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Abstract

Consider an interstellar cloud that occupies the region V ⊂ R
3, bounded

by the known surface ∂V and assume that the scattering cross section σs and
the total cross section σ are also known. Then, we prove that it is possible
to identify the source q = q(x, t) that produces UV-photons inside the cloud,
provided that the UV-photon distribution function arriving at a location x̂,
far from the cloud, is measured at times t̂0, t̂1 = t̂0 + τ , . . . , t̂J = t̂0 + Jτ .

Keywords: photon transport, semigroups and linear evolution equations,
inverse problems.

1 Introduction

In this paper, we shall consider the following time dependent inverse problem in

photon transport.

Assume that the boundary surface ∂V of the region V ⊂ R
3 occupied by an

interstellar cloud [1], the scattering cross section σs and the total cross section σ are

known. If the one-particle distribution function of UV-photons arriving at a location

x̂, “far” from the cloud, is measured at times t̂0, t̂1 = t̂0 + τ , . . . , t̂J = t̂0 + Jτ , (by

using some suitable instrument located within a satellite), then we show that it

is possible to identify the space and time behaviour of the source that produces

UV-photons inside the cloud.
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The knowledge of the UV-photon source characteristics is important because,

together with the cross sections and the shape of ∂V , determines the form of the

photon distribution function. In turn, interaction between UV-photons and the

particles of the cloud (mainly hydrogen molecules and dust grains) play a crucial

role in the chemistry of the cloud.

Note that the literature on time independent inverse problems in particle trans-

port is rather abundant, seee the references listed in [2]. Only a few papers deal

with time dependent inverse problem, see for instance [3, 4, 5, 6, 7]

2 The mathematical model

Let N(x,u, t) be the one-particle distribution function of UV-photons which, at

time t, are at x and have velocity v = cu (where c is the speed of light). Then, the

transport equation, the boundary condition and the initial condition have the form

∂

∂t
N(x,u, t) = − cu · ∇N(x,u, t) − cσN(x,u, t) +

+
cσs

4π

∫

S

N(x,u′, t) du′ + q(x, t), x ∈ Vi, u ∈ S, t > 0 (1a)

N(y,u, t) = 0 if y ∈ ∂V and u · ν(y) < 0 (1b)

N(x,u, 0) = N0(x,u), x ∈ V, u ∈ S (1c)

In (1), V ∈ R
3 is the bounded and convex region occupied by the cloud, and Vi

is the interior of V . Hence V = Vi ∪ ∂V where ∂V is the boundary surface, which

is assumed to be closed and “regular” (in a sense that will be explained later on).

Further, S is the surface of the unit sphere, u ∈ S is a unit vector, and ν(y) is
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the outward directed normal to ∂V at y. The scattering cross section σs and the

total cross section σ (with σ > σs) are, for simplicity, assumed to be given positive

constants within V (and zero outside).

Finally, q(x, t) represents the UV-photon source at any x ∈ V and t > 0 (and

q(x, t) ≡ 0 if x /∈ V ).

In order to write the abstract version of the evolution problem (1) we introduce

the Banach space X = L1(V × S), with norm ‖f‖ =
∫

V
dx

∫
S
|f(x,u)| du.

Note that ‖N‖ is the total number of UV-photons within V at time t. We also

define the following operators

(Bf)(x,u) = −cu · ∇f(x,u) − cσf(x,u), R(B) ⊂ X,

D(B) = {f : f ∈ X, u · ∇f ∈ X, f satisfies

the boundary condition (1b)}, (2)

(Kf)(x) =
c σ

4π

∫

S

f(x,u′) du′, D(K) = X, R(K) ⊂ X. (3)

In Lemma 2.1, we state the properties of B and K which will be used later on.

Lemma 2.1

i) K ∈ B(X), i.e. K is a bounded operator, with ‖K‖ ≤ c σs;

ii) B ∈ G(1,−c σ;X), i.e. B is the generator of the strongly continuous semigroup

{exp(tB), t ≥ 0}, such that ‖ exp(tB)‖ ≤ exp(−c σt), ∀ t ≥ 0.

