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Abstract

We study photon transport in an interstellar cloud, contained in
a region V ⊂ R3 bounded by an unknown surface Σ. Assuming that
the cross section and the sources are given, we identify the shape of
Σ, provided that the value of the photon number density is known at
some location far from V . The mathematical techniques employed to
solve this inverse problem are rather simple and are based on some
monotony properties of the photon density.

1 Introduction

Interstellar clouds are astronomical objects that occupy large regions of the
galactic space: the diameter of an average cloud may range from 10−1 to 10
parsec, i.e. from 103 to 105 times the diameter of the Solar System. Clouds
are composed of a low density mixture of gases and dust grains (mainly
hydrogen molecules with some (1-2%) silicon grains). Typical particle den-
sities may be of the order of 104 particles/cm3, i.e. 10−5 times the density
of earth atmosphere at sea level. Such a mixture of particles is exposed to
UV-radiation produced by stars within the cloud or external to it [DW97].

Since interactions between UV-photons and particles play a crucial role in
the chemistry and in the evolution of interstellar clouds, it is of great interest
to study

a) the spatial distribution of UV-photons within a given cloud;

b) the spatial behaviour of some physical quantities (such as the cross
sections and the photon sources) or the form of the ingoing photon
density;
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c) the shape of the surface Σ that bounds the cloud.

As far as a) is concerned, the evaluation of the photon number density,
as a function of space, energy and time variables, is a classic problem in
transport theory. It requires the knowledge of the cross section, of the sources
(including the ingoing photon density) and of the shape of Σ [Pom73].

On the other hand, in problem b), the cross section and/or the sources,
or the ingoing density are unknown and must be evaluated starting from the
knowledge of the (outgoing) photon density, measured at a location “far”
from the cloud. This is a typical inverse problem in photon transport theory,
see for instance [Ago91, Bal00, Cho92, CS99, Dre89, Gon86, GN92, Hs88,
Lar88, McC86, MS97, MK94, Sha96, Sie01, YY89, Zwe99].

Finally, in problem c), a geometric quantity (the equation of the surface
Σ) is the unknown, see for instance [BMR02]. This is a less common inverse
problem in photon transport theory and will be studied in the following
sections. More precisely, starting from the knowledge of the cross sections,
of the sources and of the ingoing density that characterize the interstellar
cloud under consideration and of some a priori information on the shape of
Σ, we shall determine the surface Σ which bounds the cloud, provided that
the value of the UV-photon number density is known at a location far from
the cloud.

2 The integral form of the transport equation

Let our interstellar cloud be contained in a closed bounded region V ⊂ R3,
bounded by the closed “regular” surface Σ. Assume that V is strictly convex
(i.e. ∀x′,x′′ ∈ Σ, then λx′ + (1 − λ)x′′ ∈ Vi ∀λ ∈ (0, 1), where Vi is the
interior of V = Vi ∩ Σ, see Figure 1).

Under the assumptions that the total cross section σ, thr scattering cross
section σs and the source q are given positive constants within V and are
zero outside, the integral version of the transport equation for UV-photons
has the form, [Pom73]:

n(x,u) = Q(x,u) + (Bn)(x,u), (x,u) ∈ V × S (1)

where

Q(x,u) =
q

σ
{1− exp [−σR(x,u)]} (2)

(Bn)(x,u) =
cσ

4π

∫ R(x,u)

0

dr exp(−σr)

∫
S

n(x− ru,u′) du′. (3)
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Moreover, if x /∈ V we have

n(x,u) = n(z,u) if γ(x,u) ∩ Vi 6= ∅ (4)

n(x,u) = 0 if γ(x,u) ∩ Vi = ∅. (5)
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Figure 1: The region V = Vi ∩ Σ ⊂ R3, occupied by the inter-
stellar cloud, and the “large” region VM .

In (1 - 5), n(x,u) is the number density of photons that are at x and
move with velocity parallel to the unit vector u ∈ S, where S is the surface
of the unit sphere. Moreover, R(x,u) is such that x−R(x,u)u ∈ Σ ∀(x,u) ∈
V × S, see Figure 1, with R(x,u) = 0 if x ∈ Σ and u is directed towards
Vi; the surface Σ is assumed to be regular enough to ensure that R(x,u) is
a continuous funcion of (x,u) ∈ V × S, see also property b) in Section 3
and (ii) of Remark 3.1. Finally c = σs/σ (c < 1 because σ = σs + σc where
σc > 0 is the capture cross section), γ(x,u) = {y : y = x− ru, r ≥ 0} is the
half straight line passing through x and parallel to u, and z ∈ Σ is the “first”
intersection of γ(x,u) with Σ if x /∈ V and γ(x,u) ∩ Vi 6= ∅, see Figure 1.

For a reason that will become clear later on, equations (1),(4) and (5)
will be studied in the real Banach space X = C(VM × S) with a norm
‖f‖ = {max |f(x,u)|, (x,u) ∈ VM × S}, where VM is a “large” closed convex
region of R3, bounded by a “regular” surface ΣM and such that VM,i, the
interior of VM , contains V .

