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Abstract. Let X be a real Banach space, A : X → X a bounded linear

operator, and B : X → X a (possibly nonlinear) continuous operator. Assume

that λ = 0 is an eigenvalue of A and consider the family of perturbed operators
A + εB, where ε is a real parameter. Denote by S the unit sphere of X and

let SA = S ∩ KerA be the set of unit 0-eigenvectors of A. We say that a

vector x0 ∈ SA is a bifurcation point for the unit eigenvectors of A+ εB if any
neighborhood of (0, 0, x0) ∈ R × R × X contains a triple (ε, λ, x) with ε 6= 0

and x a unit λ-eigenvector of A+ εB, i.e. x ∈ S and (A+ εB)x = λx.
We give necessary as well as sufficient conditions for a unit 0-eigenvector

of A to be a bifurcation point for the unit eigenvectors of A + εB. These

conditions turn out to be particularly meaningful when the perturbing operator
B is linear. Moreover, since our sufficient condition is trivially satisfied when

KerA is one-dimensional, we extend a result of the first author, under the

additional assumption that B is of class C2.

1. Introduction

The intent of this paper is a nontrivial extension, under some additional regu-
larity assumptions, of a perturbation result on nonlinear spectral theory due to the
first author (see [1, Theorem 2]). This result can be (re)formulated as follows.

Theorem 1.1. Let T be a selfadjoint bounded operator on a real Hilbert space H,
and B : H → H a Lipschitz continuous operator. Let S denote the unit sphere of H
and assume that λ0 is an isolated simple eigenvalue of T . Then, given one of the
two unit λ0-eigenvectors of H, say x0, there exist σ > 0, δ > 0, and a neighborhood
U of x0 such that for every ε ∈ (−σ, σ) one can find a unique λε ∈ (λ0 − δ, λ0 + δ)
and a unique xε ∈ S ∩ U such that

(T + εB)xε = λεxε.

Moreover, the maps ε 7→ λε and ε 7→ xε are Lipschitz continuous.

In some sense, this result asserts that an isolated unit eigenvector of T cannot be
destroyed by a small perturbation εB, but just displaced from its original position,
still remaining on the unit sphere S of H.

It is natural to ask what happens if one drops the hypothesis that the eigenvalue
λ0 is simple. Our feeling is that if its multiplicity is odd (algebraic and geometric
multiplicities are the same in the selfadjoint case), then at least one unit eigenvector
of T + εB survives, provided that the coefficient ε is sufficiently small. To be more
precise, our conjecture is that in this case there exists a sequence {(εi, λi, xi)} in
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R× R× S which converges to a point (0, λ0, x0) and such that

(T + εiB)xi = λixi , εi 6= 0, ∀i ∈ N.
Clearly, if this happens, x0 must be a unit eigenvector of T with eigenvalue λ0.

Unfortunately, we are not able, so far, to prove or disprove this conjecture which,
we believe, is related to the fact that the Euler–Poincaré characteristic of the even
dimensional sphere S ∩Ker(T − λ0I) is nonzero (I denotes the identity on H).

In this work, we tackle a different, but related, problem. Assuming that the
kernel of the operator A = T − λ0I is nontrivial (i.e. that 0 ∈ R is an eigenvalue of
A), we consider the set Σ ⊆ R× R×H of the solutions (ε, λ, x) of the problem

(A+ εB)x = λx , x ∈ S, (1.1)

and we regard the distinguished subset M =
{

(0, 0, x) ∈ Σ : Ax = 0
}

of Σ as the set
of trivial solutions of (1.1). Since (Σ,M) is a topological pair (i.e. M is a subspace
of the topological space Σ), according to [3], an element p0 = (0, 0, x0) ∈ M is
called a bifurcation point of this pair (or, equivalently, of problem (1.1)) if any
neighborhood of p0 contains an element of Σ\M , which, in our case, is a nontrivial
solution of (1.1). Since the finite dimensional sphere SA = S ∩ KerA (of the
normalized 0-eigenvectors of A) may be identified with the distinguished set M , for
the sake of simplicity we will say that an element x0 ∈ SA is a bifurcation point
of (1.1) if so is p0 = (0, 0, x0). From two results in [3] about this general point of
view in bifurcation theory we will deduce necessary as well as sufficient conditions
for a normalized 0-eigenvector of A to be a bifurcation point of (1.1). Since these
conditions are trivially satisfied when the sphere SA is zero-dimensional (that is,
when 0 is a simple eigenvalue of A), we extend Theorem 1.1 of the first author,
under the additional assumption that B is of class C2, which is required in order
to apply a sufficient condition for bifurcation given in [3].

Our results are particularly meaningful when the perturbing operator B is linear.
In this case a necessary condition for x0 ∈ SA to be a bifurcation point is that x0 is
an eigenvector (associated with a real eigenvalue) for the finite dimensional operator

B̂ : KerA→ KerA

defined by x 7→ π(Bx), where π is the orthogonal projection onto KerA.
Incidentally, we observe that, in the case when KerA is odd dimensional, this

necessary condition does not contradict our conjecture about the existence of a
bifurcation point: in this case, the characteristic polynomial of the endomorphism
B̂ has a real root. The same necessary condition shows that when the dimension
of KerA is even, one can always find a bounded linear operator B such that (1.1)
does not have bifurcation points: it is sufficient to define B with B̂ without real
eigenvalues.

Still in the case of B linear, a sufficient condition for x0 ∈ SA to be a bifurcation
point is that x0 is an eigenvector of B̂ corresponding to a simple (real) eigenvalue.

