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Abstract. TBA

1. Introduction and statement of the results

Let T be a bounded linear operator acting in a real Banach space X and let S be
the unit sphere in X. Suppose that u0 is a unit eigenvector of T , that is u0 ∈ S and
Tu0 = λ0u0 for some λ0 ∈ R; we say in this case that u0 is a unit λ0-eigenvector of
T . Also let B : U → X be a (possibly nonlinear) continuous operator defined in a
neighborhood U of S and for ε small consider the perturbed ”eigenvalue” problem

Tu+ εB(u) = λu, u ∈ S. (1.1)

Definition 1.1. Let u0 be a unit λ0-eigenvector of T . We say that u0 is continuable
as a unit eigenvector of T + εB (ε 6= 0) if there exists a continuous function ε 7→
(λ(ε), u(ε)) of an interval (−ε0, ε0) into R×S such that Tu(ε)+εB(u(ε)) = λ(ε)u(ε)
for |ε| < ε0 and (λ(0), u(0)) = (λ0, u0).

For example, u0 is continuable if it is an ”eigenvector” of B too: for if B(u0) =
µu0 for some µ ∈ R, then putting (λ(ε), u(ε)) = (λ0 + εµ, u0) for ε ∈ R yields
the required continuous family. On the other hand, putting X = R2, T the zero
operator, B(x, y) = (−y, x) for (x, y) ∈ R2, we see that no 0-eigenvector of T (that
is, no vector in R2) is continuable, for the perturbed linear operator T + εB has no
(real) eigenvalue for ε 6= 0.

Assuming that λ0 be an isolated eigenvalue of finite (geometric and algebraic)
multiplicity, we have discussed in [2] and [3] conditions for the continuability of a
unit λ0-eigenvector of T . In particular, in [2] it was essentially shown that when
λ0 is a simple eigenvalue, then if B is Lipschitz continuous each of the two unit
λ0-eigenvectors is continuable (in a Lipschitz continuous fashion): see Theorem 2
and Remark 2.1 of [2]. While in [3], we have considered the case in which λ0 has
multiplicity greater than one, and have given - for B of class C2 - necessary as
well as sufficient conditions for continuability of a given unit eigenvector in the C1

sense: see Theorem 2.2 and Remark 3.6 of [3].

To obtain further information about the solutions of (1.1) it is useful to introduce
a second concept, which relaxes the requirements in Definition 1.1.
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Definition 1.2. Let u0 be a unit λ0-eigenvector of T . We say that u0 is a bifur-
cation point for the unit eigenvectors of T + εB (ε 6= 0) - or simply a bifurcation
point for (1.1) - if any neighborhood of (0, λ0, u0) in R×R×X contains a solution
(ε, λ, u) of (1.1) with ε 6= 0.

Definition 1.2 expresses the property for a unit eigenvector of T of being persis-
tent under sufficiently small perturbations of T , and can be equivalently formulated
as follows: there exists a sequence

{
(εn, λn, un)

}
in R\{0}×R×S which converges

to (0, λ0, u0) and such that Tun + εnB(un) = λnun, ∀n ∈ N. To appreciate better
this Definition, it is useful to adopt as in [3] the general point of view in bifurcation
theory introduced in [8]. A solution of (1.1) is a point p = (ε, λ, u) ∈ R × R × X
such that F (p) = 0, where F is the map of R× R×X into X × R defined via

F (ε, λ, u) = (Tu+ εB(u)− λu, ‖u‖2 − 1) (1.2)

(‖.‖ is the norm in X). Put

S0 ≡ S
⋂

Ker(T − λ0I) (1.3)

where I denotes the identity in X, and consider the subset

M ≡ {0} × {λ0} × S0 (1.4)

of R × R × X as the set of trivial solutions of (1.1), or the trivial zeroes of F .
Assuming that λ0 be an isolated eigenvalue, and considering solutions of (1.1) with
λ near λ0, we see that M is precisely the set of triples (ε, λ, u) ∈ R×R×X solving
(1.1) for ε = 0. Solutions (ε, λ, u) with ε 6= 0 are therefore the nontrivial solutions
of (1.1), and Definition 1.2 expresses - identifying u0 with p0 ≡ (0, λ0, u0) and using
the terminology of [8] - that p0 ∈M is a bifurcation point (from M) for the equation
F (p) = 0.

