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1. Introduction and preliminaries

One of the most important and deep properties of the Leray–Schauder degree is the
well-known Leray Product Formula for the computation of the degree of a composite
map (see, e.g., [3,14,15,17,19]). In this paper, using the concept of boundary set of a
map introduced in [1], among other results we give an extension of the Leray formula
(Theorem 3.5) and we provide, as a consequence, a simple proof of the generalized
Jordan–Brouwer Separation Theorem due to Leray (see [14]).
As it is well known, the integer-valued degree has been extended by several authors

to the framework of Fredholm maps between real Banach manifolds. A pioneering work
in this direction is due to Elworthy and Tromba (see [8,9]). In [1], still in the context
of nonlinear Fredholm maps, the <rst two authors introduce an elementary notion of
oriented map (see below) which di=ers from the one given in [10] in some aspects
which are pointed out in [2]. By means of this notion they de<ne an integer-valued
degree which coincides, for a large variety of maps, with the degree introduced in [10]
and can be considered an evolution of the oriented degree of Elworthy–Tromba.
This work contains two versions of the Product Formula for the oriented degree

of [1], namely, Theorems 3.1 and 3.7. The <rst one is the analog of Theorem 3.5.
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The second one is a more general formula containing, as a particular case, an extended
additivity property for the degree of oriented maps. At the end a Jordan’s-like separation
theorem in Banach manifolds is deduced from Theorem 3.1.
We need some preliminaries.
Let E and F be two real Banach spaces. We recall that a bounded linear operator

is said to be Fredholm if both Ker L and coKer L have <nite dimension. In this case,
its index is the integer

ind L= dimKer L− dim coKer L:

A map f : M → N between real Banach manifolds is Fredholm of index zero (see
[18]) if it is C1 and its FrGechet derivative Df(x), from the tangent space TxM of M at
x to the tangent space Tf(x)N of N at f(x), is Fredholm of index zero for any x∈M .
A map f : M → N between manifolds is said to be proper if f−1(K) is compact

for any compact subset K of N . In particular, let us recall that Fredholm maps are
locally proper (see [18]).
A map f : X → E de<ned on a subset X of a Banach space E is a compact vector

4eld if it is a completely continuous perturbation of the identity; that is, if it has the
form f(x) = x − ’(x), with ’ : X → E sending bounded subsets of X into relatively
compact subsets of E. We observe that if f : X → E is a compact vector <eld, X
is closed, and ‖f(x)‖ → ∞ as ‖x‖ → ∞, then f is proper. In particular, a compact
vector <eld is proper on bounded closed sets.

2. Orientation and degree

In this section, we give a brief review of the notion of degree for oriented maps
between real Banach manifolds introduced in [1]. This notion is essentially based on
the concept of orientability for Fredholm maps developed in [1,2].
Let L : E → F be a bounded Fredholm linear operator of index zero between real

Banach spaces. We say that a bounded linear operator A : E → F with <nite-dimensional
range is a corrector of L provided that L+ A is an isomorphism. Observe that the set
of correctors of L is nonempty. In fact, any (possibly trivial) bounded linear operator
A : E → F such that Ker A⊕Ker L=E and RangeA⊕RangeL=F is a corrector of L.
Let A and B be two correctors of L. Observe that the isomorphism T = (L +

B)−1(L + A) is a <nite-dimensional perturbation of the identity I . Moreover, given
any <nite-dimensional subspace E0 of E containing the image of I − T , one has
T (E0)⊂E0. Thus, the determinant of the restriction of T to E0; det T |E0 , is well
de<ned. It is not diIcult to show that this determinant does not depend on the choice
of the <nite-dimensional space E0 containing Range (I − T ). This common value will
be denoted det T . We say that A is equivalent to B or, more precisely, A is L-equivalent
to B, if det T ¿ 0. This is an equivalence relation on the set of correctors of L with
just two equivalence classes (see [1]). An orientation of L is, by de<nition, one of the
two equivalence classes.
Given an oriented operator L : E → F , the elements of its orientation will be called

the positive correctors of L.
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We point out that any isomorphism L admits a special orientation, namely the equiv-
alence class containing the trivial operator 0. We shall refer to this equivalence class
as the natural orientation �(L) of L. However, if an isomorphism L happens to be
already oriented, we de<ne its sign as follows: sign L=1 if the trivial operator 0 is a
positive corrector of L (i.e. if the orientation of L coincides with �(L)), and sign L=−1
otherwise.
Unless otherwise stated, the composition L2L1 of two oriented operators will be

