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Abstract

We prove an existence result for T -periodic retarded functional differential equa-

tions of the type x′(t) = f(t, xt), where f is a T -periodic functional tangent vector

field on a smooth manifold. As an application we show that any constrained sys-

tem acted on by a periodic force, possibly with delay, admits a forced oscillation

provided that the constraint is a topologically nontrivial compact manifold and

the frictional coefficient is nonzero. We conjecture that the same assertion holds

true even in the frictionless case.
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1 Introduction

Let M ⊆ Rk be a smooth manifold, possibly with boundary, and let f : R ×
C((−∞, 0],M)→ Rk be a continuous map such that

f(t, ϕ) ∈ Tϕ(0)M , ∀ (t, ϕ) ∈ R× C((−∞, 0],M),

where, given p ∈M , TpM ⊆ Rk denotes the tangent space of M at p. Any map with
this property will be called a functional tangent vector field (or, briefly, a functional
field) on M .

Assume, in addition, that f is T -periodic in the first variable, with bounded
image, and inward along the boundary (in a sense to be explained). Our main
result, Theorem 3.1 below, states that the retarded functional differential equation
(RFDE) on M

x′(t) = f(t, xt) (1.1)

admits a T -periodic solution, provided that M is compact with nonzero Euler–
Poincaré characteristic, and that f verifies a suitable Lipschitz-type assumption.
Here, given t ∈ R, we adopt the standard notation xt : (−∞, 0] → M for the
function xt : θ 7→ x(t+ θ).

To prove this result we apply the classical fixed point index theory for locally
compact maps on ANRs to a sort of Poincaré T -translation operator acting in the
Banach space C([−T, 0],Rk). The idea of considering C([−T, 0],Rk) instead of the
metrizable space C((−∞, 0],M) of the initial conditions became apparent thinking
about a fruitful conversation about delay equations with Matteo Franca in which
he observed that one knows the entire past of a T -periodic function if one knows
its recent past. We are grateful to Matteo for his precious hint.

This paper is strictly related to our recent ones [1, 3, 4] in which we study
constant time lag equations of the type

x′(t) = f̃(t, x(t), x(t− 1)), (1.2)

with f̃ : R×M ×M → Rk continuous, T -periodic in the first variable, and tangent
to M in the second one; i.e.

f̃(t+ T, p, q) = f̃(t, p, q) ∈ TpM , ∀ (t, p, q) ∈ R×M ×M.

The equation (1.2) is clearly a special case of the RFDE (1.1). In fact, given
f̃ : R×M ×M → Rk as above, one can define f : R× C((−∞, 0],M)→ Rk by

f(t, ϕ) = f̃(t, ϕ(0), ϕ(−1)).

Actually in [1, 3, 4] we do not limit ourselves to the study of the existence of
T -periodic solutions, but we focus on the structure of the set of pairs (λ, x), where
λ is a real parameter and x a T -periodic solution of the equation

x′(t) = λf̃(t, x(t), x(t− 1)),

2



and we obtain global continuation results. Here we are merely concerned with
existence results, leaving the study of continuation to future investigation.

We conclude the paper with an application to motion problems for forced con-
strained systems. Precisely, we consider the following retarded functional motion
equation on a boundaryless smooth manifold X ⊆ Rs:

x′′π(t) = F (t, xt)− εx′(t), (1.3)

where

1. x′′π(t) stands for the tangential part of the acceleration x′′(t) ∈ Rs at the point
x(t) ∈ X,

2. the frictional coefficient ε is a positive constant,

3. the applied force F : R × C((−∞, 0], X) → Rs is a continuous, T -periodic
functional field on X.

We prove (see Theorem 4.1 below) that the equation (1.3) admits at least one forced
oscillation, provided that the constraint X is compact with nonzero Euler–Poincaré
characteristic and the functional field F is bounded and verifies a suitable Lipschitz-
type assumption. Such a result is obtained by applying Theorem 3.1 to the first
order RFDE on the tangent bundle TX ⊆ R2s which is equivalent to the second
order equation (1.3). The presence of a nonzero frictional coefficient allows us to
restrict the search of forced oscillations inside a compact manifold whose boundary
is obtained by cutting the noncompact tangent bundle TX with an appropriate
limiting energy.

Theorem 4.1 generalizes results given in [2] and [4] for equations with constant
time lag (see also [10] for the undelayed case). As far as we know, when the frictional
coefficient ε is zero, the problem of the existence of forced oscillations of (1.3) is
still open, even in the undelayed case. An affirmative answer, in the undelayed
situation, regarding the special constraint X = S2 (the spherical pendulum) can be
found in [11] (see also [12] for the extension to the case X = S2n).