Correspondingly, it is convenient to modify (1)-(5) as follows:

n(x,u) = Q(x,u) + (Bn)(x,u), (x,u) ∈ VM × S, (6)

Q(x,u) =
q

σ
{1− exp [−σR(x,u)]} , (x,u) ∈ V × S, (7)

Q(x,u) =
q

σ
{1− exp [−σR(z,u)]} , x ∈ VM \ V, γ(x,u) ∩ Vi 6= ∅(8)

Q(x,u) = 0, x ∈ VM \ V, γ(x,u) ∩ Vi = ∅, (9)

(Bn)(x,u) =
cσ

4π

∫ R(x,u)

0

dr exp(−σr)

∫
S

n(x− ru,u′) du′,

(x,u) ∈ V × S, (10)

(Bn)(x,u) =
cσ

4π

∫ R(z,u)

0

dr exp(−σr)

∫
S

n(z− ru,u′) du′,

x ∈ VM \ V, γ(x,u) ∩ Vi 6= ∅, (11)

(Bn)(x,u) = 0, x ∈ VM \ V, γ(x,u) ∩ Vi = ∅. (12)

We remark that Q ∈ X and Bn ∈ X ∀n ∈ X because we assumed that
the region V is strictly convex.

From (7-9) we have

0 ≤ Q(x,u) ≤ q

σ
{1− exp(−σδ)} ∀(x,u) ∈ VM × S
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where δ = max {R(x,u), (x,u) ∈ V × S} is the diameter of V . Hence,

‖Q‖ ≤ q

σ
{1− exp(−σδ)} . (13)

Moreover, (10-12) give

|(Bn)(x,u)| ≤ cσ‖n‖
∫ δ

0

exp(−σr) dr = c {1− exp(−σδ)} ‖n‖,

∀n ∈ X, ∀(x,u) ∈ VM × S

and so
‖B‖ ≤ c {1− exp(−σδ)} < c < 1, (14)

i.e. the linear operator B is strictly contractive [BMM98]
Inequality (14) implies that the unique solution n ∈ X of equation (6)

has the form

n(x,u) = ((I −B)−1Q)(x,u), (x,u) ∈ VM × S (15)

with

‖n‖ ≤ ‖Q‖
1− ‖B‖

≤ q

σ

1− exp(−σδ)

1− c {1− exp(−σδ)}
≤ q

σ

1

1− c
. (16)

The results, listed in Lemmas 2.1-2.4, will be used in the sequel.

Lemma 2.1

(i) Q ∈ X+ = {f : f ∈ X, f(x,u) ≥ 0 ∀(x,u) ∈ VM × S}
(X+ is the closed positive cone of X);

(ii) Q(x,u) > 0 if x ∈ VM and γ(x,u) ∩ Vi 6= 0;

(iii)

∫
S

Q(x,u) du > 0 ∀x ∈ VM .

Proof. (i) immediatly follows from definitions (7-9).
(ii) holds because R(x,u) > 0 ∀u ∈ S if x ∈ Vi, and R(z,u) > 0 if

x ∈ VM \ Vi and γ(x,u) ∩ Vi 6= ∅.
(iii) follows from (ii). �

Lemma 2.2

(i) Bf ∈ X+ ∀f ∈ X+;

(ii) if

∫
S

f(y,u′) du′ > 0 ∀y ∈ V , then (Bf)(x,u) > 0 ∀(x,u)

with x ∈ VM and γ(x,u) ∩ Vi 6= ∅.
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Proof. (i) and (ii) directly follow from definitions (10-12). �

Lemma 2.3

(i) (I −B)−1f ∈ X+ ∀f ∈ X+;

(ii) if f ∈ X+ and

∫
S

f(y,u′) du′ > 0 ∀y ∈ V , then ((I −B)−1f)(x,u) > 0

∀(x,u) with x ∈ VM and γ(x,u) ∩ Vi 6= ∅.

Proof. Since ((I − B)−1f)(x,u) =
∞∑

j=0

(Bjf)(x,u) ≥ f(x,u) + (Bf)(x,u),

∀f ∈ X+, (i) and (ii) follow from Lemma 2.2. �

Remark 2.1 Lemmas 2.1 and 2.3 imply that the photon density n(x,u),
given by (15), is such that n(x,u) > 0 ∀(x,u) with x ∈ VM and γ(x,u)∩Vi 6= ∅.
In any case, n belongs to X+, as it must be from a physical viewpoint.

We shall now prove that n(x,u) increases as x “approaches” the boundary
surface Σ, in the sense specified in the following lemma. The crucial role of
this result will become clear in Sections 3 and 4

Lemma 2.4 Let (x,u) ∈ V×S, with u such that γ(x,u)∩Vi 6= ∅. If y = x−ρu
with 0 < ρ ≤ R(x,u), see Figure 1, then n(x,u) > n(y,u).

Proof. Since both x and y = x−ρu belong to V and γ(x,u)∩Vi ⊃ γ(y,u)∩Vi 6=
∅, (6)+(7)+(10) give

n(x,u)− n(y,u) =
q

σ
{1− exp [−σR(x,u)]} − q

σ
{1− exp [−σR(y,u)]}+

+
cσ

4π

∫ R(x,u)

0

dr exp(−σr)

∫
S

n(x− ru,u′) du′ −

− cσ

4π

∫ R(y,u)

0

dr exp(−σr)

∫
S

n(y − ru,u′) du′

where R(y,u) = R(x,u)− ρ. Hence, if we put

∆(x,u) = n(x,u)− n(y,u) = n(x,u)− n(x− ρu,u)
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we obtain

∆(x,u) =

{
q

σ
[1− exp(−σρ)] exp [−σR(y,u)] +

+
cσ

4π

∫ R(x,u)

R(y,u)

dr exp(−σr)

∫
S

n(x− ru,u′) du′

}
+

+
cσ

4π

∫ R(y,u)

0

dr exp(−σr)

∫
S

∆(x− ru,u′) du′ (17)

because ∆(x− ru,u′) = n(x− ru,u′)−n(x− ru− ρu,u′) = n(x− ru,u′)−
n(y − ru,u′).