For the sake of generality, as well as simplicity in some applications, we will deal
with operators between Banach spaces instead of confining ourselves to the context
of Hilbert spaces.

In detail, the plan of this paper is as follows.
In Section 2 we recall the notion of nonlinear Fredholm map between Banach

spaces, a concept which is required in order to state precisely, as Theorem 2.1 and
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Theorem 2.2, the two bifurcation results from [3] mentioned above. These results
regard, respectively, a necessary condition and a sufficient condition for bifurcation
of a pair (f−1(0),M), where f is a Fredholm map between Banach spaces and
M ⊆ f−1(0) is a differentiable manifold (Theorem 2.2 extends the well-known
Crandall–Rabinowitz sufficient conditions for bifurcation given in [2]).

Section 3 is devoted to state and prove our main results: Theorem 3.2 and
Theorem 3.4. Essentially these are, respectively, the versions of Theorem 2.1 and
Theorem 2.2 which are appropriate to deal with the operator equation (1.1) in order
to obtain necessary as well as sufficient conditions for bifurcation of unit vectors for
the above equation (actually we deal with a more general form of it: system (3.1)
below).

Section 4 contains some useful reformulations of our main results, whose state-
ments, although expressed in Section 3 in a meaningful canonical form, are un-
friendly for applications. These new formulations involve the choice of linear coor-
dinates for KerA and coKerA.

Finally, in Section 5, we discuss the existence of nontrivial 2π-periodic solutions
of the differential equation

x′′ + x+ ε(tx+ x2) = λx,

which we see as a simple, yet nontrivial, example to test the conclusions of our
theory. Here the eigenspace of the unperturbed linear operator is two-dimensional.

2. Notation and preliminaries

Let E and F be two real Banach spaces and let U be an open subset of E. Given
a C1 map f : U → F , the (first) derivative of f at u ∈ U will be denoted by f ′(u).
When E = E1 × E2, the partial derivative with respect to the first (respectively,
the second) variable at (u1, u2) will be indicated with ∂1f(u1, u2) (respectively,
∂2f(u1, u2)). Because of the linearity of the (total) derivative f ′(u1, u2), for any
pair of vectors (u̇1, u̇2) ∈ E1 × E2, one has

f ′(u1, u2)(u̇1, u̇2) = ∂1f(u1, u2)u̇1 + ∂2f(u1, u2)u̇2.

In particular, if E1 = R, the partial derivative ∂1f(u1, u2), which is actually a linear
operator from R to F , will be identified with the vector ∂1f(u1, u2)(1) ∈ F . With
this notation, for f ′(u1, u2) one has the equality

f ′(u1, u2)(u̇1, u̇2) = u̇1∂1f(u1, u2) + ∂2f(u1, u2)u̇2,

where (u̇1, u̇2) ∈ R× E2.
The second derivative of a C2 map f : U ⊆ E → F at p ∈ U is a symmetric

bilinear operator from E to F , i.e. an element of the Banach space L2
s(E,F ), and

will be denoted by f ′′(p). A practical method for its computation is the following:
given u̇, v̇ ∈ E, consider the function of two real variables σ(r, s) = f(p+ ru̇+ sv̇);
then,

f ′′(p)(u̇, v̇) =
∂2σ

∂r∂s
(0, 0).

Let L(E,F ) be the Banach space of the bounded linear operators from E into
F . We recall that an element L ∈ L(E,F ) is called Fredholm if both KerL and
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coKerL := F/ ImL have finite dimension (consequently, ImL must be closed). The
index of L is the integer

indL = dim KerL− dim coKerL.

The following properties of Fredholm operators are well-known and will be used in
the sequel:

i) the set of Fredholm operators from E into F of a given index is open in
L(E,F );

ii) if L1 : E → F and L2 : F → G are Fredholm operators, then the composi-
tion L2L1 is Fredholm and indL2L1 = indL1 + indL2;

iii) if L : E → F is Fredholm and H : E → F is a compact linear operator, then
L+H is Fredholm and ind(L+H) = indL.

We recall that a (nonlinear) map f : U ⊆ E → F is said to be Fredholm of index
n ∈ Z if it is of class C1 and f ′(u) is Fredholm of index n for all u ∈ U ; it is simply
called Fredholm if it is Fredholm of index n for some n.

If f : U → F is C1, a point v ∈ F is a regular value of f if f ′(u) is surjective
for all u ∈ f−1(v). If f is Fredholm of class Ck and v is a regular value of f , then
the Implicit Function Theorem implies that f−1(v) is a Ck-submanifold of E with
dim f−1(v) = ind f (see e.g. [6], [7]). Moreover, given u ∈ f−1(v), the surjectivity
of f ′(u) implies that the tangent space Tuf

−1(v) of f−1(v) at u coincides with
Ker f ′(u).

Let f : U → F be of class C1. Given a differentiable manifold M ⊆ f−1(0),
regard M as the set of trivial solutions of the equation f(u) = 0, so that f−1(0)\M
represents the set of nontrivial solutions. An element p ∈ M is a bifurcation point
(from M) of f(u) = 0 (or, equivalently, of the topological pair (f−1(0),M)) if any
neighborhood of p contains elements of f−1(0) \M .

In what follows, we will make use of two bifurcation results (Theorems 2.1 and
2.2 below) obtained in [3]. To understand the meaning of these results, observe
that the condition M ⊆ f−1(0) implies that, for any u ∈ M , the tangent space
TuM of M at u is contained in Ker f ′(u).

The following result provides a meaningful necessary condition for an element
p ∈M to be a bifurcation point of the topological pair (f−1(0),M). The map f is
assumed to be Fredholm (of any given index), and no relation between ind f and
dimM is assumed.

