SOBOLEV INEQUALITIES IN
2-DIMENSIONAL HYPERBOLIC SPACE

FRANCESCO MUGELLI & GIORGIO TALENTI

ABSTRACT. A sharp form of some Sobolev-type inequalities in 2-dimensional hyper-
bolic space H? is discussed. Here H? is modeled on the upper Euclidean half-plane
endowed with the Poincaré-Bergman metric. The proof rests upon rearrangements
of functions, the isoperimetric theorem in H 2, and inequalities in the calculus of
variations.

1. Main result.

Theorem 1. Let RZ = {(z,y) : —00 < < 00,0 < y < oo}, the upper Euclidean
half-plane, and let u be a real-valued function defined in RZ . Suppose u is sufficiently
smooth (e.g. Lipschitz-continuous) and decays well (e.g. the support of u is bounded
and is bounded away from the x-axis). The following inequalities hold and are sharp.
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Theorem 1 can be interpreted as follows. The quadratic form
y~* [(dz)* + (dy)?], (1.5a)

sometimes called Poincaré-Bergman metric, makes Ri a Riemannian manifold that
models the 2-dimensional hyperbolic space, is denoted by H? throughout, and has
the properties listed below. (Relevant references are [Bi, Chapter 14], [Bl, Sections
74 and 75], [SG, Section 9.5] and [Sie, Section 2.2], for example.)

Any differentiable mapping from H? into H? that leaves the Riemannian metric
of H? invariant is given either by a rational function of order 1 of the complex
variable x + iy — a Mobius transformation — having real coefficients, or by the
conjugate of such a function. The Riemannian angle between two tangent vectors to
H? coincides with the Euclidean angle; the Riemannian lenght of a tangent vector
to H? at a point (z,y) equals yx (the Euclidean length). The geodesics of H? are
the half-lines and the half-circles orthogonal to the z-axis; the Riemannian distance
between two points (x1,y1) and (22, y2) equals

ViEe —21)2 + (2 +y1)2 + /(22 — 21)2 + (y2 — 11)?

log (1.5b)
V(g2 —21)2 + (12 +11)? — /(22 — 1)% + (y2 — 11)?
The Riemannian 2-dimensional measure on H?, M, is given by
dM = y~2dxdy. (1.5¢)

The Laplace-Beltrami operator on H?, A, obeys A = y* ((0/0z)* + (9/0y)?) ; the
curvature of H? is identically —1.

Inequalities (1.1)-(1.4) are closely related to the Riemannian structure of HZ2. In
fact, if we think of u as a scalar field on H? we have

e 1/q
/ ot L {/ fuf? dM} (1.6a)
RZ () H?2

the norm of u in Lebesgue space LI(H?). On the other hand, the covariant deriva-
tive of u, Vu, is a tangent vector field to H? whose components are u, and u,, and

whose Riemannian length, |Vu|, equals y, /uZ + u2. Therefore

p 1/p
{ / yp(uiwi)”/"’d%} —{[Lvaradg T e
R H2

the norm of Vu in LP(H?) x LP(H?).

Thus, statements (i), (ii) and (iii) from Theorem 1 amount to Sobolev inequal-
ities in hyperbolic space H?; statement (iv) is an inequality @ la Poincaré in H2.
Inequalities of this sort are well-established: the point is that the constants dis-
played in Theorem 1 are the best possible. (Standard references on Sobolev spaces
and inequalities are [Ad], [Ma], [Zi]. An overview of sharp Sobolev inequalities in

2
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Euclidean n-dimensional spaces can be found in [Ta2, Section 2]. Sharp forms of
some Sobolev inequalities on spheres appeared in [Tal] and [Ci]. Sobolev spaces
and inequalities on Riemannian manifolds are discussed in [Aul], [Au2] and [Au3].)
Remarks on Theorem 1 follow.

(i) The proof of Theorem 1 we offer in the present paper rests on the isoperi-
metric theorem for hyperbolic space H?, though an alternative approach briefly
mentioned in Section 2 may work as well. We would like to stress that, conversely,
the isoperimetric theorem for H? can be derived from inequality (1.1) — details of
such a derivation are much as in [Ta2, Theorem 2A] or [Zi, Section 2.7], for exam-
ple. In other words, statement (i) from Theorem 1 is equivalent to the isoperimetric
theorem for H?2.

