A NEW THEME IN NONLINEAR ANALYSIS: CONTINUATION AND BIFURCATION OF THE UNIT EIGENVECTORS OF A PERTURBED LINEAR OPERATOR

RAFFAELE CHIAPPINELLI, MASSIMO FURI, AND MARIA PATRIZIA PERA

Abstract. TBA

1. Introduction and statement of the results

Let T be a bounded linear operator acting in a real Banach space X and let S be the unit sphere in X. Suppose that u_0 is a unit eigenvector of T, that is $u_0 \in S$ and $Tu_0 = \lambda_0 u_0$ for some $\lambda_0 \in \mathbb{R}$; we say in this case that u_0 is a unit λ_0 -eigenvector of T. Also let $B: U \to X$ be a (possibly nonlinear) continuous operator defined in a neighborhood U of S and for ϵ small consider the perturbed "eigenvalue" problem

$$Tu + \epsilon B(u) = \lambda u, \qquad u \in S.$$
 (1.1)

Definition 1.1. Let u_0 be a unit λ_0 -eigenvector of T. We say that u_0 is continuable as a unit eigenvector of $T + \epsilon B$ ($\epsilon \neq 0$) if there exists a continuous function $\epsilon \mapsto (\lambda(\epsilon), u(\epsilon))$ of an interval $(-\epsilon_0, \epsilon_0)$ into $\mathbb{R} \times S$ such that $Tu(\epsilon) + \epsilon B(u(\epsilon)) = \lambda(\epsilon)u(\epsilon)$ for $|\epsilon| < \epsilon_0$ and $(\lambda(0), u(0)) = (\lambda_0, u_0)$.

For example, u_0 is continuable if it is an "eigenvector" of B too: for if $B(u_0) = \mu u_0$ for some $\mu \in \mathbb{R}$, then putting $(\lambda(\epsilon), u(\epsilon)) = (\lambda_0 + \epsilon \mu, u_0)$ for $\epsilon \in \mathbb{R}$ yields the required continuous family. On the other hand, putting $X = \mathbb{R}^2$, T the zero operator, B(x,y) = (-y,x) for $(x,y) \in \mathbb{R}^2$, we see that no 0-eigenvector of T (that is, no vector in \mathbb{R}^2) is continuable, for the perturbed linear operator $T + \epsilon B$ has no (real) eigenvalue for $\epsilon \neq 0$.

Assuming that λ_0 be an isolated eigenvalue of finite (geometric and algebraic) multiplicity, we have discussed in [2] and [3] conditions for the continuability of a unit λ_0 -eigenvector of T. In particular, in [2] it was essentially shown that when λ_0 is a simple eigenvalue, then if B is Lipschitz continuous each of the two unit λ_0 -eigenvectors is continuable (in a Lipschitz continuous fashion): see Theorem 2 and Remark 2.1 of [2]. While in [3], we have considered the case in which λ_0 has multiplicity greater than one, and have given - for B of class C^2 - necessary as well as sufficient conditions for continuability of a given unit eigenvector in the C^1 sense: see Theorem 2.2 and Remark 3.6 of [3].

To obtain further information about the solutions of (1.1) it is useful to introduce a second concept, which relaxes the requirements in Definition 1.1.

 $Date \hbox{: October 13, 2010.}$

Definition 1.2. Let u_0 be a unit λ_0 -eigenvector of T. We say that u_0 is a bifurcation point for the unit eigenvectors of $T + \epsilon B$ ($\epsilon \neq 0$) - or simply a bifurcation point for (1.1) - if any neighborhood of $(0, \lambda_0, u_0)$ in $\mathbb{R} \times \mathbb{R} \times X$ contains a solution (ϵ, λ, u) of (1.1) with $\epsilon \neq 0$.

Definition 1.2 expresses the property for a unit eigenvector of T of being persistent under sufficiently small perturbations of T, and can be equivalently formulated as follows: there exists a sequence $\{(\epsilon_n, \lambda_n, u_n)\}$ in $\mathbb{R} \setminus \{0\} \times \mathbb{R} \times S$ which converges to $(0, \lambda_0, u_0)$ and such that $Tu_n + \epsilon_n B(u_n) = \lambda_n u_n$, $\forall n \in \mathbb{N}$. To appreciate better this Definition, it is useful to adopt as in [3] the general point of view in bifurcation theory introduced in [8]. A solution of (1.1) is a point $p = (\epsilon, \lambda, u) \in \mathbb{R} \times \mathbb{R} \times X$ such that F(p) = 0, where F is the map of $\mathbb{R} \times \mathbb{R} \times X$ into $X \times \mathbb{R}$ defined via

$$F(\epsilon, \lambda, u) = (Tu + \epsilon B(u) - \lambda u, ||u||^2 - 1)$$
(1.2)

($\|.\|$ is the norm in X). Put

$$S_0 \equiv S \bigcap \text{Ker}(T - \lambda_0 I) \tag{1.3}$$

where I denotes the identity in X, and consider the subset

$$M \equiv \{0\} \times \{\lambda_0\} \times S_0 \tag{1.4}$$

of $\mathbb{R} \times \mathbb{R} \times X$ as the set of trivial solutions of (1.1), or the trivial zeroes of F. Assuming that λ_0 be an isolated eigenvalue, and considering solutions of (1.1) with λ near λ_0 , we see that M is precisely the set of triples $(\epsilon, \lambda, u) \in \mathbb{R} \times \mathbb{R} \times X$ solving (1.1) for $\epsilon = 0$. Solutions (ϵ, λ, u) with $\epsilon \neq 0$ are therefore the nontrivial solutions of (1.1), and Definition 1.2 expresses - identifying u_0 with $p_0 \equiv (0, \lambda_0, u_0)$ and using the terminology of [8] - that $p_0 \in M$ is a bifurcation point (from M) for the equation F(p) = 0.

