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Abstract

We study an inverse problem for photon transport in a host medium (e.g.
an interstellar cloud), that occupies a bounded and strictly convex region
Q C R3. Under the assumption that the cross sections and the sources are
known, we identify the boundary surface ¥ = 9Q (within a suitable family F
of surfaces), provided that one value of the photon number density is measured
at some given location far from (2.

1 Introduction

In photon transport theory, three types of problems are usually considered in the
literature:

«) evaluation of the photon number density (as a function of the position x and
of the direction of propagation u), starting from the knowledge of the various
cross sections, of the sources, of the ingoing flux and of the shape of the surface
that bounds the host medium (e.g. an interstellar cloud);

B) identification of the spatial behaviour of the cross sections and /or of the sources
(or of some other physical quantity, such as the ingoing flux), starting from
the knowledge of the exiting photon flux;

) identification of the surface that bounds the host medium, starting from the
knowledge of the photon far-field (i.e. of the photon number density measured
in locations far from the medium), and assuming that the relevant physical
quantities of the medium (cross sections, etc.) are known.

We remark that («) are standard direct problems, where the unknown is the
photon number density n(x, u), see for instance [GvdMP87, Pom73].

Note that, in astrophysics, the knowledge of n(x,u) is particularly important
because interactions between UV-photons and the particles of an interstellar cloud



play a crucial role in the chemistry and in the evolution of the cloud [DW97]. On the
other hand, (3) and () are typical inverse problems in radiative transfer theory and
may be of interest in astrophysics as well as in metereology, in glass manifacturing, in
modelling the radioactive properties of porous insulating materials, in tomography
and in semiconductor theory.

In problems (8) and (vy), the number density n(x, u) is not the crucial unknown:
the main interest is directed to evaluate some physical or geometrical quantities
of the host medium (e.g. an interstellar cloud, the earth atmosphere, a porous
insulator, a semiconductor, etc.). We also remark that (3) and (v) are two different
kinds of inverse problems. In fact, in () some physical quantities (e.g., the cross
sections, the sources, the ingoing photon flux, etc) are the main unknowns, whereas
in () a geometrical quantity (e.g the shape of the boundary surface, the shape of
the conduction and of the valence bands, etc.) is what one is looking for.

The literature on problems of type () is rather abundant: see the references,
where we list most of the recent papers [AB88, Ago91, Bal00a, Bal00b, Cho92, CS99,
Dre89, Gao92, Gon86, Gri00, GN92, Hs88, JN99, Lar88, McC86, MS97, MKZ00,
MK94, Rom97, Sha96, SG00, Sie02b, Sie02a, Tam02, YY89, Zwe99] (for the less
recent see [McC86]). On the other hand, there are only a few examples of photons
transport, problems of type (7), see for instance [BMRO02].

Note that in most of problems (), the whole exiting flux is assumed to be known
(or measured), whereas in this paper and in [BMR02] (a problem of type (7)) only
the value of the exiting flux, corresponding to a given direction, is taken to be known.
For instance, if an inverse problem of type (£) is studied in the slab {z : 0 < z < a},
the ingoing particle densities n(0, ) with pu € (0, 1] and n(a, ) with u € (—1,0] are
given, whereas, for instance the exiting density n(a, p) is thought to be measured
at any p € (0,1] and not only for a given pu € (0,1]. Finally, it is worth noticing
that a rather unusual inverse problem is studied in [Zwe99]: given the exiting flux,
identify the ingoing one. This may be of great interest in astrophysics to evaluate
UV-protons sources “behind” a given interstellar cloud.

In this paper, we study the following inverse problem of type (y): assuming that
the cross sections of an interstellar cloud, the UV-photon sources and the ingoing
flux are known, is it possible to identify the boundary surface of the cloud (within a
suitable family of surfaces), provided that a single value of the UV-proton number
density n(x, 1) is, measured at some location x far from the cloud? We shall prove
that such an identification is possible because the density n(%, i) is, in some sense, a
strictly monotonic function of the dimensions of the surface that bounds the cloud.

