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Abstract. Let T be a selfadjoint bounded operator acting in a real Hilbert
space H, and denote by S the unit sphere of H. Assume that λ0 is an isolated

eigenvalue of T of odd multiplicity greater than 1. Given an arbitrary operator

B :H → H of class C1, we prove that for any ε 6= 0 sufficiently small there
exists xε ∈ S and λε near λ0, such that Txε + εB(xε) = λεxε. This result was

conjectured, but not proved, in a previous article by the authors.

We provide an example showing that the assumption that the multiplicity
of λ0 is odd cannot be removed.

1. Introduction

Let T be a selfadjoint bounded operator acting in a real Hilbert space H, and
denote by S the unit sphere of H. Let x0 be a unit λ0-eigenvector of T , i.e. x0

belongs to S and is an eigenvector of T with eigenvalue λ0 ∈ R. Given a (possibly
nonlinear) continuous operator B :H → H, consider the perturbed “eigenvalue”
problem

Tx+ εB(x) = λx, x ∈ S. (1.1)
We say that x0 is continuable for problem (1.1) if there exists a continuous function
ε 7→ (λε, xε) of an interval (−δ, δ) into R×H such that

Txε + εB(xε) = λεxε, ∀ε ∈ (−δ, δ).
Notice that a unit λ0-eigenvector x0 of T is continuable if it is also an eigenvector

of B; meaning, as in the linear case, that B(x0) = µx0 for some µ ∈ R. Indeed,
ε 7→ (λ0 + εµ, x0) is the required continuous function.

For a simple example of a perturbed eigenvalue problem without any continuable
eigenvector (but with nonempty sphere of unit eigenvectors), take H = R2, T the
zero operator, and B : (x, y) 7→ (−y, x).

In [2] the first author proved that if λ0 is an isolated simple eigenvalue of T ,
then, under the mild assumption that B is Lipschitz continuous, each of the two
unit λ0-eigenvectors is continuable (in a Lipschitz continuous fashion).

In [3] we considered the case in which λ0 is an isolated eigenvalue of T of multi-
plicity greater than 1 (algebraic and geometric multiplicities coincide in the selfad-
joint case) and we gave necessary, as well as sufficient, conditions for a given unit
λ0-eigenvector to be continuable. In the same article we formulated the conjecture
that when the multiplicity of λ0 is odd, then, whatever is the nonlinear operator
B (provided it is continuous), the even dimensional sphere of unit λ0-eigenvectors
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contains at least one vector x0 which is “persistent” in the following sense: there
exists a sequence

{
(εn, λn, xn)

}
in R \ {0} × R × S which converges to (0, λ0, x0)

and such that Txn + εnB(xn) = λnxn, ∀n ∈ N.
When this happens we say that such an x0 is a bifurcation point for problem

(1.1). In fact, identifying the sphere of the unit λ0-eigenvectors of T with the set of
trivial solutions (0, λ0, x) of the equation (1.1), any neighborhood (in R×R×S) of
x0 (regarded as (0, λ0, x0)) contains nontrivial solutions, i.e. solutions which are not
of the type (0, λ0, x). Incidentally, we observe that any nontrivial solution (ε, λ, x)
of (1.1) must have ε 6= 0, due to the fact that λ0 is assumed to be isolated.

In this paper we give a positive answer to the above conjecture (see Theorem 3.1
below), but under the assumption that B is of class C1. We still believe that this
additional hypothesis on B is unnecessary, but, for technical reasons, up to now we
are not able to remove it.

The proof of our result is based on the fact that the Euler–Poincaré characteristic
of the even dimensional sphere S ∩Ker(T − λ0I) is nonzero (I denotes the identity
on H), and this implies that any self-map of this sphere has a fixed point if it is
homotopic to the identity. Therefore, the methods we use to get our result are of
topological nature, and quite different from those employed in [2] and [3], which
are related to the implicit function theorem.

2. Preliminaries

Let X be a compact differentiable manifold possibly with boundary or, more
generally, a compact topological space homeomorphic to a polyhedron. Then, to
any continuous map f :X → X it is possible to associate an integer λ(f), called
the Lefschetz number of f , satisfying the following properties (see e.g. [1, 5]):

(1) (Normalization) The Lefschetz number of the identity of X coincides with
the Euler–Poincaré characteristic χ(X) of X.

