FORCED OSCILLATIONS FOR DELAY MOTION EQUATIONS

 ON MANIFOLDSPIERLUIGI BENEVIERI, ALESSANDRO CALAMAI, MASSIMO FURI, AND MARIA PATRIZIA PERA

Abstract

We prove an existence result for T-periodic solutions of a T periodic second order delay differential equation on a boundaryless compact manifold with nonzero Euler-Poincaré characteristic. The approach is based on an existence result recently obtained by the authors for first order delay differential equations on compact manifolds with boundary.

1. Introduction

Let $M \subseteq \mathbb{R}^{k}$ be a smooth boundaryless manifold and let

$$
f: \mathbb{R} \times M \times M \rightarrow \mathbb{R}^{k}
$$

be a continuous map which is T-periodic in the first variable and tangent to M in the second one; that is,

$$
f(t+T, q, \tilde{q})=f(t, q, \tilde{q}) \in T_{q} M, \quad \forall(t, q, \tilde{q}) \in \mathbb{R} \times M \times M
$$

where $T_{q} M \subseteq \mathbb{R}^{k}$ denotes the tangent space of M at q. Consider the following second order delay differential equation on M :

$$
\begin{equation*}
x_{\pi}^{\prime \prime}(t)=f(t, x(t), x(t-\tau))-\varepsilon x^{\prime}(t) \tag{1.1}
\end{equation*}
$$

where, regarding (1.1) as a motion equation,
(1) $x_{\pi}^{\prime \prime}(t)$ stands for the tangential part of the acceleration $x^{\prime \prime}(t) \in \mathbb{R}^{k}$ at the point $x(t)$;
(2) the frictional coefficient ε is a positive real constant;
(3) $\tau>0$ is the delay.

In this paper we prove that equation (1.1) admits at least one forced oscillation, provided that the constraint M is compact with nonzero Euler-Poincaré characteristic and that $T \geq \tau$. This generalizes a theorem of the last two authors regarding the undelayed case (see [3]). Our result will be deduced from an existence theorem for first order delay equations on compact manifolds with boundary recently obtained by the authors (see [1, Theorem 4.6]). The possibility of reducing (1.1) to the first order equation treated in [1] is due to the fact that any second order differential equation on M is equivalent to a first order system on the tangent bundle $T M$ of M. The difficulty arising from the noncompactness of $T M$ will be removed by restricting the search for T-periodic solutions to a convenient compact manifold with boundary contained in $T M$. The choice of such a manifold is suggested by a priori estimates on the set of all the possible T-periodic solutions of equation (1.1).

[^0]These estimates are made possible by the compactness of M and the presence of the positive frictional coefficient ε.

We ask whether or not the existence of forced oscillations holds true even in the frictionless case, provided that the constraint M is compact with nonzero EulerPoincaré characteristic. We believe the answer to this question is affirmative; but, as far as we know, this problem is still unsolved even in the undelayed case.

An affirmative answer regarding the special case $M=S^{2}$ (the spherical pendulum) can be found in [4] (see also [5] for the extension to the case $M=S^{2 n}$).

We point out that the assumption $T \geq \tau$ is crucial in this paper, since our result is deduced from Theorem 2.1 below, whose proof, given in [1], is based on the fixed point index theory for locally compact maps applied to a Poincaré-type T-translation operator which is a locally compact map if and only if $T \geq \tau$. In a forthcoming paper we will tackle the case $0<T<\tau$, in which this operator is not even locally condensing.

2. Second order delay differential equations on manifolds

Let, as before, M be a compact smooth boundaryless manifold in \mathbb{R}^{k}. Given $q \in M$, let $T_{q} M$ and $\left(T_{q} M\right)^{\perp}$ denote, respectively, the tangent and the normal space of M at q. Since $\mathbb{R}^{k}=T_{q} M \oplus\left(T_{q} M\right)^{\perp}$, any vector $u \in \mathbb{R}^{k}$ can be uniquely decomposed into the sum of the parallel (or tangential) component $u_{\pi} \in T_{q} M$ of u at q and the normal component $u_{\nu} \in\left(T_{q} M\right)^{\perp}$ of u at q. By

$$
T M=\left\{(q, v) \in \mathbb{R}^{k} \times \mathbb{R}^{k}: q \in M, v \in T_{q} M\right\}
$$

we denote the tangent bundle of M, which is a smooth manifold containing a natural copy of M via the embedding $q \mapsto(q, 0)$. The natural projection of $T M$ onto M is just the restriction (to $T M$ as domain and to M as codomain) of the projection of $\mathbb{R}^{k} \times \mathbb{R}^{k}$ onto the first factor.