Among the wide bibliography on RFDEs in Euclidean spaces we cite the works
of Gaines and Mawhin [13], Nussbaum [23, 24] and Mallet-Paret, Nussbaum and
Paraskevopoulos [19]. For RFDEs on manifolds we cite the papers of Oliva [25, 26].
For general reference we suggest the monograph by Hale and Verduyn Lunel [16].

2 Preliminaries

2.1 RFDE

Let, for the moment, M be an arbitrary subset of Rk. We recall the notions of
tangent cone and tangent space of M at a given point p in the closure M of M . The
definition of tangent cone is equivalent to the classical one introduced by Bouligand
in [6].
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Definition 2.1 A vector v ∈ Rk is said to be inward to M at p ∈M if there exist
two sequences {αn} in [0,+∞) and {pn} in M such that

pn → p and αn(pn − p)→ v.

The set CpM of the inward vectors to M at p is called the tangent cone of M at p.
The tangent space TpM of M at p is the vector subspace of Rk spanned by CpM .
A vector v of Rk is said to be tangent to M at p if v ∈ TpM .

To simplify some statements and definitions we put CpM = TpM = ∅ whenever
p ∈ Rk does not belong to M (this can be regarded as a consequence of Definition
2.1 if one replaces the assumption p ∈ M with p ∈ Rk). Observe that TpM is the
trivial subspace {0} of Rk if and only if p is an isolated point of M . In fact, if p
is a limit point, then, given any {pn} in M\{p} such that pn → p, the sequence{
αn(pn− p)

}
, with αn = 1/‖pn− p‖, admits a convergent subsequence whose limit

is a unit vector.
One can show that in the special and important case when M is a smooth man-

ifold with (possibly empty) boundary ∂M (a ∂-manifold for short), this definition
of tangent space is equivalent to the classical one (see for instance [20], [15]). More-
over, if p ∈ ∂M , CpM is a closed half-space in TpM (delimited by Tp∂M), while
CpM = TpM if p ∈M\∂M .

Let, as above, M be a subset of Rk. We denote by D a nontrivial closed real
interval with maxD = 0; that is, D is either (−∞, 0] or [−r, 0] with r > 0. By
C(D,M) we mean the metrizable space of the M -valued continuous functions de-
fined on D with the topology of the uniform convergence on compact subintervals
of D.

Given a continuous function x : J →M , defined on a real interval J , and given
t ∈ R such that t + D ⊆ J , we adopt the standard notation xt : D → M for the
function defined by xt(θ) = x(t+ θ).

Let h : R×C(D,M)→ Rk be a continuous map. As in the Introduction, we say
that h is a functional (tangent vector) field on M if h(t, ϕ) ∈ Tϕ(0)M for all (t, ϕ) ∈
R×C(D,M). In particular, h will be said inward (to M) if h(t, ϕ) ∈ Cϕ(0)M for all
(t, ϕ). If M is a closed subset of a boundaryless smooth manifold N ⊆ Rk, we will
say that h is away from N\M if h(t, ϕ) 6∈ Cϕ(0)(N\M) for all (t, ϕ) ∈ R×C(D,M).
Notice that this condition is satisfied whenever ϕ(0), which is a point of M , is not in
the topological boundary of M relative to N since, in that case, Cϕ(0)(N\M) = ∅.

In this paper we are interested in retarded functional differential equations
(RFDE for short) of the type

x′(t) = h(t, xt), (2.1)

where h : R× C(D,M)→ Rk is a functional field on M .
By a solution of (2.1) we mean a continuous function x : J → M , defined on

a real interval J with inf J = −∞, which verifies eventually the equality x′(t) =
h(t, xt). That is, x is a solution of (2.1) if there exists t̄, with −∞ ≤ t̄ < sup J ,
such that x is C1 on the subinterval (t̄, sup J) of J and verifies x′(t) = h(t, xt) for
all t ∈ J with t > t̄.
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Observe that, when D = [−r, 0], there is a one-to-one correspondence between
our notion of solution and the classical one which can be found e.g. in [16] (see
also [25]). The correspondence is the one that assigns to any solution of (2.1) its
restriction to the interval [t̄− r, sup J).