Proof. i) immediately follows from definition (3) whereas ii) is a standard result

in particle transport theory [8, 9] �
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Here, we only recall that the resolvent operator (I − τB)−1 has the form

(Gg)(x,u) =
(
(I − τB)−1g)

)
(x,u) =

=
1

τc

∫ R(x,u)

0

exp

(
−

1 + τcσ

τc
r

)
g(x − ru,u) dr

∀g ∈ X, τ > −1/cσ (4a)

with

‖(I − τB)−1‖ ≤
1

1 + τcσ
. (4b)

In (4a), R(x,u) is such that y = x − R(x,u)u ∈ ∂V , for each given x ∈ Vi and

u ∈ S. In other words, for each given x ∈ Vi, y = x − R(x,u)u ∀u ∈ S is the

equation of the boundary surface ∂V . Such a surface is assumed to be such that

R(x,u) is a continuous function of (x,u) ∈ V × S, with R(x,u) = 0 if x ∈ ∂V and

u is directed towards Vi.

Relation (4a) implies that, ∀τ > −1/cσ, the resolvent operator (I − τB)−1 has

the following properties

γx,u

R(x,u) =| x − y|

y0
z0

γx,u

z0

R( )x,u uy=x−

y

y0

y0

γx,u

V
0

urx−

xz
u

x,u
γ

V

y x u

u

u

x

y x

Figura 2.1 The convex regions V = Vi ∪ ∂V and V0 = V0i ∪ ∂V0, with

V0 ⊂ Vi; the location x̂ “far” from the cloud, with γbx,bu ∩ V0i 6= ∅
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Lemma 2.2

i) (I − τB)−1g ∈ X+ ∀g ∈ X+, where X+ = {g : g ∈ X, g(x,u) ≥ 0 at a.a.

(x,u) ∈ V × S} is the closed positive cone of X;

ii) if g ∈ X+ and g > 0 along a finite portion of the half straight line γx,u =

{y : y = x− ru, r ≥ 0}, see Figure 2.1, then
(
(αI −B)−1g(x,u)

)
> 0 ∀(x,u).

Consider now the abstract version of system (1), [9]:





d

dt
N(t) = (B +K)N(t) + q(t), t > 0

N(0) = N0

(5)

where N(t) = N(·, ·, t) and q(t) = q(·, t) map [0,∞) into the Banach space X and

N0 is a given element of D(B +K) = D(B).

The unique strict solution of the initial value problem (5) can be written as follows

N(t) = exp
(
t(B +K)

)
N0 +

∫ t

0

exp
(
(t− s)(B +K)

)
q(s) ds, t ≥ 0, (6)

where {exp
(
t(B +K)

)
, t ≥ 0} is the semigroup generated by (B +K).

Remark 2.1

i) By using some standard results of perturbation theory, [8], we have from

Lemma 2.1 that (B +K) ∈ G(1,−c(σ− σs);X), i.e. (B +K) is the generator

of the strongly continuous semigroup {exp
(
t(B+K)

)
}, such that ‖ exp

(
t(B+

K)
)
‖ ≤ exp

(
− c(σ − σs)t

)
∀t ≥ 0

)
.

ii) Relation (6) holds provided that N0 ∈ D(B+K) = D(B) and q(t) is a contin-

uously differentiable map from [0,∞) into X. If q(t) is only continuous, then

(6) follows from (5) but the converse is not necessary true, [8].

�
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3 The time-discretization procedure

Assume that the source term q(x, t) in (1a) is strictly positive if x ∈ V0i, where V0i

is the interior of a convex region V0 ⊂ Vi, bounded by the “regular” surface ∂V0, see

Fig. 2.1.