Very recently, we have proved the existence of at least one bifurcation point for the unit eigenvectors of $T + \epsilon B$ under the assumptions that T be a self-adjoint operator in a Hilbert space, that B be of class C^1 and that one of the following conditions be satisfied:

- the multiplicity of λ_0 is odd;
- B is a gradient operator.

Our aim in the present paper is to explain these results - proved in [4] and [5] respectively - also in connection with the older ones [3], and in particular to make available the main idea followed in the (yet unpublished) paper [5] to deal with the variational case.

We first set our problem in the context of perturbations of (linear) Fredholm operators of index zero: this turns out to be a sufficiently general [functional-analytic] framework in order to state our results on a common ground, compare their strength and appreciate the different assumptions. We also indicate the main points of the proofs. This is done in Section 2, while Section 3 is addressed to exhibit some simple examples of our problem in the euclidean space \mathbb{R}^3 . Working in this context - and even with a linear B - gives some concrete evidence of the conditions involved on T and B, and may thus help for a better understanding of the ideas before expressed in infinite-dimensional Banach spaces.

2. Finite-dimensional reduction. Necessary conditions and sufficient conditions for bifurcation

Consider equation (1.1) for a bounded linear operator $T: X \to X$, X a real Banach space. We suppose in the sequel that:

• λ_0 is an isolated eigenvalue of T.

As already said, this ensures that for $\epsilon = 0$ and λ near λ_0 , the only solutions of (1.1) are those with $\lambda = \lambda_0$, that is the trivial ones. Now set

$$A = T - \lambda_0 I, \qquad \delta = \lambda - \lambda_0$$

and write the equation in (1.1) as

$$Au + \epsilon B(u) = \delta u. \tag{2.1}$$

We assume the following hypotheses upon A.

HA1) A is a Fredholm operator of index zero, that is,

- Ker $A = \{u \in X : Au = 0\}$ is of finite dimension; in words, λ_0 is an eigenvalue of finite geometric multiplicity;
- Im $A = \{Au : u \in X\}$ is closed and of finite codimension;
- $\dim \operatorname{Ker} A = \operatorname{codim} \operatorname{Im} A$.

HA2) Ker $A \cap \operatorname{Im} A = \{0\}.$

It follows from HA1) and HA2) that

$$E = \operatorname{Ker} A \oplus \operatorname{Im} A \tag{2.2}$$

and that the projections P, Q = I - P onto Ker A, Im A respectively corresponding to this direct sum are *continuous*.

It is useful to recall two typical situations in which the above assumptions are satisfied:

- T: X → X is compact, λ₀ ≠ 0 (ensuring HA1)) and Ker A = Ker A² (ensuring HA2). The last condition also implies that Ker Aⁿ = Ker Aⁿ⁺¹ for all n ∈ N, and therefore that the geometric multiplicity of λ₀ equals its algebraic multiplicity dim ⋃_{n=1}[∞] Ker Aⁿ.
 X = H, a Hilbert space, T: H → H is self-adjoint (that is, ⟨Tx, y⟩ =
- X = H, a Hilbert space, $T : H \to H$ is self-adjoint (that is, $\langle Tx, y \rangle = \langle x, Ty \rangle$ for all $x, y \in H$, $\langle ., . \rangle$ denoting the scalar product in H) and dim Ker $A < \infty$. Indeed self-adjointness of T implies that Ker $A = \operatorname{Im} A^{\perp} \equiv \{x \in H : \langle x, y \rangle = 0 \ \forall y \in \operatorname{Im} A\}$, and it follows that $H = \operatorname{Ker} A \oplus \overline{\operatorname{Im}} A$, where the sum is orthogonal. However as λ_0 is isolated by assumption, Im A is closed (see e.g. [7, pg. 1395]) and therefore $H = \operatorname{Ker} A \oplus \operatorname{Im} A$. Self-adjointness also implies that $\operatorname{Ker} A = \operatorname{Ker} A^2$, so that the geometric and algebraic multiplicity of λ_0 always coincide in this case.

Writing $u = Pu + Qu \equiv v + w$ according to (2.2) and applying in turn P, Q to both members of (2.1), we see that the latter equation is equivalent to the following two:

$$\epsilon PB(v+w) = \delta v \tag{2.3}$$

$$Aw + \epsilon QB(v + w) = \delta w. \tag{2.4}$$

This decomposition (the so-called Lyapounov-Schmidt method) reveals easily a **necessary condition** for bifurcation as soon as B satisfies the following "minimal" regularity assumption:

HB0) B is continuous in a neighborhood of S.

