FORCED OSCILLATIONS FOR DELAY MOTION EQUATIONS ON MANIFOLDS

PIERLUIGI BENEVIERI, ALESSANDRO CALAMAI, MASSIMO FURI, AND MARIA PATRIZIA PERA

ABSTRACT. We prove an existence result for T-periodic solutions of a Tperiodic second order delay differential equation on a boundaryless compact manifold with nonzero Euler-Poincaré characteristic. The approach is based on an existence result recently obtained by the authors for first order delay differential equations on compact manifolds with boundary.

1. INTRODUCTION

Let $M \subseteq \mathbb{R}^k$ be a smooth boundaryless manifold and let

$$f: \mathbb{R} \times M \times M \to \mathbb{R}^k$$

be a continuous map which is T-periodic in the first variable and tangent to M in the second one; that is,

$$f(t+T,q,\tilde{q}) = f(t,q,\tilde{q}) \in T_q M, \quad \forall (t,q,\tilde{q}) \in \mathbb{R} \times M \times M,$$

where $T_q M \subseteq \mathbb{R}^k$ denotes the tangent space of M at q. Consider the following second order delay differential equation on M:

$$x''_{\pi}(t) = f(t, x(t), x(t-\tau)) - \varepsilon x'(t),$$
(1.1)

where, regarding (1.1) as a motion equation,

- (1) $x''_{\pi}(t)$ stands for the tangential part of the acceleration $x''(t) \in \mathbb{R}^k$ at the point x(t);
- (2) the frictional coefficient ε is a positive real constant;
- (3) $\tau > 0$ is the delay.

In this paper we prove that equation (1.1) admits at least one forced oscillation, provided that the constraint M is compact with nonzero Euler–Poincaré characteristic and that $T \ge \tau$. This generalizes a theorem of the last two authors regarding the undelayed case (see [3]). Our result will be deduced from an existence theorem for first order delay equations on compact manifolds with boundary recently obtained by the authors (see [1, Theorem 4.6]). The possibility of reducing (1.1) to the first order equation treated in [1] is due to the fact that any second order differential equation on M is equivalent to a first order system on the tangent bundle TM of M. The difficulty arising from the noncompactness of TM will be removed by restricting the search for T-periodic solutions to a convenient compact manifold with boundary contained in TM. The choice of such a manifold is suggested by *a priori* estimates on the set of all the possible T-periodic solutions of equation (1.1).

²⁰⁰⁰ Mathematics Subject Classification. Primary 34K13; Secondary 37C25.

Key words and phrases. Delay Differential Equations, Forced Oscillations, Periodic Solutions, Compact Manifolds, Euler-Poincaré Characteristic, Fixed Point Index.

These estimates are made possible by the compactness of M and the presence of the positive frictional coefficient ε .

We ask whether or not the existence of forced oscillations holds true even in the frictionless case, provided that the constraint M is compact with nonzero Euler–Poincaré characteristic. We believe the answer to this question is affirmative; but, as far as we know, this problem is still unsolved even in the undelayed case.

An affirmative answer regarding the special case $M = S^2$ (the spherical pendulum) can be found in [4] (see also [5] for the extension to the case $M = S^{2n}$).

We point out that the assumption $T \ge \tau$ is crucial in this paper, since our result is deduced from Theorem 2.1 below, whose proof, given in [1], is based on the fixed point index theory for locally compact maps applied to a Poincaré-type *T*-translation operator which is a locally compact map if and only if $T \ge \tau$. In a forthcoming paper we will tackle the case $0 < T < \tau$, in which this operator is not even locally condensing.

2. Second order delay differential equations on manifolds

Let, as before, M be a compact smooth boundaryless manifold in \mathbb{R}^k . Given $q \in M$, let $T_q M$ and $(T_q M)^{\perp}$ denote, respectively, the tangent and the normal space of M at q. Since $\mathbb{R}^k = T_q M \oplus (T_q M)^{\perp}$, any vector $u \in \mathbb{R}^k$ can be uniquely decomposed into the sum of the *parallel* (or *tangential*) component $u_{\pi} \in T_q M$ of u at q and the normal component $u_{\nu} \in (T_q M)^{\perp}$ of u at q. By

$$TM = \{(q, v) \in \mathbb{R}^k \times \mathbb{R}^k : q \in M, v \in T_qM\}$$

we denote the *tangent bundle of* M, which is a smooth manifold containing a natural copy of M via the embedding $q \mapsto (q, 0)$. The natural projection of TM onto M is just the restriction (to TM as domain and to M as codomain) of the projection of $\mathbb{R}^k \times \mathbb{R}^k$ onto the first factor.