Remark 3.1 The region V0 is where the stars, emitting the UV-photons, are con-

tained. �

Suppose also, see the Introduction, that the values N̂j = N(x̂, û, t̂j) of the UV-

photon distribution functions are measured at a location x̂ far from the cloud (far-

field measurements), with û such that γbx,bu ∩ V0i 6= 0, see Fig. 2.1, and with t̂j =

t̂0 + jτ , j = 0, 1, . . . , J . Then, we have that N̂j = N(x̂, û, t̂j) = N(ẑ, û, tj) where ẑ

is the “first” intersection of γbx,bu with ∂V and tj = t̂j − t̂ with t̂ = |x̂− ẑ|/c. In what

follows, we shall choose t̂0 = t̂, i.e. t0 = 0 and tj = (t̂0 + jτ) − t̂ = jτ .

Correspondingly, (6) gives

N̂j = N(ẑ, û, tj) =
(

exp
(
tj(B +K)

)
N0

)
(ẑ, û) +

+

(∫ tj

0

exp
(
(tj − s)(B +K)

)
q(s)

)
ds

)
(ẑ, û). (7)

However, it is not easy “to extract” some information on the space and time be-

haviour of the source q(s) = q(·, s) from (7), where the J left-hand sides N̂j ar

assumed to be known, e.g. from experimental measurements.

In fact, it seems much more reasonable to discretize (5) (in a “semi-implicit”

way), as follows,[10]





nj+1 − nj

τ
= Bnj+1 +KNj + q(tj), j = 0, 1, . . . , J − 1

n0 = N0

(8)
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where nj = nj(x,u) “approximates” N(x,u, tj) = Nj(x,u). We have from (8),

∀(x,u) ∈ V × S,





nj+1(x,u) = (Gnj)(x,u) + τ

(
G[Knj + q(tj)]

)
(x,u), j = 0, 1, . . . , J − 1

n0(x,u) = N0(x,u)
(9)

Remark 3.2

i) As a result of the semi-implicit discretization (8), relation (9) is obtained,

where the explicit form of G = (I − τB)−1 is known, see (4a).

ii) It can be shown that ‖Nj − nj‖ ≤ (a positive constant) · τ ∀j, provided that

N0 ∈ D(B2) and q(t) is regular enough, [10, 11]

4 Identification of the source

Consider the location x̂ “far” from the cloud (hence x̂ /∈ V ) and a unit vector û such

that γbx,bu ∩ V0i 6= ∅, see Figure 2.1. Assume that the photon distribution functions

N(x̂, û, t̂0), N(x̂, û, t̂1), . . . , N(x̂, û, t̂J) are measured. As a consequence,

N(ẑ, û, t0) = N(x̂, û, t̂0), N(ẑ, û, t1) = N(x̂, û, t̂1), . . . , N(ẑ, û, tJ) = N(x̂, û, t̂J) are

known quantities (where we recall that tj = t̂j − t̂ = jτ , with t̂ = |x̂ − ẑ|/c and

t̂0 = t̂).

This implies that n0(x,u) (= N0(ẑ, û) = N(ẑ, û, 0)), n1(ẑ, û), . . . , nJ(ẑ, û) are

also known.
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We have from (4a) and (9),

nj+1(x,u) = (Gnj)(x,u) + τ(GKnj)(x,u)

if x ∈ V − V0 and γx,u ∩ V0i = ∅ (10a)

nj+1(x,u) = (Gnj)(x,u) + τ(GKnj)(x,u) + (Hq(tj))(x,u)

if x ∈ V − V0 and γx,u ∩ V0i 6= ∅, or if x ∈ V0i, (10b)

where

(Hq(tj))(x,u) =
1

τc

∫ |x−y0|

|x−z0|

dr exp

(
−

1 + τcσ

τc
r

)
q(x − ru, tj)

if x ∈ V − V0 and γx,u ∩ V0i 6= ∅ (10c)

(Hq(tj))(x,u) =
1

τc

∫ |x−y0|

0

dr exp

(
−

1 + τcσ

τc
r

)
q(x − ru, tj) if x ∈ V0i (10d)

see Figure 2.1.