It is not difficult to check that the unique solution ∆(x,u) of the integral
equation (17) belongs to the closed positive cone of the Banach space C(V ×
S). Moreover ∆(x,u) > 0 ∀(x,u) ∈ V × S with γ(x,u) ∩ Vi 6= ∅ because the
known term in (17) is positive. �

3 The family of the boundary surfaces Σh

Assume that the value n̂ = n(x̂, û) of the photon density at (x̂, û) is known,
where x̂ is “far” from V (i.e., x̂ ∈ VM \ V ) and û is such that γx̂,ŷ ∩ Vi 6=
∅: n̂ may be the result of experimental measurements made by terrestrial
astronomers. The question is whether it is possible to determine the shape
of the boundary surface Σ from the knowledge of the measured value n̂.

To answer this question, we introduce the family of closed surfaces

F = {Σh : ϕ(x, y, z; h) = 0, h ∈ [hm, hM ]} , (18)

with the following properties:

a) Σh is a closed surface, i.e. if (ρ, α, β) are spherical coordinates and
Φ(ρ, α, β; h) = 0 is the corresponding equation of Σh (thus Φ(ρ, α, β; h) =
ϕ(x, y, z; h) with x = ρ sin α cos β, y = ρ sin α sin β, z = ρ cos α), then
we have that Φ(ρ, α + 2π, β + 2π; h) = ϕ(x, y, z; h) ∀(ρ, α, β) ∈ VM ;

b) ϕ(x, y, z; h) is a continuous function of (x, y, z; h) ∈ VM × [hm, hM ], and
the point (x, y, z) is external to Σh if and only if ϕ(x, y, z; h) > 0;

c) the region Vh, bounded by Σh, is bounded, closed, strictly convex and
contained within VMi, the interior of VM ;

d) if h < h′, Vh ⊂ Vh′i, where Vh′i is the interior of Vh′ (i.e., if (x, y, z)
is such that ϕ(x, y, z; h′) = 0, then ϕ(x, y, z; h) > 0). (See also the
Appendix)
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Remark 3.1 (i) assumption c) is necessary because we shall be working in
the Banach space X = C(VM × S), where VM is a “large” closed and convex
region such that Vhm ⊆ Vh ⊆ VhM

⊂ VMi.
(ii) Let x = (x1, x2, x3) ∈ Vh and assume that u = (u1, u2, u3) is such that
γ(x,u)∩Vh,i 6= ∅ (with u2

1+u2
2+u2

3 = 1). The intersection point of γ(x,u) with Σ
is (x1−Ru1, x2−Ru2, x3−Ru3), where R = R(x,u, h) satisfies the equation
ϕ((x1 − Ru1, x2 − Ru2, x3 − Ru3; h) = 0 (such a point is unique because Vh

is strictly convex). In an analogous way, let x′ = (x′1, x
′
2, x

′
3) ∈ Vh and take

u′ = (u′1, u
′
2, u

′
3) such that γ(x′,u′) ∩ Vh,i 6= ∅. The unique intersection point of

γ(x′,u′) with Σh′ is (x′1 − R′u′1, x
′
2 − R′u′2, x

′
3 − R′u′3), where R′ = R(x′,u′; h′)

satisfies the equation ϕ(x′1 − R′u′1, x
′
2 − R′u′2, x

′
3 − R′u′3; h

′) = 0. Since ϕ is
continuous due to assumption b), we have

0 = lim
(x′,u′;h′)→(x,u;h)

ϕ(x′1 −R′u′1 , x′2 −R′u′2 , x′3 −R′u′3; h
′) =

= ϕ(x1 − (lim R′)u1 , x2 − (lim R′)u2 , x3 − (lim R′)u3; h
′).

Hence, we have at the same time

ϕ(x1 −Ru1, x2 −Ru2, x3 −Ru3) = 0

and
ϕ(x1 − lim(R′)u1 , x2 − (lim R′)u2 , x3 − (lim R′)u3; h

′) = 0.

On the other hand, the intersection point of γ(x,u) with Σh is unique and so
we obtain that

xi − lim R′ui = xi −Rui, i = 1, 2, 3, (u2
1 + u2

2 + u2
3 = 1).

As a consequence, lim R′ = R i.e. R(x′,u′; h′) → R(x,u; h) as (x′,u′; h′) →
(x,u; h).

We conclude that R(x,u; h) is continuous (and hence uniformly continu-
ous) on some closed and bounded set Ωh = Vh × S × [h, h].

(iii) If χ(h, h′) = max {[R(x,u; h′)−R(x,u; h)] , (x,u) ∈ Vh × S} is the
“maximum crossing” of the region Vh′ \Vh, see Figure 2, then (ii) implies that
χ(h, h′) → 0. In this sense, we can say that the family F is “continuous”
with respect to the parameter h.
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Figure 2: The regions Vh and Vh′ with h < h′, and the “large”
region VM (VMi ⊃ VhM

). [R(x,u; h′)− [R(x,u; h)] is the length of
the crossing of the region Vh−Vh′ , corresponding to (x,u) ∈ Vh×
S. In case a), yh = zh−R(zh,u; h)u and yh′ = zh′−R(zh′ ,u; h)u.