(ii) The leading constant involved in inequality (1.2) coincides with (an appro-
priate power of) the Sobolev constant for the Euclidean 2-dimensional space —
consistently with results by Aubin, [Aul] and [Au2].

(iii) Inequality (1.4) is peculiar to hyperbolic space H?. It implies also that

/HZUQdM < 4/ w(—Au)dM (1.7)

H?2

for every test function u — an inequality already observed by McKean [Mk] showing
a cognate peculiarity of H? : the spectrum of A : L2(H?) — L?(H?) lies below —1/4.
As one may infer from proofs, the peculiarities in question are concerned with the
negative curvature of H2.

The present work was prompted by a paper of L.E. Fraenkel [Fr], who — aim-
ing at an existence theory for a partial differential equation in fluid mechanics —
supplied a proof that (in our notations) if ¢ > 2 then a constant A exists such that

1/q dd 1/2
—q/2— ray
{/ ol 7y~ 2dxdy} SA{/ (7 +¢3) } (1.8a)
R3 R2 Y

+

for every real-valued compactly supported smooth function ¢ defined in ]Ri.
Fraenkel had an eye to the smallest constant A that renders the above inequality
true, and was able to show that such a constant equals 26/5 . 15=1/2 . 7=1/5 in the
special case where g = 2.

The change of variables ¢(z,y) = \/yu(z,y) and an integration by parts turn
the inequality above into

1/q 3 1/2
{/ |u|qd/\/l} SA{/ |Vu|2dM+Z/ |u|2dM} : (1.8b)
H?2 H2 H2

Thus, Fraenkel’s inequality can be conveniently regarded as a borderline case — i.e.
a case where the leading exponent equals the dimension — of Sobolev inequalities
in hyperbolic space H2. Such a case can be approached using the methods of the
present paper though it is not included in Theorem 1, and will be the subject of a
future paper.
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2. Rearrangements.

Let u be any real-valued function defined on hyperbolic space H? such that
the Riemannian measure of the level set {(z,y) € H? : |u(z,y)| >t} is finite for
every positive ¢t. The following definitions mimic those introduced by Hardy and
Littlewood and elaborated by several authors (see [HLP, Chapter 10], [PS, Chapters
1 and 2], [Ban, Chapter 2], [Kw, Chapter 2], [Bae], [Ta2], and the references quoted
therein).

The distribution function of u, p, is the Riemannian measure of the level sets of
u, i.e. is defined by

u(t) = dM (2.1)

~/{(w,y)€H2IIU(w,y)|>t}

for every nonnegative t. The decreasing rearrangement of u,u*, is defined by
w*(s) =inf {t > 0: u(t) < s} (2.2)

for every nonnegative s. The symmetric rearrangement of u, u*, is defined by
(T
u*(z,y) =u (a (z® + (y — 1)2)) (2.3)

for every (z,y) from HZ.
Clearly, p is nonnegative, decreasing and right-continuous, and u* coincides with
the distribution function of u. It is easy to show that

{s>0:u(s) >t} = [0, u(0)] (2.4)

for every nonnegative t — i.e. the set where u* exceeds t is an interval on the real
line whose end-points are 0 and the value of u at t.

Recall that the geodesic disk in H? with center at (a,b) and radius r coincides
with the Euclidean disk whose center is (a,bcoshr) and whose radius is bsinhr;
and that the Riemannian area and the Riemannian perimeter of a geodesic disk
in H? with radius r are 4x[sinh(r/2)]? and 27 sinhr, respectively. In other words,
if a,b and s are real parameters, and b and s are positive, then the inequality
(r—a)?+(y—b)? < (s/m)by defines the geodesic disk in H? such that: center= (a,b),
measure = s, perimeter = v/s2 + 4ws, and radius= log (1 + %s + %\/82 + 47rs) .
Thus, equation (2.3) implies that the value of u* at any point (2,y) depends only
upon the Riemannian distance between (z,y) and (0,1), and decreases as such a
distance increases. Equations (2.3) and (2.4) give precisely that

{(z,y) € H? : |[u*(z,y)| >t} = the open geodesic disk
whose center is (0,1) and whose Riemannian measure equals u(t) (2.5)
for every nonnegative .
Equations (2.4) and (2.5) tell us that u,u*,u* are equidistributed, i.e. both the

distribution function of 4* and the distribution function of u* coincide with u, the
distribution function of u. It follows that

ess sup|u| = u*(0) = u*(0,0), (2.6a)



SOBOLEV INEQUALITIES IN 2-DIMENSIONAL HYPERBOLIC SPACE 5

and
/ & (Ju(z, y)|) AM = / ds—/H2<I>(|u*(m,y)|)dM (2.6b)

if ® is a nonnegative increasing function defined in [0, oo[ such that ®(0) = 0.
As shown in Section 4, a proof of Theorem 1 rests upon equations (2.6a) and
(2.6b), and the following theorem.