In particular, if x = ẑ, u = û and γbz,bu ∩ V0i = γbx,bu ∩ V0i 6= ∅, see Figure 2.1, (10b)

becomes

nj+1(ẑ, û) = (Gnj)(ẑ, û) + τ(GKnj)(ẑ, û) + (Hq(tj))(ẑ, û). (11)

Assume now that q(x, tj−1) is konwn ∀x ∈ V0; then (10a)+ (10b), with j−1 instead

of j, give nj((x,u)) at any ((x,u)) ∈ V × S. As a consequence, the first and the

second term on the r.h.s. of (11) are known, whereas nj+1(ẑ, û) is measured (hence,

it is also known). Thus, (11) should determine the source term q(tj) = q(·, tj), see

later on.

In order to understand how (11) identifies the source q(x, tj), we re-write (11)

as follows

nj+1(ẑ, û) = νj(ẑ, û) +Hq(tj) (12)
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where νj(x,u) is the sum of the first two terms on the r.h.s. of (10a), (10b):

νj(x,u) = (Gnj)(x,u) + τ(GKnj)(x,u) (13a)

and Ĥ is defined by

Ĥg = (Hg)(ẑ, û) =
1

τc

∫ |bz−cy0|

|bz−cz0|

dr exp

(
−

1 + τcσ

τc
r

)
g(ẑ− rû), ∀g ∈ L∞(V0). (13b)

Further, we introduce a “suitable” family Φ of source functions ϕ(x), such that

(α) ϕ(x) > 0, ∀x ∈ V0i, ϕ(x) ≡ 0, ∀x /∈ V0i;

(β) ϕ ∈ L∞(V0);

(γ) if ϕ, ϕ1 ∈ Φ, then either ϕ(x) > ϕ1(x) or ϕ(x) < ϕ1(x) ∀x ∈ V0i (correspond-

ingly, we shall write ϕ > ϕ1 or ϕ < ϕ1);

(δ) if ϕ, ϕ1 ∈ Φ, then ϕ2 = (ϕ+ ϕ1)/2 ∈ Φ;

(ε) Φ is a closed subset of the Banach space L∞(V0).

The family Φ, whose structure might have been suggested by astrophysicists, will

be used to find approximate expressions of the J source terms q(tj) = q(·, tj), j =

0, 1, . . . , J − 1.

Remark 4.1 Perhaps, the simplest way to construct Φ is the following. Choose the

phisically reasonable “minimal” and “maximal” sources ϕm and ϕM , satisfing (α),

(β) and such that ϕm(x) < ϕM(x) ∀x ∈ V0i.

Then, Φ = Φ[0,1] = {ϕh : ϕh = (1 − h)ϕm + hϕM , h ∈ [0, 1]}. �
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Remark 4.2 If ϕh ∈ Φ[0,1], we obtain from (13b) that Ĥφh = (1−h)Ĥϕm+hĤϕM .

Then, (12) leads to the value ĥ ∈ [0, 1] such that nj+1(ẑ, û) = νj(ẑ, û)+(1−ĥ)Ĥϕm+

ĥĤϕM , where nj+1 is measured and νj is known. Correspondingly, the approximated

value of the same is given by q(tj) = q(·, tj) = (1 − ĥ)ϕm(·) + ĥϕM(·). �

Going back to definition (13b) and considering a “general” family Φ, it immediately

follows that

Ĥϕ < Ĥϕ1, ∀ϕ, ϕ1 with ϕ < ϕ1. (14)

We remark that (14) and the procedure that follows may still hold also if Ĥ is

nonlinear (and, of course, it satisfies suitable assumptions).

As a first step, consider (12) with j = 0:

n1(ẑ, û) = ν0(ẑ, û) + Ĥq(t0). (15)

Since the value n1(ẑ, û) of the photon distribution function at time t1 is known as

a result of some experimental procedure and ν0(ẑ, û) is defined by (13a) with j = 0

and with n0 given, assume that ϕ1− ∈ Φ and ϕ1+ ∈ Φ exist, such that

n1(ẑ, û) > n1− = ν0(ẑ, û) + Ĥϕ1−, (16a)

n1(ẑ, û) < n1+ = ν0(ẑ, û) + Ĥϕ1+. (16b)

Note that, if the family Φ is suitably chosen, it should be possible to find ϕ1− and

ϕ1+ such that (16a) and (16b) are satisfied. (Otherwise, if for instance Φ = Φ[0,1] of

Remark 4.1, one might choose a “smaller” ϕm and a “larger” ϕM .)