For clarity, we now rewrite (6)-(12) observing that, if V = Vh, the quan-
tities n, R, Q and B depend on (x,u) and on the parameter h ∈ [hm, hM ]
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n(x,u; h) = Qh(x,u; h) + (Bhn)(x,u; h), (x,u) ∈ VM × S, (19)

Qh(x,u; h) =
q

σ
{1− exp [−σR(x,u; h)]} , (x,u) ∈ Vh × S, (20)

Qh(x,u; h) =
q

σ
{1− exp [−σR(zh,u; h)]} ,

x ∈ VM \ Vh, γ(x,u) ∩ Vhi 6= ∅ (21)

Qh(x,u; h) = 0, x ∈ VM \ Vh, γ(x,u) ∩ Vhi = ∅, (22)

(Bhn)(x,u; h) =
cσ

4π

∫ R(x,u;h)

0

dr exp(−σr)

∫
S

n(x− ru,u′; h) du′,

(x,u) ∈ Vh × S, (23)

(Bhn)(x,u; h) =
cσ

4π

∫ R(zh,u;h)

0

dr exp(−σr)

∫
S

n(zh − ru,u′) du′,

x ∈ VM \ Vh, γ(x,u) ∩ Vhi 6= ∅, (24)

(Bhn)(x,u; h) = 0, x ∈ VM \ Vh, γ(x,u) ∩ Vhi = ∅ (25)

Given h, h′ (with hm ≤ h < h′ ≤ hM) and (x,u) ∈ Vh × S, let Λ(x,u) =
n(x,u; h′)− n(x,u, h).

Then, (19-25) give

Λ(x,u) = F (x,u) + G(x,u) + (BhΛ)(x,u), (26)

where Bh is defined by (23) and

F (x,u) =
q

σ
{exp [−σR(x,u; h)]− exp [−σR(x,u; h′)]} > 0

G(x,u) =
cσ

4π

∫ R(x,u;h′)

R(x,u;h)

dr exp(−σr)

∫
S

n(x− ru,u′; h′) du′ > 0

because R(x,u; h) > R(x,u; h′).
It follows that the unique solution Λ(x,u) of equation (26) in the Banach

space Xh = C(Vh × S) (with norm ‖f‖h = max {|f(x,u)|, (x,u) ∈ Vh × S})
is positive, i.e. Λ(x,u) = n(x,u; h′)− n(x,u; h) > 0 ∀(x,u) ∈ Vh × S. (Note
that Bh maps the closed positive cone of Xh into itself and that ‖Bh‖h < c <
1.)

Further, we have from (26) that ‖Λ‖h ≤ ‖F‖h + ‖G‖h + c‖Λ‖h and so

‖Λ‖h ≤
1

1− c
[ ‖F‖h + ‖G‖h ] .
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On the other hand, the definitions of F and G (with h < h′; the case
h > h′ is analogous) give

0 < F (x,u) =
q

σ
exp [−σR(x,u; h)] {1− exp [−σ(R(x,u; h′)−R(x,u; h))]} ≤

≤ q [R(x,u; h′)−R(x,u; h)] ≤ qχ(h, h′),

0 < G(x,u) ≤ cσ‖n‖
∫ R(x,u;h′)

R(x,u;h)

exp(−σr) dr =

= c‖n‖ {exp [−σR(x,u; h)]} − exp [−σR(x,u; h′)] ≤
≤ c‖n‖σ [R(x,u; h′)−R(x,u; h)] ≤ c‖n‖σ χ(h, h′) ≤ q

c

1− c
χ(h, h′)

where χ(h, h′) was defined in (iii) of Remark 3.1 and we used (16).
We conclude that

‖Λ‖h ≤
q

(1− c)2
χ(h, h′) → 0 as h′ → h.

Thus, we can state the following Theorem.

Theorem 3.1

i) If hm ≤ h < h′ ≤ hM , then n(x,u; h′) > n(x,u; h) at any (x,u) ∈
Vh × S;

ii) ‖n′ − n‖h → 0 as h′ → 0, where n = n(x,u; h), n′ = n(x,u; h′) and
‖ · ‖h is the norm in Xh. �

To complete the comparison between n(x,u; h′) and n(x,u; h) with h <
h′, we still have to examine the five cases, see Figure 2:

a) x ∈ Vh′ \ Vh, γ(x,u) ∩ Vh,i 6= ∅,

b) x ∈ Vh′ \ Vh, γ(x,u) ∩ Vh,i = ∅, γ(x,u) ∩ Vh′i 6= ∅,

c) x /∈ Vh′ , γ(x,u) ∩ Vh,i 6= ∅,

d) x /∈ Vh′ , γ(x,u) ∩ Vh,i = ∅, γ(x,u) ∩ Vh′i 6= ∅,

e) x /∈ Vh′ , γ(x,u) ∩ Vh′i = ∅,

Case a): n(x,u; h′) > n(zh,u; h′) because of lemma 2.4 with V = Vh′ ;
n(zh,u; h′) > n(zh,u; h) because of Theorem 3.1; n(zh,u; h) = n(x,u; h)
because of (19)+(21)+(24). Hence n(x,u; h′) > n(x,u; h).

Case b): n(x,u; h′) > n(x,u; h) = 0, see (19)+(22)+(25).

11



Case c): n(x,u; h′) > n(zh′ ,u; h′) because of (19)+(21)+(24) with h′

instead of h; n(zh′ ,u; h′) > n(zh,u; h′) because of Lemma 2.4 with V = Vh′ ;
n(zh,u; h′) > n(zh,u; h)) because of Theorem 3.1; n(zh,u; h) = n(x,u; h)
because of (19)+(21)+(24). Hence n(x,u; h′) > n(x,u; h).

