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Abstract

Starting from the initial-boundary value problem for the linear
Boltzmann equation with a force term and unbounded collision fre-
quency, we consider the abstract problem characterized by the sum of
two evolution operators A and B. We investigate relations between
the semigroup generator G and the operator A+B where A generates
a positive contraction semigroup in a very general case. A character-
ization theorem for G = A+B is stated. The results are based on a
spectral analysis of B(λ− A)−1, where the main issue is to study the
conditions under which the value 1 belongs to the resolvent, the con-
tinuous spectrum or the residual spectrum of B(λ−A)−1, respectively.
Two illustrative examples are discussed.



1 Introduction

In this paper we consider a generalization of the initial-boundary value prob-
lem for the simpli�ed linear Boltzmann equation

∂f

∂t
(v, t) = −a∂f

∂v
− ν(v)f(v, t) + (Kf)(v, t), (v, t) ∈ R× R+;

f(v, 0) = f0(v), v ∈ R ,
(1.1)

within an abstract framework. Equation (1.1) describes the electron distri-
bution f(v, t) in a weakly ionized host medium as a function of the velocity
v ∈ R and time t ≥ 0, a > 0 is the electrostatic acceleration, ν(v) is the colli-
sion frequency between an electron and the host medium, and K denotes the
scattering operator. The main focus of the research on Eq. (1.1) has so far
been the study of conditions under which one of the mutually exclusive phe-
nomena, relaxation to equilibrium and runaway, occurs. In the recent past
the runaway phenomenon in transport theory was studied from the mathe-
matical point of view by many authors, (see, e.g., [9, 11, 2, 10, 16, 17]). The
asymptotic behaviour of the particle distribution in the runaway case, which
corresponds to the generation of a travelling wave in velocity space has been
studied in the framework of wave operator theory ([12, 7]).

In many applications, the collision frequency and the operator K are
unbounded but balance each other in such a way that the total number of
particles is expected to be constant in time. In this case the general theory of
the existence and uniqueness of solutions to kinetic equations, as developed
by Beals and Protopopescu [8, 13], should be modi�ed. Such a modi�ca-
tion was in fact pioneered by Frosali et al. [11], while a way to deal with
the intricacies of the unbounded case by extending the Kato-Voigt theorem
on semigroup perturbations was suggested by Arlotti [1]. In semiconduc-
tor physics, the unbounded case was studied by Majorana and coauthors,
basically by approximating the integral kernel of the scattering operator by
bounded truncations (cf. [14]), which has led to an existence result without
resolving the well-posedness problem. In [3, 4, 5, 6], Banasiak and coau-
thors applied classical semigroup theory to derive very general existence and
uniqueness results for integrable solutions to linear transport equations, thus
obtaining, among other things, an alternative derivation of the main result of
[14]. Unfortunately, the evolution semigroup corresponding to the physical
problem is constructed by a limiting procedure which does not allow one to
control the domain of the generator. In [15] a similar approximation argu-
ment was used to extend the theory of Beals and Protopopescu to deal with
the existence issues in the unbounded case.
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When adopting the semigroup approach, the existence of the evolution
operator is almost immediate, but the full characterization of the generator
requires additional mathematical tools. In general, one can only prove that
the generator of the evolution semigroup {S(t), t ≥ 0} solving the Cauchy
problem (1.1) is a closed (but not necessarily the minimal closed) extension
of the operator T de�ned by the right-hand side of (1.1), while proving it to
be the minimal extension of T requires additional assumptions. In principle,
this allows for a situation in which the Cauchy problem has solutions which
cannot be obtained by the usual approximation approach, and therefore has
multiple solutions. Such a situation was in fact encountered for a fragmenta-
tion model from reaction di�usion theory [5], where multiple solutions were
found precisely in the cases where the evolution semigroup {S(t); t ≥ 0} fails
to satisfy the stochasticity requirement

‖S(t)f‖1 = ‖f‖1, ∀t ≥ 0, ∀f ≥ 0 .

In other words, in this case the physical requirement that the total number
of particles is conserved in time, fails to be satis�ed.

In this article we prove that a necessary and su�cient condition for S(t)
to be stochastic is that the generator is the (minimal) closure of T . We
distinguish between the following three situations: i) T itself is the generator,
ii) the generator is the closure of T , in which case S(t) is stochastic, and
iii) the generator is a proper closed extension of T , in which case S(t) is not
stochastic. For each of these three cases we give various characterizations
in terms of the spectral properties of the operator B(λ − A)−1. We will
not always give complete proofs, but instead present them in a later, more
general publication. In the �nal section we revisit the electron ionization
model discussed in [11] and the fragmentation model treated in [5].