(2) (Homotopy Invariance) If f is homotopic to g :X → X, then λ(f) = λ(g).
(3) (Commutativity) If ϕ :X → Y and ψ : Y → X are continuous maps, then

λ(f) = λ(g), where f = ψ ◦ ϕ, g = ϕ ◦ ψ. In particular, if Y ⊆ X and
f :X → X is such that f(X) ⊆ Y , then λ(f) = λ(f |Y ).

The Lefschetz fixed point theorem below will play an essential role in proving
the main result of this paper.

Theorem 2.1 (Lefschetz Theorem). Let X be a compact differentiable manifold
possibly with boundary and f :X → X a continuous map. Assume that the Lefschetz
number λ(f) is different from zero. Then f has a fixed point.

Theorem (2.1) was first proved for compact manifolds with boundary by Lef-
schetz in [6]. For a wide discussion of the extensions of the theorem to various
classes of maps and spaces (as, for instance, to polyhedra or noncompact ANRs
and to compact or locally compact maps) see e.g. [1, 5].

The following easy extension of the Implicit Function Theorem will be needed in
obtaining our main result. Its proof is given here for completeness. In what follows,
given two Banach spaces E and F , a subset G ⊆ E × F is called a graph in E × F
if for any x ∈ E there exists at most one y ∈ F such that (x, y) ∈ G.

Lemma 2.2. Let E,F be Banach spaces, Ω an open subset of E × F , f : Ω ⊆
E × F → F a Cn map (n ≥ 1), and G a compact graph contained in f−1(0).
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Assume that the derivative D2f(x, y) of f with respect to the second variable is
invertible for any (x, y) ∈ G. Then, there exists an open neighborhood W of G such
that W ∩ f−1(0) is the graph of a Cn map ϕ : π1(W ) → F , where π1 :E × F → E
denotes the projection onto E.

Proof. Let us prove first that there exists an open neighborhood W̃ of G such that
W̃ ∩ f−1(0) is a graph in E × F .

By contradiction, assume the existence of sequences {xn} in E and {y1
n}, {y2

n}
in F , y1

n 6= y2
n, such that {(xn, y

i
n)} ∈ f−1(0) , i = 1, 2 , and d((xn, y

i
n), G) → 0

as n → +∞, where d(·, G) denotes the distance from G. Since G is compact,
without loss of generality, we may assume that xn → x0 ∈ π1(G) and yi

n → yi ,
with (x0, y

i) ∈ G , i = 1, 2. Hence, since the set G is a graph, y1 must coincide with
y2. Let us denote by y0 this common value. Since D2f(x0, y0) is invertible, by the
Implicit Function Theorem there exist two open neighborhoods U and V of x0 and
y0 respectively, such that (U×V )∩f−1(0) is the graph of a C1 map ϕ0 :U → V . On
the other hand, for n ∈ N sufficiently large, we get (xn, y

i
n) ∈ U ×V . Consequently,

y1
n = y2

n = ϕ0(xn), which is a contradiction. This proves the existence of W̃ .
To complete the proof, it suffices to apply the Implicit Function Theorem to

the map f restricted to W̃ . More precisely, for any (x0, y0) ∈ G there exist
neighborhoods Ux0 of x0 in E and Vy0 of y0 in F such that Ux0 × Vy0 ⊆ W̃ and
(Ux0 × Vy0) ∩ f−1(0) is the graph of a C1 map ϕ0 :Ux0 → Vy0 . Now, set

W =
⋃

(x0,y0)∈G

Ux0× Vy0

and observe that, if x ∈ π1(W ), then x belongs to some Ux0 . Thus, because of the
uniqueness established in W̃ , the map ϕ : π1(W ) → F given by ϕ(x) = ϕ0(x) is
well-defined and W ∩ f−1(0) coincides with its graph. �

3. Statement and proof of the result

Theorem 3.1. Let T be a selfadjoint bounded operator on a real Hilbert space H
and let S denote the unit sphere of H. Assume that B :H → H is a C1 operator.
If λ0 is an isolated eigenvalue of T of odd multiplicity, then in R\{0}×R×S there
exists a sequence {(εn, λn, xn)} which converges to a point (0, λ0, x0) and such that

Txn + εnB(xn) = λnxn , n ∈ N.

Therefore x0 ∈ S ∩Ker(T − λ0I) and it is a bifurcation point for problem (1.1).