Proposition 2.1. Suppose that HA1), HA2) and HB0) are satisfied. If $v_0 \in S_0 = S \cap \text{Ker}(T - \lambda_0 I)$ is a bifurcation point for (1.1), then there exists $\mu_0 \in \mathbb{R}$ such that

$$PB(v_0) = \mu_0 v_0. (2.5)$$

Proof. If $v_0 \in S_0$ is a bifurcation point, there exists by definition a sequence $(\delta_n, \epsilon_n, u_n) \in \mathbb{R} \times \mathbb{R} \times S$, with $\epsilon_n \neq 0$ for each $n \in \mathbb{N}$, such that $(\delta_n, \epsilon_n, u_n) \to (0, 0, v_0)$ as $n \to \infty$ and

$$Au_n + \epsilon_n B(u_n) = \delta_n u_n, \quad \forall n \in \mathbb{N}.$$
 (2.6)

Then putting $v_n = Pu_n, w_n = Qu_n$ we have $v_n \to Pv_0 = v_0, w_n \to Qv_0 = 0$ and moreover from (2.3)

$$PB(v_n + w_n) = \frac{\delta_n}{\epsilon_n} v_n.$$

We claim that the sequence (δ_n/ϵ_n) is bounded. For otherwise, since $||v_n|| \to ||v_0|| = 1$, it would follow (passing if necessary to a subsequence) that $||\frac{\delta_n}{\epsilon_n}v_n|| \to +\infty$, contradicting the boundedness of the sequence $PB(v_n+w_n)$ which in fact converges to $PB(v_0)$. Hence we can assume (again through a subsequence) that (δ_n/ϵ_n) converges to some μ_0 , so that in the limit we obtain (2.5).

- **1. Comment:** For B of class C^1 , the above condition was proved in [3].
- 2. Necessary condition is not sufficient: see Example 3.3.

In order to discuss **sufficient conditions** for bifurcation, we shall henceforth strengthen HB0) as follows:

HB1) B is of class C^1 in a neighborhood of S.

Indeed put

$$N = \operatorname{Ker} A$$
, $W = \operatorname{Im} A$

and identify X with $N \times W$. Then HB1) guarantees, via the Implicit Function Theorem, that given any $v_0 \in S_0 \subset N$, equation (2.4) - the so-called *complementary* equation - can be solved uniquely w.r.t. w for each given (δ, ϵ, v) in a neighborhood $U_0 \subset \mathbb{R} \times \mathbb{R} \times N$ of $(0, 0, v_0)$. Moreover if $w(\delta, \epsilon, v)$ denotes the solution corresponding to $(\delta, \epsilon, v) \in U_0$, then w(0, 0, v) = 0 for any v and the mapping $(\delta, \epsilon, v) \to w(\delta, \epsilon, v)$ of U_0 into W is of class C^1 in U_0 . Therefore by definition

$$Aw(\delta, \epsilon, v) + \epsilon QB(v + w(\delta, \epsilon, v)) = \delta w(\delta, \epsilon, v)$$
(2.7)

for any $(\delta, \epsilon, v) \in U_0$; and we see from (2.3) that in order to solve our problem (1.1), it is enough to find $(\delta, \epsilon, v) \in U_0$ satisfying the finite-dimensional equation (the bifurcation equation)

$$\epsilon PB(v + w(\delta, \epsilon, v)) = \delta v$$
 (2.8)

and the additional normalization constraint

$$v + w(\delta, \epsilon, v) \in S. \tag{2.9}$$

At this stage, in order to prove that a given $v_0 \in S_0$ - satisfying (2.5) - is indeed a bifurcation point, we need find a sequence $(\delta_n, \epsilon_n, v_n)$ of solutions of the above system (2.8) - (2.9), with $\epsilon_n \neq 0$ for each $n \in \mathbb{N}$, such that $(\delta_n, \epsilon_n, v_n) \to (0, 0, v_0)$ as $n \to \infty$. While if for each sufficiently small ϵ we find $\delta(\epsilon), v(\epsilon)$ - depending continuously upon ϵ - such that $(\delta(0), v(0)) = (0, v_0)$ and $(\delta(\epsilon), \epsilon, v(\epsilon))$ solves (2.8) - (2.9), then so much the better as v_0 will be continuable by means of the equation

$$u(\epsilon) = v(\epsilon) + w(\delta(\epsilon), \epsilon, v(\epsilon)). \tag{2.10}$$

[ChiFuPe1]

When B and the space X (that is, its norm) are sufficiently smooth, the Implicit Function Theorem can be further employed to perform such construction and yield a sufficient condition for continuation.

Theorem 2.1. For $x \in X$, put $g(x) = ||x||^2 - 1$. Suppose that B and g are of class C^2 in an open neighborhood of $S = g^{-1}(0)$ and that HA1) and HA2) are satisfied. Let $v_0 \in S_0$ be such that $PB(v_0) = \mu_0 v_0$, let $V = \{h \in X : g'(v_0)h = 0\}$ and let π be a continuous projection of X onto V. If v_0 satisfies the condition:

$$h \in N \cap V$$
, $\pi PB'(v_0)h = \mu_0 h \Rightarrow h = 0$, (2.11)

then v_0 is continuable.

Remark 2.1. V is the tangent space to S at v_0 , and likewise $N \cap V$ is the tangent space to $S_0 = N \cap S$ at v_0 . The condition (2.11) means that the map $\pi PB'(v_0) - \mu_0 I$, restricted to $N \cap V$, is an isomorphism of $N \cap V$ onto iself.

Reference to: i)More general versions of Theorem 2.1; ii)Applications to BVP.

Theorem 2.1 ia a special case of Theorem 3.4 in [3], where it is shown that similar results hold when the operators involved act between different Banach spaces, and when the unit sphere S is replaced by more general manifolds $M = g^{-1}(0)$ given as level sets of a C^2 functional g.