Theorem 2. Let u be a real-valued function defined on hyperbolic space H?. As-
sume u 1is Lipschitz-continuous and the Riemannian measure of {(w,y) € H? .
|u(z,y)| >t} is finite for every positive t. Let ® be any Young function — i.e.
assume ® maps [0, o[ into [0, 00[, ®(0) =0, ® is increasing and convex. Then

/11412 @ (|Vul) dM > /Ooo ® (—\/m d (s)) ds, (2.7a)

ds

and
the right-hand side of (2.7a) = / (|Vu*]) dM (2.7b)

Theorem 2 amounts to saying that Dirichlet-type integrals decrease under the
symmetric rearrangement. (A counterpart of this, where H? is replaced by an
Euclidean space, is a popular tool, exhaustively discussed in [BrZi], for example.)
Interestingly, Theorem 2 can be derived from rearrangement inequalities that have
their roots in merely combinatorial arguments. A proof along these lines is due to
A. Baernstein and W. Beckner, and is outlined in [Bae, Sections 3 and 4]. Here
we insist on a more geometric approach, and provide a proof that is based on
the isoperimetric theorem for H? and may help to understand how the negative
curvature of H? comes into play.

The isoperimetric theorem for hyperbolic space H? is as follows. Let E be a
sufficiently smooth subset of H?, and let

dxdy

(dz)? + (dy)? and A= /
OE Z/

— the Riemannian perimeter and the Riemannian area of E, respectively. If A is
finite, then

P > \/ArA + A2; (2.8)

moreover, P equals v4rA + A? if, and only if, E is a disk. One early proof of this
theorem is due to E. Schmidt [Sch], another can be found in [BuZa, Section 10].

The curvature is a clue to the isoperimetric theorem for H2. Indeed, as observed
in [Oss, Section 4], the isoperimetric inequality on a 2-dimensional manifold of
constant curvature — either a sphere, or the Euclidean plane, or the hyperbolic
plane — reads

(perimeter) > [47 x (area) — (curvature) x (a,rea)z]l/ 2, (2.9)
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The proofs given below in this section and in the subsequent ones indicate that:
(i) The isoperimetric theorem for H? is precisely what brings the weight

V/C1s+ Css2,

Cy =47 and Cy = —(curvature),

into the inequalities of Theorem 2. (ii) This same weight, which behaves like /s
when s is small and like s when s grows large, is precisely what causes the inequal-
ities of Theorem 1 to hold in the form stated.

Proof of Theorem 2. Clearly there is no loss in generality if we assume u > 0.
Federer’s coarea formula implies that

—dzd
/ yi ()2 + (y)2 2 =
w1 (Ju* (s+h),u*(s)]) Y

v 1 2 2
/u s /u L@ 1@y (2.10)

*(s+h ~1{en Y

if s > 0 and h > 0. (An accessible version of Federer’s coarea formula can be found
in [Zi, Section 2.7], for example.) The isoperimetric theorem for hyperbolic space
H? implies that

/_1({t}) i\/(dmﬁ + (dy)?2 > /amu(t) + [p@)]? (2.11)

for every nonnegative t. Therefore, if s > 0 and h > 0 we have

/ |VuldM > v/4rs + s2 [u*(s) — u*(s + h)]. (2.12)
u~(Ju (s+h),u*(s)])

Inequality (2.12) is crucial: the whole Theorem 2 will be derived from it.