2 Abstract formulation of the problem

In this section we rewrite the initial value problem (1.1) in the general ab-
stract form 

∂f

∂t
= Af +Bf , t > 0

f(0) = f0,

(2.1)

where the unknown function f belongs to the Banach space X = L1(Ω, µ) for
some measure space (Ω, µ). In the abstract setting, we make the following
general assumptions:
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i) A = T0 + TF + TA where T0 is the free streaming operator, TF is the
external force term, and TA is the absorption (loss) term;

ii) TA = −νI, where I is the identity operator and ν = ν(µ) is non-
negative and belongs to L1,loc(Ω, µ), i.e. ν is µ-integrable on every
bounded Borel subset of Ω;

iii) A is the generator of a positive contraction semigroup (a so-called sub-
stochastic semigroup) {S0(t); t > 0} on X.

Let us denote by Lλ = (λ−A)−1 with Reλ > 0 the resolvent operator of
A. Then

Lλf =

∫ ∞
0

e−λtS0(t) f dt, f ∈ X, Re λ > 0 . (2.2)

Let us now assume that

iv) λ‖Lλf‖1 + ‖νLλf‖1 = ‖f‖1, f ≥ 0, f ∈ X.

Let Xν = L1(Ω, ν(µ)dµ) with the measure νdµ. Then Xν is a Banach
space if ν is positive µ-almost everywhere.

Let B be a positive operator mapping {f ∈ X : νf ∈ X} into X; in most
applications the operator B is the gain collision operator. We assume that
B : Xν → X is such that

v) ‖Bf‖1 = ‖νf‖1, f ≥ 0, f ∈ Xν .

Then BLλ is positive and bounded on X and from iv) we have

‖BLλf‖1 = ‖f‖1 − λ‖Lλf‖1, f ≥ 0, f ∈ X . (2.3)

When T coincides with TA, we simply have Lλf = 1
ν+λ

f for all f ∈ X and
λ > 0. The estimate iv) follows immediately from νLλf + λLλf = f .

Example 2.1 (cf. [11]) When T = TF + TA = −a ∂
∂v
− ν(v), with a > 0

constant and v ∈ R, the operator Lλ takes the form

(Lλf)(v) =
1

a

v∫
−∞

exp

−1

a

v∫
v′

[ν(v′′) + λ] dv′′

 f(v′)dv′. (2.4)

Estimate iv) easily follows from
+∞∫
−∞

(ν(v) + λ) dv = +∞ for λ > 0. In par-

ticular, for λ = 0, we have the identity ‖L0f‖ν = ‖f‖1 for f ≥ 0 whenever∫ +∞
−∞ ν(v)dv = +∞.
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Rewriting formally the resolvent equation for A + B in terms of Lλ, we
obtain

f = LλBf + Lλg . (2.5)

Modifying the expansion of the resolvent equation given in [11], we study the
convergence of the series

f = Lλ

∞∑
n=0

(BLλ)
n g, (2.6)

where g ∈ X, f ∈ X ∩Xν , and λ > 0. Writing the equality

‖Lλf‖1 =
1

λ
{‖f‖1 − ‖νLλf‖1}

for
∑n

j=0 (BLλ)
j f instead of f and taking into account the positivity of the

operators as well as assumptions iv) and v), we have∥∥∥∥∥Lλ
n∑
j=0

(BLλ)
j

∥∥∥∥∥
1

=
1

λ

{
n∑
j=0

‖ (BLλ)
j f‖1 −

n∑
j=0

‖ (BLλ)
j+1 f‖1

}
.

Using the de�nition

T
[n]
λ f = Lλ

n∑
j=0

(BLλ)
j f , (2.7)

for the n-th partial sum of the series in (2.6), we obtain

‖T [n]
λ f‖1 =

1

λ

{
n∑
j=0

‖ (BLλ)
j f‖1 −

n+1∑
j=1

‖ (BLλ)
j f‖1

}

=
1

λ

{
‖f‖1 − ‖ (BLλ)

n+1 f‖1

}
≤ 1

λ
‖f‖1, (2.8)

where f ≥ 0 in X, λ > 0, and n = 0, 1, 2, . . . .
Since the sequence ‖ (BLλ)

n f‖1 is monotonically decreasing, there exists
a bounded positive operator Tλ on X such that

lim
n→∞

‖Tλf − T [n]
λ f‖1 = 0, f ∈ X, (2.9)

where the convergence is monotone if f ≥ 0. This operator satis�es

‖Tλf‖1 =
1

λ

{
‖f‖1 − lim

n→∞
‖ (BLλ)

n+1 f‖1

}
, f ≥ 0 in X, (2.10)

where the limit exists.
Using a monotone approximation of B by positive operators Bm which

are bounded on X, we easily prove
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Lemma 2.1 {Tλ : λ > 0} is the resolvent of a positive contractive semigroup
{S(t) : t ≥ 0} on X.