2 The Boltzmann-like model

Let the host medium (e.g., the interstellar cloud) occupy the bounded region §2 =
Q; UY C R3, where €, is the interior of Q and ¥ is the closed “regular” surface
that bounds €2, see Figure 1. In what follows, we shall also assume that €2 is strictly
convex i.e., if x' and x” belong to X, then x = A\x' + (1 — \)x" € Q; VA € (0, 1).
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Furthermore, let n(x,u) be the particle number density (e.g. the UV-photon
number density), so that n(x,u)dxdu is the expected number of particles in the
volume element dx centered at x and having velocities within the solid angle du =
sin 9 d¥dp around the unit vector u. Then, n(x, u) satisfies the following stationary
Boltzmann-like equation [Pom73]

1

—u-Vn(x,u)—o(x)n(x,u)+ e

o4 (x) /S n(x,0)d'+q(x) =0,  (x,u) € R xS,
(1)

In equation (1), o(x) is the total cross section ( i.e., o(x) = 0.(x) + 05(x), where
o. and oy are respectively the capture and the scattering cross section), ¢(x) is the
particle source at x ( e.g., the UV-photon source at x), and scattering is assumed
to be isotropic for simplicity. Moreover, S is the surface of the unit sphere and
du’ = sin ¥ d¥ d¢' is the infinitesimal solid angle around the unit vector u'.

In what follows, we shall also assume that

0s(x) = 05 = a positive constant if x € 2,  o4(x) =0if x ¢ (2)

o(x) = o = a positive constant if x € Q, o(x)=0if x ¢ Q, (3)

q(x) = ¢ = a positive constant if x € Q, g(x)=0ifx ¢ Q (4)
Remark 2.1

i) Equation (1) is in fact a quasi-static version of the time dependent Boltzmann-
like equation and the number density n also depends on the “parameter” t.
Howewver, since the “speed of variation” of the surface X is much smaller than

the speed of light, the quasi-static equation (1) is a very good approximation
[BMR02],[RS02]

i) Since we shall study the integral version of (1) in a Banach space of continuous
functions, the assumption that ) in a strictly conver region takes care of the
fact that the cross section and the source term are mot continuous when x
crosses ¥, see [Pom73].



The integral version of equation (1) has the form

n(x,u) = Q(x,u) + (Bn)(x,u),  (x,u) €Qx S (5)
where
Qxw) = T{1—expl-oR(x.u)l}, (6)
vo R(x,u) . .

(Bn)(x,u) = el dr exp(—or) /Sn(x —ru,u’)du’. (7)
(8)

Moreover, if z ¢ €, we have
n(x,u) = n(z,u) if Y N # 0, 9)
n(x,u) = 0 if Yew N =0, (10)

In (6) and (7), v = 0s/0 < 1 and R(x,u) is such that x — R(x,u)u € ¥ for
each (x,u) € Q x S, whereas R(x,u) = 0 if x € ¥ and u is directed towards
2;, see Figure 1 (the surface X is, by assumption, “regular” enough to ensure that
R(x,u) is a continuous function of (x,u) € Q x S). Furthermore, in (9) and (10)
Yxu = {y:y = x—ru,r > 0} is the half straight line passing through x and parallel
to u, and z € ¥ is the “first” intersection of 7, with ¥ if x ¢  and vx,, N # 0.

Since we shall study equations (5), (9) and (10) in a Banach space of continuous
functions, we need to introduce a “large” (but bounded) convex region €2y, = Qs U
Y C R3, bounded by the “regular” surface Xj;. The region ,, is chosen so that its
interior Q;; contains . Then, equations (5), (9) and (10) will be studied in the real
Banach space X = C(€; % S), with norm || f||x = {max|f(x,u)|, (x,u) € Qp xS}.
Correspondingly we rewrite (5)-(10) as follows:

n(x,u) = Q(x,u)+ (Bn)(x,u), (x,u) € Qp X S, (11)
Qx,u) = 5{1 — exp[—oR(x, u)]} if (x,u) € Q x S, (12)

Qx,u) = {1 - exp[-oR(z )]}

if x € Qpr \ Q and 5,0 N # 0, (13)

Q(x,u) = 0 if x € Qp \ Q and 7w N =0, (14)
R(x,u)
(Bn)(x,u) = - dr exp(—or) / n(x — ru,u’) du’
4m o s
if (x,u) e Q2 xS, (15)
R(z,u)
(Bn)(x,u) = il dr exp(—ar)/n(z —ru,u’) du’
4 0 S
ifxeQu\Qand 7%uNQ #0, (16)
(Bn)(x,u) = 0 ifxeQu\Qand %, N =0. (17)



Remark 2.2 Q € X = C(Qy x S) and Bn € X Vn € X, because the region Q is
assumed to be strictly conver.