Theorem 2.1. Let f : U ⊆ E → F be a C1 Fredholm map defined on an open
subset U of a Banach space E into a Banach space F and let M be a C1 manifold
contained in f−1(0). If p ∈ M is a bifurcation point (from M) for the equation
f(u) = 0, then TpM is a proper subspace of Ker f ′(p).

The following sufficient condition for bifurcation should not be regarded as a
result in the so-called “several-parameter bifurcation” (see e.g. [9]) since the di-
mension of the manifold M of the trivial solutions of the equation f(x) = 0 does
not necessarily coincide with the index of the Fredholm map f (which below is as-
sumed to be one). It should be regarded, instead, as an extension of the Crandall–
Rabinowitz Bifurcation Theorem, in which dimM = 1 (see [2]), as well as an
extension of a result obtained independently in [8] and in [4], in which M is a finite
dimensional subspace of the Banach space E.
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Theorem 2.2. Let f : U ⊆ E → F be a C2 Fredholm map of index one defined
on an open subset U of a Banach space E into a Banach space F . Let M be
a C2 manifold contained in f−1(0) and let p ∈ M be such that dim Ker f ′(p) =
dimTpM +1. Choose any u̇ ∈ Ker f ′(p)\TpM . Then p is a bifurcation point (from
M) for the equation f(u) = 0, provided that

v̇ ∈ TpM and f ′′(p)(u̇, v̇) ∈ Im f ′(p) =⇒ v̇ = 0. (2.1)

Remark 2.3. In [5] it was proved that the condition (2.1) does not depend on the
choice of the vector u̇ ∈ Ker f ′(p) \ TpM .

Notice that if in Theorem 2.2 the manifold M is assumed to be a singleton {p},
then condition (2.1) is automatically satisfied, since TpM = {0}. However, in this
case, dim Ker f ′(p) = 1 and, consequently, f ′(p) is a surjective operator. Thus,
the assertion could be directly deduced from the Implicit Function Theorem, which
implies that f−1(0), in a neighborhood of p, is a 1-dimensional manifold.

Remark 2.4. An equivalent formulation of the condition (2.1) is the following:

v̇ ∈ TpM and πf ′′(p)(u̇, v̇) = 0 =⇒ v̇ = 0,

where π : F → F/ Im f ′(p) denotes the canonical projection. Observe also that any
projection parallel to Im f ′(p) onto a direct summand of Im f ′(p), or any bounded
linear operator Q : F → Rm (m = dimTpM) such that KerQ = Im f ′(p), would
play the same role as π.

3. Main results

Let X and Y be two real Banach spaces and consider the system{
Ax+ εB(x) = λCx,
g(x) = 0, (3.1)

where A : X → Y and C : X → Y are bounded linear operators, ε and λ are real
parameters, B : X → Y and g : X → R are continuous maps. We assume that A is
Fredholm of index zero with nontrivial kernel and that

C(KerA)⊕ ImA = Y. (3.2)

As a consequence, A − λC is onto for λ 6= 0 small and, thus, one-to-one, since
it is Fredholm of index zero (being close to A). This shows that λ = 0 is an
isolated eigenvalue for the problem Ax = λCx. Moreover, as it is easy to verify,
dimC(KerA) = codim ImA = dim KerA. Thus, assumption (3.2) is also equivalent
to C(KerA) + ImA = Y .

A solution of (3.1) is a triple u = (ε, λ, x) in the Banach space E = R× R×X
satisfying (3.1). Clearly, for ε = λ = 0, the triple (0, 0, x) is a solution if and only
if x belongs to the set

SA := KerA ∩ g−1(0).

Assume that g−1(0) surrounds the origin in the following sense: for all x 6= 0,
there exists s > 0 such that g(sx) = 0. Also assume that g is of class Ck (k ≥ 1)
on an open neighborhood of g−1(0) and g′(x)x 6= 0 for any x ∈ g−1(0). This last
condition ensures that 0 is a regular value both for g and for the restriction of g
to KerA (observe that the functional g′(x) is nonzero for any x ∈ g−1(0) and is
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nonzero also its restriction to KerA for any x ∈ SA). Consequently, g−1(0) is a Ck

manifold of codimension 1 in X and SA is a nonempty Ck manifold of dimension

dimSA = dim KerA− 1.

A significant and sufficiently general example of function g is g(x) = |x|2−1, where
| · | is a smooth norm of the space X, but not necessarily the Banach norm of X, as
in the example of Section 5. The convenience of considering norms which are not
necessarily complete is due to the fact that the Banach norm of the space X may
not be differentiable.

Any solution of (3.1) that belongs to the manifold

M := {0} × {0} × SA
will be called trivial. Thus, any solution (ε, λ, x) with (ε, λ) 6= (0, 0) will be a
nontrivial solution. Identifying SA with M , an eigenvector x̄ ∈ SA of the operator
A (corresponding to the eigenvalue λ = 0) will be called a bifurcation point (from
SA) of system (3.1) if any neighborhood of p = (0, 0, x̄) in E = R×R×X contains
a nontrivial solution. In this case we will also say that p = (0, 0, x̄) is a bifurcation
point from M . Since, as already remarked, A−λC is invertible for λ 6= 0 small, say
0 < |λ| < λ0, one gets that system (3.1) has no solutions for ε = 0 and 0 < |λ| < λ0.
Thus, any nontrivial solution (ε, λ, x) close to a bifurcation point p = (0, 0, x̄) must
have ε 6= 0.