In turn, Theorem 3.4 of [3] is an application to Banach space operator equations of results formulated in [8] in the context of general bifurcation theory. This considers a C^1 map f defined in an open set U of a Banach space E and with values in a Banach space F. Given a differentiable manifold $M \subseteq f^{-1}(0)$, regard M as the set of trivial solutions of the equation f(u) = 0, so that $f^{-1}(0) \setminus M$ represents the set of nontrivial solutions. An element $p \in M$ is a bifurcation point (from M) of f(u) = 0 if any neighborhood of p contains elements of $f^{-1}(0) \setminus M$. Necessary as well as sufficient conditions for bifurcation are proved in [8] in essentially geometrical terms, starting from the observation that the condition $M \subseteq f^{-1}(0)$ implies that, for any $u \in M$, the tangent space $T_u M$ of M at u is contained in the kernel of f'(u).

In particular when f is a C^2 Fredholm map of index 1, and $p \in M$ is such that dim Ker $f'(p) = \dim T_p M + 1$, then a sufficient "transversality" condition for $p \in M$ to be a bifurcation point is provided in [8], which extends that contained in the Crandall–Rabinowitz Bifurcation Theorem [6], in which dim M = 1. For these general conditions see, for instance, Theorem 2.2 of [3] and the comments accompanying it.

Moreover in [3], the results about (1.1) are applied to show the existence of 2π -periodic solutions of the differential equation

$$x'' + x + \epsilon(tx + x^2) = \lambda x$$

normalized by

$$\frac{1}{\pi} \int_{-\pi}^{\pi} x^2(t) \, dt = 1,$$

and in particular to study the continuability of a given trivial (i.e., obtained for $\epsilon = \lambda = 0$) normalized solution: that is, of a solution of the type $x(t) = c \sin t + d \cos t$, with $c^2 + d^2 = 1$.

Proposition 2.1 and Theorem 2.1 are results of **local** nature, as they give conditions upon an individual point $v_0 \in S_0$ to be a bifurcation point for (1.1). A related question is: under which conditions (on A, B, etc.) does S_0 possess at least one bifurcation point? We are able to give some partial answer to this problem in the special case that

X = H, a Hilbert space and $T: H \to H$ is self-adjoint.

[ChiFuPe2]

Recall that in this case the assumptions HA1) and HA2) about the linear part $A = T - \lambda_0 I$ of our equation are satisfied - provided of course that λ_0 be isolated and of finite multiplicity, as we have always assumed. Here is our first result [4]:

Theorem 2.2. Consider the problem (1.1) where T is a bounded self-adjoint operator acting in a real Hilbert space and B satisfies the assumption HB1). If λ_0 is an isolated eigenvalue of T of odd multiplicity, then $S_0 = S \cap \text{Ker}(T - \lambda_0 I)$ possesses at least one bifurcation point.

Sketch of the proof. Topological methods

The proof of this result relies on the fact that the Euler-Poincaré characteristic of the even dimensional sphere S_0 is nonzero, and this implies that any self-map of this sphere has a fixed point if it is homotopic to the identity: for this matter see, for instance, [1] or [9]. Therefore, the methods employed are of topological nature, and quite different from those used in [2] and [3], which rely almost entirely upon the Implicit Function Theorem.

Nevertheless, it is precisely with a strengthened version of this Theorem that we start our work in [4], to the aim of solving the complementary equation "globally" with respect to S_0 . Indeed for $\eta > 0$, consider the (compact) neighborhood of S_0

$$M = \Big\{v \in N: \big|\|v\| - 1\big| \le \eta\Big\}.$$

Taking $\eta > 0$ small, we can assume that B be of class C^1 in an open neighborhood of $M \times \{0\} \subset N \times W$, and then it follows from Lemma 2.2 of [4] that the function $w = w(\delta, \epsilon, v)$ obtained solving (2.4) is defined and of class C^1 in an open neighborhood U_1 of $\{0\} \times \{0\} \times M \subset \mathbb{R} \times \mathbb{R} \times N$.

Once this is done, a further reduction can be made on "eliminating δ " from our equations. Indeed in the present Hilbert space context, taking scalar product in (2.8) we get

$$\langle \epsilon PB(v + w(\delta, \epsilon, v)), v \rangle = \delta ||v||^2.$$
 (2.12)

Dividing both members of (2.12) by $||v||^2$ and applying again Lemma 2.2 of [4] to the resulting equation, we see that δ can be written as a C^1 function $\delta(\epsilon, v)$ of (ϵ, v) , defined in an open subset V of $\mathbb{R} \times (N \setminus \{0\})$ containing $\{0\} \times M$ and such that $\delta(0, v) = 0$ for any v, and $(\delta(\epsilon, v), \epsilon, v) \in U_1$ for $(\epsilon, v) \in V$.