We now characterize the generator of the semigroup S(t) when I − BLλ
is invertible.

Theorem 2.1 Let G denote the generator of the semigroup S(t) whose re-
solvent is Tλ de�ned by (2.9). Then the following statements are equivalent:

1) D(G) = D(A) and G = A+B.

2) I −BLλ is invertible on X for some λ > 0.

3) I −BLλ is invertible on X for all Reλ > 0.

Proof: From Lemma 2.1 we have Tλ = (λ − G)−1 for some extension G of
A+B. After some calculation we get

Lλ = Tλ(I −BLλ), λ > 0, (2.11)

which implies that {
ker(I −BLλ) ⊆ kerLλ = {0}
ImLλ ⊆ ImTλ .

(2.12)

Since ker(I − BLλ) = {0}, we see that D(G) = ImTλ and D(A) = ImLλ
coincide if and only if I −BLλ is invertible.

In many practical situations, we can easily verify the conditions of The-
orem 2.1 by using the following proposition.

Proposition 2.1 The equivalent conditions of Theorem 2.1 are satis�ed un-
der any of the following hypotheses:

a) BLλ is (weakly) compact on X.

b) ν is (essentially) bounded.

c) The spectral radius of BLλ is strictly less then 1.

If either a) or c) is satis�ed for some λ > 0, it is satis�ed for all λ > 0.

Proof: Obviously, c) implies the invertibility of I − BLλ and hence the
conditions of Theorem 2.1. Next, if a) is true, then, by the Dunford-Pettis
theorem, (BLλ)

2 is compact and hence I − BLλ is invertible, which implies
the conditions of Theorem 2.1. Next, if ν is (essentially) bounded, then
by assumption v), B is bounded on X. As a result, G = A + B, and the
conditions of Theorem 2.1 follow. The �nal statement of the proposition is
immediate from the resolvent identity for Lλ.
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3 The spectral analysis

In this section we sketch a characterization of the generator G in terms of
the spectral properties BLλ. Details will be object of a forthcoming paper.

Theorem 3.1 The following conditions are equivalent:

a) G = A+B.

b) {S(t); t > 0} is a stochastic semigroup, i.e., a positive semigroup of
isometries (‖S(t)f‖1 = ‖f‖1, f ≥ 0 in X).

c) limn→∞ ‖(BLλ)nf‖1 = 0, f ∈ X, for all λ > 0.

d) 1 ∈ σc(BLλ) ∪ ρ(BLλ) (continuous spectrum plus resolvent set) for all
λ > 0.

e) ‖Tλf‖1 = 1
λ
‖f‖1, f ≥ 0, f ∈ X, for all λ > 0.

If any of the conditions c) - e) holds for some λ > 0, it automatically holds
for all λ > 0.

Sketch of the proof: From (2.10) it follows immediatly that c) ⇔ e) and from
the expression of the resolvent it follows that b) ⇔ e).

To complete the proof it is su�cient to prove that d) ⇒ c) ⇒ a) ⇒ d).
This is illustrated by the following diagram:

b) a)

l ↑ ↘
e) ↔ c) ← d)

More precisely, d) ⇒ c) is proved by extending

βλ(f) = lim
n→∞

‖(BLλ)nf‖1, f ≥ 0 in X, (3.1)

to a bounded (and positive) linear functional on X and writing it in the form
〈f, ϕλ〉 for some ϕλ ≥ 0 in L∞(Ω, dµ). A density argument is used to prove
that D(G) ⊆ D(A+B), while a) ⇒ d) follows by contradiction.

Let us return to the general situation and let us summarize:

1 ∈ ρ(BLλ) for some (and hence all) λ > 0 ⇐⇒ G = A+B

1 ∈ σc(BLλ) for some (and hence all) λ > 0 ⇐⇒

G = A+B
A+B is not
a closed operator

1 ∈ σr(BLλ) for some (and hence all) λ > 0 ⇐⇒ G ) A+B
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Let us now see if Tλ is the resolvent of the minimal positive evolution semi-
group. Let us look for positive bounded operators T̃λ on X which satisfy the
equation

T̃λ(I −BLλ) = Lλ, λ > 0. (3.2)

Then for f ≥ 0 in X we have

T̃λf = Lλf + T̃λBLλf = Lλf + LλBLλf + T̃λ(BLλ)
2f = . . .