Case d): n(x,u; h′) > n(x,u; h) = 0 see (19)+(22)+(25).
Case e): n(x,u; h′) = n(x,u; h) = 0 see (19)+(22)+(25).

The above discussion and i) of Theorem 3.1 lead to the following Theorem.

Theorem 3.2 If hm ≤ h < h′ ≤ hM , then n(x,u; h′) > n(x,u; h) ∀(x,u) ∈
VM × S, except when x /∈ Vh′ and γ(x,u) ∩ Vh′i = ∅ (in this case n(x,u; h′) =
n(x,u; h) = 0).

Moreover, ii) of Theorem 3.1 leads to the following property of the photon
density:

Theorem 3.3 n(x,u; h′) → n(x,u; h) as h′ → h if x ∈ VM \ Vh and γ(x,u) ∩
Vh,i = ∅

Proof: Let (x,u) be such that x ∈ VM \ Vh and γ(x,u) ∩ Vh,i 6= ∅ (hence,
x ∈ VM \ Vh′ if h′ is close enough to h, see case c) of Figure 2). From
(19)+(21)+(24) with h substituted by h′, we have

n(x,u; h′) = n(zh′ ,u; h′) =
q

σ
{1− exp[−σR(zh′ ,u; h′)]}+

+
cσ

4π

∫ R(zh′ ,u;h′)

0

dr exp(−σr)

∫
S

n(zh′ − ru,u′; h′) du′

and also

n(x,u; h′) =
q

σ
{1− exp[−σR(zh′ ,u; h′)]}+

+
cσ

4π

∫ η

0

dr exp(−σr)

∫
S

n(zh′ − ru,u′; h′) du′

+
cσ

4π

∫ R(zh,u;h)

η

dr exp(−σr)

∫
S

n(zh′ − ru,u′; h′) du′

+
cσ

4π

∫ R(zh′ ,u;h′)

R(zh,u;h)

dr exp(−σr)

∫
S

n(zh′ − ru,u′; h′) du′

where η = |zh′ − zh|, see case c) of Figure 2, and where∫ R(zh,u;h)

η

dr exp(−σr′)

∫
S

n(zh′ − ru,u′; h′) du′ =

= exp(−ση)

∫ R(zh,u;h)−η

0

dr′ exp(−σr′)

∫
S

n(zh − r′u,u′; h′) du′

12



because, if r′ = r − η, then zh′ − ru = zh′ − ηu − r′u = zh − r′u. On the
other hand, from (19)+(21)+(24) we also obtain

n(x,u; h) = n(zh,u; h) =
q

σ
{1− exp[−σR(zh,u, h)]}+

+
cσ

4π

∫ R(zh,u;h)

0

dr exp(−σr)

∫
S

n(zh − ru,u′; h) du′

and so

n(x,u; h) =
q

σ
{1− exp[−σR(zh,u, h)]}+

+
cσ

4π
exp(−ση)

∫ R(zh,u;h)−η

0

dr exp(−σr)

∫
S

n(zh − ru,u′; h) du′+

+
cσ

4π
[1− exp(−ση)]

∫ R(zh,u;h)−η

0

dr exp(−σr)

∫
S

n(zh − ru,u′; h) du′+

+
cσ

4π

∫ R(zh,u;h)

R(zh,u;h)−η

dr exp(−σr)

∫
S

n(zh − ru,u′; h) du′.

It follows that

n(x,u; h′)−n(x,u; h) =
q

σ
{exp[−σR(zh,u; h)]− exp[−σR(zh′ ,u; h′)]}+

+
cσ

4π

∫ η

0

dr exp(−σr)

∫
S

n(zh′ − ru,u′; h′) du′+

+
cσ

4π

∫ R(zh′ ,u;h′)

R(zh,u;h)

dr exp(−σr)

∫
S

n(zh′ − ru,u′; h′) du′−

− cσ

4π
[1− exp(−ση)]

∫ R(zh,u;h)−η

0

dr exp(−σr)

∫
S

n(zh − ru,u′; h) du′−

− cσ

4π

∫ R(zh,u;h)

R(zh,u;h)−η

dr exp(−σr)

∫
S

n(zh − ru,u′; h′) du′+

+
cσ

4π
exp(−ση)

∫ R(zh,u;h)−η

0

dr exp(−σr)∫
S

[n(zh − ru,u′; h′)− n(zh − ru,u′; h)] du′.

Thus, we have

|n(x,u; h′)−n(x,u; h)| ≤ q {R(zh′ ,u; h′)−R(zh,u; h)}+ cσ‖n‖η+

+cσ‖n‖ {R(zh′ ,u; h′)−R(zh,u; h)}+ cσ‖n‖[1− exp(−ση)] {R(zh,u; h)− η}+

+cσ‖n‖η + cσ‖n′ − n‖h {R(zh,u; h)− η} .

13



Since

0 ≤ R(zh′ ,u; h′)−R(zh,u; h) = |zh′ − zh|+ |yh′ − yh| ≤ 2χ(h, h′)

0 ≤ η = |zh′ − zh| ≤ χ(h, h′),

0 ≤ R(zh,u; h)− η ≤ R(zh,u; h) ≤ δM ,

where δM is the diameter of VM , we obtain from the preceding inequality

|n(x,u; h′)−n(x,u; h)| ≤

≤2qχ(h, h′) + cσ‖n‖χ(h, h′) + 2cσ‖n‖χ(h, h′)+

+ cσ2‖n‖χ(h, h′)δM + cσ‖n‖χ(h, h′) + cσ‖n− n′‖hδM =

=[2q + 4cσ‖n‖+ cσ2δM‖n‖]χ(h, h′) + cσδM‖n− n′‖h.