Proof. Consider the equation

Tx+ εB(x) = λx , (3.1)

with the condition
‖x‖2 = 1 . (3.2)

Without loss of generality we can assume λ0 = 1. Let H1 denote the kernel of
T − I and H2 its orthogonal complement. Hence, H can be identified with H1×H2

via the topological isomorphism (v, w) 7→ v + w. Thus, the equation (3.1) can be
written in block-matrix form as follows:(

I 0
0 T22

)(
v
w

)
+ ε

(
B1(v, w)
B2(v, w)

)
=
(
λv
λw

)
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or, equivalently, as {
v + εB1(v, w) = λv,
T22w + εB2(v, w) = λw.

(3.3)

Moreover, (3.2) becomes
‖v‖2 + ‖w‖2 = 1 . (3.4)

Consider the compact set

M =
{
v ∈ H1 :

∣∣‖v‖ − 1
∣∣ ≤ 1

2

}
.

We seek for solutions (ε, λ, v, w) of (3.3), (3.4) with v ∈ M . In addition, since we
have supposed λ0 = 1, we may look for solutions possessing λ > 0.

As the eigenvalue λ0 is assumed to be isolated, the image of T − I coincides
with the subspace H2 of H (see e.g. [4, pg. 1395]). Thus, in system (3.3), the
linear operator w ∈ H2 7→ T22w − w ∈ H2 is invertible. Moreover, for any v ∈ M ,
the element (0, 1, v, 0) satisfies the equation T22w + εB2(v, w) = λw. Therefore,
Lemma 2.2 applies to this equation with G = {0} × {1} ×M × {0} and allows us
to express w as a C1 function of (ε, λ, v), say w = g(ε, λ, v), on an open subset U
of R× (0,+∞)× (H1 \ {0}) containing the compact set {0} × {1} ×M . Hence,

T22g(ε, λ, v) + εB2(v, g(ε, λ, v)) = λg(ε, λ, v) , (ε, λ, v) ∈ U,

and, clearly, g(0, 1, v) = 0 for all v. By replacing w with g(ε, λ, v) in the first
equation of system (3.3) and in (3.4), we obtain

v + εB1(v, g(ε, λ, v)) = λ v (3.5)

and
‖v‖2 + ‖g(ε, λ, v)‖2 = 1 . (3.6)

Let S1 ⊆ M be the unit sphere of H1 and let π :H1 \ {0} → S1 denote the radial
projection onto S1. Due to the continuity of B and the compactness of {0} ×
{1} ×M , we can assume, in case taking U smaller, that the map (ε, λ, v) ∈ U 7→
B1(v, g(ε, λ, v)) is bounded and, since v is nonzero, that v+εB1(v, g(ε, λ, v)) belongs
to H1 \ {0}. Therefore, we can apply π to the equation (3.5) and, recalling that
λ > 0, we get

π(v + εB1(v, g(ε, λ, v))) = π(λ v) =
λ v

‖λ v‖
=

v

‖v‖
. (3.7)

Moreover, by taking the norms in both sides of (3.5), we obtain

λ =
‖v + εB1(v, g(ε, λ, v))‖

‖v‖
. (3.8)

Now, the partial derivative with respect to λ of the real valued map

(ε, λ, v) ∈ U 7→ λ− ‖v + εB1(v, g(ε, λ, v))‖
‖v‖

at (0, 1, v) is clearly equal to 1 and, in equation (3.8), for ε = 0 and any v we get
λ = 1. Therefore, by applying Lemma 2.2 to equation (3.8), we can write λ as a C1

function of (ε, v), say λ = h(ε, v), on an open subset V of R× (H1 \{0}) containing
{0} ×M and such that (ε, h(ε, v), v) ∈ U , for (ε, v) ∈ V . Hence, h satisfies

h(ε, v) =
‖v + εB1(v, g(ε, h(ε, v), v))‖

‖v‖
, (ε, v) ∈W,
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and, clearly, h(0, v) = 1 for all v. By replacing λ with h(ε, v) in (3.7), we get the
equation

‖v‖π(v + εB1(v, g(ε, h(ε, v), v))) = v ,

where, from (3.6), v also verifies

‖v‖2 + ‖g(ε, h(ε, v), v)‖2 = 1 .