Remark 2.1 Any equation of the form (2.1) with D = [−r, 0] can be regarded as an
equation of the same type with D = (−∞, 0], in the sense that to any equation (2.1)
with D = [−r, 0] can be associated an equivalent equation of the same type with
D = (−∞, 0]. In other words, given a functional field h : R× C([−r, 0],M) → Rk,
there exists a functional field g : R× C((−∞, 0],M)→ Rk such that the equation

x′(t) = g(t, xt) (2.2)

has the same set of solutions as (2.1). To see this, it is enough to define g :
R× C((−∞, 0],M)→ Rk by

g(t, ϕ) = h(t, ϕ|[−r,0]),

for any (t, ϕ) ∈ R× C((−∞, 0],M).

As a consequence of Remark 2.1, it is not restrictive to study the broader class
of RFDE’s of the type

x′(t) = g(t, xt), (2.3)

where g : R×C((−∞, 0],M)→ Rk is a functional field on M . Therefore, from now
on we will focus on this kind of equations.

2.2 Initial value problem

We are now interested in the following initial value problem:{
x′(t) = g(t, xt), t > 0,
x(t) = η(t), t ≤ 0, (2.4)

where M is a subset of Rk, g : R×C((−∞, 0],M)→ Rk is a functional field on M ,
and η : (−∞, 0]→M is a continuous map.

A solution of problem (2.4) is a solution x : J →M of (2.3) such that sup J > 0,
x′(t) = g(t, xt) for t > t̄ = 0, and x(t) = η(t) for t ≤ 0.

The following technical lemma regards the existence of a persistent solution of
problem (2.4).

Lemma 2.1 Let M be a compact subset of a boundaryless smooth manifold N ⊆
Rk, and g a functional field on M which is away from N\M . Suppose that g is
bounded. Then problem (2.4) admits at least one solution defined on the whole real
line.

Proof. We define a suitable extension g̃ : R × C((−∞, 0],Rk) → Rk of g. Let
U ⊆ Rk be a tubular neighborhood of N and let ρ : U → N be the associated
retraction (if N is an open subset of Rk, then U = N and ρ is the identity). Fix
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δ > 0 such that Mδ = {p ∈ U : dist(p,M) ≤ δ} is a compact neighborhood of M in
U .

We extend g to a functional field g̃ : R×C((−∞, 0],Rk)→ Rk with the following
properties:

i) g̃ is bounded;

ii) g̃(t, ϕ) = 0 if dist(ϕ(0),M) ≥ δ;

iii) g̃(t, ϕ) ∈ Tρ(ϕ(0))N for all (t, ϕ) ∈ R× C((−∞, 0],Rk) such that ϕ(0) ∈Mδ.

Observe that the existence of a map g̃ satisfying the first two properties is
ensured by the Tietze Extension Theorem. In fact, C((−∞, 0],M) and the set {ϕ ∈
C((−∞, 0],Rk) : dist(ϕ(0),M) ≥ δ} are two disjoint closed subsets of the metrizable
space C((−∞, 0],Rk). Moreover, we may assume that g̃ has the additional property
iii). In fact, if this is not the case, it is sufficient to consider the orthogonal projection
of g̃(t, ϕ) onto the space Tρ(ϕ(0))N .

Now, consider the following auxiliary problem depending on n ∈ N:{
x′(t) = g̃(t, xt− 1

n
), t > 0,

x(t) = η(t), t ≤ 0.
(2.5)

Clearly problem (2.5) has a solution defined on (−∞, 1/n] and, given a solution on
(−∞, β], one can extend it to the interval (−∞, β + 1/n]. Thus, problem (2.5) has
a global solution xn : R→ Rk.

From Ascoli’s Theorem it follows that there exists a subsequence of {xn(t)}
that converges to a continuous function x(t), uniformly on compact subintervals of
R. Let us assume, without loss of generality, that, as n → ∞, {xn(t)} converges
(uniformly on compact subintervals of R to a continuous function x(t)).

Observe that problem (2.5) is equivalent to the following integral equation:

x(t) = η(0) +
∫ t

0

g̃(s, xs− 1
n

) ds, t ≥ 0.

Moreover, for any given t > 0, the sequence {g̃(t, xn
t− 1

n

)} converges to g̃(t, xt). Thus,
g̃ being bounded, from Lebesgue’s Dominated Convergence Theorem we get

x(t) = η(0) +
∫ t

0

g̃(s, xs) ds, t ≥ 0.

Therefore, x′(t) = g̃(t, xt) for all t > 0, and the assertion follows if we prove that
x(t) lies entirely in M .