We conclude that n(x,u; h′) → n(x,u; h) as h′ → h because χ(h, h′) → 0
(see iii) of Remark 3.1) and ‖n− n′‖h → 0 (see ii) of Theorem 3.1). �

4 Identification of the boundary surface

As in Sections 2 and 3, we assume that the positive quantities σs σ and q
(that characterize the physical behaviour of the interstellar cloud) are given.

Then, at each given (x,u) ∈ VM × S, the photon density is a function of
the parameter h ∈ [hm, hM ], i.e. it depends on the region Vh occupied by the
cloud. As a consequence, we can write

n(x,u; h) = K(h)(x,u), (x,u) ∈ VM × S, (27)

where
K(h)(x,u) = ((I −Bh)

−1Qh)(x,u), (x,u) ∈ VM × S, (28)

see (19-25).
Note that K is a nonlinear operator acting on h through R(x,u; h), with

domain D(K) = [hm, hM ] and range R(K) ⊂ X+. The main properties of K
are summarized in the following lemma.

Lemma 4.1

i) If h < h′, K(h)(x,u) < K(h′)(x,u), ∀(x,u) ∈ VM × S, except when
x /∈ Vh′ and γ(x,u)∩Vh′i = ∅ (in this case K(h)(x,u) = K(h′)(x,u) = 0);

ii) K(h′)(x,u) → K(h)(x,u) as h′ → h, ∀x ∈ VM and γ(x,u) ∩ Vh′i 6= ∅.
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Proof. (i) follows from (27) and Theorem 3.2. (ii) follows from ii) of
Theorem 3.1 and from Theorem 3.3. �

Remark 4.1 Lemma 4.1 implies that

i) K(h)(x,u) < K(h′)(x,u) if hm ≤ h < h′ ≤ hM , x ∈ VM and γ(x,u) ∩
Vhmi 6= ∅ (hence, γ(x,u) ∩ Vh′i 6= ∅);

ii) K(h′)(x,u)−K(h)(x,u) → 0 as h′ → h, ∀x ∈ VM and γ(x,u)∩Vhmi 6= ∅.
V
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Σ M
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Figure 3: The locations x̂ and x̌ “far” from VhM
: x̂, x̌ ∈ VM −

VhM
; û and ǔ are such that γx̂,û ∩ Vhmi 6= ∅ and γx̌,ǔ ∩ Vhmi 6= ∅

As the beginning of Section 3, assume now that the value n̂ = n(x̂, û) of
the photon density is known, where x̂ ∈ VM \VhM

and γ(x̂,û)∩Vhmi 6= ∅ (with
VMi ⊃ VhM

, see Figure 3). If we put

K(h)(x̂, û) = K̂(h), D(K̂) = [hm, hM ], R(K̂) ⊂ R+ (29)
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then Lemma 4.1 and Remark 4.1 imply that K̂(h) is a continuous and strictly
increasing function of h ∈ [hm, hM ].

As a consequence, we have

Theorem 4.1 If the family F , defined by (18) and assumptions a) - d), is
“suitably chosen” (i.e., if it is such that K̂(hm) ≤ n̂ ≤ K̂(hM)), then a unique
ĥ ∈ [hm, hM ] exists, for which K̂(ĥ) = n̂. �

Note that the value ĥ can be found by using some standard successive
approximation method, see also Remark 5.1 in Section 5.

Correspondingly, the surface Σĥ is identified, which bounds the region Vĥ

that produces a photon density distribution n(x,u; ĥ) such that n(x̂, û; ĥ) =
n̂.

5 Concluding remarks

Remark 5.1 Since n(x̂, û; h) = n(ẑh, û; h), see Figure 3, we have from (27)
and (29) that K̂(h) = K(h)(x̂, û) = K(h)(ẑh, û; h). Hence, (28) gives

K̂(h) =((I −Bh)
−1Qh)(ẑh, û) = Qh(ẑh, û; h) +

∞∑
j=1

(Bj
hQh))(ẑh, û) =

= Qh(ẑh, û; h) +
m∑

j=1

(Bj
hQh))(ẑh, û) + O(cm+1).

(30)

Relation (30) implies that

K̂(h) ' Qh(ẑh,u; h) +
m∑

j=1

(Bj
hQh))(ẑh, û) (31)

may be considered as the explicit expression of K̂(h) as a function of h (with
an error of the order of cm+1). Correspondingly, (31) can be used in any
successive approximation procedure to determine the value of ĥ, such that
K̂(ĥ) = n̂.

Remark 5.2 If the family F is not “suitably chosen” (from a physical view-
point), it may happen that n̂ < K̂(hm) or K̂(hm) < n̂. Obviously, in this
case, the family F must be changed.
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Remark 5.3 Assume that another family F1 (with F∩F1 = ∅) is considered,

e.g. F1 =
{∑(1)

h : ϕ1(x, y, z; h) = 0, h ∈ [hm, hM ])
}
. This will lead to a value

ĥ1 possibly different from ĥ (and so to a surface Σ
(1)

ĥ1
possibly different from

Σĥ). Such a “non -uniqueness” result is not surprising because Σĥ must be
considered as the “best approximation within F” of the true physical surface
Σph, derived from the unique measured photon density n̂.