oriented by taking as a positive corrector the operator L2A1 + A2A1 + A2L1, where A1

and A2 are positive correctors of L1 and L2, respectively.
An orientation of a bounded Fredholm operator of index zero induces, by a sort of

stability, an orientation to any suIciently close bounded operator. In fact, if A is a
corrector of L, then L′ + A is an isomorphism whenever L′ is suIciently close to L.
Thus, any such L′ can be oriented by choosing A as a positive corrector.
Assume now f : M → N is a Fredholm map of index zero between real Banach

manifolds. An orientation of f at a point x ∈ M is an orientation of the FrGechet
derivative Df(x) of f at x. An orientation of f is a “continuous” assignment of an
orientation at any point of M (see [1,2] for a precise notion of continuous assignment).
By an oriented map we mean a Fredholm map between real Banach manifolds with a
given orientation. Let us point out that, when M and N are <nite-dimensional orientable
connected manifolds (of the same dimension), an orientation of f : M → N can be
regarded as a pair of orientations, one of M and one of N , up to an inversion of both
of them. The simplest example of a nonorientable Fredholm map (of index zero) is a
constant function from a <nite-dimensional nonorientable manifold M into a manifold
N of the same dimension as M . An example of a nonorientable map in the Pat case,
i.e. acting between open sets of Banach spaces, can be found in [2].
Notice that a local di=eomorphism f : M → N can be oriented by choosing the

natural orientation at any x∈M . This makes sense since Df(x) is an isomorphism for
any x∈M . Thus, for example, the covering projection from the two-dimensional sphere
S2 onto the (nonorientable) projective space P2 is orientable. As shown in [2], if M
is simply connected, then any Fredholm map of index zero f : M → N is orientable
(and, consequently, an orientation of f can be given by assigning an orientation at a
chosen point of M). Thus, actually, any (C1) map from S2 into P2 is orientable.
A homotopy H : M × [0; 1] → N is called an oriented homotopy provided that any

partial map H� :=H (· ; �) is Fredholm of index zero, the partial derivative D1H (· ; �)
depends continuously on (x; �), and a “continuous” choice of an orientation of D1H (x; �)
is assigned for any (x; �). Thus, an oriented homotopy induces an orientation on any
partial map H�. In [2], it is proved that an orientation of any given partial map H�

induces a unique compatible orientation on H . As a consequence of this we observe the
following. Let T : E → E be a linear operator in a real Banach space of the form I−K ,
where I is the identity and K is a compact operator. Then T has a canonical orienta-
tion induced by the natural orientation of I through the homotopy H (x; �)= x − �Kx.
When T happens to be an isomorphism (i.e. when 1 is not an eigenvalue of K), two
associated orientations can be considered: the natural one and the canonical one. We
de<ne the sign of T to be 1 if these two orientations coincide and −1 otherwise.
One can show that when E is <nite dimensional (or, more generally, when I − T
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has <nite-dimensional range), sign T coincides with the sign of the determinant of T .
Actually, we point out that, in general, still under the assumption that T = I − K is
invertible, sign T coincides with the sign of the Leray–Schauder index of T at zero
(i.e. the Leray–Schauder degree of T in a ball around zero).
The orientation of the composition gf of two oriented maps, f and g, can be

de<ned as in the linear case. With this induced orientation, gf will be called the
oriented composition of f and g. From now on, the composition of two (or more)
oriented maps will be regarded as an oriented composition.
Let f : M → N be an oriented map. Given an open subset U of M and an element

y∈N , we say that the triple (f;U; y) is admissible if f−1(y) ∩ U is compact. The
degree introduced in [1] is an integer-valued function de<ned in the class of all the
admissible triples and satisfying the following main properties:

Normalization. If f : M → N is a naturally oriented di=eomorphism and y∈N , then

deg(f;M; y) = 1:

Additivity. If (f;M; y) is an admissible triple and U1, U2 are two open disjoint subsets
of M such that f−1(y)⊂U1 ∪ U2, then

deg(f;M; y) = deg(f;U1; y) + deg(f;U2; y):

Homotopy invariance. Let H : M × [0; 1] → N be an oriented homotopy and let y :
[0; 1] → N be continuous. If the set {(x; �)∈M × [0; 1]: H (x; �) = y(�)} is compact,
then deg (H�;M; y(�)) does not depend on �.
The degree of an admissible triple (f;U; y) is <rstly de<ned when y is a regular

value (for f in U ) as

deg(f;U; y) =
∑

x∈f−1(y)

signDf(x):

This restrictive assumption on y is then removed by means of the following lemma
of [1].