Put for convenience $\phi(\epsilon, v) \equiv w(\delta(\epsilon, v), \epsilon, v)$. Then we see - from (2.8) and the normalization condition (2.9) - that in order to solve (1.1) it is enough to find $(\epsilon, v) \in V$ such that

$$\epsilon PB(v + \phi(\epsilon, v)) = \delta(\epsilon, v)v$$
 (2.13)

and

$$[\|v + \phi(\epsilon, v)\|^2] = \|v\|^2 + \|\phi(\epsilon, v)\|^2 = 1.$$
(2.14)

Under the assumptions of Theorem 2.2, we show that a stronger result holds: namely, for any sufficiently small ϵ there exists $v_{\epsilon} \in M$ such that (ϵ, v_{ϵ}) satisfies (2.13) and (2.14). To this purpose, assume for simplicity that $\lambda_0 = 1$. Then adding v to both sides of (2.13) and putting $h(\epsilon, v) = 1 + \delta(\epsilon, v)$ we get

$$v + \epsilon PB(v + \phi(\epsilon, v)) = h(\epsilon, v)v. \tag{2.15}$$

Fix $\epsilon \neq 0$ and let σ be the radial projection of $N \setminus \{0\}$ onto its unit sphere S_0 , defined putting $\sigma(v) = v/||v||$ for $v \in N, v \neq 0$. Then looking for solutions $v \in M$ of (2.15) is equivalent to finding $v \in M$ such that

$$\sigma(v + \epsilon PB(v + \phi(\epsilon, v))) = \frac{v}{\|v\|}.$$
 (2.16)

On the other hand, using (2.14) this last equation becomes

$$f_{\epsilon}(v) \equiv \sqrt{1 - \|\phi(\epsilon, v)\|^2} \sigma(v + \epsilon PB(v + \phi(\epsilon, v))) = v, \tag{2.17}$$

which is a fixed point equation for the map $f_{\epsilon}: M \to M$. The Lefschetz number of f_{ϵ} equals the Euler–Poincaré characteristic of S_0 [4], and thus is not zero since S_0 is even dimensional. By the Lefschetz fixed point theorem [1], there exists $v_{\epsilon} \in M$ such that $f_{\epsilon}(v_{\epsilon}) = v_{\epsilon}$.

Now fix a sequence (ϵ_n) with $\epsilon_n \to 0$ and $\epsilon_n \neq 0$ for all $n \in \mathbb{N}$ and put $v_n \equiv v_{\epsilon_n}$; also let

$$\delta_n \equiv \delta(\epsilon_n, v_n), \qquad u_n \equiv v_n + \phi(\epsilon_n, v_n).$$

By the compactness of M we can assume - passing if necessary to a subsequence - that $v_n \to v_0$. It follows that $\phi(\epsilon_n, v_n) \to \phi(0, v_0) = 0$, which implies by (2.14) that $||v_n|| \to 1$ and therefore that $v_0 \in S$. Moreover since $(\delta_n, \epsilon_n, u_n)$ solves (1.1) for any n and $u_n \to v_0$, it follows that $v_0 \in S_0$ and is a bifurcation point for (1.1).

[ChiFuPe3]

(HBG) B is a gradient operator in neighborhood of S

that is, there exists a differentiable functional b defined on a open neighborhood U of S such that

$$\langle B(x), y \rangle = b'(x)y$$
 for all $x \in U, y \in H$. (2.18)

Here b'(x) denotes the (Fréchet) derivative of b at the point $x \in U$.

Theorem 2.3. Suppose that $T: H \to H$ is a bounded self-adjoint operator, and suppose that B satisfies (HB1) and (HBG). If λ_0 is an isolated eigenvalue of T of finite multiplicity, then S_0 possesses at least one bifurcation point.

Sketch of the proof. Variational methods

To indicate the main points of the proof, we keep the same notations as before and put in addition

$$F_{\epsilon}(u) \equiv Au + \epsilon B(u), \quad \delta_{\epsilon}(v) \equiv \delta(\epsilon, v), \quad \phi_{\epsilon}(v) \equiv \phi(\epsilon, v)$$

so that the system (2.13)-(2.14) in the unknowns ϵ and v can be written

$$PF_{\epsilon}(v + \phi_{\epsilon}(v)) = \delta_{\epsilon}(v)v, \qquad ||v + \phi_{\epsilon}(v)||^2 = 1.$$
 (2.19)

Under the assumptions of Theorem [.] we show that for any ϵ small there exist (at least) two distinct solutions $v=v_{\epsilon},\ z=z_{\epsilon}$ of (2.19). To this aim, let $B=\nabla b$ -that is, suppose that (2.18) holds; then $F_{\epsilon}=\nabla f_{\epsilon}$ with

$$f_{\epsilon}(u) = \frac{1}{2} \langle Au, u \rangle + \epsilon b(u).$$

We follow an idea of Stuart [11] to show that for fixed ϵ , the solutions v of (2.19) are precisely the critical points of the functional α_{ϵ} defined by

$$\alpha_{\epsilon}(v) = f_{\epsilon}(v + \phi_{\epsilon}(v)) = \frac{1}{2} \langle A\phi_{\epsilon}(v), \phi_{\epsilon}(v) \rangle + \epsilon b(v + \phi_{\epsilon}(v))$$
 (2.20)

over the manifold defined by the norm constraint, that is

$$M_{\epsilon} = \{ v \in N : ||v + \phi_{\epsilon}(v)||^2 = 1 \}.$$
 (2.21)

Once this is done, the compactness of M_{ϵ} implies the existence of $v_{\epsilon}, z_{\epsilon} \in M_{\epsilon}$ such that

$$\alpha_{\epsilon}(v_{\epsilon}) = \min_{v \in M_{\epsilon}} \alpha_{\epsilon}(v), \qquad \alpha_{\epsilon}(z_{\epsilon}) = \max_{v \in M_{\epsilon}} \alpha_{\epsilon}(v).$$
 (2.22)

and therefore implies that (for each ϵ), v_{ϵ} and z_{ϵ} solve (2.19).