Note that, if § = max{R(x,u), (x,u) € Q x S} is the diameter of Q, relations
(12)—(14) give

0<Qxu) < T{L—expl-00]}  V(x,u) € Qy xS

and so
@l < £ {1 - exp[—od]} (18)

In an analogous way we have from (15)-(16)

5
[(Bn)(x,u)| < follnll/ exp(—or) dr = v {1 — exp[—0d]} ||n],
0
Vn e X, (x,u) € Qp x S;
thus,
|B]| < v{l —exp(0d)} <v <1, (19)

i.e. the operator B is strictly contractive, [ BMM98]. It follows from inequality
(19) that the unique solution n € X of the integral equation 18) has the form

n(x,u) = (I - B) 'Q)(x,u), (x,u) € Qy xS, (20)
i 2 1 — exp(—do) i
q — exp(—bo q
Inl < T B = s T —em(=0)] S0 10 (21)

3 Some Technical Lemmas

The results listed in the following lemmas will be used in the sequel, in connection
with equation (11).

Lemma 3.1

i) Q€ Xy, where X, ={f: fe X, f(x,u) >0,Y(x,u) € Qy xS} is the closed
positive cone of X ;

i) Q(x,u) >0 if x € Qs and Yxu N # 0

iit) /Q(x, u)du > 0Vx € Q.
s

Proof. i) That @) € X follows from definitions (12)-(14).

ii) Since R(x,u) > 0 Vu € S provided that x € Q;, and R(x,u) > 0ifx € Q3 \Q;
and vxu N Q; # 0, definitions (12)-(14) lead to the strict positivity of Q(x, u).

iii) immediately follows from ). O



Lemma 3.2

i) Bf € X, Vf e X;

i) zf/f y,x')du' > 0 Vy € Q, then (Bf)(x,u) > 0 V(x,u), with x € Q; and
u such that vxu Ny # 0.

Proof. Definitions (15)-16) immediately lead to i) and ii). O

Lemma 3.3

i) [-B)'feX, VfeX,;

i) if / fly ) dd > 0y € Q then (I — B)-')(x,u) > 0 ¥(x,u), with
s
x € Qu and u such that vxu Ny # 0.

Proof. Since ((I — B)"'f)(x,u) = Y 2(Bf)(x,u) > f(x,u) + (Bf)(x,u)
Vf e X,, (i) and (ii) follow from Lemma 3.2. O

Lemmas 3.1 and 3.3 show that the particle density n(x,u), as given by (20), is
strictly positive if x € Qs and u is such that 5, N €; # 0; in any case, n € X as
it must be from a physical viewpoint.

Another rather important property of n(x,u) is specified in Lemma 3.4, where
n(x,u) is shown to be an “increasing” function of x as x “approaches” the boundary
surface .

Lemma 3.4 Let (x,u) € Q X S, with u such that vxuw N # 0; if y = x — pu with
0 < p < R(x,u), then n(x,u) > n(y,u), see Figure 1.

Proof. Since both x and y = x — pu belong to €2, see Figure 1, and yx,,u N2 D
Yaeu N # 0, (11), (12) and (15) give

Afxu) = {g [1 - exp(—op)]exp[-oR(y,w)] +

Vo R(x,u)
+ — drexp(—ar)/n(x—ru,u')du') +
4m R(y,u) S
vo (B
+ — drexp(—ar)/A(x—ru,u’) du’. (22)
4 0 S

where

A(Xa u) = n(X, 11) - n(Ya u) = 7’L(X, u) o n(x - pu, 11),
A(x—ru,u’) = n(x—ru,u’)—n(x—ru-—pu,u) =
= n(x—ru,u’) —n(y —ru,u)
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and
R(y: U) = R(Xa u) - p-