Lemma 2.1. Let (f;U; y) be admissible and let W1 and W2 be two open neighbor-
hoods of f−1(y) such that QW 1 ∪ QW 2 ⊂U and f is proper in QW 1 ∪ QW 2. Then there
exists a neighborhood V of y such that for any pair of regular values y1; y2 ∈V
one has

deg(f;W1; y1) = deg(f;W2; y2):

Lemma 2.1 justi<es the following de<nition of degree for general admissible triples,
taking also into account that Fredholm maps are locally proper.

De�nition 2.2. Let (f;U; y) be admissible and let W be any open neighborhood of
f−1(y) such that QW ⊂U and f is proper on QW . The degree of (f;U; y) is given by

deg(f;U; y) := deg(f;W; z)

where z is any regular value for f in W suIciently close to y.
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As pointed out in [1], no in<nite-dimensional version of the Sard Theorem is needed
in the above de<nition, since the existence of a sequence of regular values for f|W
which converges to y is a consequence of the Implicit Function Theorem and the
classical Sard–Brown Lemma.
This notion of degree can be compared with the classical ones of Brouwer and

Leray–Schauder as follows.
Assume that f :M → N acts between connected <nite-dimensional oriented man-

ifolds (of the same dimension) and M is compact (or, more generally, assume that
f is proper). Thus, the classical Brouwer degree, degB f, is de<ned. In this case, if f
is C1, the orientation associated in [1] to the pair of orientations of M and N is such
that deg(f;M; y) = degB f, for all y∈N .
As regards the Leray–Schauder degree, let f : R → E be a C1 compact vector

<eld on a bounded open subset R of a real Banach space E. Assume that f admits
a continuous extension (still denoted by f) to the closure QR of R. If y �∈ f(@R),
the Leray–Schauder degree degLS(f;R; y) is de<ned. It can be shown that if f is
canonically oriented (i.e. Df(x) has the canonical orientation for any x∈R), then
deg(f;R; y), which is clearly de<ned since f is proper on QR and f−1(y) ∩ @R = ∅,
coincides with degLS(f;R; y).
Given an oriented map f :M → N , the degree deg(f;M; y) does not necessarily

depend continuously on y. To see this, observe, for instance, that the triple (exp;R; y)
is admissible for all y∈R, but the map y �→ deg(exp;R; y) is discontinuous at y= 0.
To overcome this inconvenience, we introduce the boundary set @f of f, which is
a subset of N with the property that the map y �→ deg(f;M; y) is well de<ned and
continuous when restricted to N \@f.
Given y∈N , we say that f is y-proper if there exists a neighborhood V of y such

that f−1(K) is compact for any compact subset K of V . Clearly, the set

{y∈N : f is y-proper}

is open in N . Consequently, its complement, the boundary set of f, denoted by @f,
is closed. As shown in Proposition 2.3 below, a map f :M → N is proper if and only
if @f is empty.
Given an open subset U of M and y∈N , we say that f is y-proper in U if it is

y-proper the restriction f|U of f to U . We will denote @(f;U ) := @(f|U ). The symbol
“@” in this notation is justi<ed by the fact that, in many instances, @(f;U ) coincides
with f(@U ), where, as usual, @U stands for the boundary of U .
In the following proposition, we collect some properties of the boundary set which

will be useful in the next sections. Let us point out in particular that, as a consequence
of (2) below, when f : QR → E is a compact vector <eld on the closure of a bounded
open subset R of a Banach space E, then @(f;R) :=f(@R).

Proposition 2.3. Let f :M → N and g :N → Z be two continuous maps between
Banach manifolds. The following properties hold true:
(1) If K is any compact subset of N such that K ∩ @f= ∅; then f−1(K) is compact.

In particular; if @f = ∅; then f is proper.
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(2) Given any open set U ⊂M; one has f(@U )⊂ @(f;U ). Moreover; if f is proper
on the closure QU of U; then @(f;U ) = f(@U ).

(3) If C ⊂M is a closed set; then f(C)∪ @f is closed. In particular; as well known;
if @f = ∅ (i.e. f is proper); then f(C) is closed.

(4) Let y �∈ @f. Let U be a family of pairwise disjoint open subsets of M whose
union contains f−1(y). Then there exists an open neighborhood V of y such
that; for any compact K ⊂V and any U ∈U; the set f−1(K) ∩ U is compact.
In particular; y �∈ @(f;U ) for all U ∈U.

(5) @(gf)⊂ g(@f) ∪ @g.