We are interested in obtaining necessary as well as sufficient conditions for a
0-eigenvector of A to be a bifurcation point of (3.1). To this end, let us interpret
system (3.1) above in the abstract setting of Theorem 2.1 by considering the Banach
spaces E = R× R×X and F = Y × R and by defining f : E → F as

f(ε, λ, x) =
(
Ax+ εB(x)− λCx, g(x)

)
.

The manifold M = {0} × {0} × SA, which is clearly a subset of f−1(0), will be
regarded as the set of trivial solutions of (3.1) or, equivalently, of the equation

f(ε, λ, x) = 0. (3.3)

By using the terminology introduced above, an eigenvector x̄ ∈ SA is a bifurcation
point (from SA) of system (3.1) if and only if p = (0, 0, x̄) ∈ M is a bifurcation
point (from M) of equation (3.3). Moreover, dimM = dimSA = dim KerA− 1.

Lemma 3.1 below shows that f is a Fredholm map.

Lemma 3.1. Assume B and g of class Ck (k ≥ 1) on an open neighborhood of
g−1(0). Then f is Ck and Fredholm of index one on an open neighborhood of M .

Proof. Since B and g are Ck on an open neighborhood of g−1(0) in X, then f is
Ck in a suitable open neighborhood of M ⊆ f−1(0) in E = R× R×X.

The map f can be seen as the sum of the linear map L(ε, λ, x) = (Ax, 0) with
the map h(ε, λ, x) = (εB(x)− λCx, g(x)). Since A is Fredholm of index 0, then L
is clearly Fredholm of index 1. Moreover, computing the derivative of h at a point
(0, 0, x) for which g(x) = 0, one gets

h′(0, 0, x)(ε̇, λ̇, ẋ) =
(
ε̇B(x)− λ̇Cx, g′(x)ẋ

)
.

Hence, h′(0, 0, x) has finite dimensional image. Therefore, as already observed in
the preliminaries, f = L+h is Fredholm of index 1 at any point of {0}×{0}×g−1(0)
and, being Ck, is still of index 1 on an open neighborhood of M , as claimed. �
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Theorem 3.2 below provides a necessary condition for bifurcation in which a
canonical (i.e., independent of the coordinate systems) finite dimensional reduction
between KerA and coKerA is done.

Theorem 3.2. Assume B of class C1 on an open neighborhood of g−1(0). If
x̄ ∈ SA is a bifurcation point of (3.1), then there exists µ̄ ∈ R such that

B(x̄)− µ̄ Cx̄ ∈ ImA.

Proof. As above, let f : R× R×X → Y × R be the map

f(ε, λ, x) =
(
Ax+ εB(x)− λCx, g(x)

)
and let M ⊆ f−1(0) be the set

M = {0} × {0} × SA.
As stated in Lemma 3.1, f is C1 and Fredholm of index 1 on an open neighborhood
of the C1 manifoldM . Our aim is to apply Theorem 2.1 to f andM . To this end, let
X1 and Y2 be closed subspaces of X and Y , respectively, such that X = X1⊕KerA
and Y = ImA ⊕ Y2. Since the space X1 is Banach, X can be identified with
X1×KerA via the operator (x1, x2) 7→ x1 +x2, whose inverse is continuous because
of the Inverse Function Theorem. Analogously, Y will be identified with ImA×Y2.
In this decomposition, we have x = (x1, x2) and system (3.1) can be written in
block-matrix form as follows:

(
A11 0
0 0

)(
x1

x2

)
+ ε

(
B1(x1, x2)
B2(x1, x2)

)
− λ

(
C1(x1, x2)
C2(x1, x2)

)
=
(

0
0

)
g(x1, x2) = 0.

(3.4)

Also observe that, since A is Fredholm of index zero, then dimY2 = dim KerA. Let
x̄ ∈ SA be the given bifurcation point. Then, since SA ⊆ KerA, we have x̄ = (0, q),
for some q ∈ KerA. Thus, in the notation of Theorem 2.1 the element p = (0, 0, 0, q)
is a bifurcation point of (3.3) from M . Consequently, by Theorem 2.1, TpM is a
proper subset of Ker f ′(p). Let us compute explicitly Ker f ′(p) and TpM . It is easy
to see that a vector (ε̇, λ̇, ẋ1, ẋ2) ∈ R×R×X1 ×KerA belongs to Ker f ′(p) if and
only if 

(
A11 0
0 0

)(
ẋ1

ẋ2

)
+ ε̇

(
B1(0, q)
B2(0, q)

)
− λ̇

(
C1(0, q)
C2(0, q)

)
=
(

0
0

)
∂1g(0, q)ẋ1 + ∂2g(0, q)ẋ2 = 0

(3.5)

or, equivalently, if and only if A11ẋ1 + ε̇B1(0, q)− λ̇C1(0, q) = 0,
ε̇B2(0, q) = λ̇C2(0, q),
∂1g(0, q)ẋ1 + ∂2g(0, q)ẋ2 = 0.

(3.6)

Moreover, the tangent space of M at p is given by

TpM =
{

(0, 0, 0, ẋ2) : ∂2g(0, q)ẋ2 = 0
}
.