Very recently, we have proved the existence of at least one bifurcation point for
the unit eigenvectors of T + εB under the assumptions that T be a self-adjoint
operator in a Hilbert space, that B be of class C1 and that one of the following
conditions be satisfied:

• the multiplicity of λ0 is odd;
• B is a gradient operator.

Our aim in the present paper is to explain these results - proved in [4] and [5]
respectively - also in connection with the older ones [3], and in particular to make
available the main idea followed in the (yet unpublished) paper [5] to deal with the
variational case.

We first set our problem in the context of perturbations of (linear) Fredholm
operators of index zero: this turns out to be a sufficiently general [functional-
analytic] framework in order to state our results on a common ground, compare
their strength and appreciate the different assumptions. We also indicate the main
points of the proofs. This is done in Section 2, while Section 3 is addressed to
exhibit some simple examples of our problem in the euclidean space R3. Working
in this context - and even with a linear B - gives some concrete evidence of the
conditions involved on T and B, and may thus help for a better understanding of
the ideas before expressed in infinite-dimensional Banach spaces.
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2. Finite-dimensional reduction. Necessary conditions and sufficient
conditions for bifurcation

Consider equation (1.1) for a bounded linear operator T : X → X, X a real
Banach space. We suppose in the sequel that:

• λ0 is an isolated eigenvalue of T .

As already said, this ensures that for ε = 0 and λ near λ0, the only solutions of
(1.1) are those with λ = λ0, that is the trivial ones. Now set

A = T − λ0I, δ = λ− λ0
and write the equation in (1.1) as

Au+ εB(u) = δu. (2.1)

We assume the following hypotheses upon A.

HA1) A is a Fredholm operator of index zero, that is,

• KerA = {u ∈ X : Au = 0} is of finite dimension; in words, λ0 is an
eigenvalue of finite geometric multiplicity;
• ImA = {Au : u ∈ X} is closed and of finite codimension;
• dim KerA = codim ImA.

HA2) KerA ∩ ImA = {0}.

It follows from HA1) and HA2) that

E = KerA⊕ ImA (2.2)

and that the projections P , Q = I − P onto KerA, ImA respectively
corresponding to this direct sum are continuous.

It is useful to recall two typical situations in which the above assumptions are
satisfied:

• T : X → X is compact, λ0 6= 0 (ensuring HA1)) and KerA = KerA2

(ensuring HA2). The last condition also implies that KerAn = KerAn+1

for all n ∈ N, and therefore that the geometric multiplicity of λ0 equals its
algebraic multiplicity dim

⋃∞
n=1 KerAn.

• X = H, a Hilbert space, T : H → H is self-adjoint (that is, 〈Tx, y〉 =
〈x, Ty〉 for all x, y ∈ H, 〈., .〉 denoting the scalar product in H) and
dim KerA <∞. Indeed self-adjointness of T implies that KerA = ImA⊥ ≡
{x ∈ H : 〈x, y〉 = 0 ∀y ∈ ImA}, and it follows that H = KerA ⊕ ImA,
where the sum is orthogonal. However as λ0 is isolated by assumption,
ImA is closed (see e.g. [7, pg. 1395]) and therefore H = KerA ⊕ ImA.
Self-adjointness also implies that KerA = KerA2, so that the geometric
and algebraic multiplicity of λ0 always coincide in this case.
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Writing u = Pu+Qu ≡ v+w according to (2.2) and applying in turn P,Q to both
members of (2.1), we see that the latter equation is equivalent to the following two:

εPB(v + w) = δv (2.3)

Aw + εQB(v + w) = δw. (2.4)

This decomposition (the so-called Lyapounov-Schmidt method) reveals easily a
necessary condition for bifurcation as soon as B satisfies the following ”minimal”
regularity asumption:

HB0) B is continuous in a neighborhood of S.