Proof. (1) By the de<nition of @f, for any y∈K there exists an open neighborhood
Vy of y such that f is proper as a map from f−1(Vy) to Vy. For any y∈K , let Wy be
an open neighborhood of y such that QWy ⊂Vy. Clearly, for any y∈K , f−1( QWy ∩ K)
is compact. On the other hand, the compact set K can be covered by a <nite number
of Wy’s, say Wy1 ,Wy2 ; : : : ; Wyn . Therefore,

f−1(K) = f−1

((
n⋃

i=1

QWyi

)
∩ K

)
=

n⋃
i=1

f−1( QWyi ∩ K)

is compact, being the union of a <nite number of compact sets.
(2) Take y∈f(@U ) and let x∈ @U be such that f(x) = y. Given a sequence {xn}

in U converging to x, consider the compact set K = {f(xn): n∈N} ∪ {y}. Clearly,
given any closed neighborhood C of y, the set U ∩f−1(C ∩K) is not compact, since
{xn} converges to x �∈ U . Thus, f(@U )⊂ @(f;U ). Assume now that f is proper in
QU . We need to show that N \f(@U )⊂N \@(f;U ). Take y �∈ f(@U ). Then, since f
is proper, V = N \f(@U ) is an open neighborhood of y. Now, if K is any compact
subset of V, then f−1(K)∩ QU is compact. Moreover, by construction, f−1(K)∩@U=∅.
Consequently, the set f−1(K)∩U =f−1(K)∩ QU is compact, i.e. f is y-proper on U .

(3) Let {yn} be a sequence in f(C) ∪ @f converging to Qy∈N . If yn ∈ @f for
in<nitely many n, then there exists in @f a subsequence of {yn} converging to Qy so
that, @f being closed, Qy∈ @f. Otherwise, there exists Qn∈N such that yn ∈f(C) for
n¿ Qn. Thus, for any n¿ Qn, there exists xn ∈C such that f(xn)=yn. Suppose Qy �∈ @f.
Since N \@f is open, without loss of generality we may assume yn ∈N \@f for all
n¿ Qn. Therefore, K = {yn : n¿ Qn} ∪ { Qy} is a compact subset of N \@f. Hence, as
proved above, f−1(K) is compact and, consequently, f−1(K)∩C is a compact subset
of M containing {xn : n¿ Qn}. Thus, passing to a subsequence if necessary, we can
assume xn → Qx∈C, so that f( Qx) = Qy∈f(C).
(4) Consider the closed set M \(⋃U ∈U U ). By (3), f(M \(⋃U ∈U U )) ∪ @f is a

closed subset of N not containing y. Therefore, V = N \(f(M \(⋃U ∈U U )) ∪ @f) is
an open neighborhood of y. Now, if K is any compact subset of V, then, by (1), the
set f−1(K) is compact and, taking into account that any U is also closed in

⋃
U ∈U U ,

we have that f−1(K) ∩ U is compact too.
(5) We can prove, equivalently, that if g is z-proper and g−1(z)∩@f=∅, then gf is

z-proper. To this end, take z �∈ @g. By (3), the set g(@f)∪ @g is closed and, since z �∈
g(@f), V =Z \(g(@f)∪ @g) is an open neighborhood of z. Therefore, for any compact
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K ⊂V, g−1(K) is compact and, since g−1(K) ∩ @f = ∅, (gf)−1(K) = f−1(g−1(K)) is
compact as well.

Let us now go back to the degree and conclude this section by introducing a notation
which will be used in some of our statements below.
If f :M → N is an oriented map (between real Banach manifolds), then, given

y∈N \@f, deg(f;M; y) is well de<ned and, because of the Homotopy Property of the
degree, depends only on the component V of N \@f containing y. This common value
will be denoted deg(f;M; V ). More generally, given a not necessarily connected open
subset V of N , with the symbol deg(f;M; V ) we shall understand that V ∩ @f= ∅ and
that deg(f;M; y) is independent of y∈V.

3. The multiplicativity property

In this section, we are interested in obtaining some extensions of the classical Leray
Product Theorem (see, e.g., [19]) both for oriented maps between Banach manifolds
and, in the not necessarily C1 case, for compact vector <elds in Banach spaces.
The <rst result is the following multiplicativity formula for the degree of oriented

maps between Banach manifolds.