Let us commence by showing that u* is locally Lipschitz-continuous — a prop-
erty implicit in the statement of Theorem 2. Basic properties of both distribution
function and decreasing rearrangement — equations (2.1), (2.2) and (2.4) — imply
that

/ dM < h (2.13)
u=t (Ju* (s+h)u* (5)))

if s > 0 and h > 0. Moreover,
/ |Vu|dM =0 (2.14)
w1 ({t})

for every nonnegative t, because either u~!({t}) has Riemannian measure zero or
|Vu| vanishes almost everywhere on =1 ({t}). Inequalities (2.12) and (2.13), and
equation (2.14) imply that

Vdrs + 82 [u*(s) —u*(s+ h)] < h-esssup |Vu| (2.15)
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if s > 0 and h > 0. The above mentioned property follows. Inequality (2.12) gives
immediately that

il
ds J{(a,y)cH2:u(z,y)>u* (s)}

|VuldM > \/4rs + s [_ df (s)] (2.16)

d

for almost every positive s.
Now we prove that

d & (|Vul)dM > & (m [— du” (S)D (2.17)

ds J{(a,y)eH2:u(z,y)>u* (s)} ds

for almost every positive s. There are exactly three alternatives: (i) s belongs to
some exceptional set having one-dimensional Lebesgue measure zero; (ii) du*/ds
vanishes at s; (ili) a neighborhood of s exists where u* decreases strictly.

If either (i) or (ii) holds, there is nothing to prove. If (iii) is in force, a simple
argument shows that

/ dM =h (2.18)
u=*(Ju (s+h),u*(s)])

if h is positive and small enough. Then Jensen’s inequality for convex functions
gives

® (|Vul)dM > & (1

/ |Vu|dM> . (2.19)
b Ju=1(us (s+h) ur (s)])

7
B Ju=1 (qus (s+h),ur ()
consequently we have

d

o &(|Vul)dM >
ds J{(z,y)en2:u(z,y)>u (s)}

® (i / |Vu|d/\/l>. (2.20)
ds J{(a,y)eH2u(z,y)>u* (s)}

Inequalities (2.16) and (2.20) yield (2.17).
The proof of inequality (2.7a) is now at hand. Indeed, (2.7a) follows from in-
equality (2.17) and the obvious inequality

/CI>(|Vu|)dM2/ dsi/ & (Vul)dM.  (2.21)
H? 0 48 J{(ay)en>u@y)>ur ()}

The remaining part of the proof runs this way. Define s by
T
s@y) =2 [2® + (y - 1)7], (2:22)

and observe that: (i) s(z,y) > 0 if y > 0; (ii) s obeys the partial differential
equation
y? (3 +53) = 4ms + % (2.23)
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(iii) for every positive ¢, the level line where s(z,y) = ¢ is a geodesic circle of

H? whose Riemannian length equals v/4rt + #2. Derive from (i), (ii) and (iii) and
Federer’s coarea formula that

fstwunam = [ " f(tyde (2.24)
H?2 0

if f is defined in [0, 00[ and decays fast enough near 0 and oo. Deduce from the
definition of u* — equation (2.3) — and from equation (2.23) that

IVu*| = /drs + 5 [— d“; (s)] . (2.25)

d

Conclude the proof by observing that equations (2.24) and (2.25) give (2.7b).

3. Lemmas.

Lemma 3.1. (i) The following inequality

[ sldu(s)
ol = .

holds for every non-zero real-valued function u such that: u has bounded variation,
the integral [ s|du(s)| is finite, and u(co) = 0. The right-hand side of (3.1) is
the minimum value of the left-hand side, and any positive decreasing function is a
minimaizer.
(1) If 1 < p < oo, then
I57 |su!(s)|Pds
fooo |u(s)[Pds
for every non-zero real-valued function u such that: u is absolutely continuous, the
integral fooo |su’(s)|Pds is finite, and u(oco) = 0. The right-hand side of (3.2) is the
greatest lower bound — not attained — of the left-hand side; a minimizing sequence
is given by

p~* (3.2)

up(s) = s~ /PH1/ke=s (k=1,2,3,...).
Lemma 3.2. (i) The following inequality

{2 3ldu(s)|}”
[P lus)ds =

holds for every non-zero real-valued function u such that: u has bounded variation,
the integral fooo Vs|ldu(s)| is finite, and u(oo) = 0. The right-hand side of (3.3) is
the minimum value of the left-hand side; the characteristic function of the interval
[0,1], and any rescaled version of it, are minimizers.

(3.3)
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(i) Let 1 < p < 2 and ¢ = 2p/(2 — p). Then

U™ 52w/ () Pds}*"”  am(g/2— 1)*/1
{2 Ju(s)ads}?* -~ a*sin(2m/q)

(3.4)

for every mon-zero real-valued function u such that: u is absolutely continuous,
the integral [;° sP/2|u! (s)|Pds is finite, and u(co) = 0. The right-hand side is the
minimum value of the left-hand side; a minimizer is given by

u(s) = [1 + Sq/(q,2)] —2/q

Y

and any other minimizer is a rescaled version of this.