Further, consider
ϕ1− + ϕ1+

2
∈ Φ and assume, for instance, that

n1(ẑ, û) < ν0(ẑ, û) + Ĥ

(
ϕ1− + ϕ1+

2

)
, i.e. n1(ẑ, û) <

n1− + n1+

2
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because of the linearity of Ĥ . Then, if we put ϕ2− = ϕ1−, ϕ2+ =
ϕ1− + ϕ1+

2
, we

have

n1(ẑ, û) > n2− = ν0(ẑ, û) + Ĥϕ2− = n1−

n1(ẑ, û) < n2+ = ν0(ẑ, û) + Ĥϕ2+ =
n1− + n1+

2

and also

ϕ1− = ϕ2− < ϕ2+ < ϕ1+, n1− = n2− < n1(ẑ, û) < n2+ < n1+

By iterating the above procedure (for which only Ĥϕ1− and Ĥϕ1+ need to be eval-

uated), we find the four monotone sequences

{ϕj−} ⊂ Φ ⊂ L∞(V0), {ϕj+} ⊂ Φ ⊂ L∞(V0),

{nj−} ⊂ R+, {nj+} ⊂ R+.

It is not difficult to show, see for instance [12], that ϕj− and ϕj+ are Cauchy se-

quences in L∞(V0) whereas nj− and nj+ are Cauchy sequences in R. Correspond-

ingly, we have

lim
j→∞

ϕj− = lim
j→∞

ϕj+ = ϕ∞,1 ∈ Φ (because Φ is a closed subset of L∞(V0)),

lim
j→∞

nj− = lim
j→∞

nj+ = n1(ẑ, û),

n1(ẑ, û) = ν0(ẑ, û) + Ĥϕ∞,1 (17)

Remark 4.3 According to (17), ϕ∞,1 ∈ Φ is the “best approximation” within the

family Φ to the “phisical” source q(t0) = q(·, t0) appearing in (15). Then, going back

to (9) with j = 0 and putting

ñ1(x,u) = (Gn0)(x,u) + τ(GKn0)(x,u) + τ(Gϕ∞,1)(x,u), (x,u) ∈ V × S (18)
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we conclude that ñ1(x,u) should be a reasonable approximation to n1(x,u) at any

(x,u) ∈ V × S (and, of course, ñ1(ẑ, û) = n1(ẑ, û) because of (17)). �

As a second step, we consider (12) with j = 1:

n2(ẑ, û) = ν1(ẑ, û) + Ĥq(t1), (19)

where n2(ẑ, û) is known because it is the value of the photon distribution function,

measured at time t2. However, since ν1(ẑ, û) is given by (13a) with j = 1, such a

quantity can be evaluated if we know n1(x,u) and not only the single value n1(ẑ, û).

On the other hand, (18) gives ñ1(x,u) which approximates n1(x,u). As a conse-

quence, we can evaluate ν̃1(x,u), defined by (13a) with j = 1, x = ẑ, u = û, and

with ñ1(x,u) instead of n1(x,u). Then, the procedure to identify the source q(t1)

leads to the element ϕ̃∞,2 ∈ Φ such that

n2(ẑ, û) = ν̃1(ẑ, û) + Ĥϕ̃∞,2 (20)

rather than to the element ϕ∞,2 such that

n2(ẑ, û) = ν1(ẑ, û) + Ĥϕ∞,2. (21)

However, since ν̃1(ẑ, û) should be a good approximation to ν1(ẑ, û), ϕ̃∞,2 is likely to

be “close” to ϕ∞,2, see Section 5.