Theorem 3.1 (Multiplicativity). Let M;N and Z be real Banach manifolds; f :M → N
and g :N → Z oriented maps; C a closed subset of N containing @f. Then; for any
z �∈ g(C) ∪ @g one has

deg(gf;M; z) =
∑
V ∈V

deg(g; V; z) deg(f;M; V );

where gf is the oriented composition of f and g; and V denotes the family of the
components of N \C. Therefore; if W is any connected open subset of Z \(g(C)∪@g)
one has

deg(gf;M;W ) =
∑
V ∈V

deg(g; V;W ) deg(f;M; V ):

Before proving Theorem 3.1, it is convenient to make the following preliminary
comments to the statement.
(a) By assumption, g is z-proper and g−1(z)∩@f=∅. Therefore, by (5) of Proposition

2.3, it follows that z �∈ @(gf). Thus, deg(gf;M; z) is de<ned.
(b) Since g−1(z)∩C=∅, by (4) of Proposition 2.3 it follows that z �∈ @(g; V ) for any

component V of N \C. Thus, deg(g; V; z) is de<ned. Moreover, all but a <nite number
of the terms deg(g; V; z) are equal to zero, since V is an open covering of pairwise
disjoint sets of the compact set g−1(z). Consequently, the above sum is in fact <nite.

Proof. As observed above, the assumptions imply that the composition gf is z-proper
on M .
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Assume <rst that z is a regular value of gf. Hence, (gf)−1(z) is a <nite set and

deg(gf;M; z) =
∑

x∈ (gf)−1(z)

signD(gf)(x):

Since f and g are Fredholm of index zero, then z is a regular value for g and any
y∈ g−1(z) is a regular value for f. Thus,∑

x∈ (gf)−1(z)

signD(gf)(x) =
∑

x∈ (gf)−1(z)

signDg(f(x)) signDf(x)

=
∑

y∈ g−1(z)


 ∑

x∈f−1(y)

signDf(x)


 signDg(y)

=
∑

y∈ g−1(z)

signDg(y) deg(f;M; y):

Since, by assumption, z ∈Z \g(C), by considering the family V of the components of
N \C, we can write∑

y∈ g−1(z)

signDg(y) deg(f;M; y) =
∑
V ∈V

∑
y∈ g−1(z)∩V

signDg(y) deg(f;M; y)

=
∑
V ∈V

∑
y∈ g−1(z)∩V

signDg(y) deg(f;M; V )

=
∑
V ∈V

deg(g; V; z) deg(f;M; V ):

Thus, the multiplicativity formula for the degree is proved in the case when z is, in
addition, a regular value of gf.
Consider now the general case and take any z �∈ (g(C) ∪ @g). As a consequence of

(3) of Proposition 2.3, Z \(g(C)∪ @g) is an open set, so that, if Qz is any regular value
for gf in the component of Z \(g(C) ∪ @g) containing z, there exists a continuous
path joining z and Qz and having image K contained in Z \(g(C) ∪ @g). Clearly, K is
compact and K ∩ @(gf) = ∅. Hence, (gf)−1(K) is compact, so that, by the homotopy
invariance of the degree, one has

deg(gf;M; z) = deg(gf;M; Qz):

Therefore, by the <rst part of the proof,

deg(gf;M; Qz) =
∑
V ∈V

deg(g; V; Qz) deg(f;M; V ):

On the other hand, by taking into account again that K ⊂Z \(g(C) ∪ @g), we obtain
that g−1(K) is compact and contained in N \C. Moreover, since any V ∈V, being a
component on N \C, is closed, the set g−1(K)∩V is compact. Consequently, again by
the homotopy invariance of the degree, it follows

deg(g; V; Qz) = deg(g; V; z); ∀V ∈V:

This completes the proof.
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In many situations, the maps f and g above turn out to be proper. Hence, if this is
the case, @f and @g are empty. Therefore, by taking C = ∅, we obtain the following
simpli<ed version of Theorem 3.1.

Corollary 3.2. Let f :M → N and g :N → Z be two proper oriented maps. Let V
be the family of the connected component of N . Then; for any connected and open
subset W of Z; one has

deg(gf;M;W ) =
∑
V ∈V

deg(g; V;W ) deg(f;M; V ):

In the case of <nite-dimensional oriented manifolds, one can clearly extend to
not necessarily proper maps the notion of Brouwer degree for triples (f;M; y) with
f :M → N continuous and y �∈ @f. This extended notion of degree will be denoted by
degB(f;M; y). In this context, by using a standard smooth approximation of continuous
maps, from Theorem 3.1 we obtain the following extension of the usual version of the
multiplicativity property for Brouwer degree (see, e.g., [3,15,17,19]).

