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Abstract. We show that a global continuation result for T -periodic solutions of delay differential

equations on manifolds proved by the authors in a previous paper still holds when the period T is

smaller than the delay. As an application we get an existence result for fast forced oscillations of motion

problems with delay on compact, topologically nontrivial, manifolds.

1. INTRODUCTION

Let M ⊆ Rk be a smooth differentiable manifold with (possibly empty) boundary (a ∂-manifold for
short). Given r > 0, consider the following delay differential equation depending on a real parameter λ:

x′(t) = λf
(
t, x(t), x(t− r)

)
, λ ≥ 0, (1.1)

where f : R×M ×M → Rk is a continuous map which is T -periodic in the first variable and tangent to
M in the second one. Namely, f is such that

f(t+ T, p, p̂) = f(t, p, p̂) ∈ TpM , ∀ (t, p, p̂) ∈ R×M ×M,

where TpM ⊆ Rk denotes the tangent space of M at p.
By a T -periodic pair of the above equation we mean a pair (λ, x), where λ ≥ 0 and x : R → M is a

T -periodic solution of (1.1) corresponding to λ. The set of the T -periodic pairs of (1.1) is regarded as
a subset of [0,+∞)× CT (M), where CT (M) is the set of the continuous T -periodic maps from R to M
with the metric induced by the Banach space CT (Rk) of the continuous T -periodic Rk-valued maps (with
the standard supremum norm). A T -periodic pair (λ, x) will be called trivial if λ = 0. In this case x is a
constant M -valued map and will be identified with a point of M .

In [1] we proved a continuation result for the T -periodic solutions of (1.1). Namely, under the assump-
tions that M is compact with nonzero Euler–Poincaré characteristic, that T ≥ r, and that f satisfies
a natural inward condition along ∂M (when nonempty), we proved the existence of an unbounded con-
nected branch of nontrivial T -periodic pairs whose closure intersects M (regarded as the set of the trivial
T -periodic pairs) in the so-called set of bifurcation points. This unusual notion of bifurcation goes back to
Ambrosetti and Prodi: in [12] they used the expression atypical bifurcation (also called co-bifurcation in
[6]) since, in their case, the set of trivial solutions is the kernel of a linear operator instead of the typical
λ-axis.

The continuation result in [1] extends an analogous one of the last two authors for the undelayed
case (see [7] and [8]), and is proved by applying the fixed point index theory for locally compact maps
on ANRs to a Poincaré-type T -translation operator Pλ acting on the space C([−r, 0],M) of the initial
conditions for the equation (1.1). Here C([−r, 0],M) denotes the space of the continuous M -valued
functions defined on the interval [−r, 0] with the topology induced by the Banach space C([−r, 0],Rk).
Since M is a neighborhood retract of Rk, it is not difficult to show (see e.g. [4]) that C([−r, 0],M) is
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a neighborhood retract of C([−r, 0],Rk). Therefore the classical fixed point index theory applies to the
operator Pλ provided that it is locally compact; and this happens if and only if the period T is not smaller
than the delay r (see [1]).

Our first purpose, here, is to show how to extend, in a very simple way, the continuation result obtained
in [1] just by removing the assumption T ≥ r (see Theorem 2.4 below). The idea of how to tackle the
case T < r became apparent thinking about a fruitful conversation regarding periodic delay equations
with Matteo Franca in which he observed that one knows the entire past of a T -periodic function if one
knows its past up to −T . We are grateful to Matteo for his precious hint.

The second, and main, purpose of the paper is an application of Theorem 2.4 to second order delay
differential equations on manifolds: we show that, in presence of friction, any constrained periodic motion
problem with delay admits forced oscillations, provided that the constraint is a smooth compact bound-
aryless manifold with nonzero Euler–Poincaré characteristic (see Theorem 4.1 below). As we shall see,
this application to second order equations, which can be regarded as first order equations on noncompact
manifolds, is made possible by two facts: 1) the result for first order equations is given on manifolds with
boundary; 2) the presence of friction implies that the speed of any forced oscillation cannot be too large.

Theorem 4.1 generalizes a result of the last two authors regarding the undelayed case (see [9]) as well
as a result for slow forced oscillations obtained by the authors in [2]. We ask whether or not the existence
of forced oscillations holds true even in the frictionless case, provided that the constraint is compact with
nonzero Euler–Poincaré characteristic. We believe the answer to this question is affirmative; but, as far
as we know, this problem is still unsolved even in the undelayed case. An affirmative answer, in the
undelayed situation, regarding the special constraint S2 (the spherical pendulum) can be found in [10].
See also [11] for the extension to the case in which the constraint is S2n.