Lemma 3.3. (i) Suppose A and B are nonnegative constants. The following in-
equality

{fooo V8?2 +4rs |du(s)|}2 (3.50)
[ 2 [ = )
AL [u(s)|ds} + B [ |u(s)|* ds
holds for every non-zero u if, and only if,
A<1 and B < A4r. (3.5b)

Here u is any real-valued function such that: u has bounded variation, the integrals
I5° sldu(s)| and [;° /s |du(s)| are finite, and u(oo) = 0.

(i) Let 1 < p < 2 and g = 2p/(2 — p), and suppose A and B are nonnegative
constants. The following inequality

{fooo (s* + 4773)1)/2 [u'(s)[P ds}z/p
- - >7p = . 74 >1 (3.6a)
A {fo lu(s)| ds} +B {fo |u(s)] ds}

holds for every non-zero w if, and only if,

2 (47/q)*(g/2 — 1)*/4
A<p and B< sin(27/q) .

Here u is any real-valued function such that: u is absolutely continuous, the integrals
I Isu/(s)[Pds and [;° s?/?|u'(s)[Pds are finite, and u(oo) = 0.

Lemma 3.4. Let 2 < p < oo, and denote p/(p — 1) by p'. Then
el 27y < (4m) VP { I -p/2TE - 1) }1/” (3.7)
: - /
{62 amo oy as) L/

(3.6b)

for every non-zero real-valued function u such that: u is absolutely continuous,
the integrals [~ |su'(s)|" ds and [;° sP/?|u'(s)|" ds are finite, and u(co0) = 0. The
right-hand side of (3.7) is exactly the mazimum value of the left-hand side.

Proof of Lemma 3.1. A proof of statement (i) can be easily figured out and is

omitted here. Statement (ii) follows from [HLP, Theorem 328] — a variant of
Hardy’s inequality.
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Proof of Lemma 3.2. (i) Replacing u by ]0,00[3 s — [ |du(t)| leaves the set of
competing functions invariant and decreases the left-hand side of (3.3). Thus, there
is no loss of generality if the extra assumption is used that u is nonnegative-valued
and decreasing.

We have

* u(t) s 1

because of the monotonicity of u, and consequently

1 [ u()

() < & { / 3 ;‘(—zdt}z

for every positive s. Therefore

[Tweras<{ [ ;%dt}z

On the other hand, the equation u(s) = [ [—du(t)] gives

| 3= [ val-duo).

[ weras < { [ \/E[—du(s)]}z -

Inequality (3.3) is demonstrated. The remaining part of statement (i) follows from
a straightforward inspection.
(ii) A theorem by Bliss [Bs] says that if 1 < p < ¢ then

and

We have shown

1/p—1/q
- 1/p . r(-PL
U™ ' ()17 dt} . ( B g) /n a—»
{20 ()] t-1-a0-1/m g}~ p r ( q ) r <pq - 1)
q—p q—p
for every non-zero real-valued function w such that w is absolutely continuous,

the integral [;° |w'(t)|"dt is finite, and w(0) = 0. The right-hand side of the last
inequality is the minimum value of the left-hand side; a minimizer is given by

—p/(a-p)
w(t):t(tq/f’*1+1) e

and any other minimizer is a rescaled version of this. (Bliss’ theorem has proved
instrumental in investigating Sobolev-type inequalities; it relies upon typical meth-
ods of the classical calculus of variations, and on the circumstance that appropriate
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solutions to the relevant Euler equation — a differential equation of the Emden-
Fowler type — are available in a close form. Incidentally, statement 270 in [HLP)]
is flawed by a misprint.)

Letting ¢ = 2p/(2 — p) and applying Bliss’ theorem to test functions of this form

10,0[3 ¢t — u (tlf"/2)

results in statement (ii).