Proposition 2.1. Suppose that HA1) , HA2) and HB0) are satisfied. If v0 ∈ S0 =
S ∩Ker(T −λ0I) is a bifurcation point for (1.1), then there exists µ0 ∈ R such that

PB(v0) = µ0v0. (2.5)

Proof. If v0 ∈ S0 is a bifurcation point, there exists by definition a sequence
(δn, εn, un) ∈ R × R × S, with εn 6= 0 for each n ∈ N, such that (δn, εn, un) →
(0, 0, v0) as n→∞ and

Aun + εnB(un) = δnun, ∀n ∈ N. (2.6)

Then putting vn = Pun, wn = Qun we have vn → Pv0 = v0, wn → Qv0 = 0 and
moreover from (2.3)

PB(vn + wn) =
δn
εn
vn.

We claim that the sequence (δn/εn) is bounded. For otherwise, since ‖vn‖ → ‖v0‖ =
1, it would follow (passing if necessary to a subsequence) that ‖ δnεn vn‖ → +∞,

contradicting the boundedness of the sequence PB(vn+wn) which in fact converges
to PB(v0). Hence we can assume (again through a subsequence) that (δn/εn)
converges to some µ0, so that in the limit we obtain (2.5).

1. Comment: For B of class C1, the above condition was proved in [3].
2. Necessary condition is not sufficient: see Example 3.3.
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In order to discuss sufficient conditions for bifurcation, we shall henceforth
strengthen HB0) as follows:

HB1) B is of class C1 in a neighborhood of S.

Indeed put

N = KerA, W = ImA

and identify X with N × W . Then HB1) guarantees, via the Implicit Function
Theorem, that given any v0 ∈ S0 ⊂ N , equation (2.4) - the so-called complementary
equation - can be solved uniquely w.r.t. w for each given (δ, ε, v) in a neighborhood
U0 ⊂ R×R×N of (0, 0, v0). Moreover if w(δ, ε, v) denotes the solution corresponding
to (δ, ε, v) ∈ U0, then w(0, 0, v) = 0 for any v and the mapping (δ, ε, v)→ w(δ, ε, v)
of U0 into W is of class C1 in U0. Therefore by definition

Aw(δ, ε, v) + εQB(v + w(δ, ε, v)) = δw(δ, ε, v) (2.7)

for any (δ, ε, v) ∈ U0; and we see from (2.3) that in order to solve our problem
(1.1), it is enough to find (δ, ε, v) ∈ U0 satisfying the finite-dimensional equation
(the bifurcation equation)

εPB(v + w(δ, ε, v)) = δv (2.8)

and the additional normalization constraint

v + w(δ, ε, v) ∈ S. (2.9)

At this stage, in order to prove that a given v0 ∈ S0 - satisfying (2.5) - is indeed
a bifurcation point, we need find a sequence (δn, εn, vn) of solutions of the above
system (2.8) - (2.9), with εn 6= 0 for each n ∈ N, such that (δn, εn, vn) → (0, 0, v0)
as n → ∞. While if for each sufficiently small ε we find δ(ε), v(ε) - depending
continuously upon ε - such that (δ(0), v(0)) = (0, v0) and (δ(ε), ε, v(ε)) solves (2.8)
- (2.9), then so much the better as v0 will be continuable by means of the equation

u(ε) = v(ε) + w(δ(ε), ε, v(ε)). (2.10)

[ChiFuPe1]

When B and the space X (that is, its norm) are sufficiently smooth, the Implicit
Function Theorem can be further employed to perform such construction and yield
a sufficient condition for continuation.

Theorem 2.1. For x ∈ X, put g(x) = ‖x‖2− 1. Suppose that B and g are of class
C2 in an open neighborhood of S = g−1(0) and that HA1) and HA2) are satisfied.
Let v0 ∈ S0 be such that PB(v0) = µ0v0, let V = {h ∈ X : g′(v0)h = 0} and let π
be a continuous projection of X onto V . If v0 satisfies the condition:

h ∈ N ∩ V, πPB′(v0)h = µ0h⇒ h = 0, (2.11)

then v0 is continuable.
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Remark 2.1. V is the tangent space to S at v0, and likewise N ∩V is the tangent
space to S0 = N∩S at v0. The condition (2.11) means that the map πPB′(v0)−µ0I,
restricted to N ∩ V , is an isomorphism of N ∩ V onto iself.