Further, by using ñ1(x,u) and ϕ∞,2(x), from (9) with j = 1 we have that

ñ2(x,u) = (Gñ1)(x,u) + τ(GKñ1)(x,u) + τ(Gϕ̃∞,2)(x,u) (22)

should be a reasonable approximation to n2(x,u) ∀(x,u) ∈ V × S. The final result

of the above procedure is the set {ϕ∞,1(x), ϕ̃∞,2(x), . . . , ϕ̃∞,J(x)} that is in some

sense, the best approximation within the family Φ to the set of the “physical” source

terms {q(x, t0), q(x, t1), . . . q(x, tJ−1)}.
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5 Concluding remarks

1. If the family Φ is particularly well chosen (or it is “large enough”), then the set

{q(x, t0), . . . q(x, tJ−1)} is contained in Φ. Corresponingly, ϕ∞,1(x) = q(x, t0),

ϕ∞,2(x) = ϕ̃∞,2(x) = q(x, t1), . . . , ϕ∞,J(x) = ϕ̃∞,J(x) = q(x, tJ−1), due to the

uniqueness of our limit procedure within Φ.

Thus, in such a lucky case, we are able to identidy exactly the source term.

In particular, assume that q depends on t but not on x ∈ V0. Then, we can

take Φ = {ϕ : qm ≤ ϕ(x) = a constant ≤ qM} ⊂ R+ and, if qm and qM are

suitably chosen, the set {q(t0), q(t1), . . . , q(tJ−1)} is contained in Φ.

2. Assume now that a family Ψ is also considered, with Ψ ∩ Φ = ∅ and such

that (α)-(ε) of Section 4 are satisfied. Then, the procedures of Section 4

lead to the set {ψ∞,1(x), ψ̃∞,2(x), . . . , ψ̃∞,J(x)} as the best approximation

within ψ to the physical source terms {q(x, t0), . . . , q(x, tJ−1)}. This kind of

non-uniqueness is obiouvsly due to the possibility of choosing among several

different families Φ, Ψ, . . . . Of course, the most reasonable choice should be

suggested by experimental evidence, e.g. by a partial knowledge of the position

of the stars which emit UV-photons inside the cloud.

3. As far as the errors involved in the procedures of Section 4, assume that

i) the experimental values nj+1(ẑ, û) are exact, i.e. they are measured with

a very small experimental error, see (12);

ii) the “true” photon distribution function nj+1(x,u) is known at any (x,u) ∈

V × S, so that the value ν(ẑ, û) is exact.
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If i) and ii) are satisfied, relation (12) is also exact; assume that consequently,

(12) leads to an approximate source ϕ∞,j(x,u) such that

iii) ‖q(tj)−ϕ∞,j‖∞ < ε, j = 0, 1, . . . J−1 where ‖·‖∞ is the norm in L∞(V )

(we recall that q(x, tj) ≡ 0 and ϕ∞,j(x) ≡ 0 if x /∈ V0i). Note that iii)

should be satisfied if the family Φ is suitably chosen.

Consider now the first step (j = 0) of Section 4; starting from (15) (with

n1(ẑ, û) and ν0(ẑ, û) both exact), and taking into account assumption iii), we

identify ϕ∞,1 ∈ Φ such that n1(ẑ, û) = ν0(ẑ, û) + Ĥϕ∞,1, with

‖q(t0) − ϕ∞,1‖ < ε (23)

Consequently, (9) with j = 1 and (18) give

|ñ1(x,u) − n1(x,u)| ≤ τ‖G‖∞‖ϕ∞,1‖∞ ≤
τε

1 + cστ

‖ñ1 − n1‖∞ ≤
τε

1 + cστ
(24)

because definition (4a) also implies that ‖G‖∞ ≤
1

1 + cστ
. Then, from (13a)

with j = 1, we obtain that

|ν̃1(x,u) − ν1(x,u)| ≤ |(G(ñ1 − n1)(x,u)| + τ |(GK(ñ1 − n1)(x,u)| ≤

≤

(
1

1 + cστ
+

τcσs

1 + cστ

)
‖ñ1 − n1‖∞ ≤

τε

1 + cστ

(25)

where we recall that ν̃j is defined by (13a) with ñj instead of nj and where we

used (24).