Remark 5.4 Further, assume that another measured value of the photon
density ň = n(x̌, ǔ) is known, with (x̌, ǔ) 6= (x̂, û) and with x̌ ∈ VM \ VhM

and γ(x̌,ǔ) ∩ Vhmi 6= ∅. Then, the corresponding ȟ may be different from

ĥ because we have that K̂(ĥ) = K(ĥ)(x̂, û) = n̂ but not necessarily that
K(ĥ)(x̌, ǔ) = ň (however, K(ȟ)(x̌, ǔ) = ň). In other words, if the terrestrial
astronomers are partiiculary lucky, it may happen that they choose a family
F , such that K(ĥ)(x,u) is equal to the measured photon density n(x,u) at
any (x,u) ∈ VM × S. In this case, K(ĥ)(x̂, û) = n̂ and K(ĥ)(x̌, ǔ) = ň;
correspondingly, Vĥ is really the region occupied by the cloud (i.e. Σĥ = Σph).
However, in general, Σĥ is only an approximate representation of Σph.

6 Appendix: Examples of families F

6.1 Homothetic families

Let η(x1, x2, x3) = 0 be the equation of a closed surface Σ0, that bounds the
closed, bounded and strictly convex region V0 ⊂ R3, and assume that η is a
continuous function of

(x1, x2, x3) ∈{(x1, x2, x3) :

(x1, x2, x3) = (x/h, y/h, z/h), (x, y, z) ∈ VM , 0 < hm ≤ h < hM}
(32)

If the family F is defined by

F = {Σh : ϕ(x, y, z; h) = 0, ϕ(x, y, z; h) = η(x/h, y/h, z/h), h ∈ [hm, hM ]} ,

then it is easy to see that each Σh is homothetic to Σ0. In fact, let Ph =
(xh, yh, zh) ∈ Σh, i.e. η(xh/h, yh/h, zh/h) = 0;
correspondingly Ph′ = (xh′ , yh′ , zh′) with xh′ = (h/h′)xh, yh′ = (h/h′)yh,
zh′ = (h/h′)zh belongs to Σh′ and we have that Ph′O = (h′/h)PhO.
Note that F has the following properties:
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a) Il u is a unit vector, let γ0,u = {y : y = tu, t ≥ 0} be the half straight
line passing through the origin (the center of the homothety). Then,
for each u ∈ S, the intersection points of γ0,u with Σ0, Σh and Σh′

(with h′ > h) are x0 = t0u, xh = thu, xh′ = th′u, respectively, with
η(t0u1, t0u2, t0u3) = 0, th = ht0, th′ = h′t0 > th. We conclude that
Vh ⊂ Vh′i.

b) That the region Vh, bounded by Σh, is still strictly convex immediatly
follows from the fact that strict convexity is preserved by homothetic
transformations.

6.2 “Linear” families

Let the “minimal” closed surface Σ0 and the “maximal” closed surface Σ1

have equations ϕ0(x, y, z) = 0 and ϕ1(x, y, z) = 0, respectively. Assume that
ϕ0 and ϕ1 are continuous ∀ (x, y, z) ∈ VM and that the regions V0 and V1,
bounded by Σ0 and by Σ1, are closed, bounded and strictly convex. Further,
if V0i = {(x, y, z) : ϕ0(x, y, z) < 0} and V1i = {(x, y, z) : ϕ1(x, y, z) < 0} are
the interior of V0 and V1, we shall also assume that V0 ⊂ V1i ⊂ V1 ⊂ VMi.
Under the above assumption the “linear” family F , defined by

F = {Σh : ϕ(x, y, z; h) = 0,

ϕ(x, y, z; h) = (1− h)ϕ0(x, y, z) + hϕ1(x, y, z), h ∈ [0, 1]}
(33)

has the following properties

a) Σh is a closed surface, see property b) in Section 3, and ϕ(x, y, z; h) is
continuous ∀ (x, y, z, h) ∈ VM × [0, 1].

b) If P̃ = (x̃, ỹ, z̃) ∈ Σh with 0 < h < 1, then (1 − h)ϕ0(x̃, ỹ, z̃) +
hϕ1(x̃, ỹ, z̃) = 0. As a consequence, it must be ϕ0(P̃ ) > 0 and ϕ1(P̃ ) <
0 because the other possible eight cases (ϕ0(P̃ ) > 0 and ϕ1(P̃ ) = 0,
ϕ0(P̃ ) > 0 and ϕ1(P̃ ) > 0, etc ) can be easily excluded. Hence V0 ⊂ Vhi

and Vh ⊂ V1i.

c) Assume that P ∈ Σh ∩ Σk, with h 6= k. Then, we have that (1 −
h)ϕ0(P ) + hϕ1(P ) = 0, (1 − k)ϕ0(P ) + kϕ1(P ) = 0. It follows that
ϕ0(P ) = 0 and ϕ1(P ) = 0, i.e. P ∈ Σ0 ∩ Σ1. We conclude that the
Σh containing P is unique because Σ0 ∩ Σ1 = ∅. Note that, given P ,
the surface Σh is defined by the value of h, such that (1 − h)ϕ0(P ) +
hϕ1(P ) = 0, i.e. h = ϕ0(P )/[ϕ0(P ) + |ϕ1(P )|].

d) The region Vh, bounded by Σk, is strictly convex. To prove this, we
introduce the regions V0a and V1b, bounded by the surfaces Σ0a and
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Σ1b (where Σ0a is defined by the equation ϕ0(x, y, z) = a and Σ1b by
ϕ1(x, y, z) = b). Under the assumption that V0 = V00 (bounded by Σ0 =
Σ00 defined by the equation ϕ0(x, y, z) = 0) and V1 = V1,0 (bounded by
Σ1 = Σ10 defined by the equation ϕ1(x, y, z) = 0) are chosen so that
V0a and V0b are still strictly convex, it is not difficult to show that V0a is
contained in the interior of V0a′ and V0b in the interior of V0b′ if a < a′

and b < b′.