Reference to: i)More general versions of Theorem 2.1;
ii)Applications to BVP.

Theorem 2.1 ia a special case of Theorem 3.4 in [3], where it is shown that similar
results hold when the operators involved act between different Banach spaces, and
when the unit sphere S is replaced by more general manifolds M = g−1(0) given
as level sets of a C2 functional g.

In turn, Theorem 3.4 of [3] is an application to Banach space operator equations
of results formulated in [8] in the context of general bifurcation theory. This con-
siders a C1 map f defined in an open set U of a Banach space E and with values in
a Banach space F . Given a differentiable manifold M ⊆ f−1(0), regard M as the
set of trivial solutions of the equation f(u) = 0, so that f−1(0) \M represents the
set of nontrivial solutions. An element p ∈ M is a bifurcation point (from M) of
f(u) = 0 if any neighborhood of p contains elements of f−1(0) \M . Necessary as
well as sufficient conditions for bifurcation are proved in [8] in essentially geomet-
rical terms, starting from the observation that the condition M ⊆ f−1(0) implies
that, for any u ∈ M , the tangent space TuM of M at u is contained in the kernel
of f ′(u).

In particular when f is a C2 Fredholm map of index 1, and p ∈ M is such
that dim Ker f ′(p) = dimTpM + 1, then a sufficient ”transversality” condition for
p ∈ M to be a bifurcation point is provided in [8], which extends that contained
in the Crandall–Rabinowitz Bifurcation Theorem [6], in which dimM = 1. For
these general conditions see, for instance, Theorem 2.2 of [3] and the comments
accompanying it.

Moreover in [3], the results about (1.1) are applied to show the existence of
2π-periodic solutions of the differential equation

x′′ + x+ ε(tx+ x2) = λx

normalized by
1

π

∫ π

−π
x2(t) dt = 1,

and in particular to study the continuability of a given trivial (i.e., obtained for ε =
λ = 0) normalized solution: that is, of a solution of the type x(t) = c sin t+ d cos t,
with c2 + d2 = 1.
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Proposition 2.1 and Theorem 2.1 are results of local nature, as they give condi-
tions upon an individual point v0 ∈ S0 to be a bifurcation point for (1.1). A related
question is: under which conditions (on A,B, etc.) does S0 possess at least one
bifurcation point? We are able to give some partial answer to this problem in the
special case that

X = H, a Hilbert space and T : H → H is self-adjoint.

[ChiFuPe2]

Recall that in this case the assumptions HA1) and HA2) about the linear part
A = T − λ0I of our equation are satisfied - provided of course that λ0 be isolated
and of finite multiplicity, as we have always assumed. Here is our first result [4]:

Theorem 2.2. Consider the problem (1.1) where T is a bounded self-adjoint oper-
ator acting in a real Hilbert space and B satisfies the assumption HB1). If λ0 is an
isolated eigenvalue of T of odd multiplicity, then S0 = S ∩Ker(T − λ0I) possesses
at least one bifurcation point.

Sketch of the proof. Topological methods

The proof of this result relies on the fact that the Euler–Poincaré characteristic
of the even dimensional sphere S0 is nonzero, and this implies that any self-map of
this sphere has a fixed point if it is homotopic to the identity: for this matter see,
for instance, [1] or [9]. Therefore, the methods employed are of topological nature,
and quite different from those used in [2] and [3], which rely almost entirely upon
the Implicit Function Theorem.

Nevertheless, it is precisely with a strengthened version of this Theorem that we
start our work in [4], to the aim of solving the complementary equation ”globally”
with respect to S0. Indeed for η > 0, consider the (compact) neighborhood of S0

M =
{
v ∈ N :

∣∣‖v‖ − 1
∣∣ ≤ η}.