Proof of Lemma 3.3. Let us focus on statement (ii) — the proof of (i) is similar.
Suppose 1 < p < 2 and ¢ = 2p/(2 — p), and that A and B obey (3.6b). If u is
any competing function, we have

P/2

{/ (s + 47r.s:)p/2 [u'(s)|P ds} >
0
tl—p/2/ |su!(s)[P ds + (1 _t)l—p/2(477)1’/2/ sP/2 |u' (s)|” ds
0 0

for every t such that 0 <t < 1, consequently

2/p

{/Ooo (52 + 4ms)"' |/ (5)[” ds} >

S 2/p oo 2/p
{/ |su'(s)|” ds} + 47 {/ sP/2 |u! ()P ds} .
0 0

(a+b)* =max {t'*ak + (1 —t)'FpF:0 <t <1},

We used the formula

where 0 < k < 1 and a and b are positive. Therefore Lemmas 3.1 and 3.2 yield

{ /Ooo (2 + dms)”"” |u'<s)|pds}2/" >
po [ o) UG )

sin(2m/q)

Inequality (3.6a) follows.

Suppose A and B are positive constants and that inequality (3.6a) holds for
every test function w. If X is any positive constant and w is rescaled — i.e. replaced
by ]0,00[3 s — u(As) — inequality (3.6a) becomes

2
{fooo (s* + 477/\5)p/2 |u’(s)|pds} v

oo 2/p ) 2/q 21
A{[7 [u(s)Pds}™" + BA{ [} [u(s)|* ds}

Letting A — 0 gives
[e'9) ' rd
fooo|su (s)|Pds > A,
fo lu(s)|Pds
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letting A — oo gives
(s 5w ()P ds}*"”
2/
{fooo |U(5)|qu} !

Inequalities (3.6b) follow, via Lemmas 3.1 and 3.2. The proof is complete.
Proof of Lemma 3.4. Clearly

> B.

supu] < / [ ()] ds,
0
and

0 oo /2 1/p oo _p )2 1/p
/ |u'(s)| ds < {/ (82 + dms)”" |u! (s)[F ds} {/ (s? +4ms) ™" ds}
0 0 0

by Holder inequality. Hence

sup |U| (o) ) —p'/2 l/Pl
7 < (s + 4ms) ds )
(U5 (52 + ams)?"? |u (s) P ds | 0

’

Equality holds in these inequalities if u obeys
u(o0) = 0, u'(s) = — (s* +4ms) " 2

The Lemma follows.

4. Proof of Theorem 1.

Let u be any real-valued Lipschitz-continuous compactly supported function de-
fined in hyperbolic space HZ2. The theory outlined in Section 2 tells us that the
rearrangement of u, called u* there, is Lipschitz-continuous and supported by a
geodesic disk of finite radius. Moreover, u* obeys

/ [Vu*|PdM < / |Vul? dM (4.1)
H2 H2
for every p larger than (or equal to) 1, and

/Hz(u*)qd/\/l :/HQ lu|? dM. (4.2)

Hence the set of competing functions and the left-hand sides of inequalities (1.1)-
(1.4) are invariant under the mapping u — u*, and the right-hand sides of the same
inequalities decrease under this mapping. In other words, the competing functions
that really count in the present context are circular waves u obeying

u(z,y) = u* G (2 + (y — 1)2)> : (4.3)
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where u* is defined in [0, 0o, is decreasing and locally Lipschitz-continuous, and
vanishes in a neighborhood of infinity.
Equation (4.3) gives

d o) du* p
/ yP (ul + uj)p/2 dw—,} = / (s> + 4775)1)/2 [—i(s)] ds (4.4)
R3 Y 0 ds

and

/2 uje =W _ /Ooo[u*(s)]qu. (4.5)
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Equations (4.4) and (4.5) turn inequalities (1.1)-(1.4) into the following set:
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d

o [l )

{/000 (s2 + 4rs)""? [—%(8)]1)&9}2/13, (4.7)

where 1 < p < 2 and ¢ = 2p/(2 — p);

g (250_—21>> 3 (pi 1) -
(i) u*(0) < (4m) /7
0) < (4 r(Q@p_ 1))
{/OOO (s> + 47r8)p/2 [—%(S)rds}z/p, (4.8)

X

where p > 2;

(iv) /0 "l (s)Pds < pP /0 (5% + 4ms)"? [— ddf (s)]p ds,  (4.9)

where 1 < p < 0. Inequalities (4.6), (4.7) and (4.9) follow from Lemma 3.3; inequal-
ity (4.8) follows from Lemma 3.4. The same lemmas — together with appropriate
density arguments — show that the inequalities in question are sharp.

The proof of Theorem 1 is complete.
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