Given, as in the Introduction, a continuous map $f : \mathbb{R} \times M \times M \to \mathbb{R}^k$ which is *T*-periodic in the first variable and tangent to *M* in the second one, consider the following delay motion equation on *M*:

$$x''_{\pi}(t) = f(t, x(t), x(t-\tau)) - \varepsilon x'(t), \qquad (2.1)$$

where

- i) $x''_{\pi}(t)$ stands for the parallel component of the acceleration $x''(t) \in \mathbb{R}^k$ at the point x(t);
- ii) the frictional coefficient ε and the delay τ are positive real constants.

By a solution of (2.1) we mean a continuous function $x: J \to M$, defined on a (possibly unbounded) real interval, with length greater than τ , which is of class C^2 on the subinterval (inf $J + \tau$, sup J) of J and verifies

$$x''_{\pi}(t) = f(t, x(t), x(t-\tau)) - \varepsilon x'(t)$$

for all $t \in J$ with $t > \inf J + \tau$. A forced oscillation of (2.1) is a solution which is *T*-periodic and globally defined on $J = \mathbb{R}$.

It is known that, associated with $M \subseteq \mathbb{R}^k$, there exists a unique smooth map $r: TM \to \mathbb{R}^k$, called the *reactive force* (or *inertial reaction*), with the following properties:

- (a) $r(q,v) \in (T_q M)^{\perp}$ for any $(q,v) \in TM$;
- (b) r is quadratic in the second variable;

(c) any C^2 curve $\gamma: (a, b) \to M$ verifies the condition

$$\gamma_{\nu}^{\prime\prime}(t) = r(\gamma(t), \gamma^{\prime}(t)), \quad \forall t \in (a, b),$$

i.e., for each $t \in (a, b)$, the normal component $\gamma''_{\nu}(t)$ of $\gamma''(t)$ at $\gamma(t)$ equals $r(\gamma(t), \gamma'(t))$.

The map r is strictly related to the second fundamental form on M and may be interpreted as the reactive force due to the constraint M.

By condition (c) above, equation (2.1) can be equivalently written as

$$x''(t) = r(x(t), x'(t)) + f(t, x(t), x(t-\tau)) - \varepsilon x'(t).$$
(2.2)

Notice that, if the above equation reduces to the so-called *inertial equation*

$$x''(t) = r(x(t), x'(t)),$$

one obtains the geodesics of M as solutions.

Equation (2.2) can be written as a first order differential system on TM as follows:

$$\begin{cases} x'(t) = y(t) \\ y'(t) = r(x(t), y(t)) + f(t, x(t), x(t-\tau)) - \varepsilon y(t). \end{cases}$$

This makes sense since the map

 $g: \mathbb{R} \times TM \times M \to \mathbb{R}^k \times \mathbb{R}^k, \quad g(t, (q, v), \tilde{q}) = (v, r(q, v) + f(t, q, \tilde{q}) - \varepsilon v)$ (2.3) verifies the condition $g(t, (q, v), \tilde{q}) \in T_{(q, v)}TM$ for all $(t, (q, v), \tilde{q}) \in \mathbb{R} \times TM \times M$ (see, for example, [2] for more details).

Theorem 2.1 below, which is a straightforward consequence of Theorem 4.6 in [1], will play a crucial role in the proof of our result (Theorem 2.2). Its statement needs some preliminary definitions.