2. GLOBAL CONTINUATION AND BIFURCATION

Let X be an arbitrary subset of Rk. We recall the notions of tangent cone and tangent space of X at
a given point p in the closure X of X. The definition of tangent cone we give below is equivalent to the
classical one introduced by Bouligand in [3].

Definition 2.1. A vector v ∈ Rk is said to be inward to X at p ∈ X if there exist two sequences {αn}
in [0,+∞) and {pn} in X such that

pn → p and αn(pn − p)→ v.

The set CpX of the vectors which are inward to X at p is called the tangent cone of X at p. The tangent
space TpX of X at p is the vector subspace of Rk spanned by CpX. A vector v of Rk is said to be tangent
to X at p if v ∈ TpX.

As in the previous section, let M ⊆ Rk denote a smooth ∂-manifold. It is known that in this case the
tangent space TpM has the same dimension as M for all p ∈ M . Moreover, if p is in the boundary ∂M
of M , CpM is a closed half-space in TpM delimited by Tp(∂M). If p ∈ M\∂M , then CpM is a vector
subspace of Rk and, consequently, coincides with TpM . A tangent vector field on M is a continuous map
w : M → Rk such that w(p) ∈ TpM for all p ∈ M . If, in particular, w is such that w(p) ∈ CpM for all
p ∈M , then w is a tangent vector field on M and is said to be inward.

As before, let f : R×M ×M → Rk be a continuous map which is T -periodic in the first variable and
such that f(t, p, p̂) ∈ TpM for all (t, p, p̂) ∈ R ×M ×M . Given a delay r > 0, consider the following
equation depending on a parameter λ ≥ 0:

x′(t) = λf
(
t, x(t), x(t− r)

)
. (2.1)
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An element p0 ∈ M will be called a bifurcation point of (2.1) if every neighborhood of (0, p0) in
[0,+∞)×CT (M) contains a nontrivial T -periodic pair. The following result provides a necessary condition
for a point p0 ∈M to be a bifurcation point.

Proposition 2.2. Assume that p0 ∈ M is a bifurcation point of the equation (2.1). Then the tangent
vector field w : M → Rk defined by

w(p) =
1
T

∫ T

0

f(t, p, p) dt

vanishes at p0.

Proof. By assumption there exists a sequence {(λn, xn)} of T -periodic pairs such that λn > 0, λn → 0,
and xn(t)→ p0 uniformly on R. Given n ∈ N, since xn(T ) = xn(0) and λn 6= 0, we get∫ T

0

f
(
t, xn(t), xn(t− r)

)
dt = 0,

and the assertion follows passing to the limit. �

Theorem 2.4 below provides a sufficient condition for the existence of a bifurcation point in M . More
precisely, under suitable assumptions on M and f , it asserts that (2.1) admits an unbounded and con-
nected set Σ of nontrivial T -periodic pairs whose closure intersects M (regarded as the set of the trivial
T -periodic pairs). Thus, CT (M) being bounded, Σ is necessarily unbounded with respect to λ, and this
ensures the existence of a T -periodic solution of the equation (2.1) for each λ ≥ 0.

We need the following simple result. The proof is straightforward and will be omitted.

Lemma 2.3. Let n ∈ Z be such that s := r − nT > 0. Then, given any λ ≥ 0, equation (2.1) and

x′(t) = λf
(
t, x(t), x(t− s)

)
(2.2)

have the same T -periodic solutions.

Theorem 2.4. Let M ⊆ Rk be a compact ∂-manifold with nonzero Euler–Poincaré characteristic, and
let f : R×M ×M → Rk be continuous and such that

f(t+ T, p, p̂) = f(t, p, p̂) ∈ CpM , ∀ (t, p, p̂) ∈ R×M ×M.

Then, the equation (2.1) admits an unbounded connected set of nontrivial T -periodic pairs whose closure
meets the set of the trivial T -periodic pairs. In particular, the equation

x′(t) = f
(
t, x(t), x(t− r)

)
has a T -periodic solution.

Proof. If T ≥ r, the assertion follows directly from Theorem 4.6 in [1]. If T < r, there exists n such that
0 < r − nT ≤ T . Taking s := r − nT , Lemma 2.2 ensures that

x′(t) = λf
(
t, x(t), x(t− s)

)
has the same set of T -periodic pairs as the equation (2.1); and the assertion follows again from Theorem
4.6 in [1]. �

Observe that from Proposition 2.2 and Theorem 2.4 we can deduce the following well known conse-
quence of the Poincaré–Hopf Theorem: If w is an inward tangent vector field on a compact ∂-manifold
with nonzero Euler–Poincaré characteristic, then w must vanish at some point.
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3. SOME EXAMPLES

In this section we give three examples illustrating how Theorem 2.4 can be applied. In the first one
M ⊆ Rk is the closure of an open ball; in the second one M is an annulus in R2n+1; and in the third one
M is a (two dimensional) sphere in R3. As before, any point p ∈ M will be identified with the constant
function which assigns p to any t ∈ R. All the maps are tacitly assumed to be continuous.