Equation (22) can be studied in the Banach space X, = C(Q2 x S) and it is not
difficult to prove that the unique solution A belongs to the closed positive cone of
Xo. Moreover, A(x,u) > 0 V(x,u) € Q x S, provided that 75, N €; # 0, because
the “known term” on the right hand side of (22) is then positive. O

4 The Inverse Problem

Assume that the value 7 = n(x, 1) of the particle density at (x, ) is known, where
X is a location “far” from Q (i.e., X € Qy \ Q) and 1 is such that 5, N # 0. If
Q) is occupied by an interstellar cloud, 7 might be the result of some experimental
measurements of the emitted UV-photons radiation, made by terrestrial astronomer.
In this case, X might be the location of a radiotelescope on the earth and 7% 3 joins
x with points within the cloud.

Our inverse problem can be stated as follows: is it possible to identify the shape
of the boundary surface ¥ from the knowledge of the measured value n? We shall
prove that, given the value 7, an unique surface 3 can be determined within a suitable
family F of surfaces. Such a surface is such that, if n = n(x, u) is the particle density
“produced” by the host medium contained within 3, then the relation n(x,a) =n
is satisfied.

However, if another family F; is chosen (with F N F; = (}), then another surface
¥, is determined. This kind of “non-uniqueness” will be discussed later on.

We then introduce the one-parameter family of surfaces

that satisfies the following assumptions
al) ¢(z,y, z;h) = 0 is the equation of a closed surface for each h € [hy,, hasl;

a2) ¢(z,y,2;h) is a continuous function of (z,y,z;h) € Qpr X [hpm, has] and the
point (z,y, z) is external to X, if and only if ¢(x,y, z; h) > 0;

a3) the region = Qp; U Xy, which is bounded by ¥, and whose interior is {2y,
is bounded, closed, strictly convex and contained in Q,;; (the interior of Q,/);

ad) if h < b/, then Qp, C Qpy, ie. if (z,y,2) is such that p(z,y, z;h') = 0, then
p(x,y,2;h) > 0.

Remark 4.1

i) Perhaps, the simplest way to construct the family F is to chose two suitable
(i.e. physically reasonable) surfaces Xy and ¥y (with Xy “small” and contained
within the “large” ¥1), and then assume that ¥y, is defined by the equation 0 =
o(z,y,z;h) = (1=h)e(x,y, z;0)+he(z,y, 2;1), h € [0, 1], where p(z,y,2;0) =
0 and ¢(z,y,2;1) =0 are the equations of Yo and Xy respectively.



ii) Another rather simple way to construct a family F is to assume that n(x,y, z) =
0 s the equation of a closed surface ¥y that bounds the closed, strictly convex
and bounded region €)y. Under suitable assumptions on the continuity of the
function n = n(z,y,2), a family F of homothetic surfaces may be defined as
follows:

F= {Eh: o(z,y,2;h) =0,0(z,y,2;h) =1 (% % %) » he [hm’hM]}

Under the assumption that a suitable family F defined by (23) and satisfying
al)-a4) has been chosen, consider a given ¥ € F.
Then, in (11)—(17), Q = Qp, Q; = Q4; and the quantities n, R, @ and B depend

on (x,u) and on the parameter h € [h,,, hps]. Correspondingly, we rewrite (11)—(17)
(for each h € [hy,, hi]) as follows

n(x,u;h) = Qu(x,u;h)+ (Byn)(x,u;h), (x,u) € Qy xS, (24)

Qu(x,w;h) = %{l—exp[—aR(x, wh)}, if (x,u) € Q x S, (25)

Quixuih) = {1 = expl-oR(za, u; )]},

if x € Qur\ Qp and Y0 N Qpy # 0 (26)
Qh(x, u; h) = 0, if x € QM \ Qh and Tx,u N th = (Z) (27)
R(x,u;h)
(Bpn)(x,u;h) = il dr exp(—or)/n(x— ru,u’; h) du’
4 0 S
if (x,u) € Qp x S, (28)
R(zhau;h’)
(Bpn)(x,u;h) = il dr exp(—ar)/n(zh —ru,u’; h) du’
dr Jo g
if x € Qpr \ Qp and v u N Qs # 0 (29)
(Bn)(x,u;h) = 0 if x € Qu \ Qp and vy N = 0. (30)

In (25)-(30), R(x,u; h) is of course such that x — R(x,u; h)u € 3, with (x,u) €
Qp, x S, and z), € Xy, is the first intersection point of vx, with Xp if x € Qp \ Q4
and Yxu N Qi # 0, see Figure 2.