Taking η > 0 small, we can assume that B be of class C1 in an open neighborhood of
M×{0} ⊂ N×W , and then it follows from Lemma 2.2 of [4] that the function w =
w(δ, ε, v) obtained solving (2.4) is defined and of class C1 in an open neighborhood
U1 of {0} × {0} ×M ⊂ R× R×N .

Once this is done, a further reduction can be made on ”eliminating δ” from our
equations. Indeed in the present Hilbert space context, taking scalar product in
(2.8) we get

〈εPB(v + w(δ, ε, v)), v〉 = δ‖v‖2. (2.12)

Dividing both members of (2.12) by ‖v‖2 and applying again Lemma 2.2 of [4] to
the resulting equation, we see that δ can be written as a C1 function δ(ε, v) of (ε, v),
defined in an open subset V of R × (N \ {0}) containing {0} ×M and such that
δ(0, v) = 0 for any v, and (δ(ε, v), ε, v) ∈ U1 for (ε, v) ∈ V .
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Put for convenience φ(ε, v) ≡ w(δ(ε, v), ε, v). Then we see - from (2.8) and the
normalization condition (2.9) - that in order to solve (1.1) it is enough to find
(ε, v) ∈ V such that

εPB(v + φ(ε, v)) = δ(ε, v)v (2.13)

and

[‖v + φ(ε, v)‖2] = ‖v‖2 + ‖φ(ε, v)‖2 = 1. (2.14)

Under the assumptions of Theorem 2.2, we show that a stronger result holds:
namely, for any sufficiently small ε there exists vε ∈ M such that (ε, vε) satisfies
(2.13) and (2.14). To this purpose, assume for simplicity that λ0 = 1. Then adding
v to both sides of (2.13) and putting h(ε, v) = 1 + δ(ε, v) we get

v + εPB(v + φ(ε, v)) = h(ε, v)v. (2.15)

Fix ε 6= 0 and let σ be the radial projection of N \ {0} onto its unit sphere S0,
defined putting σ(v) = v/‖v‖ for v ∈ N, v 6= 0. Then looking for solutions v ∈ M
of (2.15) is equivalent to finding v ∈M such that

σ(v + εPB(v + φ(ε, v))) =
v

‖v‖
. (2.16)

On the other hand, using (2.14) this last equation becomes

fε(v) ≡
√

1− ‖φ(ε, v)‖2σ(v + εPB(v + φ(ε, v))) = v, (2.17)

which is a fixed point equation for the map fε : M →M . The Lefschetz number of
fε equals the Euler–Poincaré characteristic of S0 [4], and thus is not zero since S0

is even dimensional. By the Lefschetz fixed point theorem [1], there exists vε ∈M
such that fε(vε) = vε.

Now fix a sequence (εn) with εn → 0 and εn 6= 0 forall n ∈ N and put vn ≡ vεn ;
also let

δn ≡ δ(εn, vn), un ≡ vn + φ(εn, vn).

By the compactness of M we can assume - passing if necessary to a subsequence
- that vn → v0. It follows that φ(εn, vn) → φ(0, v0) = 0, which implies by (2.14)
that ‖vn‖ → 1 and therefore that v0 ∈ S. Moreover since (δn, εn, un) solves (1.1)
for any n and un → v0, it follows that v0 ∈ S0 and is a bifurcation point for (1.1).
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[ChiFuPe3]

(HBG) B is a gradient operator in neighborhood of S

that is, there exists a differentiable functional b defined on a open neighborhood U
of S such that

〈B(x), y〉 = b′(x)y for all x ∈ U, y ∈ H. (2.18)

Here b′(x) denotes the (Fréchet) derivative of b at the point x ∈ U .

Theorem 2.3. Suppose that T : H → H is a bounded self-adjoint operator, and
suppose that B satisfies (HB1) and (HBG). If λ0 is an isolated eigenvalue of T of
finite multiplicity, then S0 possesses at least one bifurcation point.