Example 3.1. Let f : R×Rk ×Rk → Rk be T -periodic in the first variable, and assume that the inner
product 〈f(t, p, p̂), p〉 is negative for ‖p‖ large and all (t, p̂) ∈ R× Rk. Let us prove that the equation

x′(t) = λf
(
t, x(t), x(t− 1)

)
(3.1)

admits a connected branch of T -periodic pairs (λ, x) ∈ (0,+∞) × CT (Rk) which is unbounded with
respect to λ and whose closure in [0,+∞) × CT (Rk) contains a pair of the type (0, p0) with p0 ∈ Rk.
Thus p0 is a bifurcation point of (3.1) and, by Proposition 2.2, one has w(p0) = 0, where w : Rk → Rk is
the average wind velocity defined by

w(p) =
1
T

∫ T

0

f(t, p, p) dt.

By assumption, there exists R > 0 such that 〈f(t, p, p̂), p〉 is negative for ‖p‖ = R and all (t, p̂) ∈ R×Rk.
Let M = B(0, R), where B(0, R) denotes the open ball in Rk centered at 0 with radius R. Clearly, the
vector f(t, p, p̂) points inward M for each (t, p, p̂) ∈ R × M × M . Moreover, χ(M) = 1 since M is
contractible. Hence, Theorem 2.4 applies to the equation (3.1).

Example 3.2. Let k ∈ N be odd and let f : R × Rk × Rk → Rk be T -periodic in the first variable.
Assume that f(t, p, p̂) is centrifugal for ‖p‖ > 0 small and centripetal for ‖p‖ large. Let us show that the
equation

x′(t) = f
(
t, x(t), x(t− 1)

)
has a T -periodic solution x(t) satisfying the condition x(t) 6= 0 for all t ∈ R. Incidentally, observe that the
above equation admits the trivial solution since, f being continuous, as a consequence of the centrifugal
hypothesis on f we must have f(t, 0, p̂) = 0 for all (t, p̂) ∈ R× Rk.

Because of the centrifugal and centripetal assumptions, there exist R1, R2 > 0, with R1 < R2, such
that for all (t, p̂) ∈ R× Rk the inner product 〈f(t, p, p̂), p〉 is positive when ‖p‖ = R1 and negative when
‖p‖ = R2. Let M be the annulus B(0, R2)\B(0, R1). Clearly, the vector f(t, p, p̂) points inward M

for any (t, p, p̂) ∈ R ×M ×M . Moreover, χ(M) = 2 since M is homotopically equivalent to the even
dimensional sphere Sk−1. Hence, Theorem 2.4 implies that the equation

x′(t) = f
(
t, x(t), x(t− 1)

)
has a T -periodic solution lying on the annulus M .

In the above example, the assumption that the dimension k is odd cannot be removed. In fact, if k is
any even natural number, we may define a centrifugal-centripetal vector field f : R× Rk × Rk → Rk by

f(t, p, p̂) = Ap+ (1− ‖p‖)p,

where A is the k × k matrix associated with the linear operator

(p1, p2, . . . , pk) 7→ (−p2, p1, . . . ,−pk, pk−1).

Observe that f is an autonomous tangent vector field on Rk which does not depend on the third variable.
Therefore, given any T > 0, it may be regarded as T -periodic. However, all the periodic solutions of

x′ = Ax+ (1− ‖x‖)x
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have period 2π since are also solutions of the linear differential equation x′ = Ax. In fact, because of the
centrifugal-centripetal property of f , they must lie on the unit sphere Sk−1.

Example 3.3. Consider the following system of delay differential equations:
x′1(t) = −x2(t)x3(t− 1)
x′2(t) = x1(t)x3(t− 1)− x3(t) sin t
x′3(t) = x2(t) sin t .

Let us show that this system has a 2π-periodic solution lying on the unit sphere S2 of R3.
Let f : R× S2 × S2 → R3 be defined by

f(t, p, p̂) = (−p2p̂3, p1p̂3 − p3 sin t, p2 sin t),

where p = (p1, p2, p3) and p̂ = (p̂1, p̂2, p̂3) belong to S2. Notice that f is tangent to S2, since 〈f(t, p, p̂), p〉 =
0 for all (t, p̂) ∈ R × S2. Moreover, it is 2π-periodic with respect to t ∈ R. We need to prove that the
equation

x′(t) = f
(
t, x(t), x(t− 1)

)
admits a 2π-periodic solution (on S2). This is a consequence of Theorem 2.4, since χ(S2) = 2.