Assume now that h and A’ are given (with h,, < h < b’ < hy) and that (x,u) €
Qp x S (we recall that Q, C Qu; because of assumption a4) and, consequently,
(x,u) € Qp x S). In the following theorem, we compare n(x,u;h’) (the particle
density when the host medium occupies Q) with n(x,u;h) (the particle density
when the host medium occupies Qp, C Q).



Figure 2: The surfaces Y, and ¥, that bound the
regions €, and Qy, with h < A/

Theorem 4.1
i) If hyy < h < b < hyy, then n(x,u; ') > n(x,u;h) at any (x,u) € Qp, X S;
i) [[n —n'||n = 0 as h' — h, where n' = n(x,u;h'), n = n(x,u;h) and || - ||n is
the norm in X, = C(Qy x S)
Proof. 1If we put (for h and h' given as specified in 7)) A(x,u) = n(x,u;h') —
n(x,u; h), then (24)-(30) lead to the equation
A(x,u) = [F(x,u) + G(x,u)] + (ByA)(x, u), (x,u) € Qp x S. (31)
In (31), By, is defined by (28) and

F(x,u) = g{exp [-oR(x,u;h)] — exp [-oR(x,u; )]}

vo R(x,u;h’)
G(x,u) = — drexp (—or) / n(x — ru,u’; ') du’
4m R(x,u;h) S

where F'(x,u) > 0 and G(x,u) > 0 because R(x,u;h') > R(x,u;h) and n € X,
see Lemma 3.3.

It follows that the unique solution A(x,u) of equation (31) in the Banach space
Xp = C(Q2y x S) (with norm ||f]|, = max{|f(x,u),(x,u) € Q, x S}) is posi-
tive, i.e. A(x,u) > 0 V(x,u) € Qp x S. Furthermore, we have from (31) that
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ARl < [|F || + ||G|n + v||A||n because ||BrAlln < v||Al|n; hence we obtain [|Al|, <
= [IF|l» + [|G||n] - Since it is not difficult to show that |F||, — 0 and ||G||, — 0
as h' — h, we conclude that ||A]|, = ||[n' — n||, — 0 as A — h. O

Theorem 4.1 takes care of the case in which x € (,; on the other hand, if
x € Qpr\Qp, Lemma 3.4 and Theorem 4.1 immediately lead to the following results.

Theorem 4.2 If h,, < h < h' < hyy, then n(x,u; ') > n(x,u;h) V(x,u) € Qp X

S, except when x ¢ Qp and yx o NQpr; = O (in this case, n(x,u; h') = n(x,u;h) =0).
Finally, ) of Theorem 4.1 implies that the following property of the particle

density n(x,u; h) (still with x € Qp, \ ©4) holds.

Theorem 4.3 If x € Qp \ Qp and yx.u N Qp; # 0, then n(x,u; h') — n(x,u; h) as

h' — h.

Proof. Let x and u be such that x € Qu \ Q4 and . N Qi # 0 (hence,
x € Qpr \ Qpr, if B’ is close enough to h, see Figure 2). Equations (9), (24), (26) and
(29), with A’ instead of h, give:

n(x,uih) = n(zw,wh) = {1 - exp [~oR(zw, u; b))} +

Vo R(zps,u;h’)
— dr exp(—ar)/n(zh/ —ru,u’; ') du’.
4 0 S
Thus, we have
nlxuh) = 21— exp [oR(, ul)]} +
o
vo [
+ — [ drexp(—or) {/ n(zy — ru,u’; h') du’} +
4 Jo g
Vo R(Zh)u;h)
+ —— drexp (—or) {/ n(zy — ru,u’; h') du’} +
47 n S
Vo R(zp,u;h’)
+ — drexp (—or) {/ n(zy — ru,u’; h') du'} :
Am R(zp,,u;h) S

where 1 = |z — 2], see Figure 2, and where

vo R(Zhau;h’)

drexp (—or) {/ n(zp — ru,u’; h') du’} =
s

E n

R(thu;h’)_n
= exp (—077)/ dr' exp (—or') {/ n(zy — r'u,u’; b') du’}
0 s

because, if ' = r — p, then z)y —ru =z)y — nu — r'u =z, — r'u.
b b
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On the other hand, (9),(24),(26),(29) also give:

n(x,u; h) = n(zp,u; h) = g{l —exp [—oR(zp,u; h)]} +

vo R(Zh 5u;h)

dr exp (—or) / n(zp — ru,u’; h) du’