Sketch of the proof. Variational methods

To indicate the main points of the proof, we keep the same notations as before and
put in addition

Fε(u) ≡ Au+ εB(u), δε(v) ≡ δ(ε, v), φε(v) ≡ φ(ε, v)

so that the system (2.13)-(2.14) in the unknowns ε and v can be written

PFε(v + φε(v)) = δε(v)v, ‖v + φε(v)‖2 = 1. (2.19)

Under the assumptions of Theorem [.] we show that for any ε small there exist
(at least) two distinct solutions v = vε, z = zε of (2.19). To this aim, let B = ∇b -
that is, suppose that (2.18) holds; then Fε = ∇fε with

fε(u) =
1

2
〈Au, u〉+ εb(u).

We follow an idea of Stuart [11] to show that for fixed ε, the solutions v of (2.19)
are precisely the critical points of the functional αε defined by

αε(v) = fε(v + φε(v)) =
1

2
〈Aφε(v), φε(v)〉+ εb(v + φε(v)) (2.20)

over the manifold defined by the norm constraint, that is

Mε = {v ∈ N : ‖v + φε(v)‖2 = 1}. (2.21)

Once this is done, the compactness of Mε implies the existence of vε, zε ∈Mε such
that

αε(vε) = min
v∈Mε

αε(v), αε(zε) = max
v∈Mε

αε(v). (2.22)

and therefore implies that (for each ε), vε and zε solve (2.19).

Using for instance vε and reasoning as in the proof of Theorem 2.2, we can then
construct a sequence (δn, εn, un) of solutions to (1.1), with un converging to some
v0 ∈ S0 which is therefore a bifurcation point.

Remark 2.2. It would be interesting to establish conditions guaranteeing that
there are (at least) two different bifurcation points.
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3. Examples in R3

In this Section we consider (2.1) in the very special case that X = R3 and that
(besides A) also the perturbing term B is linear. Moreover we keep fixed a very
simple A, namely - writing u = (x, y, z) for u ∈ R3 - the projection onto the z-axis:

A(x, y, z) = (0, 0, z).

Thus, representing A with the corresponding 3× 3 matrix in the canonical basis,

A =

0 0 0
0 0 0
0 0 1

 . (3.1)

Consider at first a generic B:

B =

a b m
c d n
p q r

 (3.2)

Then (2.1) is

 ε(ax+ by +mz) = δx,
ε(cx+ dy + nz) = δy,

z + ε(px+ qy + rz) = δz.
(3.3)

The last equation can be solved in z to yield

z = z(δ, ε, x, y) =
ε

δ − (1 + εr)
(px+ qy) (3.4)

and we are thus reduced to solve the system (in the unknowns δ, ε, x, y)

{
ax+ by +mz(δ, ε, x, y) = (δ/ε)x,
cx+ dy + nz(δ, ε, x, y)) = (δ/ε)y.

(3.5)

Example 3.1. Consider

B =

a b m
c d n
0 0 r

 (3.6)

that is,

B(x, y, z) = (ax+ by +mz, cx+ dy + nz, rz).

We see from (3.4) that in this case z(δ, ε, x, y) ≡ 0, so that the bifurcation system
reduces to



CONTINUATION AND BIFURCATION 11

{
ax+ by = (δ/ε)x,
cx+ dy = (δ/ε)y.

(3.7)

The solutions (x, y) 6= (0, 0) of this system [- if any -] are the eigenvectors of the
reduced 2× 2 matrix

B̂ ≡
(
a b
c d

)
(3.8)

corresponding to real eigenvalues. Suppose first that B̂ has two real eigenvalues
µ1, µ2 with µ1 6= µ2. If v1, v2 are corresponding normalized eigenvectors, then the
bifurcation branches defined putting

δi(ε) = εµi, ui(ε) = vi (i = 1, 2) (3.9)

provide a (trivial) continuation of vi as solution of (1.1) for ε 6= 0; the same clearly

holds for −vi. Thus each eigenvector of B̂ is continuable as a unit eigenvector of
A+ εB.

