December 26, 2003 1:48 WSPC/Trim Size: 9in x 6in for Proceedings frosaliw03

QUANTUM HYDRODYNAMIC EQUATIONS FOR A
TWO-BAND WIGNER-KANE MODEL

STEFANO BIONDINI, GIOVANNI FROSALI
AND FRANCESCO MUGELLI
Dipartimento di Elettronica e Telecomunicazioni and

Dipartimento di Matematica Applicata “G.Sansone”
Universita di Firenze

1. Introduction

The numerical simulations of semiconductor devices are usually based on
hydrodynamic models formulated in terms of macroscopic quantities such
as charge density, current, energy, and so on. In the classical frame, hy-
drodynamic models are derived from the hierarchy of the moments of the
Boltzmann equation. Starting from the pionieristic paper by Blgtekjzer!, in
the 70’s, the literature on hydrodynamic modeling, both theoretical and nu-
merical, is very extensive. The reader interested in hydrodynamic modeling
can refer to the papers quoted in the review by Anile and Romano?.

As it is well known, the fluid dynamical description begins to fail when
the carriers involved (i.e. electrons and holes) are few and the quan-
tum aspects become not negligible or even predominant. Nevertheless it
is worthwhile to recall that keeping an hydrodynamic formulation would
still present some relevant advantages (also in the previously mentioned
situation), since fluid dynamical equations are preferable on the computa-
tional side. Moreover, it easier to face the boundary conditions problem
when macroscopic quantities are involved rather than the Wigner distri-
bution function or the wave function. On the other hand, in practical
applications, approaches based on microscopic models are not completely
satisfactory, and it is useful to formulate semi-classical models in terms of
macroscopic variables. Such models are generally built from a hierarchy
of coupled moment equations and referred to as quantum hydrodynamic
models.

In this context some very interesting results are present in literature,
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where a quantum hydrodynamic set of equations capable to describe the be-
haviour of nanometric devices like resonant tunneling diodes is introduced.
We recall here the “smooth” quantum hydrodynamic model proposed by
Gardner and Ringhofer®, who derive the fluid dynamical formulation from
moment expansion of a Wigner—Boltzmann equation, and the approach by
Jiingel?, whose starting point is the ansatz of a peculiar type of solutions
to the Schrodinger equation. Published results are generally devoted to
single-band problems.

Quantum mechanical phenomena are essential in nanometer scale semi-
conductor devices, as for the Resonant Interband Tunneling Diode (RITD),
whose properties differ from those of the Resonant Tunneling Diode (RTD)
because of the role played by the valence band electrons in the control of
the current flow®. For the new family of heterojunction resonant inter-
band tunneling diodes, which make use of resonant interband tunneling
through potential barriers, we have to consider the multi-band structure in
the transport computation of the current.

In this context, a simple model introduced by E.O.Kane® in the early
60’s describes the electron behaviour in a system equipped with two al-
lowed energy bands separated by a forbidden region. The Kane model is
the simplest framework capaple of including one conduction band and one
valence band in each material of a heterogeneous device and it is formulated
as the coupling of two Schrodinger-like equations for the conduction and
7. The typical band diagram
structure of a tunneling diode is characterized by a band alignment such
that the valence band of the positive side of the semiconductor device lies
above the conduction band of the negative one.

In this paper, we face the problem of a fluid dynamical formulation for
a semiconductor device characterized by a two-band (i.e. conduction and
valence band) structure where the carriers dynamics is driven by interband
tunneling. We start from the formulation of the Kane model in terms of
Wigner functions”, and derive formally a system for the zeroth, first and
second velocity moments.

Finally, a short discussion in given on such model and on related prob-
lems, such as closure and numerical implementation.

the valence band wave (envelope) functions

2. Wigner formulation of the Kane model

Let ¢.(x,t) be the conduction band electron wave (envelope) function and
1y (z,t) be the valence band electron wave (envelope) function.
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In the one-dimensional case, the Kane model reads as follows®”
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where 7 is the imaginary unit, & is the Planck constant scaled by 27, m is the
bare mass of the carriers, V. and V,, are the minimum of the conduction band
energy and maximum of the valence band energy respectively. Moreover P
is the coupling coefficient given by
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which is obtained through the energy dispersion relation and where m*
is the effective electron mass depending, through the xz—coordinate, on
the layer composition, but otherwise isotropic, and E, = V, — V,, is the
z—dependent gap energy. We define the density matrix p;;(r,s,t) =
;(r, )i (s,t), i,j = c,v. Taking formally the derivatives with respect
to time ¢ of the density matrix element and using Kane egs., a set of four
coupled evolution equations is derived for the density matrix elements p;;.
The Wigner function is defined by the inverse Fourier transformation
wi,j(a:,v,t) = fﬁlpi,j (1‘ + %n, T — 2;;77) .

Then we obtain the following system, which is the Wigner function formu-
lation of the Kane model
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where w.. and w,, are real, w., = Wy, and
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with i,j = ¢, v.
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Let now define the particle density, the current density, the energy den-
sity and the third moment, limiting to the 1-dimensional case.
If the quantum mechanical probability densities n;; are defined by

+oo
nij(z,t) = /wij(a:,v,t)dv, i,j =c,v,

— 00

then n.. and n,, are the probability densities for the positions of electrons
in band of conduction and valence, respectively. The interband terms n.,
and n,. are complex functions such that n., = T,..