Let us show first that x(t) ∈ N for all t ≥ 0 (this could be false if g̃ were an
arbitrary continuous extension of g). Clearly x(t) ∈ Mδ for all t ≥ 0 (recall that
g̃(t, ϕ) = 0 if ϕ(0) 6∈Mδ). Thus, the C1 function

σ(t) = ‖x(t)− ρ(x(t))‖2

is well defined for t ≥ 0 and verifies σ(0) = 0. Assume, by contradiction, that
x(t) /∈ N for some t > 0. This means that σ(t) > 0 for some t > 0 and, consequently,
its derivative must be positive at some τ > 0. That is,

σ′(τ) = 2
〈
x(τ)− ρ(x(τ)), g̃(τ, xτ )− w(τ)

〉
> 0,
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where 〈·, ·〉 denotes the inner product in Rk, and w(τ) is the derivative at t = τ of
the curve t 7→ ρ(x(t)). This is a contradiction since both the vectors g̃(τ, xτ ) and
w(τ) are tangent to N at ρ(x(τ)) and, consequently, orthogonal to x(τ)− ρ(x(τ)).

It remains to show that x(t) ∈M for all t > 0. Let s = inf{t > 0 : x(t) ∈ N\M},
and assume by contradiction s < +∞ (here we adopt the convention inf ∅ = +∞).
Note that x(s) ∈ M since M is compact. Let {tn} be a sequence converging to s
and such that x(tn) ∈ N\M . We have tn > s for all n and

lim
n→∞

x(tn)− x(s)
tn − s

= x′(s) = g̃(s, xs) ∈ Cx(s)(N\M).

Now, the function xs takes values in M and, consequently, we have g(s, xs) =
g̃(s, xs) ∈ Cx(s)(N\M), contradicting the fact that the functional field g is away
from N\M . 2

From now on M will be a compact ∂-manifold in Rk. In this case one may
regard M as a subset of a smooth boundaryless manifold N of the same dimension
as M (see e.g. [17], [21]). It is not hard to show that a functional field g on M is
away from the complement N\M of M if and only if it is strictly inward ; meaning
that g is inward and g(t, ϕ) 6∈ Tϕ(0)∂M for all (t, ϕ) ∈ R×C((−∞, 0],M) such that
ϕ(0) ∈ ∂M .

We say that a subset Q of C((−∞, 0],M) is a brush if there exists σ ≤ 0 such
that ϕ(θ) = ψ(θ) for all ϕ,ψ ∈ Q and θ ≤ σ. We will make the following assumption:

(H) Given δ > 0 and any compact brush Q of C((−∞, 0],M), there exists L ≥ 0
such that

‖g(t, ϕ)− g(t, ψ)‖ ≤ L sup
s≤0
‖ϕ(s)− ψ(s)‖ (2.6)

for all t ∈ [0, δ] and ϕ,ψ ∈ Q.

Remark 2.2 Assumption (H) extends the one given in [16]. Indeed, in that mono-
graph the authors study equations of the type

x′(t) = h(t, xt),

where h : R×C([−r, 0],Rk)→ Rk is Lipschitz in the second variable in each compact
subset of R× C([−r, 0],Rk). Now, define g : R× C((−∞, 0],Rk)→ Rk by

g(t, ϕ) = h(t, ϕ|[−r,0])

and observe that the functional field g clearly verifies (H).

We will use the following folk result, whose proof is given for the sake of com-
pleteness.

Lemma 2.2 Let α : [0, b]→ Rk be a C1 function such that α(0) = 0 and

‖α′(t)‖ ≤ c sup
0≤s≤t

‖α(s)‖, t ∈ [0, b]

for some constant c ≥ 0. Then, α(t) = 0 for all t ∈ [0, b].
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Proof. Let 0 < δ ≤ b be such that δc < 1. Let τ ∈ [0, δ] be such that ‖α(τ)‖ =
max

0≤s≤δ
‖α(s)‖. We have

‖α(τ)‖ = ‖α(τ)− α(0)‖ ≤ τ sup
0≤s≤τ

‖α′(s)‖ ≤ δc‖α(τ)‖.

Being δc < 1, this inequality is verified if and only if α(τ) = 0. Thus α(t) = 0 for
any t ∈ [0, δ], and the assertion follows in a finite number of steps. 2

The following proposition regards existence and uniqueness of solutions of prob-
lem (2.4) in the case when g is inward, bounded, and verifies (H).

Proposition 2.1 Let M ⊆ Rk be a compact ∂-manifold and g an inward functional
field on M . Suppose that g is bounded. Then, problem (2.4) admits a solution
defined on the whole real line. Moreover, if g verifies (H), then the solution is
unique.