Given, as in the Introduction, a continuous map $f: \mathbb{R} \times M \times M \rightarrow \mathbb{R}^{k}$ which is T-periodic in the first variable and tangent to M in the second one, consider the following delay motion equation on M :

$$
\begin{equation*}
x_{\pi}^{\prime \prime}(t)=f(t, x(t), x(t-\tau))-\varepsilon x^{\prime}(t) \tag{2.1}
\end{equation*}
$$

where
i) $x_{\pi}^{\prime \prime}(t)$ stands for the parallel component of the acceleration $x^{\prime \prime}(t) \in \mathbb{R}^{k}$ at the point $x(t)$;
ii) the frictional coefficient ε and the delay τ are positive real constants.

By a solution of (2.1) we mean a continuous function $x: J \rightarrow M$, defined on a (possibly unbounded) real interval, with length greater than τ, which is of class C^{2} on the subinterval $(\inf J+\tau, \sup J)$ of J and verifies

$$
x_{\pi}^{\prime \prime}(t)=f(t, x(t), x(t-\tau))-\varepsilon x^{\prime}(t)
$$

for all $t \in J$ with $t>\inf J+\tau$. A forced oscillation of (2.1) is a solution which is T-periodic and globally defined on $J=\mathbb{R}$.

It is known that, associated with $M \subseteq \mathbb{R}^{k}$, there exists a unique smooth map $r: T M \rightarrow \mathbb{R}^{k}$, called the reactive force (or inertial reaction), with the following properties:
(a) $r(q, v) \in\left(T_{q} M\right)^{\perp}$ for any $(q, v) \in T M$;
(b) r is quadratic in the second variable;
(c) any C^{2} curve $\gamma:(a, b) \rightarrow M$ verifies the condition

$$
\gamma_{\nu}^{\prime \prime}(t)=r\left(\gamma(t), \gamma^{\prime}(t)\right), \quad \forall t \in(a, b),
$$

i.e., for each $t \in(a, b)$, the normal component $\gamma_{\nu}^{\prime \prime}(t)$ of $\gamma^{\prime \prime}(t)$ at $\gamma(t)$ equals $r\left(\gamma(t), \gamma^{\prime}(t)\right)$.
The map r is strictly related to the second fundamental form on M and may be interpreted as the reactive force due to the constraint M.

By condition (c) above, equation (2.1) can be equivalently written as

$$
\begin{equation*}
x^{\prime \prime}(t)=r\left(x(t), x^{\prime}(t)\right)+f(t, x(t), x(t-\tau))-\varepsilon x^{\prime}(t) . \tag{2.2}
\end{equation*}
$$

Notice that, if the above equation reduces to the so-called inertial equation

$$
x^{\prime \prime}(t)=r\left(x(t), x^{\prime}(t)\right)
$$

one obtains the geodesics of M as solutions.
Equation (2.2) can be written as a first order differential system on $T M$ as follows:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=y(t) \\
y^{\prime}(t)=r(x(t), y(t))+f(t, x(t), x(t-\tau))-\varepsilon y(t)
\end{array}\right.
$$

This makes sense since the map

$$
\begin{equation*}
g: \mathbb{R} \times T M \times M \rightarrow \mathbb{R}^{k} \times \mathbb{R}^{k}, \quad g(t,(q, v), \tilde{q})=(v, r(q, v)+f(t, q, \tilde{q})-\varepsilon v) \tag{2.3}
\end{equation*}
$$

verifies the condition $g(t,(q, v), \tilde{q}) \in T_{(q, v)} T M$ for all $(t,(q, v), \tilde{q}) \in \mathbb{R} \times T M \times M$ (see, for example, [2] for more details).

Theorem 2.1 below, which is a straightforward consequence of Theorem 4.6 in [1], will play a crucial role in the proof of our result (Theorem 2.2). Its statement needs some preliminary definitions.