Theorem 3.3. Let M;N; and Z be oriented 4nite-dimensional manifolds; f :M → N
and g :N → Z be continuous maps; C a closed subset of N containing @f. Then; for
any z �∈ g(C) ∪ @g one has

degB(gf;M; z) =
∑
V ∈V

degB(g; V; z) degB(f;M; V );

where V denotes the family of the components of N \C. Therefore; if W is any
connected open subset of Z \(g(C ∪ @g) one has

degB(gf;M;W ) =
∑
V ∈V

degB(g; V;W ) degB(f;M; V ):

An immediate consequence of Theorem 3.3 is the following well known product
formula (see [12,13,16]).

Corollary 3.4. Let f :M → N and g :N → Z be two continuous maps between
compact; connected and oriented 4nite-dimensional manifolds. Then

degB gf = degB g degB f:

Now, let R be a not necessarily bounded, open subset of a Banach space E, and let
f : R → E be a compact vector <eld. Take y �∈ @(f;R). Hence, f−1(y) is a compact
subset of R. Consequently, it makes sense to de<ne the Leray–Schauder degree of f
in R with respect to y as follows:

degLS(f;R; y) := degLS(f;R1; y);

where R1 is any bounded open subset of R such that QR1 ⊂R and f−1(y)⊂R1. Clearly,
the excision property of the Leray–Schauder degree guarantees that the above de<nition
is independent of R1. In particular, if R is bounded and f is de<ned on QR, then, as
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already observed, f is proper on QR and, by (2) of Proposition 2.3, @(f;R) = f(@R).
Thus, as usual, we obtain that the degree is de<ned for y �∈ f(@R). More generally,
if f is de<ned only on @R and y �∈ f(@R), then again we will use the notation
degLS(f;R; y) to indicate the degree of any compact vector <eld de<ned on QR and
coinciding with f on @R. This makes sense because of the boundary dependence
property of the Leray–Schauder degree.
In the context of compact vector <elds in Banach spaces, the analog of Theorem 3.1

is the following result, which is an extension of the classical Leray Product Theorem
(see, e.g., [3,15,17,19]). We point out that this extension cannot be considered a corol-
lary of Theorem 3.1, since the maps are not necessarily of class C1. Nevertheless, the
proof is similar and will be omitted.

Theorem 3.5. Let E be a Banach space and R an open subset of E. Let f : R → E
and g : R̃ → E be (continuous) compact vector 4elds; where R̃ is an open subset
of E containing f(R). Then; if C is a closed subset of R̃ containing @(f;R) and
z �∈ g(C) ∪ @(g; R̃); one has

degLS(gf;R; z) =
∑
V ∈V

degLS(g; V; z) degLS(f;R; V );

where V denotes the family of the components of R̃ \C. Therefore; if W is any
connected open subset of E \(g(C) ∪ @(g; R̃)) one has

degLS(gf;R; W ) =
∑
V ∈V

degLS(g; V;W ) degLS(f;R; V ):

From Theorem 3.5, we obtain the following well known multiplicativity formula
for Leray–Schauder degree. In the proof of Corollary 3.6, we will make use of the
following fact, which we recall here for completeness. If f: R → E is a compact vector
<eld on a bounded open subset R of E, then there exists a proper compact vector <eld
f̂ :E → E extending f. To see this, suppose f of the form f(x) = x − ’(x), with
’ : R → E compact and recall that, since ’(R) is relatively compact, by Dugundji
extension theorem (see [6]) there exists ’̂ :E → E coinciding with ’ in R and with
image contained in co’(R), the convex hull of ’(R). By Mazur theorem, co’(R)
is relatively compact (see, e.g., [7]). Thus, f̂(x) = x − ’̂(x) is a compact vector <eld
extending f and, as already observed in the introduction, proper since ‖f̂(x)‖ → ∞
as ‖x‖ → ∞.

Corollary 3.6. Let E be a Banach space and R be a bounded open subset of E. Let
f : @R → E and g :f(@R) → E be compact vector 4elds. Then; if z �∈ gf(@R); one has

degLS(gf;R; z) =
∑

V ∈V;V �=V∞

degLS(g; V; z) degLS(f;R; V );

where V denotes the family of the components of E \f(@R) and V∞ is the unbounded
component.
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Proof. Let f̂ :E → E and ĝ :E → E be proper compact vector <elds extending f
and g; respectively. Hence, @ĝ = ∅ and, by (2) of Proposition 2.3, @(f̂;R) = f(@R).
Therefore, by applying to f̂ and ĝ Theorem 3.5 with R̃=E and C=f(@R), we obtain,
for any z �∈ ĝf̂(@R),