Proof. As already pointed out, we may regard M as a subset of a smooth bound-
aryless manifold N of the same dimension as M . Define ν : M → Rk as follows.
Given p ∈ ∂M , let µ(p) be the unique unit vector belonging to CpM ∩ (Tp∂M)⊥.
Then, extend µ : ∂M → Rk by Tietze’s Theorem to a map from M to Rk and, for
any p ∈M , consider its orthogonal projection ν(p) onto the space TpM . Given any
n ∈ N, define the strictly inward functional field gn : R × C((−∞, 0],M) → Rk by
gn(t, ϕ) = g(t, ϕ) + 1

nν(ϕ(0)), and let xn : R→M be a solution of the initial value
problem {

x′(t) = gn(t, xt), t > 0,
x(t) = η(t), t ≤ 0,

whose existence is ensured by Lemma 2.1. As in the proof of that lemma, one
can show that {xn(t)} has a subsequence which converges uniformly on compact
subintervals of R to a solution of problem (2.4) defined on the whole real line.

Assume now that g verifies (H). Let x1, x2 : R → M be two solutions of prob-
lem (2.4), and let b > 0. Then, the family of functions{

xit ∈ C((−∞, 0],M) : t ∈ [0, b], i = 1, 2
}
,

which is clearly a brush, is a compact set, since it is the image of two curves in
C((−∞, 0],M) both defined on the compact interval [0, b]. Thus, there exists L ≥ 0
such that for any t ∈ [0, b] we have

‖g(t, x2
t )− g(t, x1

t )‖ ≤ L sups≤0 ‖x2
t (s)− x1

t (s)‖ = L sups≤t ‖x2(s)− x1(s)‖
= L sup0≤s≤t ‖x2(s)− x1(s)‖.

Now putting y = x2 − x1, we get ‖y(t)‖ = 0 for t ≤ 0 and

‖y′(t)‖ = ‖g(t, x2
t )− g(t, x1

t )‖ ≤ L sup
0≤s≤t

‖y(s)‖

for t ∈ [0, b]. Hence, the assertion follows from Lemma 2.2. 2
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2.3 Fixed point index

Here we summarize the main properties of the fixed point index in the context of
absolute neighborhood retracts (ANRs). Let X be a metric ANR and consider a
locally compact (continuous) X-valued map k defined on a subset D(k) of X. Given
an open subset U of X contained in D(k), if the set of fixed points of k in U is
compact, the pair (k, U) is called admissible. It is known that to any admissible
pair (k, U) we can associate an integer indX(k, U) - the fixed point index of k in
U - that satisfies properties which are analogous to those of the classical Leray–
Schauder degree [18]. The reader can see for instance [5], [14], [22] or [24] for a
comprehensive presentation of the index theory for ANRs. As regards connections
with algebraic topological concepts we cite the textbooks [7] and [27].

For the reader’s convenience we summarize the main properties of the index.

i) (Existence) If indX(k, U) 6= 0, then k admits at least one fixed point in U .

ii) (Normalization) If X is compact, then indX(k,X) = Λ(k), where Λ(k) denotes
the Lefschetz number of k.

iii) (Additivity) Given two disjoint open subsets U1, U2 of U such that any fixed
point of k in U is contained in U1 ∪ U2, then indX(k, U) = indX(k, U1) +
indX(k, U2).

iv) (Excision) Given an open subset U1 of U such that k has no fixed points in
U\U1, then indX(k, U) = indX(k, U1).

v) (Commutativity) Let X and Y be metric ANRs. Suppose that U and V are
open subsets of X and Y respectively and that k : U → Y and h : V → X
are locally compact maps. Assume that one of the sets of fixed points of hk
in k−1(V ) or kh in h−1(U) is compact. Then the other set is compact as well
and indX(hk, k−1(V )) = indY (kh, h−1(U)).

vi) (Homotopy invariance) Let H : [0, 1] × U → X be a locally compact map
such that the set {(λ, x) ∈ [0, 1] × U : H(λ, x) = x} is compact. Then
indX(H(λ, ·), U) is independent of λ.

3 Existence of periodic solutions

From now on we will adopt the following notation. By M we mean a compact
∂-manifold in Rk. Given T > 0, by C0([−T, 0],M) we mean the (complete) metric
space of the continuous functions ϕ : [−T, 0] → M such that ϕ(−T ) = ϕ(0),
endowed with the metric induced by the Banach space C([−T, 0],Rk).

Since M is an ANR, it is not difficult to show (see e.g. [8]) that the metric space
C0([−T, 0],M) is an ANR as well. For the sake of simplicity, from now on, the
metric space C0([−T, 0],M) will be denoted by M̃0.