Let $X \subseteq \mathbb{R}^{s}$ be a smooth manifold with (possibly empty) boundary ∂X. Following [1], we say that a continuous map $F: \mathbb{R} \times X \times X \rightarrow \mathbb{R}^{s}$ is tangent to X in the second variable or, for short, that F is a vector field (on X) if $F(t, p, \tilde{p}) \in T_{p} X$ for all $(t, p, \tilde{p}) \in \mathbb{R} \times X \times X$. A vector field F will be said inward (to X) if for any $(t, p, \tilde{p}) \in \mathbb{R} \times \partial X \times X$ the vector $F(t, p, \tilde{p})$ points inward at p. Recall that, given $p \in \partial X$, the set of the tangent vectors to X pointing inward at p is a closed half-subspace of $T_{p} X$, called inward half-subspace of $T_{p} X$ (see e.g. [6]) and here denoted $T_{p}^{-} X$.

Theorem 2.1. Let $X \subseteq \mathbb{R}^{s}$ be a compact manifold with (possibly empty) boundary, whose Euler-Poincaré characteristic $\chi(X)$ is different from zero. Let $\tau>0$ and let $F: \mathbb{R} \times X \times X \rightarrow \mathbb{R}^{s}$ be an inward vector field on X which is T-periodic in the first variable, with $T \geq \tau$. Then, the delay differential equation

$$
\begin{equation*}
x^{\prime}(t)=F(t, x(t), x(t-\tau)) \tag{2.4}
\end{equation*}
$$

has a T-periodic solution.
The result of this paper is the following.
Theorem 2.2. Assume that the period T of f is not less than the delay τ and that the Euler-Poincaré characteristic of M is different from zero. Then, the equation (2.1) has a forced oscillation.

Proof. As we already pointed out, the equation (2.1) is equivalent to the following first order system on $T M$:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=y(t) \tag{2.5}\\
y^{\prime}(t)=r(x(t), y(t))+f(t, x(t), x(t-\tau))-\varepsilon y(t) .
\end{array}\right.
$$

Define $F: \mathbb{R} \times T M \times T M \rightarrow \mathbb{R}^{k} \times \mathbb{R}^{k}$ by

$$
F(t,(q, v),(\tilde{q}, \tilde{v}))=(v, r(q, v)+f(t, q, \tilde{q})-\varepsilon v) .
$$

Notice that the map F is a vector field on $T M$ which is T-periodic in the first variable.

Given $c>0$, set

$$
X_{c}=(T M)_{c}=\left\{(q, v) \in M \times \mathbb{R}^{k}: v \in T_{q} M,\|v\| \leq c\right\} .
$$

It is not difficult to show that X_{c} is a compact manifold in $\mathbb{R}^{k} \times \mathbb{R}^{k}$ with boundary

$$
\partial X_{c}=\left\{(q, v) \in M \times \mathbb{R}^{k}: v \in T_{q} M,\|v\|=c\right\} .
$$

Observe that

$$
T_{(q, v)}\left(X_{c}\right)=T_{(q, v)}(T M)
$$

for all $(q, v) \in X_{c}$. Moreover, $\chi\left(X_{c}\right)=\chi(M)$ since X_{c} and M are homotopically equivalent (M being a deformation retract of $T M$).

We claim that, if $c>0$ is large enough, then F is an inward vector field on X_{c}. To see this, let $(q, v) \in \partial X_{c}$ be fixed, and observe that the inward half-subspace of $T_{(q, v)}\left(X_{c}\right)$ is

$$
T_{(q, v)}^{-}\left(X_{c}\right)=\left\{(\dot{q}, \dot{v}) \in T_{(q, v)}(T M):\langle v, \dot{v}\rangle \leq 0\right\}
$$

where $\langle\cdot, \cdot\rangle$ denotes the inner product in \mathbb{R}^{k}. We have to show that if c is large enough then $F(t,(q, v),(\tilde{q}, \tilde{v}))$ belongs to $T_{(q, v)}^{-}\left(X_{c}\right)$ for any $t \in \mathbb{R}$ and $(\tilde{q}, \tilde{v}) \in T M$; that is,

$$
\langle v, r(q, v)+f(t, q, \tilde{q})-\varepsilon v\rangle=\langle v, r(q, v)\rangle+\langle v, f(t, q, \tilde{q})\rangle-\varepsilon\langle v, v\rangle \leq 0
$$

for any $t \in \mathbb{R}$ and $(\tilde{q}, \tilde{v}) \in T M$. Now, $\langle v, r(q, v)\rangle=0$ since $r(q, v)$ belongs to $\left(T_{q} M\right)^{\perp}$. Moreover, $\langle v, v\rangle=c^{2}$ since $(q, v) \in \partial X_{c}$, and

$$
\langle v, f(t, q, \tilde{q})\rangle \leq\|v\|\|f(t, q, \tilde{q})\| \leq K\|v\|
$$

where

$$
K=\max \{\|f(t, q, \tilde{q})\|:(t, q, \tilde{q}) \in \mathbb{R} \times M \times M\}
$$

Thus,

$$
\langle v, r(q, v)+f(t, q, \tilde{q})-\varepsilon v\rangle \leq K c-\varepsilon c^{2} .
$$

This shows that, if we choose $c>K / \varepsilon$, then F is an inward vector field on X_{c}, as claimed. Therefore, given $c>K / \varepsilon$, Theorem 2.1 implies that system (2.5) admits a T-periodic solution in X_{c}, and this completes the proof.