It is worthwhile to remark that only n.. and n,, are real functions,
corresponding to probability densities, but also we remark that the Wigner
functions arise from the envelope function, not from the wave function and
so the physical meaning of this quantities has to be understood in the sense
of the envelope theory®?.

It is well known that the first order moment of the Wigner function with
respect to the velocity and multiplied by the charge —¢q is the quantum
current density. Similarly, in the frame of a two-band system, we define

400
Jij = —q / vw;j(z,v,t)dv, i,j=cv.
—00
Also in this case we can recover the classical meaning of the conduction
(valence) current density Je. (Jyy) for electrons in conduction (valence)
band.
For i,j = ¢, v, the set of the higher order moments is

+o00
Eij(z,t) = % / v?wi;(z,v,t)dv,
— 00
+oo
Mi(]?)(:n,t) = /v3wij(:n,v,t)dv.

The equations for the moments of the Wigner functions can be derived
by multiplying the equations of Wigner system by 1, v and v? and by
integrating over the velocity space.

The first set of equations for the evolutions of the position number
densities reads as follows
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In the Kane model, in which only interactions among the conduction
and the valence bands are allowed and all the others are neglected, the wave
function v is expressed by

Ye(x)ug () + Yo (2)ug(2)

where u§ and u} are Bloch functions®®7. Then, for the two-band
Schrédinger-like Kane model, the total density is

Niot (2, 1) = |'¢}|2 = |¢c|2 + |'¢}v|2 = Nee(w, 1) + nyy(, 1)
and the quantum continuity equation takes the form

0 (nee + Muw)
ot
Using the expressions for the wave function in terms of Bloch functions, in

the spirit of the envelope theory, the total current density for the two-band
system is

1
= —div Jtot-
q

Jtot(:n,t) = (’(/JV’JJ — ’(ﬁV’(ﬁ) = Jcc + va — T Imncv .
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The second set of equations in the quantum hydrodynamic model for
the two-band Kane system is given by the following first order moments

equations :
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The equations for the current densities (first order moments) contain
the second order moments &;;(z,t), which can be interpreted as energy
density terms.
A simple quantum hydrodynamic model can be obtained directly from
the first two moments, by manipulating the energy terms appearing under

the divergence symbol and taking into account that
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with 4,5 = c¢,v, and applying the isothermal closure conditions on the
82,/7’%]'

can be in-

temperatures 7;;. The quantum correction term 92
Nij xr

terpreted as an internal self-potential, the so-called Bohm potential. The
temperatures T;; are defined by

< P_,_P_wij > < P+wi]' >< P_’wi]' >

T.. =
4 < wg; > < Wy >2 ’
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where < - > is the mean value and Py = —— +i—.
2 0z h
For completeness we report the second order moment equations
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3. Concluding remarks

A quantum hydrodynamic model is obtained directly from the set of zeroth,
first and second order velocity moments of the Wigner equations for a two-
band Kane model. In this contribution, we present some preliminary results
for a two-band 1-D structure; the future research is oriented towards the
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closure of the moment equations and towards the numerical validation of
the model. The closure of the previous equations system can be done
with different methods. The simpler one consists in assuming that the
temperature is constant (isothermal assumption), for the zeroth and first
moment equations. Otherwise, a closed set of equations can be obtained
by means of the thermal equilibrium Wigner functions for the two-band

semiconductor model, in the case of the Kane Hamiltonian'®, or using the

maximum entropy principle!!.

Acknowledgements

This work was performed under the auspices of the National Group for
Mathematical Physics INAAM and was partly supported by the Italian Min-
istery of University MURST (National Project “Mathematical Problems of
Kinetic Theories”, Cofin2000) and by the Italian Research National Council
CNR (Strategic Project “Modelli Matematici per Semiconduttori”).

References

1. K.Blgtekjeer, Transport equations for electrons in two-valley semiconductors,
IEEE Trans. Electron Devices ED-17, 38 (1970).

2. A. M. Anile, G. Mascali and V. Romano, Recent development in hydrody-
namical modeling of semiconductors, pagg. 1-54 in Mathematical problems
in semiconductor physics, A.M. Anile editor, Lecture Notes in Mathematics,
Springer 2003.

3. C.L. Gardner and C. Ringhofer, Smooth quantum potential for the hydro-
dynamic model, Physical Review E 53, 157 (1996).

4. A. Jingel, Quasi-hydrodynamic Semiconductor Equations, Birkhaduser, Basel,
2001.

5. N. C. Kluksdahl, A. M. Kriman, D. K. Ferry and C. Ringhofer, Self-consistent
study of the resonant-tunneling diode, Phys. Rev B 39 (11), 7720 (1989).

6. E. O. Kane, Energy band structure in p-type Germanium and Silicon, J.
Phys. Chem. Solids 1, 82 (1956).

7. G. Borgioli, G. Frosali, P.F. Zweifel, Wigner approach to the two-band Kane
model for a tunneling diode, Transport Theory Statist. Phys. 32(3&4), 347
(2003).

8. M.G. Burt, The justification for applying the effective-mass approximation
to microstructure, J. Phys: Condens. Matter 4, 6651 (1992).

9. T. Wenckebach, FEssentials of Semiconductor Physics, Wiley, Chichester
1999.

10. L. Barletti, On the thermal equilibrium of a quantum system described by a
two-band Kane Hamiltonian, Preprint 2003, (submitted).

11. V. Romano, Non parabolic band hydrodynamical model of silicon semicon-
ductors and simulation of electron devices, Math. Methods Appl. Sci. 24, 439
(2001).