4. APPLICATION TO CONSTRAINED MOTION PROBLEMS

Let N ⊆ Rs be a smooth boundaryless manifold and let φ : R × N × N → Rs be a continuous map
which is T -periodic in the first variable and tangent to N in the second one. That is,

φ(t+ T, q, q̂) = φ(t, q, q̂) ∈ TqN, ∀ (t, q, q̂) ∈ R×N ×N.

Consider the following second order delay differential equation on N :

x′′π(t) = φ
(
t, x(t), x(t− r)

)
− εx′(t), (4.1)

where, regarding (4.1) as a motion equation,
(1) x′′π(t) stands for the tangential part of the acceleration x′′(t) ∈ Rs at the point x(t);
(2) the frictional coefficient ε is nonnegative;
(3) r > 0 is the delay.

By a solution of (4.1) we mean a continuous function x : J → N , defined on a (possibly unbounded)
real interval, with length greater than r, which is of class C2 on the subinterval (inf J + r, sup J) of J
and verifies

x′′π(t) = φ
(
t, x(t), x(t− r)

)
− εx′(t)

for all t ∈ J with t > inf J + r. A forced oscillation of (4.1) is a solution which is T -periodic and globally
defined on J = R.

We want to show that equation (4.1) admits at least one forced oscillation, provided that the frictional
coefficient ε is nonzero and the constraint N is compact with nonzero Euler–Poincaré characteristic (see
Theorem 4.1 below). The existence of a T -periodic solution of (4.1) will be deduced from Theorem
2.4. The possibility of reducing (4.1) to a first order equation is due to the fact that any second order
differential equation on N is equivalent to a first order system on the tangent bundle TN of N . The
difficulty arising from the noncompactness of TN will be removed by restricting the search for T -periodic
solutions to a convenient compact manifold with boundary contained in TN . The choice of such a
manifold is suggested by a priori estimates on the set of all the possible T -periodic solutions of equation
(4.1). These estimates are made possible by the compactness of N and the presence of the positive
frictional coefficient ε.
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Given q ∈ N , let (TqN)⊥ denote the normal space of N at q. Since Rs = TqN ⊕ (TqN)⊥, any vector
u ∈ Rs can be uniquely decomposed into the sum of the parallel (or tangential) component uπ ∈ TqN of
u at q and the normal component uν ∈ (TqN)⊥ of u at q. By

TN =
{

(q, v) ∈ Rs × Rs : q ∈ N, v ∈ TqN
}

we denote the tangent bundle of N , which is a smooth manifold containing a natural copy of N via the
embedding q 7→ (q, 0). The natural projection of TN onto N is just the restriction (to TN as domain
and to N as codomain) of the projection of Rs × Rs onto the first factor.

It is known that, associated with N ⊆ Rs, there exists a unique smooth map ν : TN → Rs, called the
reactive force (or inertial reaction), with the following properties:

(a) ν(q, v) ∈ (TqN)⊥ for any (q, v) ∈ TN ;
(b) ν is quadratic in the second variable;
(c) given (q, v) ∈ TN , ν(q, v) is the unique vector such that

(
v, ν(q, v)

)
belongs to T(q,v)(TN);

(d) any C2 curve γ : (a, b)→ N verifies the condition γ′′ν (t) = ν
(
γ(t), γ′(t)

)
for any t ∈ (a, b), i.e. for

each t ∈ (a, b), the normal component γ′′ν (t) of γ′′(t) at γ(t) equals ν
(
γ(t), γ′(t)

)
.

The map ν is strictly related to the second fundamental form on N and may be interpreted as the
reactive force due to the constraint N .

By condition (d) above, equation (4.1) can be equivalently written as

x′′(t) = ν
(
x(t), x′(t)

)
+ φ

(
t, x(t), x(t− r)

)
− εx′(t). (4.2)

Notice that, if the above equation reduces to the so-called inertial equation

x′′(t) = ν
(
x(t), x′(t)

)
,

one obtains the geodesics of N as solutions.
Equation (4.2) can be written as a first order differential system on TN as follows:{

x′(t) = y(t)
y′(t) = ν

(
x(t), y(t)

)
+ φ

(
t, x(t), x(t− r)

)
− εy(t).