Consider then the second step (j = 2) of Section 4; if we knew the exact

ν1(ẑ, û), (19) would lead to the element ϕ∞,2 ∈ Φ such that n2(ẑ, û) =

ν1(ẑ, û) + Ĥϕ∞,2, with ‖q(t1) − ϕ∞,2‖∞ < ε.
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However, we only know the approximate value ν̃1(ẑ, û) and so we obtain the

element ϕ̃∞,2 ∈ Φ such that n2(ẑ, û) = ν̃1(ẑ, û) + Ĥϕ̃∞,2. Thus we have

Ĥ(ϕ̃∞,2 − ϕ∞,2) = ν1(ẑ, û) − ν̃1(ẑ, û). (26)

For simplicity, we shall now assume that the family Φ is defined as in Remark

4.1.

iv) Φ = Φ[0,1] = {ϕh : ϕh = (1 − h)ϕm + hϕM , h ∈ [0, 1]}.

Then we have

ϕ̃∞,2 = (1 − h̃)ϕm + h̃ϕM , ϕ∞,2 = (1 − h)ϕm + hϕM ,

Ĥ(ϕ̃∞,2 − ϕ∞,2) = (h̃− h)Ĥ(ϕM − ϕm).

Note that, since both ϕ̃∞,2 and ϕ∞,2 belong to Φ, either ϕ̃∞,2 > ϕ∞,2 or

ϕ̃∞,2 > ϕ∞,2. Suppose, for instance, that ϕ̃∞,2 > ϕ∞,2, i.e. h̃ > h.

Then, (25) and (26) give

(h̃− h)Ĥ(ϕM − ϕm) ≤
τε

1 + cστ
, h̃− h ≤

τε

1 + cστ

1

Ĥ(ϕM − ϕm)
,

‖ϕ̃∞,2 − ϕ∞,2‖ ≤ εη, where η =
τ

1 + cστ

‖ϕM − ϕm‖∞

Ĥ(ϕM − ϕm)
.

It follows that

‖q(t1) − ϕ̃∞,2‖∞ ≤ ‖q(t1) − ϕ∞,2‖∞ + ‖ϕM − ϕm‖∞ ≤ ε(1 + η). (27)

Iterations of the above procedure leads to the inequality

‖q(tj) − ϕ̃∞,j+1‖∞ ≤ ε(1 + η)j, j = 0, 1, . . . , J − 1,

15



that gives the error with which the set {ϕ∞,1, ϕ̃∞,2, . . . , ϕ̃∞,J} ⊂ Φ approxi-

mates the “physical” set of sources {q(t0), q(t1), . . . , q(tJ−1)}.

4. The algorithm presented in this paper has been recently implemented by S.

Pieraccini et al in [13].

5. Assume, for instance, that the two values N(x̂, û, tj) and N(x̂, û′, tj) of the

photon distribution function can be measured at x̂, at each tj , and correspond-

ing to the two directions û and û′. This is possible if the interstellar cloud

under consideration is seen from the satellite containing the recording instru-

ment under a solid angle which is not “too small”.

Then, a family Φ1 of source functions φ may be chosen as a two-parameter

family: Φ1 = {ϕ : ϕ = ϕh,k, h ∈ [0, 1], k ∈ [0, 1]}, where for instance ϕh,k =

hϕ1 + k(1 − h)ϕ2 + (1 − k)(1 − h)ϕ3. Hence, Φ1 allows a larger choice than

the family Φ defined in Remark 4.1.

6. If the measured N(x̂, û, t) is a continuous function of t, then it is not difficult

to prove that ‖
∼
ϕ∞,tj−1

−
∼
ϕ∞,tj

‖∞ = 0 if tj → tj−1, with tj−1 given. However,

some difficulties arise if we let J → ∞ (i.e. τ → 0+) because it can be shown

that the corresponding approximated source
∼
ϕ∞(x, t) is such that only the

total number of photons arriving at x during some time interval [0, t∗] can be

evaluated. In other words,
∼
ϕ∞ is such that

∫ t∗

0

n(x̂, û, t) dt =

∫ t∗

0

N(x̂, û, t) dt.

A further paper will be devoted to study this problem.
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