It is evident from this proof that the result holds true even if we replace

$$
f(t, q, \tilde{q})-\varepsilon v
$$

by a T-periodic force $g(t,(q, v),(\tilde{q}, \tilde{v})) \in T_{q} M$ satisfying the following assumption: there exists $c>0$ such that $\langle g(t,(q, v),(\tilde{q}, \tilde{v})), v\rangle \leq 0$ for any

$$
(t,(q, v),(\tilde{q}, \tilde{v})) \in \mathbb{R} \times T M \times T M
$$

such that $\|v\|=c$.

We point out that, in the above theorem, the condition $\chi(M) \neq 0$ cannot be dropped. Consider for example the equation

$$
\begin{equation*}
\theta^{\prime \prime}(t)=a-\varepsilon \theta^{\prime}(t), \quad t \in \mathbb{R}, \tag{2.6}
\end{equation*}
$$

where a is a nonzero constant and $\varepsilon>0$. Equation (2.6) can be regarded as a second order ordinary differential equation on the unit circle $S^{1} \subseteq \mathbb{C}$, where θ represents an angular coordinate. In this case, a solution $\theta(\cdot)$ of (2.6) is periodic of period $T>0$ if and only if for some $k \in \mathbb{Z}$ it satisfies the boundary conditions

$$
\left\{\begin{array}{l}
\theta(T)-\theta(0)=2 k \pi \\
\theta^{\prime}(T)-\theta^{\prime}(0)=0
\end{array}\right.
$$

Notice that the applied force a represents a nonvanishing autonomous vector field on S^{1}. Thus, it is periodic of arbitrary period. However, simple calculations show that there are no T-periodic solutions of (2.6) if $T \neq 2 \pi \varepsilon / a$.

References

[1] P. Benevieri, A. Calamai, M. Furi, and M.P. Pera, Global branches of periodic solutions for forced delay differential equations on compact manifolds, J. Differential Equations 233 (2007), 404-416.
[2] M. Furi, Second order differential equations on manifolds and forced oscillations, Topological Methods in Differential Equations and Inclusions, A. Granas and M. Frigon Eds., Kluwer Acad. Publ. series C, vol. 472, 1995.
[3] M. Furi and M.P. Pera, On the existence of forced oscillations for the spherical pendulum, Boll. Un. Mat. Ital. (7) 4-B (1990), 381-390.
[4] M. Furi and M.P. Pera, The forced spherical pendulum does have forced oscillations. Delay differential equations and dynamical systems (Claremont, CA, 1990), 176-182, Lecture Notes in Math., 1475, Springer, Berlin, 1991.
[5] M. Furi and M.P. Pera, On the notion of winding number for closed curves and applications to forced oscillations on even-dimensional spheres, Boll. Un. Mat. Ital. (7), 7-A (1993), 397-407.
[6] Milnor J.W., Topology from the differentiable viewpoint, Univ. press of Virginia, Charlottesville, 1965.

```
Pierluigi Benevieri, Massimo Furi, and Maria Patrizia Pera,
Dipartimento di Matematica Applicata ''Giovanni Sansone''
Università degli Studi di Firenze
Via S. Marta 3
I-50139 Firenze, Italy
Alessandro Calamai
Dipartimento di Scienze Matematiche
Università Politecnica delle Marche
Via Brecce Bianche
I-60131 Ancona, Italy.
e-mail addresses:
pierluigi.benevieri@unifi.it
calamai@math.unifi.it, calamai@dipmat.univpm.it
massimo.furi@unifi.it
mpatrizia.pera@unifi.it
```


[^0]: 2000 Mathematics Subject Classification. Primary 34K13; Secondary 37C25.
 Key words and phrases. Delay Differential Equations, Forced Oscillations, Periodic Solutions, Compact Manifolds, Euler-Poincaré Characteristic, Fixed Point Index.