This makes sense since, for any
(
t, (q, v), (q̂, v̂)

)
∈ R × TN × TN , both the vectors

(
v, ν(q, v)

)
and

(0, φ(t, q, q̂)− εv) belong to the subspace T(q,v)(TN) of Rs × Rs (see, for example, [5] for more details).
The following result is a consequence of Theorem 2.4.

Theorem 4.1. Assume that N is compact with nonzero Euler–Poincaré characteristic. Then the equa-
tion (4.1) has a forced oscillation, provided that the frictional coefficient ε is nonzero.

Proof. As we already pointed out, the equation (4.1) is equivalent to the following first order system on
TN : {

x′(t) = y(t)
y′(t) = ν

(
x(t), y(t)

)
+ φ

(
t, x(t), x(t− r)

)
− εy(t).

(4.3)

Define f : R× TN × TN → Rs × Rs by

f
(
t, (q, v), (q̂, v̂)

)
=
(
v, ν(q, v) + φ(t, q, q̂)− εv

)
.

Notice that f is T -periodic in the first variable and tangent to TN in the second one. Given c > 0, set

Mc = (TN)c =
{

(q, v) ∈ N × Rs : v ∈ TqN, ‖v‖ ≤ c
}
.

It is not difficult to show that Mc is a compact manifold in Rs × Rs with boundary

∂Mc =
{

(q, v) ∈ N × Rs : v ∈ TqN, ‖v‖ = c
}
.
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Observe that
T(q,v)(Mc) = T(q,v)(TN)

for all (q, v) ∈ Mc. Moreover, χ(Mc) = χ(N) since Mc and N are homotopically equivalent (N being a
deformation retract of TN).

Now assume that the frictional coefficient ε is nonzero. We claim that if c is large enough, then f

points inward along the boundary of Mc. To see this, let (q, v) ∈ ∂Mc be fixed, and observe that the
inward half-subspace of T(q,v)(Mc) is

C(q,v)(Mc) =
{

(q̇, v̇) ∈ T(q,v)(TN) : 〈v, v̇〉 ≤ 0
}
,

where 〈·, ·〉 denotes the inner product in Rs. We have to show that if c is large enough then f
(
t, (q, v), (q̂, v̂)

)
belongs to C(q,v)(Mc) for any t ∈ R and (q̂, v̂) ∈ TN ; that is,

〈v, ν(q, v) + φ(t, q, q̂)− εv〉 = 〈v, ν(q, v)〉+ 〈v, φ(t, q, q̂)〉 − ε〈v, v〉 ≤ 0

for any t ∈ R and (q̂, v̂) ∈ TN . Now, 〈v, ν(q, v)〉 = 0 since ν(q, v) belongs to (TqN)⊥. Moreover,
〈v, v〉 = c2 since (q, v) ∈ ∂Mc, and

〈v, φ(t, q, q̂)〉 ≤ ‖v‖‖φ(t, q, q̂)‖ ≤ K‖v‖,

where
K = max

{
‖φ(t, q, q̂)‖ : (t, q, q̂) ∈ R×N ×N}.

Thus,
〈v, ν(q, v) + φ(t, q, q̂)− εv〉 ≤ Kc− εc2.

This shows that, if we choose c > K/ε, then f points inward along ∂Mc, as claimed. Therefore, given
c > K/ε, Theorem 2.4 implies that system (4.3) admits a T -periodic solution in Mc, and this completes
the proof. �

It is evident from this proof that the above result holds true even if we replace

φ(t, q, q̂)− εv

by a T -periodic force ψ
(
t, (q, v), (q̂, v̂)

)
∈ TqN satisfying the following assumption:

there exists c > 0 such that 〈ψ
(
t, (q, v), (q̂, v̂)

)
, v〉 ≤ 0 for any(

t, (q, v), (q̂, v̂)
)
∈ R× TN × TN

such that ‖v‖ = c.

We point out that, in the above theorem, the condition χ(N) 6= 0 cannot be dropped. Consider for
example the equation

θ′′(t) = a− εθ′(t), t ∈ R, (4.4)

where a is a nonzero constant and ε > 0. Equation (4.4) can be regarded as a second order ordinary
differential equation on the unit circle S1 ⊆ C, where θ represents the angular coordinate. In this case,
a solution θ(·) of (4.4) is periodic of period T > 0 if and only if for some k ∈ Z it satisfies the boundary
conditions {

θ(T )− θ(0) = 2kπ
θ′(T )− θ′(0) = 0.

Notice that the applied force a represents a nonvanishing autonomous vector field on S1. Thus, it is
periodic of arbitrary period. However, simple calculations show that any periodic solution of (4.4) has
period T = 2πε/a.
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