E-mail address: chiappinelli@unisi.it

Massimo Furi - Dipartimento di Matematica Applicata 'G. Sansone', Via S. Marta 3, I-50139 Florence, Italy - E-mail address: massimo.furi@unifi.it

Maria Patrizia Pera - Dipartimento di Matematica Applicata 'G. Sansone', Via S. Marta 3, I-50139 Florence, Italy - E-mail address: mpatrizia.pera@unifi.it