= Lλ

n∑
j=0

(BLλ)
jf + T̃λ(BLλ)

n+1f.

Taking the strong limit in X as n→∞ we obtain

T̃λ = Tλ + s-lim
n→∞

T̃λ(BLλ)
n ≥ Tλ ≥ 0 (3.3)

(the strong limit in (3.3) must exist and is a positive operator). Consequently,
Tλ is the minimal positive solution of (3.2).

As a result, {S(t)f}t>0 is the unique positive and contractive solution of{
u′(t) ' (A+B)u(t), t > 0 (we need to write u′(t) = (A+B)u(t))

u(0) = f (with f ≥ 0 in X)

if the minimal solution is also the maximal solution. This occurs if (and only
if) G = A+B

4 Applications

In this section we discuss two applications.

a. The runaway problem revisited . Let a > 0 and let ν ∈ L1,loc(R; dv)
be nonnegative. Introduce the Banach spaces X = L1(R; dv) and Xν =
L1(R; ν(v)dv) with their usual norms.1 De�ne

TF = −a ∂
∂v
, A = TF + TA = −a ∂

∂v
− ν(v)

on suitable domains contained in X = L1(R; dv), and let

(Bf)(v) =

∫ ∞
−∞

k(v, v′)ν(v′)f(v′) dv′, (4.4)

1In fact, Xν is a Banach space if ν is positive a.e.
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where k is positive and
∫∞
−∞ k(v, v′) dv = 1 ∀v′. De�ning Lλ as in (2.4) by

(Lλf)(v) =
1

a

∫ v

−∞
exp

{
−λ
a

(v − v′)− 1

a

∫ v

v′
ν(v̂)dv̂

}
f(v′) dv′, (4.5)

we have for f ≥ 0 in X:∫ ∞
−∞

[λ+ ν(v)](Lλf)(v) dv

=


∫ ∞
−∞

f(v′) dv′ if Re λ > 0∫ ∞
−∞

[
1− exp

{
−1

a

∫ ∞
v′

r(v̂)dv̂

}]
f(v′)dv′ if λ = 0,

and ∫ ∞
−∞

ν(v)(L0f)(v) dv =

∫ ∞
−∞

f(v′) dv′ if

∫ ∞
−∞

ν(v)dv =∞∫ ∞
−∞

ν(v)(L0f)(v) dv ≤
[
1− exp

{
−‖ν‖1

a

}]
‖f‖1 if ν ∈ L1(R) .

Further

(BLλf)(v) =

∫ ∞
−∞

la(v, v
′′;λ) f(v′′) dv′′

where

la(v, v
′′;λ) =

1

a

∫ ∞
v′′

k(v, v′)ν(v′) exp

{
−λ
a

(v′ − v′′)− 1

a

∫ v′

v′′
ν(v̂)dv̂

}
dv′.

and, as a result,

‖BLλ‖ ≤

{
1 if ν /∈ L1(R)

1− exp
{
−‖ν‖1

a

}
if ν ∈ L1(R) .

Therefore, the spectral radius of BLλ is less than 1 whenever ν ∈ L1(R).
Thus, according to Proposition 2.1, we have G = A+B if at least one of

the three conditions (1) BLλ is weakly compact on X for some (and hence)
all λ > 0, (2) ν is bounded, and (3) ν ∈ L1(R), is satis�ed. We do not have
any example in which G ) A+B and hence the semigroup {S(t) : t ≥ 0} is
not stochastic.
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b. The fragmentation model revisited . Given α ∈ R, we introduce the
collision frequency ν(x) = xα for x > 0, the Banach space X = L1(R+;x dx),
and the collision operator B de�ned by

(Bf)(x) = 2

∫ ∞
x

yα−1f(y) dy.

Then (Lλf)(x) = f(x)/(λ+xα) for λ > 0 and hence the operator BLλ given
by

(BLλf)(x) = 2

∫ ∞
x

yα−1

λ+ yα
f(y) dy

is bounded on X. For α ≥ 0 one easily proves that G = A+B and
hence that the evolution semigroup is stochastic. For α < 0 this semi-
group is not stochastic, because the adjoint operator (BLλ)

∗ de�ned on
X∗ = L∞(R+;x dx) has a (simple) eigenvector at the eigenvalue 1.
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