The last two conditions give raise to the equation√
1− ‖g(ε, h(ε, v), v)‖2 π(v + εB1(v, g(ε, h(ε, v), v))) = v , (3.9)

that can be interpreted as a fixed point equation in v depending on the real pa-
rameter ε. More precisely, let f :V ⊆ R× (H1 \ {0})→ H1 \ {0} be the continuous
map

f(ε, v) =
√

1− ‖g(ε, h(ε, v), v)‖2 π(v + εB1(v, g(ε, h(ε, v), v)))

and let fε :Vε → H1 \ {0} be the partial map fε = f(ε, ·), where

Vε = {v ∈ H1 : (ε, v) ∈ V }

denotes the slice of V at ε. Since V contains the compact set {0} × M , there
exists ε0 > 0 such that Vε ⊇ M for |ε| ≤ ε0. Moreover, for ε = 0, we have
g(0, h(0, v), v) = 0 since h(0, v) = 1. Consequently, the map f0 is a retraction of
M onto S1, i.e. f0(M) ⊆ S1 and f0|S1(v) = v for all v ∈ S1. Therefore, in case
reducing ε0, we can assume fε(M) ⊆ M for all |ε| ≤ ε0. Our aim is to apply
Theorem 2.1 to the map fε in M that is clearly a compact smooth manifold with
boundary. To this end, we need to compute the Lefschetz number λ(fε). By the
homotopy invariance of the Lefschetz number, we get

λ(fε) = λ(f0) ,

and, by its commutativity,
λ(f0) = λ(f0|S1) .

On the other hand, recalling that f0|S1 is the identity of S1, the normalization
property implies

λ(f0|S1) = χ(S1) .

By assumption, the eigenvalue λ0 = 1 has odd multiplicity. Hence, the sphere S1

is even dimensional and, thus, its Euler–Poincaré characteristic χ(S1) is 2. Thus,

λ(fε) = χ(S1) 6= 0 ,

and the Lefschetz fixed point theorem applies yielding the existence, for |ε| ≤ ε0,
of vε ∈ M such that fε(vε) = vε. Consequently, taking λε = h(ε, vε) and wε =
g(ε, λε, vε), the element (ε, λε, vε, wε) ∈ [−ε0, ε0]× (0,+∞)×M ×H2 is a solution
of (3.3), (3.4).

Now, let us take a real sequence {εn}, 0 < |εn| ≤ ε0, εn → 0. As proved above,
for any n ∈ N there exists a fixed point vn ∈ M of fεn

and, thus, λn := h(εn, vn)
and wn := g(εn, λn, vn) such that (εn, λn, vn, wn) solves (3.3), (3.4). Without loss of
generality we may also assume vn → v0. Therefore, λn = h(εn, vn) → h(0, v0) = 1
and, thus, wn = g(εn, λn, vn)→ g(0, 1, v0) = 0.

Summarizing, we get the existence of a sequence {(εn, λn, xn)} (where xn =
(vn, wn)) of solutions of (3.1),(3.2) converging to a point (0, 1, x0), x0 = (v0, 0).
This proves our assertion. �
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We conclude with an example in `2 which shows that in Theorem 3.1 one cannot
drop the assumption that the multiplicity of λ0 is odd.

Example 3.2. Given k ∈ N, let Tk : `2 → `2 be the bounded linear operator that
associates to any x = (ξ1, ξ2, . . . ) ∈ `2 the element

Tkx = (0, 0, . . . , 0, ξk+1, ξk+2, . . . )

and define B : `2 → `2 by

Bx = (−ξ2, ξ1,−ξ4, ξ3, . . . ,−ξ2i, ξ2i+1, . . . ) .

Clearly Tk is selfadjoint and its kernel is the k-dimensional space

KerTk = {x ∈ `2 : x = (ξ1, ξ2, . . . ξk, 0, 0, . . . )}.
Hence, λ0 = 0 is an eigenvalue of Tk of multiplicity k. Let us consider the perturbed
eigenvalue problem

Tkx+ εB(x) = λx .

It is easy to verify that if k is even then, for any ε and for any λ sufficiently small,
the above equation has no solutions x 6= 0. On the other hand, if k is odd, then
according to Theorem 3.1 there exists a sequence {(εn, λn, xn)} which converges to
a point (0, 0, x0) such that εn 6= 0, ‖xn‖ = 1,

Tkxn + εnB(xn) = λnxn , ∀n ∈ N.
For example, if k = 3, then for any ε 6= 0 we get the eigenvalue

λε =
1−
√

1− 4ε2

2
of T3 + εB to which corresponds the eigenspace spanned by the eigenvector

vε = (0, 0, 1, ξ4(ε), 0, . . . ) ,

where

ξ4(ε) =
√

1− 4ε2 − 1
2ε

= −ε+ o(ε) .

Thus, one gets exactly two unit 0-eigenvectors of T3 which are bifurcation points
for the perturbed eigenvalue problem T3x+ εB(x) = λx, namely (0, 0,±1, 0, . . . ).
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