Let f : R × C((−∞, 0],M) → Rk be an inward functional field on M which is
T -periodic in the first variable. Assume that f is bounded and verifies (H). We are
interested in the existence of a T -periodic solution of the RFDE

x′(t) = f(t, xt).

9



Given ϕ ∈ M̃0, we will denote by ϕ̂ the unique element of C((−∞, 0],M) ob-
tained by considering the T -periodic backward extension of the function ϕ; i.e. ϕ̂ is
defined as follows:

ϕ̂(θ) = ϕ(θ + nT ) if θ ∈ [−(n+ 1)T,−nT ], n ∈ N.

Let us observe that M̃0 is bounded and closed as a subset of the Banach space
C([−T, 0],Rk). Hence, M̃0 being an ANR, there exist a bounded open subset U of
C([−T, 0],Rk) containing M̃0 and a retraction ρ of U onto M̃0.

Now, given λ ∈ [0,+∞) consider the operator

Pλ : U → C([−T, 0],Rk)

defined as Pλ(ψ)(s) = x(s+ T ), where x is the unique solution, ensured by Propo-
sition 2.1, of the following initial value problem:{

x′(t) = λ f(t, xt), t > 0,
x(t) = ρ̂(ψ)(t), t ≤ 0.

(3.1)

The following two propositions regard some crucial properties of Pλ. The proof
of Proposition 3.1 is straightforward and, therefore, it is omitted.

Proposition 3.1 The set of fixed points of Pλ is contained in M̃0. Moreover, the
fixed points of Pλ correspond to the T -periodic solutions of the equation

x′(t) = λ f(t, xt)

in the following sense: ψ is a fixed point of Pλ if and only if it is the restriction to
[−T, 0] of a T -periodic solution.

Proposition 3.2 The map P : [0, 1] × U → C([−T, 0],Rk), defined by (λ, ψ) 7→
Pλ(ψ), is continuous with relatively compact image.

Proof. To show that P is continuous, let {ψn} be a sequence in U which converges
to ψ, and let {λn} be a sequence in [0, 1] converging to λ. Since ρ is continuous, we
have ρ(ψn)→ ρ(ψ). Thus, ρ̂(ψn)(θ)→ ρ̂(ψ)(θ) uniformly for θ ∈ (−∞, 0].

Now, let xn : R→M be the unique solution (ensured by Proposition 2.1) of the
initial value problem {

x′(t) = λnf(t, xt), t > 0,
x(t) = ρ̂(ψn)(t), t ≤ 0.

As in the proof of Lemma 2.1, one can show that every subsequence of {xn(t)} has a
subsequence which converges uniformly on compact subintervals of R to the unique
solution x(t) of problem (3.1). Therefore, xn(t) → x(t) uniformly on compact
subintervals of R and, consequently, P (λn, ψn) → P (λ, ψ). This shows that the
map P is continuous.

The compactness of P follows from Ascoli’s Theorem. 2

We are now ready to establish our existence result.
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Theorem 3.1 Let M be a compact ∂-manifold with nonzero Euler–Poincaré char-
acteristic, and f : R×C((−∞, 0],M)→ Rk an inward functional field on M which
is T -periodic in the first variable. Suppose that f is bounded and verifies (H). Then,
the equation

x′(t) = f(t, xt)

admits a T -periodic solution.

Proof. First we observe that, by Propositions 3.1 and 3.2, the set {(λ, ψ) ∈
[0, 1]× U : P (λ, ψ) = ψ} is a compact subset of [0, 1]× M̃0. Hence, the fixed point
index indE(Pλ, U), where E = C([−T, 0],Rk), is well defined and independent of
λ ∈ [0, 1].

Now, if λ = 0, given ψ ∈ U , problem (3.1) becomes{
x′(t) = 0, t > 0,
x(t) = ρ̂(ψ)(t), t ≤ 0.

Any solution of this problem for t ≥ 0 is constantly equal to ρ(ψ)(0). It follows that

P0(ψ)(s) = ρ(ψ)(0), s ∈ [−T, 0].

Hence, P0 sends U into the subset of the constant M -valued functions (which can
be identified with M), and its restriction P0|M : M →M coincides with the identity
IM of M . By the commutativity and normalization properties of the fixed point
index we get

indE(P0, U) = indM (P0,M) = Λ(IM ) = χ(M) 6= 0.

Let us observe, to help the reader, that the first equality in the above formula
follows from the commutativity property of the fixed point index, recalled in the
above section, with P0|U : U →M in place of k and P0|M : M → E in place of h.