Using for instance v_{ϵ} and reasoning as in the proof of Theorem 2.2, we can then construct a sequence $(\delta_n, \epsilon_n, u_n)$ of solutions to (1.1), with u_n converging to some $v_0 \in S_0$ which is therefore a bifurcation point.

Remark 2.2. It would be interesting to establish conditions guaranteeing that there are (at least) two different bifurcation points.

3. Examples in \mathbb{R}^3

In this Section we consider (2.1) in the very special case that $X = \mathbb{R}^3$ and that (besides A) also the perturbing term B is linear. Moreover we keep fixed a very simple A, namely - writing u = (x, y, z) for $u \in \mathbb{R}^3$ - the projection onto the z-axis:

$$A(x, y, z) = (0, 0, z).$$

Thus, representing A with the corresponding 3×3 matrix in the canonical basis,

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} . \tag{3.1}$$

Consider at first a generic B:

$$B = \begin{pmatrix} a & b & m \\ c & d & n \\ p & q & r \end{pmatrix} \tag{3.2}$$

Then (2.1) is

$$\begin{cases} \epsilon(ax + by + mz) = \delta x, \\ \epsilon(cx + dy + nz) = \delta y, \\ z + \epsilon(px + qy + rz) = \delta z. \end{cases}$$
(3.3)

The last equation can be solved in z to yield

$$z = z(\delta, \epsilon, x, y) = \frac{\epsilon}{\delta - (1 + \epsilon r)} (px + qy)$$
(3.4)

and we are thus reduced to solve the system (in the unknowns δ, ϵ, x, y)

$$\begin{cases} ax + by + mz(\delta, \epsilon, x, y) = (\delta/\epsilon)x, \\ cx + dy + nz(\delta, \epsilon, x, y)) = (\delta/\epsilon)y. \end{cases}$$
(3.5)

Example 3.1. Consider

$$B = \begin{pmatrix} a & b & m \\ c & d & n \\ 0 & 0 & r \end{pmatrix} \tag{3.6}$$

that is,

$$B(x,y,z) = (ax + by + mz, cx + dy + nz, rz).$$

We see from (3.4) that in this case $z(\delta, \epsilon, x, y) \equiv 0$, so that the bifurcation system reduces to

$$\begin{cases} ax + by = (\delta/\epsilon)x, \\ cx + dy = (\delta/\epsilon)y. \end{cases}$$
 (3.7)

The solutions $(x,y) \neq (0,0)$ of this system [- if any -] are the eigenvectors of the reduced 2×2 matrix

$$\hat{B} \equiv \begin{pmatrix} a & b \\ c & d \end{pmatrix} \tag{3.8}$$

corresponding to real eigenvalues. Suppose first that \hat{B} has two real eigenvalues μ_1, μ_2 with $\mu_1 \neq \mu_2$. If v_1, v_2 are corresponding normalized eigenvectors, then the bifurcation branches defined putting

$$\delta_i(\epsilon) = \epsilon \mu_i, \qquad u_i(\epsilon) = v_i \qquad (i = 1, 2)$$
 (3.9)

provide a (trivial) continuation of v_i as solution of (1.1) for $\epsilon \neq 0$; the same clearly holds for $-v_i$. Thus each eigenvector of \hat{B} is continuable as a unit eigenvector of $A + \epsilon B$.

The same conclusion holds true when $\mu_1 = \mu_2 \equiv \mu_0$, save that either the geometric multiplicity of μ_0 is two - in which case all vectors of \mathbb{R}^2 are eigenvectors of \hat{B} - or it is one, and there is (modulo reflections) just one normed eigenvector v_0 of \hat{B} .

Remark 3.1. If \hat{B} has no real eigenvalue there cannot be bifurcation points. On the grounds of Proposition 2.1, this holds for any B (and not only for B as in (3.6)).

Example 3.2. Consider

$$B = \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ p & q & r \end{pmatrix} \tag{3.10}$$

that is,

$$B(x, y, z) = (ax + by, cx + dy, px + qy + rz).$$

This time $z(\delta,\epsilon,x,y)$ is given by its general expression (3.4), however since m=n=0 this does not affect the bifurcation system - which maintains its reduced form (3.7) - nor the conclusion that each eigenvector of \hat{B} is a bifurcation point. The difference with Ex.1.1 is that here the solutions of the full system (3.3) have a nonzero z-component, and consequently the bifurcation branch continuing a given eigenvector $v_0=(x_0,y_0)$ of \hat{B} corresponding to the eigenvalue μ_0 is a bit less trivial as is given by the equations

$$\delta(\epsilon) = \epsilon \mu_0, \qquad u(\epsilon) = (x_0, y_0, z(\epsilon \mu_0, \epsilon, x_0, y_0)). \tag{3.11}$$