Let $X \subseteq \mathbb{R}^s$ be a smooth manifold with (possibly empty) boundary ∂X . Following [1], we say that a continuous map $F : \mathbb{R} \times X \times X \to \mathbb{R}^s$ is tangent to X in the second variable or, for short, that F is a vector field (on X) if $F(t, p, \tilde{p}) \in T_p X$ for all $(t, p, \tilde{p}) \in \mathbb{R} \times X \times X$. A vector field F will be said inward (to X) if for any $(t, p, \tilde{p}) \in \mathbb{R} \times \partial X \times X$ the vector $F(t, p, \tilde{p})$ points inward at p. Recall that, given $p \in \partial X$, the set of the tangent vectors to X pointing inward at p is a closed half-subspace of $T_p X$, called inward half-subspace of $T_p X$ (see e.g. [6]) and here denoted $T_p^- X$.

Theorem 2.1. Let $X \subseteq \mathbb{R}^s$ be a compact manifold with (possibly empty) boundary, whose Euler–Poincaré characteristic $\chi(X)$ is different from zero. Let $\tau > 0$ and let $F : \mathbb{R} \times X \times X \to \mathbb{R}^s$ be an inward vector field on X which is T-periodic in the first variable, with $T \ge \tau$. Then, the delay differential equation

$$x'(t) = F(t, x(t), x(t - \tau))$$
(2.4)

has a *T*-periodic solution.

The result of this paper is the following.

Theorem 2.2. Assume that the period T of f is not less than the delay τ and that the Euler-Poincaré characteristic of M is different from zero. Then, the equation (2.1) has a forced oscillation.

Proof. As we already pointed out, the equation (2.1) is equivalent to the following first order system on TM:

$$\begin{cases} x'(t) = y(t) \\ y'(t) = r(x(t), y(t)) + f(t, x(t), x(t - \tau)) - \varepsilon y(t). \end{cases}$$
(2.5)

Define $F : \mathbb{R} \times TM \times TM \to \mathbb{R}^k \times \mathbb{R}^k$ by

$$F(t,(q,v),(\tilde{q},\tilde{v})) = (v,r(q,v) + f(t,q,\tilde{q}) - \varepsilon v).$$

Notice that the map F is a vector field on TM which is T-periodic in the first variable.

Given c > 0, set

$$X_{c} = (TM)_{c} = \{ (q, v) \in M \times \mathbb{R}^{k} : v \in T_{q}M, \ \|v\| \le c \}.$$

It is not difficult to show that X_c is a compact manifold in $\mathbb{R}^k \times \mathbb{R}^k$ with boundary

$$\partial X_c = \{ (q, v) \in M \times \mathbb{R}^k : v \in T_q M, \|v\| = c \}.$$

Observe that

$$T_{(q,v)}(X_c) = T_{(q,v)}(TM)$$

for all $(q, v) \in X_c$. Moreover, $\chi(X_c) = \chi(M)$ since X_c and M are homotopically equivalent (M being a deformation retract of TM).

We claim that, if c > 0 is large enough, then F is an inward vector field on X_c . To see this, let $(q, v) \in \partial X_c$ be fixed, and observe that the inward half-subspace of $T_{(q,v)}(X_c)$ is

$$T^{-}_{(q,v)}(X_c) = \{(\dot{q}, \dot{v}) \in T_{(q,v)}(TM) : \langle v, \dot{v} \rangle \le 0\},\$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathbb{R}^k . We have to show that if c is large enough then $F(t, (q, v), (\tilde{q}, \tilde{v}))$ belongs to $T^{-}_{(q,v)}(X_c)$ for any $t \in \mathbb{R}$ and $(\tilde{q}, \tilde{v}) \in TM$; that is,

$$\langle v, r(q, v) + f(t, q, \tilde{q}) - \varepsilon v \rangle = \langle v, r(q, v) \rangle + \langle v, f(t, q, \tilde{q}) \rangle - \varepsilon \langle v, v \rangle \le 0$$

for any $t \in \mathbb{R}$ and $(\tilde{q}, \tilde{v}) \in TM$. Now, $\langle v, r(q, v) \rangle = 0$ since r(q, v) belongs to $(T_q M)^{\perp}$. Moreover, $\langle v, v \rangle = c^2$ since $(q, v) \in \partial X_c$, and

$$\langle v, f(t, q, \tilde{q}) \rangle \le \|v\| \|f(t, q, \tilde{q})\| \le K \|v\|_{2}$$

where

(

$$K = \max\left\{ \|f(t, q, \tilde{q})\| : (t, q, \tilde{q}) \in \mathbb{R} \times M \times M \right\}$$