Finally, indE(P1, U) 6= 0 and the existence property implies that the operator
P1 has a fixed point. The assertion follows from Proposition 3.1. 2

We close this section with the following example which illustrates how Theo-
rem 3.1 can be applied.

Example 3.1 Let g : R×Rk → Rk be continuous, T -periodic in the first variable,
and locally Lipschitz in the second one. Let µ : (−∞, 0] → R be a function of
bounded variation and consider the following RFDE containing a Riemann–Stieltjes
integral:

x′(t) = g(t, x(t)) +
∫ 0

−∞
x(t+ θ) dµ(θ).

The equation is of the form x′(t) = f(t, xt), where

f(t, ϕ) = g(t, ϕ(0)) +
∫ 0

−∞
ϕ(θ) dµ(θ)

is well defined for any pair (t, ϕ) with t ∈ R and ϕ : (−∞, 0]→ Rk continuous and
bounded.
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Let k denote the total variation of µ in (−∞, 0] and assume there exists c > 0
such that the inner product 〈g(t, x), x〉 is less than −kc2 for any x ∈ Rk with
‖x‖ = c. Let M = B(0, c), where B(0, c) denotes the open ball in Rk centered
at 0 with radius c. Then, χ(M) = 1 since M is contractible. One can easily
check that the restriction of the map f to R×C((−∞, 0],M) is a T -periodic inward
functional field on the compact ∂-manifold M . Moreover, this restriction is bounded
and verifies (H). Hence, Theorem 3.1 applies yielding the existence of a T -periodic
solution for the given RFDE.

4 Applications to second order delay differential
equations on manifolds

In this section we apply the results obtained above to some motion problems for
forced constrained systems.

Let X ⊆ Rs be a boundaryless manifold. Given q ∈ X, let (TqX)⊥ ⊆ Rs denote
the normal space of X at q. Since Rs = TqX ⊕ (TqX)⊥, any vector u ∈ Rs can
be uniquely decomposed into the sum of the parallel (or tangential) component
uπ ∈ TqX of u at q and the normal component uν ∈ (TqX)⊥ of u at q. By

TX = {(q, v) ∈ Rs × Rs : q ∈ X, v ∈ TqX}

we denote the tangent bundle of X, which is a smooth manifold containing a natural
copy of X via the embedding q 7→ (q, 0). The natural projection of TX onto X is
just the restriction (to TX as domain and to X as codomain) of the projection of
Rs × Rs onto the first factor.

Given a functional field F : R×C((−∞, 0], X)→ Rs which is T -periodic in the
first variable, consider the following retarded functional motion equation on X:

x′′π(t) = F (t, xt)− εx′(t), (4.1)

where

i) x′′π(t) stands for the parallel component of the acceleration x′′(t) ∈ Rs at the
point x(t);

ii) the frictional coefficient ε is a positive real constant.

By a solution of (4.1) we mean a continuous function x : J → X, defined on a
real interval J with inf J = −∞, which verifies eventually the equality (4.1). That
is, x is a solution of (4.1) if there exists −∞ ≤ t̄ < sup J such that x is C2 on the
subinterval (t̄, sup J) of J and verifies

x′′π(t) = F (t, xt)− εx′(t)

for all t ∈ J with t > t̄. A forced oscillation of (4.1) is a solution which is T -periodic
and globally defined on J = R.

It is known that, associated with X ⊆ Rs, there exists a unique smooth map
R : TX → Rs, called the reactive force (or inertial reaction), with the following
properties:
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(a) R(q, v) ∈ (TqX)⊥ for any (q, v) ∈ TX;

(b) R is quadratic in the second variable;

(c) any C2 curve γ : (a, b)→ X verifies the condition

γ′′ν (t) = R(γ(t), γ′(t)), ∀t ∈ (a, b),

i.e., for each t ∈ (a, b), the normal component γ′′ν (t) of γ′′(t) at γ(t) equals
R(γ(t), γ′(t)).

The map R is strictly related to the second fundamental form on X and may
be interpreted as the reactive force due to the constraint X.

By properties (a) and (c) above, equation (4.1) can be equivalently written as

x′′(t) = R(x(t), x′(t)) + F (t, xt)− εx′(t). (4.2)

Notice that, if the above equation reduces to the so-called inertial equation

x′′(t) = R(x(t), x′(t)),

one obtains the geodesics of X as solutions.
Equation (4.2) can be written as a RFDE on TX as follows:{

x′(t) = y(t),
y′(t) = R(x(t), y(t)) + F (t, xt)− εy(t).