Remark 3.2. The above examples can be clearly seen in the context of Equation (2.1). We keep the notations used in Section 2 for N = Ker A, W = Im A as well as for the projections P, Q onto these subspaces. Pick a $v_0 \in S_0$ and consider the complementary equation (2.4) with $v = v_0$:

$$Aw + \epsilon QB(v_0 + w) = \delta w. \tag{3.12}$$

If we suppose that

$$QB(v_0) = 0, (3.13)$$

then w = 0 solves (3.12); by uniqueness, it follows that $w(\delta, \epsilon, v_0) = 0$ for any δ and ϵ . The bifurcation equation (2.8) thus reduces (for $v = v_0$) to

$$\epsilon PB(v_0) = \delta v_0, \tag{3.14}$$

which is precisely - via the position $\delta = \epsilon \mu_0$ - the necessary condition (2.5). This remark is not new, for (3.13) and (2.5) are equivalent to say that $B(v_0) = \mu_0 v_0$ and in this case, as already noted in the Introduction, we can immediately solve (2.1) for all ϵ . Perhaps more interesting is to observe that requiring the condition (3.13) for all $v_0 \in S_0$ amounts to requiring that B map S_0 into N and therefore - when B is linear, of course - that B map N into itself, i.e., that N be an invariant subspace for B. Indeed, this is what happens in Example 1.1.

Consider instead the dual situation in which W, rather than N, is an invariant subspace for B; the B in Example 1.2 is chosen to enjoy this property. This is expressed by the condition that PB(w) = 0 for any $w \in W$; so that if we pick a $v_0 \in S_0$ satisfying the necessary condition (2.5), then we have in particular

$$\epsilon PB(v_0 + w(\epsilon \mu_0, \epsilon, v_0)) = \epsilon PB(v_0) = \epsilon \mu_0 v_0 \tag{3.15}$$

for any ϵ . This shows that $(\epsilon \mu_0, \epsilon, v_0)$ is a solution of (2.8) for any ϵ , implying that v_0 is continuable via the equations

$$\delta(\epsilon) = \epsilon \mu_0, \qquad u(\epsilon) = v_0 + w(\epsilon \mu_0, \epsilon, v_0).$$
 (3.16)

Of course, in order to have unit eigenvectors we shall take $U(\epsilon) \equiv u(\epsilon)/\|u(\epsilon)\|$ rather than $u(\epsilon)$ itself and use the linearity of the equation.

Example 3.3. Here we consider the case

$$B = \begin{pmatrix} 0 & b & 0 \\ c & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \tag{3.17}$$

For such a B, (3.4) becomes

$$z = z(\delta, \epsilon, x, y) = \frac{\epsilon}{\delta - 1}x \tag{3.18}$$

and the bifurcation system (3.5) is

$$\begin{cases} by = (\delta/\epsilon)x \\ cx + \frac{\epsilon}{\delta - 1}x = (\delta/\epsilon)y. \end{cases}$$
 (3.19)

We have to distiguish the following cases:

- \bullet bc > 0
- b > 0 (or b < 0) and c = 0
- b = c = 0
- bc < 0.

The last case is out of interest, for the reduced matrix \hat{B}

$$\hat{B} \equiv \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} \tag{3.20}$$

then has no real eigenvalue.

• Case bc > 0:

[Suppose thus that bc > 0]. Then the first equation in (3.19) yields

$$y = \frac{\delta}{\epsilon b}x,\tag{3.21}$$

so that the solutions u = (x, y, z) of the full system (3.3) have the form

$$u = x(1, \frac{\delta}{\epsilon b}, \frac{\epsilon}{\delta - 1}). \tag{3.22}$$

Moreover replacing (3.21) in the second equation of the system (3.19) gives the condition

$$c + \frac{\epsilon}{\delta - 1} = \frac{\delta^2}{\epsilon^2 b} \tag{3.23}$$

provided that $x \neq 0$; however, (3.22) implies that u = 0 if x = 0, and we look for solutions $u \neq 0$. (Note that the above equations make sense whenever $b \neq 0$, however since the l.h.s. of (3.23) has - for ϵ small and $c \neq 0$ - the sign of c, it follows that b and c must have the same sign in order that (real) solutions to (3.23) exist).

Now the latter equation - expressing the eigenvalues in function of the parameter ϵ - can be written equivalently as

$$(\delta - 1)(\delta^2 - \epsilon^2 bc) = \epsilon^3 b, \tag{3.24}$$

and by direct inspection we then find that it has for each ϵ three real solutions $\delta_i(\epsilon), 1 \leq i \leq 3$, with the property

$$\delta_i(\epsilon) \to 0, \ i = 1, 2; \qquad \delta_3(\epsilon) \to 1 \qquad (\epsilon \to 0).$$
 (3.25)

Therefore, using (3.23) in (3.22), we see that the eigenvectors of interest are given by the formula

$$u(\epsilon) = x(1, \frac{\delta}{\epsilon b}, \frac{\delta^2}{\epsilon^2 b} - c) \qquad (x \neq 0)$$
 (3.26)

where $\delta = \delta_i(\epsilon)$, i = 1, 2. Equation (3.26) shows that the ratio δ/ϵ is the significant parameter here. Now since $\epsilon/(\delta - 1)$ approaches zero as $\epsilon \to 0$, it follows from (3.23) that $\delta^2/(\epsilon^2 b) \to c$ as $\epsilon \to 0$, and therefore

$$\frac{\delta}{\epsilon} \to \pm \sqrt{bc} \equiv \pm \mu_0 \qquad (\epsilon \to 0).$$
 (3.27)