degLS(ĝf̂;R; z) =
∑
V ∈V

degLS(ĝ; V; z) degLS(f̂;R; V );

where V denotes the family of the components of E \f(@R).
Observe now that one can restrict the above sum only to the bounded compo-

nents of E \f(@R) since degLS(f̂;R; V∞)= 0. To see this, it is enough to compute
degLS(f̂;R; y) with y �∈ f̂( QR). Moreover, if V is any bounded component of E \f(@R),
since @V ⊂f(@R), then ĝ=g on @V . Hence, by recalling that the degree depends only
on the restriction of a map to the boundary of an open bounded set, the above equality
becomes

degLS(gf;R; z) =
∑

V ∈V;V �= V∞

degLS(g; V; z) degLS(f;R; V );

as claimed.

The following more general version of Theorem 3.1 can be obtained by the same
proof as that given above.

Theorem 3.7 (Generalized multiplicativity). Let M;N and Z be Banach manifolds and
let f :M → N and g :N → Z be oriented maps. Given z ∈Z \(g(@f) ∪ @g); let V be
a family of pairwise disjoint open subsets of N \@f such that
(i) g−1(z)⊂⋃V ∈V V ,
(ii) for any V ∈V and for any y1; y2 ∈V; deg(f;M; y1) = deg(f;M; y2).
Then;

deg(gf;M; z) =
∑
V ∈V

deg(g; V; z) deg(f;M; V ):

By taking in Theorem 3.7 the map f to be the identity with the natural orientation
recalled in Section 2, we have deg(f;M; V )= 1. Consequently, we immediately obtain
the following generalized additivity formula for the degree.

Theorem 3.8 (Generalized additivity). Let g :N → Z be an oriented map and let
z ∈Z \@g. Let V be a family of pairwise disjoint open subsets of N such that
g−1(z)⊂⋃V ∈V V. Then;

deg(g; N; z) =
∑
V ∈V

deg(g; V; z):

Another nice consequence of Theorem 3.7 is the following formula.

Corollary 3.9. Let f :M → N and g :N → Z be two oriented maps. For any k ∈Z;
let Vk denote the open subset of N given by Vk = {y∈N \@f : deg(f;M; y) = k}.
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Then; given z ∈Z \(g(@f) ∪ @g); one has

deg(gf;M; z) =
∑
k ∈Z

k deg(g; Vk ; z):

4. Some Jordan-like theorems

We apply now the multiplicativity formulas obtained in the previous section to
deduce some homotopic versions of Jordan’s theorem.
Let X and Y be two subsets of a Banach space E. We say that X and Y have the

same homotopy type with respect to compact vector 4elds if there exist two compact
vector <elds f :X → Y and g :Y → X such that gf and fg are homotopic to IX
(the identity on X ) and IY , respectively, through homotopies which are completely
continuous perturbations of the identity.
Theorem 4.1 is a consequence of the in<nite-dimensional version of Alexander–

Pontriagin duality due to GVeba–Granas (see [11] and references therein). Here we give
a simple proof based on degree theory in the outline of the argument due to Leray in
[14], where he assumes that the two sets are homeomorphic.

Theorem 4.1. Let E be a Banach space and let X and Y be two bounded closed
subsets of E having the same homotopy type with respect to compact vector 4elds.
Then; E \X and E \Y have the same number of components.

Proof. By assumption there exist two compact vector <elds f :X → Y and g :Y → X
and two homotopies H :X×[0; 1] → X and K :Y×[0; 1] → Y of the form H (x; �)=x−
h(x; �), K(y; �)=y−k(y; �), respectively, where h :X×[0; 1] → E and k :Y×[0; 1] → E
are compact maps such that h(· ; 0)=0, h(· ; 1)= IX − gf, k(· ; 0)=0, k(· ; 1)= IY −fg:
As already observed in the above section, f and g can be extended to proper compact
vector <elds on E, say f̂ :E → E and ĝ :E → E, respectively, such that I−f̂ and I− ĝ
have relatively compact image.
Let U and V denote the family of the components of E \X and E \Y , respectively.