The same conclusion holds true when µ1 = µ2 ≡ µ0, save that either the geometric
multiplicity of µ0 is two - in which case all vectors of R2 are eigenvectors of B̂ - or
it is one, and there is (modulo reflections) just one normed eigenvector v0 of B̂.

Remark 3.1. If B̂ has no real eigenvalue there cannot be bifurcation points. On
the grounds of Proposition 2.1, this holds for any B (and not only for B as in (3.6)).

Example 3.2. Consider

B =

a b 0
c d 0
p q r

 (3.10)

that is,

B(x, y, z) = (ax+ by, cx+ dy, px+ qy + rz).

This time z(δ, ε, x, y) is given by its general expression (3.4), however since m =
n = 0 this does not affect the bifurcation system - which maintains its reduced
form (3.7) - nor the conclusion that each eigenvector of B̂ is a bifurcation point.
The difference with Ex.1.1 is that here the solutions of the full system (3.3) have a
nonzero z−component, and consequently the bifurcation branch continuing a given
eigenvector v0 = (x0, y0) of B̂ corresponding to the eigenvalue µ0 is a bit less trivial
as is given by the equations

δ(ε) = εµ0, u(ε) = (x0, y0, z(εµ0, ε, x0, y0)). (3.11)
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Remark 3.2. The above examples can be clearly seen in the context of Equation
(2.1). We keep the notations used in Section 2 for N = KerA,W = ImA as well
as for the projections P,Q onto these subspaces. Pick a v0 ∈ S0 and consider the
complementary equation (2.4) with v = v0:

Aw + εQB(v0 + w) = δw. (3.12)

If we suppose that

QB(v0) = 0, (3.13)

then w = 0 solves (3.12); by uniqueness, it follows that w(δ, ε, v0) = 0 for any δ and
ε. The bifurcation equation (2.8) thus reduces (for v = v0) to

εPB(v0) = δv0, (3.14)

which is precisely - via the position δ = εµ0 - the necessary condition (2.5). This
remark is not new, for (3.13) and (2.5) are equivalent to say that B(v0) = µ0v0 and
in this case, as already noted in the Introduction, we can immediately solve (2.1)
for all ε. Perhaps more interesting is to observe that requiring the condition (3.13)
for all v0 ∈ S0 amounts to requiring that B map S0 into N and therefore - when B
is linear, of course - that B map N into itself, i.e., that N be an invariant subspace
for B. Indeed, this is what happens in Example 1.1.

Consider instead the dual situation in which W , rather than N , is an invariant
subspace for B; the B in Example 1.2 is chosen to enjoy this property. This is
expressed by the condition that PB(w) = 0 for any w ∈ W ; so that if we pick a
v0 ∈ S0 satisfying the necessary condition (2.5), then we have in particular

εPB(v0 + w(εµ0, ε, v0)) = εPB(v0) = εµ0v0 (3.15)

for any ε. This shows that (εµ0, ε, v0) is a solution of (2.8) for any ε, implying that
v0 is continuable via the equations

δ(ε) = εµ0, u(ε) = v0 + w(εµ0, ε, v0). (3.16)

Of course, in order to have unit eigenvectors we shall take U(ε) ≡ u(ε)/‖u(ε)‖
rather than u(ε) itself and use the linearity of the equation.
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Example 3.3. Here we consider the case

B =

0 b 0
c 0 1
1 0 0

 (3.17)

For such a B, (3.4) becomes

z = z(δ, ε, x, y) =
ε

δ − 1
x (3.18)

and the bifurcation system (3.5) is

{
by = (δ/ε)x

cx+ ε
δ−1x = (δ/ε)y.

(3.19)

We have to distiguish the following cases:

• bc > 0
• b > 0 (or b < 0) and c = 0
• b = c = 0
• bc < 0.

The last case is out of interest, for the reduced matrix B̂

B̂ ≡
(

0 b
c 0

)
(3.20)

then has no real eigenvalue.