As already observed, since p is a bifurcation point of (3.3) from M , by Theorem 2.1,
Ker f ′(p) contains properly TpM . Thus, there exists (ε̇, λ̇, ẋ1, ẋ2) ∈ Ker f ′(p)\TpM .
Let us show that ε̇ 6= 0. By contradiction, suppose ε̇ = 0. Since x̄ 6= 0, condition
(3.2) clearly implies Cx̄ /∈ ImA. Hence, C2(0, q) 6= 0 and, thus, λ̇ = 0. Therefore,
from (3.5), one gets A11ẋ1 = 0 and, thus, ẋ1 = 0 since A11 is an isomorphism
between X1 and ImA. Consequently, it turns out that (ε̇, λ̇, ẋ1, ẋ2) is of the form
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(0, 0, 0, ẋ2), i.e. an element of TpM . A contradiction. This proves that ε̇ must be
different from 0. Hence, by dividing by ε̇ the second equation in (3.6) and by setting
µ̄ = λ̇/ε̇, one gets

B2(0, q)− µ̄C2(0, q) = 0,
which is equivalent to

B(x̄)− µ̄ Cx̄ ∈ ImA,

as claimed. �

Remark 3.3. By introducing the canonical projection π : Y → coKerA, the nec-
essary condition of Theorem 3.2 above can be expressed equivalently as follows:
there exists µ̄ ∈ R such that

πB(x̄) = µ̄ πCx̄.

Theorem 3.4 below provides a sufficient condition for x̄ ∈ SA to be a bifurcation
point of (3.1). As for the necessary condition given in Theorem 3.2, this result
represents the canonical version of the sufficient condition, in the sense that it is
stated without any choice of coordinate systems on KerA and coKerA.

Theorem 3.4. Assume B and g of class C2 on an open neighborhood of g−1(0).
Let x̄ ∈ SA and µ̄ ∈ R be such that B(x̄) − µ̄ Cx̄ ∈ ImA. Then x̄ is a bifurcation
point of (3.1), provided that

Aḣ = 0 , g′(x̄)ḣ = 0 and B′(x̄)ḣ− µ̄ Cḣ ∈ span{ImA,Cx̄} =⇒ ḣ = 0.

Proof. Let f and M be as in Lemma 3.1 and, as already done in the proof of
Theorem 3.2, consider the decompositions X = X1 × KerA and Y = ImA × Y2,
with x̄ = (0, q) and p = (0, 0, 0, q). By Lemma 3.1, f is a C2 Fredholm map of
index 1 on an open neighborhood of the C2 manifold M . To get the assertion, our
aim is to apply Theorem 2.2. Let us show first that we have

dim Ker f ′(p) = dimTpM + 1. (3.7)

To this end, consider the nonzero functional on Ker f ′(p) given by (ε̇, λ̇, ẋ1, ẋ2) 7→ ε̇.
Its kernel, which is clearly 1-codimensional, consists of those solutions (ε̇, λ̇, ẋ1, ẋ2)
of system (3.6) possessing ε̇ = 0. The same argument used in the proof of Theorem
3.2 shows that such solutions must be of the form (0, 0, 0, ẋ2) with ∂2g(0, q)ẋ2 = 0,
i.e. belong to TpM . Hence, TpM coincides with the kernel of a nonzero functional
on Ker f ′(p) and, thus, is 1-codimensional. This proves (3.7).

Let µ̄ be as in the assumption and take ( ˙̄x1, ˙̄x2) ∈ X1 × KerA such that the
vector u̇ = (1, µ̄, ˙̄x1, ˙̄x2) satisfies system (3.6). Clearly, from the first equation on
(3.6), it turns out that ˙̄x1 is unique (recall that A11 is an isomorphism). Moreover,
the existence of ˙̄x2 ∈ KerA such that ∂1g(0, q) ˙̄x1 + ∂2g(0, q) ˙̄x2 = 0 is due to the
fact that the functional ẋ2 7→ ∂2g(0, q)ẋ2 is onto since ∂2g(0, q) 6= 0. This means
that u̇ belongs to Ker f ′(p) and, since its first component is nonzero, it is not
tangent to M at p. Thus, as needed for applying Theorem 2.2, we have chosen
u̇ ∈ Ker f ′(p) \ TpM.

Let now ϕ : SA → F × R be given by ϕ(x) = f ′(0, 0, x)u̇. Since, in the identifi-
cation X = X1 ×KerA, any x ∈ SA is of the form x = (0, x2), we have

ϕ(0, x2) =

 A11 ˙̄x1 +B1(0, x2)− µ̄C1(0, x2)
B2(0, x2)− µ̄C2(0, x2)
∂1g(0, x2) ˙̄x1 + ∂2g(0, x2) ˙̄x2

 (3.8)
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Let us compute the derivative of ϕ at (0, q) along a vector ḣ ∈ Tx̄SA. Clearly,
ḣ ∈ Tx̄SA if and only if Aḣ = 0 and g′(x̄)ḣ = 0, i.e. if and only if ḣ = (0, ẋ2) with
∂2g(0, q)ẋ2 = 0. We get

ϕ′(0, q)(0, ẋ2) =

 ∂2B1(0, q)ẋ2 − µ̄C1(0, ẋ2)
∂2B2(0, q)ẋ2 − µ̄C2(0, ẋ2)
ψ′(0, q)ẋ2

 (3.9)

where ψ : SA → R is given by

(0, x2) 7→ ∂1g(0, x2) ˙̄x1 + ∂2g(0, x2) ˙̄x2.

By denoting v̇ = (0, 0, ḣ) = (0, 0, 0, ẋ2), we obviously have

ϕ′(0, q)ḣ = f ′′(0, 0, 0, q)(u̇, (0, 0, ḣ)) = f ′′(p)(u̇, v̇).