Observe <rst that, for any U ∈U and V ∈V, degLS(f̂; U; V ) and degLS(ĝ; V; U ) are
de<ned. In fact, take for instance any V ∈V and y∈V . Since f̂ is proper in E (and,
thus, in QU ), by (2) of Proposition 2.3, @(f̂; U ) = f(@U ): On the other hand, since
@U ⊂X , it follows f(@U )⊂Y: Hence, @(f̂; U )⊂Y , so that degLS(f̂; U; y) makes sense.
A similar argument holds for degLS(ĝ; V; x); x∈U .
Let G1 and G2 be the free abelian groups generated by U and V, respectively. De<ne

the homomorphisms ’ :G1 → G2 and  :G2 → G1 by

’(U ) =
∑
V ∈V

degLS(f̂; U; V )V; U ∈U

and

 (V ) =
∑
U ∈U

degLS(ĝ; V; U )U; V ∈V:

The result follows if we show that ’ and  are isomorphisms.
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One has

 ’(U ) =  

( ∑
V ∈V

degLS(f̂; U; V )V

)
=
∑
V ∈V

degLS(f̂; U; V ) (V )

=
∑
V ∈V

(
degLS(f̂; U; V )

∑
W ∈U

degLS(ĝ; V;W )W

)

=
∑

W ∈U

( ∑
V ∈V

degLS(f̂; U; V ) degLS(ĝ; V;W )

)
W:

Our aim now is to apply to f̂ and ĝ the multiplicativity Theorem 3.5 with R=U ,
R̃ =E, C = Y . As observed above, Y is a closed subset of E containing @(f̂; U ).
Moreover, since ĝ(Y )⊂X , the connected open subset W of E \X is in fact a connected
open subset of E \ĝ(Y ). Therefore, by Theorem 3.5, we obtain∑

W ∈U

(∑
V ∈V

degLS(f̂; U; V ) degLS(ĝ; V;W )

)
W =

∑
W ∈U

degLS(ĝf̂; U;W )W:

Let Qh : (E × {0}) ∪ (X × [0; 1]) ∪ (E × {1}) → E be the map de<ned by

Qh(x; �) =




0 if �= 0;

h(x; �) if (x; �)∈X × [0; 1];

x − ĝf̂(x) if �= 1:

Clearly, Qh is a continuous map de<ned on a closed subset of E × [0; 1] and it is
easy to check that its image is relatively compact. Hence, as previously observed, Qh
can be extended to a compact map ĥ :E × [0; 1] → E. Consequently, the compact
vector <eld Ĥ = IE − ĥ is a proper homotopy joining the identity with ĝf̂ and satisfy-
ing Ĥ �(X ) := Ĥ (X; �)⊂X for all �∈ [0; 1]. Moreover, as above, it is easily seen that
@(Ĥ �; U )⊂X; ∀�∈ [0; 1]. Therefore, degLS(Ĥ �; U;W ) is de<ned and independent of �.
Hence,

degLS(I; U;W ) = degLS(Ĥ 0; U;W ) = degLS(Ĥ 1; U;W ) = degLS(ĝf̂; U;W ):

Thus,

 ’(U ) =
∑

W ∈U

degLS(ĝf̂; U;W )W =
∑

W ∈U

degLS(I; U;W )W:

Clearly, degLS(I; U;W ) is equal to 1 if W =U and equal to 0 if W �= U . Consequently,

 ’(U ) = U; U ∈U:

By a similar argument we also obtain

’ (V ) = V; V ∈V:

The above equalities show that the free abelian groups G1 and G2 have the same rank,
that is, the families U and V have the same cardinality. This proves the assertion.
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Since any continuous map in Rn is a compact vector <eld, we obtain the following
extension of the well known Jordan Separation Theorem. The same result can also be
deduced as a consequence of the classical Alexander duality as is shown, for instance,
in [4]. Another elegant proof of the Jordan theorem can be found in [5].

Theorem 4.2. Let X and Y be compact subsets of Rn having the same homotopy
type. Then; Rn \X and Rn \Y have the same number of components.

We close the paper by noting that the multiplicativity property of the oriented degree
proved in Theorem 3.1 allows us to prove a quite general version in Banach manifolds
of a Jordan’s like separation theorem. To this end, let M and N be Banach manifolds
and let X and Y be two closed subsets of M and N , respectively. We say that (M;X )
and (N; Y ) have the same proper oriented homotopy type, provided that there exist
two proper orientable maps f̂ : (M;X ) → (N; Y ) and ĝ : (N; Y ) → (M;X ) such that ĝf̂
and f̂ĝ are homotopic to the identity maps I(M;X ) and I(N;Y ) through proper oriented
homotopies, respectively.
We close with the following result whose proof is in the outline of that of Theorem

4.1, and, therefore, will be omitted.

Theorem 4.3. Let M and N be two Banach manifolds and let X and Y be two closed
subsets of M and N; respectively. Assume (M;X ) and (N; Y ) have the same proper
oriented homotopy type. Then M \X and N \Y have the same number of components.
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