Thus if we let in (3.26) x=1 and $\delta=\delta_i(\epsilon)$ (i=1,2), and denote with $u_i(\epsilon)$ the corresponding vector, then as $\epsilon\to 0$

$$u_i(\epsilon) = (1, \frac{\delta_i(\epsilon)}{\epsilon b}, \frac{\delta_i^2(\epsilon)}{\epsilon^2 b} - c) \rightarrow (1, \pm \frac{\mu_0}{b}, 0) \equiv u_\pm \tag{3.28}$$
 where the signs + and - refer to $i=1$ and $i=2$ respectively. It follows that if

where the signs + and - refer to i=1 and i=2 respectively. It follows that if $U_i(\epsilon)$, U_{\pm} denote the normalized vectors corresponding respectively to $u_i(\epsilon)$ and u_{\pm} , then

$$U_1(\epsilon) \to U_+, \qquad U_2(\epsilon) \to U_- \qquad (\epsilon \to 0), \tag{3.29}$$

and this finally shows that U_{\pm} (together of course with their opposites $-U_{\pm}$) are the bifurcation points in this case.

Conclusions (bc > 0):

Since $\mu_0 > 0$ in this case, we thus have precisely four bifurcation points. Note that $\pm \mu_0$ are precisely the eigenvalues of the matrix in (3.20) and U_{\pm} (together with their opposites $-U_{\pm}$) the corresponding unit eigenvectors. Thus also in this case (as in the Examples 1.1 and 1.2), every $v_0 \in S_0$ satisfying the necessary condition (2.5) is in fact a bifurcation point.

• Case b > 0 (or b < 0) and c = 0:

The previous analysis remains true save that in this case $\mu_0 = 0$. Therefore,

$$U_{\pm} = (1, 0, 0) \equiv e_1$$

is the only bifurcation point (modulo reflections). However, it is important to note that there exist two distinct bifurcation branches bifurcating from e_1 : indeed it is easily seen from (3.24) that $\delta_1(\epsilon) \neq \delta_2(\epsilon)$ for each $\epsilon \neq 0$, and this shows - via the formula (3.28) - that $u_1(\epsilon) \neq u_2(\epsilon)$ for $\epsilon \neq 0$.

• Case b = c = 0:

The situation is quite different when b = c = 0. Indeed in this case the bifurcation system (3.19) reduces to

$$\begin{cases}
0 = \delta x \\
\frac{\epsilon^2}{\delta - 1} x = \delta y.
\end{cases}$$
(3.30)

Solutions $(x,y) \neq (0,0)$ of (3.30) exist only for $\delta = 0$, in which case they are (for $\epsilon \neq 0$)

$$(0,y), y \neq 0.$$

Thus, the only nontrivial normalized solution of the full system (3.3) are (for any $\epsilon \neq 0$)

$$(0,\pm 1,0) \equiv \pm e_2.$$

This shows that $\pm e_2$ are also the only bifurcation points of the system in this case (and we have the trivial bifurcation branch $\delta(\epsilon) = 0, U_{\epsilon} = \pm e_2$). On the other hand, as $\hat{B} = 0$, any $v = (x, y) \in N = \mathbb{R}^2$ satisfies the necessary condition with $\mu_0 = 0$.

REFERENCES

- [1] Brown R. F., The Lefschetz Fixed Point Theorem, Scott and Foresman, 1971.
- [2] Chiappinelli R., Isolated Connected Eigenvalues in Nonlinear Spectral Theory, Nonlinear Funct. Anal. Appl. 8 (2003), 557–579.
- [3] Chiappinelli R. Furi M. Pera M.P., Normalized Eigenvectors of a Perturbed Linear Operator via General Bifurcation, Glasgow Mathematical Journal 50 (2008), 303–318.
- [4] Chiappinelli R. Furi M. Pera M.P., Topological persistence of the normalized eigenvectors of a perturbed self-adjoint operator, Applied Mathematics Letters 23 (2010), 193–197.
- [5] Chiappinelli R. Furi M. Pera M.P., A bifurcation problem for a class of perturbed selfadjoint operators (2010), to appear.
- [6] Crandall M.G., Rabinowitz P.H., Bifurcation from Simple Eigenvalues, J. Funct. Anal. 8 (1971), 321–340.
- [7] Dunford N. Schwartz J., Linear Operators, part II, Interscience Publishers John Wiley & Sons, New York-London, 1963.
- [8] Furi M., Martelli M., Pera M.P., General Bifurcation Theory: Some Local Results and Applications, Differential Equations and Applications to Biology and to Industry, Cooke K., Cumberbatch E., Martelli M., Tang B. and Thieme H. Editors, World Scientific, 1996, 101–115.
- [9] Granas A. Dugundji J., Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
- [10] Lefschetz S., Manifolds with a boundary and their transformations, Trans. AMS 29 (1927), 429–462.

[11] C.A. Stuart, An introduction to bifurcation theory based on differential calculus, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, pp. 76–135, Res. Notes in Math. Vol. 39, Pitman, 1979.

Raffaele Chiappinelli - Dipartimento di Scienze Matematiche ed Informatiche, Pian dei Mantellini 44, I-53100 Siena, Italy - E- $mail\ address$: chiappinelli@unisi.it

Massimo Furi - Dipartimento di Matematica Applicata 'G. Sansone', Via S. Marta 3, I-50139 Florence, Italy - E-mail address: massimo.furi@unifi.it

Maria Patrizia Pera - Dipartimento di Matematica Applicata 'G. Sansone', Via S. Marta 3, I-50139 Florence, Italy - E-mail address: mpatrizia.pera@unifi.it