Finally, in order to verify that our assumptions reduce to those of Theorem 2.2, we
need to compute Im f ′(p). Let (k1, k2, s) be an element of Im f ′(p) ⊆ ImA×Y2×R.
It is easy to see that the vectors of the form (k1, 0, 0) and (0, 0, s) belong to Im f ′(p).
Thus, ImA×{0}×{0} ⊆ Im f ′(p) and {0}×{0}×R ⊆ Im f ′(p). Moreover, also the
vector (0, C2(0, q), 0) belongs to the image of f ′(p), so that Im f ′(p) contains the
subspace ImA× span(C2(0, q))× R, whose codimension in ImA× Y2 × R is equal
to dimTpM (recall that dimY2 = dim KerA = dimTpM + 1). On the other hand,
since f ′(p) is Fredholm of index 1, by (3.7) we get codim Im f ′(p) = dimTpM as
well. Therefore, the equality

Im f ′(p) = ImA× span(C2(0, q))× R
holds. Now, by interpreting the assumption

Aḣ = 0 , g′(x̄)ḣ = 0 and B′(x̄)ḣ− µ̄ Cḣ ∈ span{ImA,Cx̄} =⇒ ḣ = 0

with the notation introduced here, we get

∂2B2(0, q)ẋ2 − µ̄C2(0, ẋ2) = αC2(0, q) for some α ∈ R,
and ∂2g(0, q)ẋ2 = 0 =⇒ ẋ2 = 0. (3.10)

In other words, if ḣ ∈ Tx̄SA and ϕ′(0, q)ḣ = f ′′(0, 0, 0, q)(u̇, (0, 0, ḣ)) belongs to
Im f ′(0, 0, 0, q) = ImA × span(C2(0, q)) × R, then ḣ = 0, that is the sufficient
condition stated in Theorem 2.2 is satisfied. Consequently, p = (0, 0, 0, q) is a
bifurcation point (from M) of f(ε, λ, x1, x2) = (0, 0) or, equivalently, x̄ = (0, q) is
a bifurcation point (from SA) of (3.1) as claimed. �

An equivalent formulation of the assumption of Theorem 3.4 above is stated in
the following remark.

Remark 3.5. Let Yx̄ be the m-dimensional quotient space Y/ span{ImA,Cx̄} and
denote πx̄ : Y → Yx̄ the canonical projection. Then x̄ is a bifurcation point (from
SA) of (3.1), provided that

Aḣ = 0 , g′(x̄)ḣ = 0 and πx̄(B′(x̄)− µ̄ Cḣ) = 0 =⇒ ḣ = 0.

Remark 3.6. From the proof of Theorem 2.2 given in [3], one can also deduce
that the closure of the set of nontrivial solutions of (3.1) is, in fact, a C1 curve in
a neighborhood of the bifurcation point (0, 0, x̄). Let us show that this curve can
be parametrized by ε, the first component of the space R×R×X. More precisely,
let us decompose the Banach space R× R×X into the one dimensional subspace
R × {0} × {0} and its direct summand {0} × R × X. We claim that the given



10 R. CHIAPPINELLI, M. FURI, AND M.P. PERA

curve can be represented by a parametrization having R×{0}×{0} as domain and
{0} × R×X as codomain. It is a known fact that this can be done provided that
the tangent vector to the curve at (0, 0, x̄) does not belong to {0} × R ×X. Such
a vector belongs to Ker f ′(0, 0, x̄) but it is not tangent to M . Thus, as already
proved, its first component is nonzero, as required.

Remark 3.7. If X = Y and A is such that KerA ⊕ ImA = X (this is the case
when, for instance, X is Hilbert and A is selfadjoint), then one can identify KerA
with coKerA and the finite dimensional reduction acts between the same spaces.
If, in addition, C is the identity and B is linear, then the necessary condition states
that x̄ is an eigenvector of B|KerA : KerA → KerA corresponding to some (real)
eigenvalue µ̄. One can check that the sufficient condition stated in Theorem 3.4
means that the eigenvalue µ̄ is a simple.

As will be clear in the next section, the special case when the spaces X and
Y are finite dimensional and the operator A is trivial is of some interest. In this
situation our problem becomes {

εB(x) = λCx,
g(x) = 0, (3.11)

and Theorems 3.2 and 3.4 take the following form.

Corollary 3.8. Let dimX = dimY < ∞. Assume B of class C1 on an open
neighborhood of g−1(0) and C invertible. Then, a necessary condition for x̄ ∈
g−1(0) to be a bifurcation point of (3.11) (from g−1(0)) is that there exists µ̄ ∈ R
such that

B(x̄) = µ̄Cx̄.

Corollary 3.9. Let dimX = dimY < ∞. Assume B and g of class C2 on an
open neighborhood of g−1(0) and C invertible. Let x̄ ∈ g−1(0) and µ̄ ∈ R be such
that B(x̄) = µ̄ Cx̄. Then, a sufficient condition for x̄ to be a bifurcation point (from
g−1(0)) of (3.11) is that

g′(x̄)ḣ = 0 and B′(x̄)ḣ− µ̄ Cḣ ∈ span(Cx̄) =⇒ ḣ = 0.

4. Main results reformulated

This section is devoted to present practical reformulations of the two conditions
for bifurcation given by Theorems 3.2 and 3.4. This involves a choice of linear
coordinates for the spaces KerA and coKerA.

Recall that KerA is nontrivial and let m + 1 denote its dimension. A system
of linear coordinates for KerA is just a linear operator J : Rm+1 → X such that
Im J = KerA. Since dim KerA = m+ 1, this identifies KerA with Rm+1 by means
of a linear isomorphism.