A7 0 S

and so

n(x,u;h) = %{1 —exp [—0R(zy,u; h)]} +

vo R(zp,u3h)—n
+ —exp (—077)/ dr exp (—or) / n(zp —ru,u’; h) du’ +
0 s

4
vo R(zp,ush)—n
+ —[1—exp (—an)]/ dr exp (—or) / n(z, — ru,u’; h) du’ +
4 0 S
Vo R(zhau;h')

+ dr exp (—or) / n(z, — ru,u’; h) du'.

47T R(Zhyu;h)_n S

Correspondingly, we obtain

n(x,w;h') — n(x,u;h) = g{exp [—oR(zh,u; h)] — exp [—oR(zp, u; 1)} +

n
+ Z drexp(—or) / n(zy —ru,u’; A') du’ +
4 J, g
Vo R(zps,u;h’)

— dr exp(—or) / n(zy — ru,u’; h) du’ —
4m R(zp,,u;h) S

vo R(zp,,u;h)
- —[1- exp(—an)]/ exp(—ar)/n(zh —ru,u’;h)du’ —
4 0 S

Vo R(zp,,u;h)

dr exp(—or)/n(zh —ru,u’; h)du' —
s

47T R(Zh’au;h’)_n

+ —exp(—an)/ dr exp(—or)
4m 0

/ [n(zp —ru,u’; h') — n(z, —ru,u’;h)] ,du’.
s

It follows that
In(x,u; h') — n(x, u; h)| g{R(zp,u;h') — R(zp,u; h)} + vol||n||n +
vo|n|[{R(zn, u; ') — R(zp, u; h)} +

vollnfl[1 — exp (—on)[{ R(zs, u; h) —n} +

o+ o+ A

volnlin +volin — n'lln{ R(zn, u; h) —n},
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where we recall that || - || is the norm in X = C(Qy x S) and || - || is the norm
in X, = C(Qp, x S). Further, if §,, is the diameter of ,, and

x(h,h'") = max{ [R(x,u; h) — R(x,u; )], (x,u) € xS}

is the “maximum crossing” of the region Qs \ Q) ( where h and b’ are given, with
h < k'), see Figure 2, then we have

0 < R(zw,uw;h') — R(zp,u;h) = |2y — 24| + [yr — ya| < 2x(h, 1)
0 S n= |Zh’ - Zh| S X(h’ah’,)a
0 < R(zn,u;h) —n < R(zn,u; h) < o

Hence,
n(x,u; 1) — n(x,u;h)| < [2¢ + dvo|n|| + vo®Sullnll]x(h, k') + vodulln — n'|a.

We conclude that n(x,u;h’) — n(x,u;h) as ' — h, because x(h,h') — 0 and
|In" — n||n — 0, see ii) of Theorem 1. O

5 Identification of the boundary surface SeF

As in the preceding sections, we assume that the positive quantities oy, o and ¢, that
characterize the physical behaviour of the host medium (e.g., the interstellar cloud)
are given; on the other hand, the boundary surface ¥, € F is a priori unknown.
Then, the particle density n is, at each given (x,u) € Qp X S, a function of the
parameter h € [h,, hyl, i.e. it depends on the shape of the region €, occupied by
the host medium and bounded by ¥, € F. As a consequence, we can write that

n(x,u;h) = K(h)(x,u), (x,u;h) € Qur X S X [hm, has] (32)
where
K(h)(x,u) = ((I = Bo)"'Qn)(x,u), D(K) = [hm, hu], R(K)C Xy  (33)

see [JN99] and [Rom97, Sha96, MK94].

The operator K, defined by (33), is nonlinear and acts on h € [hy,, hy| = D(K)
through R(x,u;h). The main properties of K directly follow from Theorems 4.1,
4.2, 4.3 and are listed in Lemma 5.1.