This makes sense since the map G : R× C((−∞, 0], TX)→ Rs × Rs, defined as

G(t, (ϕ,ψ)) = (ψ(0), R(ϕ(0), ψ(0)) + F (t, ϕ)− εψ(0)), (4.3)

is a functional field on TX. Indeed, observe that the condition

G(t, (ϕ,ψ)) ∈ T(ϕ(0),ψ(0))TX

is verified for all (t, (ϕ,ψ)) ∈ R × C((−∞, 0], TX) (see, for example, [9] for more
details).

Theorem 4.1 below extends two results obtained in [2] and [4]. The proof is
based on Theorem 3.1 above.

Theorem 4.1 Let X ⊆ Rs be a compact boundaryless manifold whose Euler–
Poincaré characteristic χ(X) is different from zero, and F : R× C((−∞, 0], X)→
Rs a functional field which is T -periodic in the first variable. Suppose that F is
bounded and verifies (H). Then, the equation (4.1) has a forced oscillation.

Proof. As we already pointed out, the equation (4.1) is equivalent to the following
first order system on TX:{

x′(t) = y(t),
y′(t) = R(x(t), y(t)) + F (t, xt)− εy(t). (4.4)
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Define G : R × C((−∞, 0], TX) → Rs × Rs as in (4.3). Then, G is a T -periodic
functional field on TX.

Given c > 0, define

Mc =
{

(q, v) ∈ TX : ‖v‖ ≤ c
}
.

It is not difficult to show that Mc ⊆ TX is a compact ∂-manifold in Rs × Rs with
boundary

∂Mc =
{

(q, v) ∈Mc : ‖v‖ = c
}
.

Now, let Gc be the restriction of the map G to R × C((−∞, 0],Mc). Clearly,
Gc is a T -periodic functional field on Mc which verifies (H). Let us show that Gc
is bounded. Indeed, the map F is bounded by assumption, and the compactness
of Mc implies that the restriction of the map (q, v) 7→ (v,R(q, v) − εv) to Mc is
bounded as well. Therefore Gc is bounded, being the sum of two bounded maps.

We claim that, if c > 0 is large enough, then Gc is inward on Mc. To see this,
observe that the tangent cone of Mc at (q, v) ∈ ∂Mc is the half subspace of T(q,v)Mc

given by
C(q,v)Mc =

{
(q̇, v̇) ∈ T(q,v)(TX) : 〈v, v̇〉 ≤ 0

}
,

where 〈·, ·〉 denotes the inner product in Rs. Thus we have to show that, if c > 0 is
large enough, then Gc(t, (ϕ,ψ)) belongs to C(ϕ(0),ψ(0))(Mc) for any t ∈ R and any
pair (ϕ,ψ) ∈ C((−∞, 0],Mc) such that (ϕ(0), ψ(0)) ∈ ∂Mc. That is, we need to
prove that, for any t and any pair (ϕ,ψ) with ‖ψ(0)‖ = c, we have〈

ψ(0), R(ϕ(0), ψ(0)) + F (t, ϕ)− εψ(0)
〉

=〈
ψ(0), R(ϕ(0), ψ(0))

〉
+
〈
ψ(0), F (t, ϕ)

〉
− ε
〈
ψ(0), ψ(0)

〉
≤ 0.

To see this, observe that
〈
ψ(0), R(ϕ(0), ψ(0))

〉
= 0 since R(ϕ(0), ψ(0)) belongs to

(Tϕ(0)X)⊥. Moreover,
〈
ψ(0), ψ(0)

〉
= c2 since (ϕ(0), ψ(0)) ∈ ∂Mc, and〈

ψ(0), F (t, ϕ)
〉
≤ ‖ψ(0)‖‖F (t, ϕ)‖ ≤ K‖ψ(0)‖,

where K is such that ‖F (t, ϕ)‖ ≤ K for all (t, ϕ) ∈ R× C((−∞, 0], X). Thus,〈
ψ(0), R(ϕ(0), ψ(0)) + F (t, ϕ)− εψ(0)

〉
≤ Kc− εc2.

This shows that, if we choose c > K/ε, then Gc is a strictly inward functional field
on Mc, as claimed.

Finally, observe that χ(Mc) = χ(X) 6= 0 since Mc and X are homotopically
equivalent (X being a deformation retract of TX), and χ(X) 6= 0 by assumption.
Therefore, given c > K/ε, we can apply Theorem 3.1 with M = Mc and f = Gc,
and we get that system (4.4) admits a T -periodic solution in Mc. This completes
the proof. 2
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