• Case bc > 0:

[Suppose thus that bc > 0]. Then the first equation in (3.19) yields

y =
δ

εb
x, (3.21)

so that the solutions u = (x, y, z) of the full system (3.3) have the form

u = x(1,
δ

εb
,

ε

δ − 1
). (3.22)

Moreover replacing ( 3.21) in the second equation of the system (3.19) gives the
condition

c+
ε

δ − 1
=

δ2

ε2b
(3.23)

provided that x 6= 0; however, (3.22) implies that u = 0 if x = 0, and we look
for solutions u 6= 0. (Note that the above equations make sense whenever b 6= 0,
however since the l.h.s. of (3.23) has - for ε small and c 6= 0 - the sign of c, it follows
that b and c must have the same sign in order that (real) solutions to (3.23) exist).
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Now the latter equation - expressing the eigenvalues in function of the parameter ε
- can be written equivalently as

(δ − 1)(δ2 − ε2bc) = ε3b, (3.24)

and by direct inspection we then find that it has for each ε three real solutions
δi(ε), 1 ≤ i ≤ 3, with the property

δi(ε)→ 0, i = 1, 2; δ3(ε)→ 1 (ε→ 0). (3.25)

Therefore, using (3.23) in (3.22), we see that the eigenvectors of interest are given
by the formula

u(ε) = x(1,
δ

εb
,
δ2

ε2b
− c) (x 6= 0) (3.26)

where δ = δi(ε), i = 1, 2. Equation (3.26) shows that the ratio δ/ε is the significant
parameter here. Now since ε/(δ − 1) approaches zero as ε → 0, it follows from
(3.23) that δ2/(ε2b)→ c as ε→ 0, and therefore

δ

ε
→ ±

√
bc ≡ ±µ0 (ε→ 0). (3.27)

Thus if we let in (3.26) x = 1 and δ = δi(ε) (i = 1, 2), and denote with ui(ε) the
corresponding vector, then as ε→ 0

ui(ε) = (1,
δi(ε)

εb
,
δ2i (ε)

ε2b
− c)→ (1,±µ0

b
, 0) ≡ u± (3.28)

where the signs + and − refer to i = 1 and i = 2 respectively. It follows that if
Ui(ε), U± denote the normalized vectors corresponding respectively to ui(ε) and
u±, then

U1(ε)→ U+, U2(ε)→ U− (ε→ 0), (3.29)

and this finally shows that U± (together of course with their opposites −U±) are
the bifurcation points in this case.

Conclusions (bc > 0):

Since µ0 > 0 in this case, we thus have precisely four bifurcation points. Note that
±µ0 are precisely the eigenvalues of the matrix in (3.20) and U± (together with
their opposites −U±) the corresponding unit eigenvectors. Thus also in this case
(as in the Examples 1.1 and 1.2), every v0 ∈ S0 satisfying the necessary condition
(2.5) is in fact a bifurcation point.
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• Case b > 0 (or b < 0) and c = 0:

The previous analysis remains true save that in this case µ0 = 0. Therefore,

U± = (1, 0, 0) ≡ e1
is the only bifurcation point (modulo reflections). However, it is important to note
that there exist two distinct bifurcation branches bifurcating from e1: indeed it is
easily seen from (3.24) that δ1(ε) 6= δ2(ε) for each ε 6= 0, and this shows - via the
formula (3.28) - that u1(ε) 6= u2(ε) for ε 6= 0.

• Case b = c = 0:

The situation is quite different when b = c = 0. Indeed in this case the bifurcation
system (3.19) reduces to

{
0 = δx
ε2

δ−1x = δy.
(3.30)

Solutions (x, y) 6= (0, 0) of (3.30) exist only for δ = 0, in which case they are (for
ε 6= 0)

(0, y), y 6= 0.

Thus, the only nontrivial normalized solution of the full system (3.3) are (for any
ε 6= 0)

(0,±1, 0) ≡ ±e2.
This shows that ±e2 are also the only bifurcation points of the system in this case
(and we have the trivial bifurcation branch δ(ε) = 0, Uε = ±e2). On the other

hand, as B̂ = 0, any v = (x, y) ∈ N = R2 satisfies the necessary condition with
µ0 = 0.
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