Lemma 5.1

i) If ' < h, then K(h)(x,u) < K(h')(x,u) V(x,u) € Qu % S, except when
X & Qn and yx,u N Qpy = 0 (in this case, K(h)(x,u) = K(h')(x,u) =0);

i) K(h')(x,u) = K(h)(x,u) as b’ — h, Vx € Qus and yxu N Qi £ 0;
i) K(h)(x,u) < K(h')(x,u) if hyy < h < b < hpy, x € Qur and Ye,u N Qi # 0;
i) K(h')(x,u) = K(h)(x,u) as ' — h, ¥x € Qp and vxu N Qi # 0.
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As at the beginning of Section 4, assume that the value 7 = n(x, @) of the particle
density is known, where now x € Q7 \ Q4,, and 1 is such that yz,a N Qp,,; # 0 (with
Qp,, C Qg see Figure 3): 7 is usually called a “far field” measurement of the
particle density.

If we put

A A~

K(h)(%,8) = K(h), D(K) = [hpn,hul, R(K) = [K(hn), K(ha)] C BT (34)

then Lemma 5.1 implies that K (h) is a continuous and strictly increasing function

~

of h € D(K). As a consequence, we may state our main theorem.

Theorem 5.1 In the family F, defined by (23) and satisfying assumptions al)-a4),
is “suitably” chosen (i.e., if it is such that 7 € R(K)), then a unique h € D(K) =
[Am, h| exists such that K(h) = 7.

Figure 3: (%, 1), with X € Q; \ Qp,, and 1 such that vz a N Qp,,.i # 0.

The value h, satisfying the equation K(h) = 7, can be found by using some
standard successive approximation method, see also Section 6. Correspondingly,
the surface YJ; € F is identified, in such a way that the region (2; “produces” a

particle density n(x, u; iz), characterized by the fact that n(x, ; iz) is equal to the
measured 7.

6 Concluding remarks

Definition (34) and relation (32) imply that

K(h) = K(h)(%,10) = n(X,0) = n(zx, 1) = K(h)(zs, 0),



see Figure 3; hence (33) gives

K(h) = ((I — Bn)™'Qn)(n, 1) = Q(Z1, &) + Z B} Qn)(Zn, &

= Qu(Zn, 0) + > _(BIQn) (21, ) + O(™H).
7j=1
We conclude that .
K(h) = Qn(2n, &) + Z BlQn) (Zn, 4 (35)
j=1

may be considered as the ezplicit expression of K (h) as a function of & € [, hu]
(with an error of the order of ¥™%!). Correspondingly, (35) may be used in any
successive approximantion procedure to determine the unique value h such that
K(h) = f. Of course, if the family 7 = {Zs: o(z,y,2;h) = 0, [hm, har]} is not
“suitably” chosen (i.e., if i < K(hm) or 7 > K(hy)), then the equation has no
solution belonging to [hm, has]- In this case, F must be obviously changed.

Assume now that another family F; = {ZS): o1(x,y,z;h) = 0, [hm, b} is
considered, with F N F, = (. This will lead to a value hAl and so to a surface ZSI)
different from ¥;. Such a “non-uniqueness” result is not surprising because ¥; is
the “best-approximation within F to the true physical surface X,,, obtained from
the unique measured particle density 7.

Finally, suppose that another value of the particle density 7 = n(x, 1) is known,
with (X, 1) # (%, 1) and with x € Qp \ Qny,, 7%, aN i # (0. Then, the correspond-
ing i may be different from & because we have that K (h) = K (h)(%, @) = 7, but not
necessarily that K (h)(x, @) = . Only if one is particularly lucky (or Wlse), it may
happen that he choses a family F such that K (il) (x,u) is equal to particle density
n(x,u) at any (x,u) € Oy x S. In this case, K (h)(%, 1) = 7 and K (h)(%,0) = #;
correspondingly, €2; is the true physical region occupied by the host medium (i.e.
Y; = Xpy). However, in general, ¥; is only an approximate representation of X,,.

Note that, if the host medium is an interstellar cloud, n(x,u) is the UV-photon
density at (x,u) and ¥; is an approximate representation of the surface that bounds
the cloud.
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