As regards coKerA, a system of linear coordinates may be given by considering
a bounded linear operator Q : Y → Rm+1 such that KerQ = ImA. In fact, in this
case, there exists a unique linear operator Q̂ : coKerA→ Rm+1 such that Q̂π = Q,
where π : Y → coKerA is the canonical projection. This operator is clearly injective
and, consequently, must be surjective since dim coKerA = m + 1 (recall that A is
Fredholm of index zero). In other words, Q induces on coKerA a system of linear
coordinates Q̂. By abuse of terminology, we will say that Q is a system of linear
coordinates for coKerA.
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Theorem 4.1 below is a practical reformulation of the necessary condition given
in Theorem 3.2.

Theorem 4.1. Let, respectively, J : Rm+1 → X and Q : Y → Rm+1 be two systems
of linear coordinates for KerA and coKerA, and define

ḡ : Rm+1 → R, B̄ : Rm+1 → Rm+1, C̄ : Rm+1 → Rm+1

by ḡ = gJ , B̄ = QBJ , C̄ = QCJ .
If ā ∈ ḡ−1(0) is such that Jā is a bifurcation point of (3.1), then there exists

µ̄ ∈ R such that
B̄(ā) = µ̄ C̄ā.

Proof. Since KerQ = ImA, there exists a unique linear operator Q̂ : coKerA →
Rm+1 such that Q̂π = Q, where π : Y → coKerA is the canonical projection. By
Remark 3.3 with x̄ = Jā, there exists µ̄ ∈ R such that πB(Jā) = µ̄ πCJā. Thus,
by applying Q̂, one has Q̂πB(Jā) = µ̄ Q̂πCJā , i.e. B̄(ā) = µ̄ C̄ā. �

Remark 4.2 below will come on hand when one seeks for a system of linear
coordinates for coKerA.

Remark 4.2. If we assume that a bounded linear operator Q : F → Rm+1 is onto,
then clearly codim KerQ = m + 1, the same as ImA. Thus, the following three
conditions are equivalent:
• KerQ = ImA;
• KerQ ⊆ ImA;
• KerQ ⊇ ImA.

In the same spirit of Theorem 4.1, let us now state the “linear coordinates”
version of the sufficient condition given in Theorem 3.4.

Theorem 4.3. Let J, Q, B̄, C̄ and ḡ be as in Theorem 4.1. Let ā ∈ ḡ−1(0) and
µ̄ ∈ R be such that B̄(ā) = µ̄ C̄ā. Then Jā is a bifurcation point of (3.1), provided
that

ȧ ∈ Rm+1, ḡ′(ā)ȧ = 0 and B̄′(ā)ȧ− µ̄ C̄ȧ ∈ span(C̄ā) =⇒ ȧ = 0. (4.1)

Proof. The assertion follows immediately noting that x̄ = Jā and ḣ = Jȧ clearly
satisfy the sufficient condition of Theorem 3.4. �

The following easy consequence of Theorem 4.3 could be useful in applications
as shown, for instance, in the next section.

Corollary 4.4. Let J, Q, B̄, C̄, ḡ be as in Theorem 4.1, ā ∈ ḡ−1(0), and µ̄ ∈ R be
such that B̄(ā) = µ̄ C̄ā. Assume that R : Rm+1 → Rm is a surjective linear operator
such that RC̄ā = 0. Then Jā is a bifurcation point of (3.1), provided that

ȧ ∈ Rm+1, ḡ′(ā)ȧ = 0 and R(B̄′(ā)− µ̄ C̄)ȧ = 0 =⇒ ȧ = 0. (4.2)

Proof. It is enough to show that KerR = span(C̄ā). By assumption, C̄ ā belongs
to KerR, which is 1-dimensional since R is onto. Thus, KerR must coincide with
span(C̄ā), as claimed. �

Remark 4.5. Consider the map a ∈ ḡ−1(0) 7→ R(B̄(a) − µ̄ C̄a) ∈ Rm. Clearly,
the necessary condition of Theorem 4.1 implies that ā is a zero of this map. The
sufficient condition (4.2) of Corollary 4.4 above, means that such a zero is nonde-
generate.
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Remark 4.6. It should be observed that Theorems 4.1 and 4.3 above contain a
reduction of the general case to a problem in Rm+1 analogous to the finite dimen-
sional problem presented in (3.11). In fact, it is easy to see that the necessary and
the sufficient conditions obtained in these theorems are the same as those proved
in Corollaries 3.8 and 3.9.

5. An example

In this section, we give an application of the previous bifurcation results to the
second order differential equation, depending on the real parameters ε and λ,

x′′ + x+ ε(tx+ x2) = λx, t ∈ R. (5.1)

We are interested in 2π-periodic solutions x of (5.1) normalized as follows:

1
π

∫ π

−π
x2(t) dt = 1.

In particular, we look for solutions which bifurcate from a given trivial (i.e. obtained
for ε = λ = 0) normalized solution; that is, from a solution of the type x(t) =
c sin t+ d cos t, with c2 + d2 = 1.

To this end, consider the problem
x′′ + x+ ε(tx+ x2) = λx,

x(−π) = x(π), x′(−π) = x′(π),
1
π

∫ π
−π x

2(t) dt = 1.
(5.2)

Clearly, all solutions of (5.2) are C∞ and we will look for them in the Banach space

C2
2π =

{
x ∈ C2([−π, π]) : x(−π) = x(π), x′(−π) = x′(π)

}
.

In the notation of Section 3, set

X = C2
2π , Y = C([−π, π])

and define
A : X → Y by Ax = x′′ + x,

B : X → Y by B(x)(t) = tx(t) + x2(t),
C : X → Y to be the inclusion,

g : X → R by g(x) =
1
π

∫ π

−π
x2(t) dt− 1.