Thus,

$$\langle v, r(q, v) + f(t, q, \tilde{q}) - \varepsilon v \rangle \leq Kc - \varepsilon c^2.$$

This shows that, if we choose $c > K/\varepsilon$, then F is an inward vector field on X_c , as claimed. Therefore, given $c > K/\varepsilon$, Theorem 2.1 implies that system (2.5) admits a T-periodic solution in X_c , and this completes the proof.

It is evident from this proof that the result holds true even if we replace

$$f(t,q,\tilde{q}) - \varepsilon v$$

by a T-periodic force $g(t, (q, v), (\tilde{q}, \tilde{v})) \in T_q M$ satisfying the following assumption: there exists c > 0 such that $\langle q(t, (a, v), (\tilde{a}, \tilde{v})), v \rangle < 0$ for any

$$> 0$$
 such that $\langle g(t, (q, v), (q, v)), v \rangle \leq 0$ for any

$$(t, (q, v), (\tilde{q}, \tilde{v})) \in \mathbb{R} \times TM \times TM$$

such that ||v|| = c.

We point out that, in the above theorem, the condition $\chi(M) \neq 0$ cannot be dropped. Consider for example the equation

$$\theta''(t) = a - \varepsilon \theta'(t), \quad t \in \mathbb{R},$$
(2.6)

where a is a nonzero constant and $\varepsilon > 0$. Equation (2.6) can be regarded as a second order ordinary differential equation on the unit circle $S^1 \subseteq \mathbb{C}$, where θ represents an angular coordinate. In this case, a solution $\theta(\cdot)$ of (2.6) is periodic of period T > 0 if and only if for some $k \in \mathbb{Z}$ it satisfies the boundary conditions

$$\begin{cases} \theta(T) - \theta(0) = 2k\pi \\ \theta'(T) - \theta'(0) = 0. \end{cases}$$

Notice that the applied force a represents a nonvanishing autonomous vector field on S^1 . Thus, it is periodic of arbitrary period. However, simple calculations show that there are no *T*-periodic solutions of (2.6) if $T \neq 2\pi\varepsilon/a$.

References

- P. Benevieri, A. Calamai, M. Furi, and M.P. Pera, Global branches of periodic solutions for forced delay differential equations on compact manifolds, J. Differential Equations 233 (2007), 404–416.
- [2] M. Furi, Second order differential equations on manifolds and forced oscillations, Topological Methods in Differential Equations and Inclusions, A. Granas and M. Frigon Eds., Kluwer Acad. Publ. series C, vol. 472, 1995.
- [3] M. Furi and M.P. Pera, On the existence of forced oscillations for the spherical pendulum, Boll. Un. Mat. Ital. (7) 4-B (1990), 381–390.
- [4] M. Furi and M.P. Pera, The forced spherical pendulum does have forced oscillations. Delay differential equations and dynamical systems (Claremont, CA, 1990), 176–182, Lecture Notes in Math., 1475, Springer, Berlin, 1991.
- [5] M. Furi and M.P. Pera, On the notion of winding number for closed curves and applications to forced oscillations on even-dimensional spheres, Boll. Un. Mat. Ital. (7), 7-A (1993), 397–407.
- [6] Milnor J.W., Topology from the differentiable viewpoint, Univ. press of Virginia, Charlottesville, 1965.

```
Pierluigi Benevieri, Massimo Furi, and Maria Patrizia Pera,
Dipartimento di Matematica Applicata ''Giovanni Sansone''
Università degli Studi di Firenze
Via S. Marta 3
I-50139 Firenze, Italy
Alessandro Calamai
Dipartimento di Scienze Matematiche
Università Politecnica delle Marche
Via Brecce Bianche
I-60131 Ancona, Italy.
e-mail addresses:
```

```
pierluigi.benevieri@unifi.it
calamai@math.unifi.it, calamai@dipmat.univpm.it
massimo.furi@unifi.it
mpatrizia.pera@unifi.it
```