Assume now that Vh is not convex. Correspondengly, Σh may have the
shape represented in Figure 4, and take A, B ∈ Σh. Since A ∈ Σh, we
have that (1 − h)ϕ0(A) + hϕ1(A) = 0, i.e. (1 − h)a + hb = 0. On the
other hand, (1− h)ϕ0(B) + hϕ1(B) = (1− h)a′ + hb′ > (1− h)a + hb,
i.e. (1− h)ϕ0(B) + hϕ1(B) > 0 and B can not belong to Σh. Since the
case in which Vh is convex but not strictly convex may be dealt with in
a similar way, we conclude that Vh is strictly convex.

Σ
h

hV

ϕ 1
=

b
ϕ 1

b
=

Σ
0a

a
Σ

0

Σ
1b

b
Σ

1

a<
a

b<
b

ϕ 0

ϕ 0

a

Α
Β

=

=
a

Figure 4: If Vh is not convex, Σh may have the shape rep-
resented above.

e) Vh,i = {(x, y, z) : ϕ(x, y, z; h) < 0}. That P = (x1, x2, x3) is an inte-
rior point of Vh if and only if (1 − h)ϕ0(P ) + hϕ1(P ) < 0 can also
be proved by using the surfaces Σ0a and Σ0b. In fact, take γx,u =
{y : y = (y1, y2, y3), yi = xi − tui i = 1, 2, 3, t ≥ 0} and let Ph = γx,u ∩
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Σh. If Ph also belongs to Σ0a′ and to Σ1b′ , we have that (1−h)ϕ0(Ph)+
hϕ1(Ph) = (1 − h)a′ + hb′ = 0. On the other hand, P belongs to Σ0a

and to Σ1b with a < a′ and b < b′; hence, (1 − h)ϕ0(P ) + hϕ1(P ) =
(1− h)a + hb < (1− h)a′ + hb′ = 0.

f) If 0 ≤ h < h′ ≤ 1, Vh ⊂ Vh′i. In fact, if P ∈ Σh′ we have that
(1− h′)ϕ0(P ) + h′ϕ1(P ) = 0.

It follows that

(1− h)ϕ0(P ) + hϕ1(P ) =

= (1− h′)ϕ0(P ) + h′ϕ1(P ) + (h′ − h)[ϕ0(P )− ϕ1(P )] =

= (h′ − h) [ϕ0(P ) + |ϕ1(P )|] > 0

because ϕ0(P ) > 0 and ϕ1(P ) < 0. Thus, P is external to Σh.

A sufficient condition for the convexity of a linear family F will be stated in
the last Section.

6.3 “Nonlinear” families

We shall give a simple example of a nonlinear family of surfaces Σh (which
can not be written as a linear combination of the form considered in 6.2, and
which is not a homotethic family).

If g = g(t) is defined by g(t) = t + 1/t, t > 0, let t1(h) and t2(h) be
the solutions of the equation g(t) = h, where h is given so that 2 < h1 ≤
h ≤ h2 < ∞: t1(h) = (h −

√
h2 − 4)/2 and t2(h) = (h +

√
h2 − 4)/2. Then,

F = {Σh : h ∈ [h1, h2]} is the family of the spherical surfaces Σh of radius
(t2 − t1)/2 =

√
h2 − 4/2 and centered at ((t1 + t2)/2, 0, 0) = (h/2, 0, 0), i.e.

Σh : ϕ(x, y, z; h) = (x− h/2)2 + y2 + z2 − (h2 − 4)/4 = 0.
Note that Vh = {(x, y, z) : ϕ(x, y, z; h) ≤ 0} is obviously strictly convex;

moreover, it is easy to check that Vh1 ⊆ Vhi, Vh ⊆ Vh2i, and Vh ⊆ Vh′i if
h < h′.

The function g(t) can be replaced by any convex function that admits a
bounded level set (i.e. by a function g(t) which has a minimum).

6.4 “Level sets” families

Let G : R3 → R be a positive, continous, strictly convex function. Consider
the family

F = {Σh = {(x, y, z) : G(x, y, z) = h}, 0 ≤ m ≤ h ≤ M}

of the surfaces given by the level sets of G. The family F has the following
properties:
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a) For h ≥ m, let Vh = {(x, y, z) : G(x, y, z) < h}. For the strict convexity
of function G, Vh is an open convex set bounded by Σh;

b) Let h1 < h2. Consider Vh1 and Vh2 (interior of Σh1 and Σh2 respectively).
The sets Vhi

are level sets of function G, hence

Vh1 = {(x, y, z) : G(x, y, z) < h1} ⊂ {(x, y, z) : G(x, y, z) < h2} = Vh2

i.e. the family F is monotone.

From the properties of the level sets families, we obatin a sufficient condition
for the convexity of a linear family. Let ϕ0 and ϕ1 as in 6.2. Define G =
ϕ0/(ϕ0−ϕ1) and consider the level set Th = {(x, y, z) : G(x, y, z) = h}. Note
that (x, y, z) ∈ Th if and only if (1 − h)ϕ0(x, y, z) + hϕ1(x, y, z) = 0 i.e. if
and only if (x, y, z) ∈ Σh (see (33))

Hence, the linear family defined starting from ϕ0 and ϕ1 concides with
the level set family of G if h ∈ [0, 1]. For the consideration above, a sufficient
condition of the convexity of surfaces Σh is the strict convexity of function
G.
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