As observed in the preliminaries, the operator A, which is clearly Fredholm of
index 2 between C2([−π, π]) and Y , becomes of index 0, when restricted to the
2-codimensional closed subspace X of C2([−π, π]), with 2-dimensional kernel

KerA =
{
x ∈ X : x(t) = α sin t+ β cos t , α, β ∈ R

}
and 2-codimensional image

ImA =
{
y ∈ Y :

∫ π

−π
y(t) sin t dt = 0 ,

∫ π

−π
y(t) cos t dt = 0

}
.

Moreover, the operator A− λC given by x 7→ x′′ + (1− λ)x is clearly invertible for
λ 6= 0 sufficiently small.

The first derivative of the operator B at a point x ∈ X along a vector h ∈ X is
given by (

B′(x)h
)
(t) = 2x(t)h(t) + th(t).



BIFURCATING EIGENVECTORS 13

Thus, the second derivative of B at x ∈ X along a pair of vectors (h, k) ∈ X2 is
represented by (

B′′(x)(h, k)
)
(t) = 2h(t)k(t).

Hence B′′ is a constant map from X into the space L2(X,Y ) of continuous bilinear
operators from X into Y , therefore B is C2, as required.

The real valued map g is clearly C∞ and g′(x)x = 2
π

∫ π
−π x

2(t) dt 6= 0 for any
x ∈ g−1(0). Moreover, as easily verified, for any x ∈ X, x 6= 0, there exists (a
unique) s > 0 such that s2

π

∫ π
−π x

2(t) dt = 1, i.e. g−1(0) surrounds the origin.
Moreover, the manifold SA = KerA ∩ g−1(0) is given by

SA =
{
x ∈ X : x(t) = α sin t+ β cos t , α2 + β2 = 1

}
and is clearly 1-dimensional.

First, our aim is to apply Theorem 4.1 to system (5.2) in order to get a necessary
condition for bifurcation. To this end, let us define J : R2 → X as

J(α, β) = α sin t+ β cos t

and Q : Y → R2 as

Qy =
1
π

(∫ π

−π
y(t) sin t dt ,

∫ π

−π
y(t) cos t dt

)
.

Clearly, Im J = KerA and, as observed before, y ∈ ImA if and only if Qy = 0,
i.e. KerQ = ImA. An easy computation shows that the map ḡ = Jg : R2 → R2 is
given by

ḡ(α, β) = α2 + β2 − 1
and that the composition C̄ = QCJ : R2 → R2,

C̄(α, β) =
1
π

(∫ π

−π
(α sin t+ β cos t) sin t dt ,

∫ π

−π
(α sin t+ β cos t) cos t dt

)
,

turns out to be the identity. Moreover,

ḡ−1(0) = J−1(SA) =
{

(α, β) ∈ R2 : α2 + β2 = 1
}
.

Now, according to Theorem 4.1, a necessary condition for a solution

x̄(t) = ᾱ sin t+ β̄ cos t,

with ᾱ2 + β̄2 = 1, of (5.2) to be a bifurcation point from SA is that there exists
µ̄ ∈ R such that the pair (ᾱ, β̄) of the unit circle ḡ−1(0) satisfies the eigenvalue
problem

B̄(α, β) = µ̄C̄(α, β),
where B̄ : R2 → R2 is the composition B̄ = QBJ . By computing B̄, one easily
obtains

B̄(α, β) = −1
2

(β, α).

Therefore, we are reduced to find the eigenvalues of the equation

−1
2

(β, α) = µ(α, β) (5.3)

and the corresponding normalized eigenvectors (α, β), i.e. satisfying α2+β2 = 1. By
solving (5.3) we get the two values µ̄− = − 1

2 , with corresponding pairs ±
(√

2
2 ,
√

2
2

)
,

and µ̄+ = 1
2 , with pairs ±

(√
2

2 ,−
√

2
2

)
.



14 R. CHIAPPINELLI, M. FURI, AND M.P. PERA

Let us now show that such eigenvectors also satisfy the sufficient condition for
bifurcation stated in Corollary 4.4. To this end, choose one of the previous eigen-
values, say, for instance, µ̄− and define R : R2 → R by R(α, β) = α− β. Since the
map B̄ + 1

2 C̄ : R2 → R2 is given by

(B̄ +
1
2
C̄)(α, β) = −1

2
(β, α) +

1
2

(α, β) =
1
2

(α− β, β − α),

by composing with R, we obtain the linear operator

R(B̄ +
1
2
C̄)(α, β) = α− β.

Hence, its derivative at each one of the eigenvectors ±
(√

2
2 ,
√

2
2

)
along any vector

(α̇, β̇) ∈ R2 turns out to be

R(B̄′ +
1
2
C̄)
(
±
(√2

2
,

√
2

2
))

(α̇, β̇) = α̇− β̇.

In order to check condition (4.2) of Corollary 4.4, we need to restrict

R(B̄′ +
1
2
C̄)(±(

√
2

2
,

√
2

2
))

to the 1-dimensional space{
(α̇, β̇) ∈ R2 : ḡ′(±(

√
2

2
,

√
2

2
))(α̇, β̇) = 0

}
.

As easily seen by computing the derivative of ḡ at ±
(√

2
2 ,
√

2
2

)
, this space is given

by {
(α̇, β̇) ∈ R2 : α̇+ β̇ = 0

}
.

Consequently, we are reduced to solve the system{
α̇− β̇ = 0,
α̇+ β̇ = 0,

that gives α̇ = β̇ = 0. This shows that (4.2) is satisfied in the case of the eigenvalue
µ̄−. A similar argument holds for µ̄+.
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