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1 Introduction

In a recent paper Majorana and Milazzo ” considered the linear Boltzmann

equation describing electron flow in a semiconductor. The electron-phonon
interactions are simulated by a version of the d—like kernel, first mathemati-
cally investigated in ref.8, that in the setting of this paper may be unbounded
for large energies. The initial value problem for the linear Boltzmann equation
reads as follows

O (1.3 = K £t 1) — v (1K)
ot
(1.1)
f(oak) = fO(k) ’
with the gain collision operator K and the collision frequency v defined by
Kf(t,k) = Sk, k)f(t, k') dk’, v(k) = S(k, k') dk’.
R3 R3
The kernel S(k,k’) which accounts for the scattering processes between elec-
trons and the background takes the following form
Sk, k') = Gk, k')[(ng + 1)d(e(k") — e(k) + hw) + nyd(e(k’) — e(k) — hw)]
+ Go(k,k')d(e (k) — (k) .
G(k,k') and Go(k,k’) denote symmetric continuous functions on R® x R®

characterizing inelastic collisions with optical phonons and elastic collisions
with acoustic phonons and impurities, respectively. The constant positive

-1
parameter n, is given by n, = [exp ( k?ﬁ) — 1] , where A is the Planck
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constant divided by 27, w is the positive constant phonon frequency, kg is
the Boltzmann constant and 77y, is the lattice temperature. d(e(k)) denotes
the Dirac function composed with the electron energy function e(k):

h?|k|?
e(k) = [
m* 4+ /m*(m* + 2|k[2ah?)

(1.2)

where m* is the effective mass. Note that for a« = 0, eq. (1.2) gives the mass
parabolic approximation.

In ref. 7 the Cauchy problem for eq. (1.1) is investigated in the Banach
space of summable functions, without requiring the boundedness of the colli-
sion frequency, and the existence of the solution is established. The unique-
ness of the solution can be recovered adding suitable conditions on the growth
speed of the collision frequency v(k) (ref.7, Th. 7).

In this paper we shall study the initial value problem (1.1) by semigroups.
Problems of this form fall into the general framework of the theory of sub-
stochastic semigroups (see ref. 1, 2, 4 and references therein). This approach
gives almost immediately the existence of the semigroup, however the full
characterization of the generator is usually obtained by some other means.
This creates the possibility that the class of solutions obtained in this the-
ory may not coincide with the solutions obtained by e.g. the approximation
approach as in ref. 7. A more detailed analysis of the problem of multiple
solutions is given ref. 5.

Here we prove that the generator of the evolution semigroup is the closure
of the physical operator, following the same lines of the results obtained by
J.Banasiak for the Spiga model (that have similar mathematical structure to
the Majorana model). For more details and discussions on the uniqueness and
non-uniqueness see the papers quoted in the references.

2 Abstract semigroup approach

Consider the abstract formulation of the Cauchy problem for eq. (1.1):

df
a B (2.3)
f(o) = fO )

where A and B are in general unbounded operators in a Banach space X and f
is, say, a distribution of particles. For problems of this type the most suitable
seems to be the method developed by Kato 6 for Kolmogorov’s system. His
results were extended to a more general situation and applied to kinetic theory
by Voigt, Myiadera, van der Mee, Protopopescu, Desch, Mokhtar-Kharroubi,
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Banasiak and many others. In the general case, one can only prove that the
generator T' of the semigroup {G(t),t > 0} solving the Cauchy problem (2.3)
is an extension of the operator A + B and such a result is usually insufficient
for applications. The reason for this is that the semigroup G solving eq. (2.3)
should be a transition (stochastic) semigroup, i.e. one should have

G fll=17l, vt=0, Vf=0;

this condition expresses the fact that the total number of particles in conserved
through time. A sufficient condition for G to be stochasticis T = A + B.

Three situations are possible: i) T'= A+ Borii)T=A+ B,T # A+ B,
whereby G is stochastic, and iii) T is a proper extension of A + B, in which
case G may be not stochastic. The total number of particles is preserved only
if G is stochastic, so only in the first case we can claim that the obtained
semigroup has physical relevance 4.

The following is an extension of the Kato- Voigt perturbation theorem that
generalizes theorem by L. Arlotti 14,

Theorem 2.1 Let A, B operators in X = L*(Q, n). Suppose

i) (A,D(A)) generates substochastic semigroup {Ga(t), t > 0};

i) D(B) 2 D(A) and Bf > 0,Vf € D(B), f > 0;
i) /(Af+Bf)du§0, Vf € D(A), f > 0. (2.4)
Q

Then, there exists a smallest substochastic semigroup {G(t),t > 0} generated
by an extension T of A+ B and satisfying the integral equation

G f = Galt)f + /OtG(t — $)BGa(s)fds, YfeD(A),Vt>0.

It can also obtained by the Philips-Dyson expansion G(t)f = Yo" o Sn(t)f,
f € X where So(t)f = Ga(t)f, Sn(t)f = fy Sno1(t — s)BG a(5)f ds.

Note that theorem 2.1 does not give any characterization of the domain of the
generator 7.

3 Existence of Solutions by Semigroup Theory

Let X = L'(R3). The multiplication operator by —v(k) plays the role of A
in the abstract problem (2.3), with domain D(A) = {f € X : v(k)f € X},
under the assumption that v(k) is non-negative and belonging to Lj,,(R?).
The role of B is played by the positive gain integral operator with symmetric
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kernel S(k,k’) > 0, with domain D(B) = {f € X : Kf € X}. The kernel is
such that [, S(k,k’)) dk’ ¢ L'(R®) but is only L] (R?).

loc

Proposition 3.1
1Bflle sy < AL (w3 Vf e D(A) (3.5)

Proof: Let f € L'(R®) N D(A). Evaluating the Lh.s of (3.5) and applying
triangle inequality, the result follows immediately using the symmetry and
the positiveness of the kernel S. ®

From Proposition 3.1 it follows that D(B) D D(A). A generates the
substochastic semigroup G 4(t) = exp {—v(k)t}. Then it is easy to prove that

[ s+Bpac=o, vrepu), 5>, (3.6)
R3

thus we can apply Theorem 2.1, obtaining the existence of the semigroup
of the evolution operator of our process. This semigroup, obtained by the
Phillips-Dyson expansion, is substochastic and its generator is an extension
of A+ B = —vI + K, where I is the identity operator.

In the present context we can use the method introduced by Arlotti ! and
adapted by Banasiak 35, which consists in a suitable extension of the domain
of the collision operator. With this understanding, we have

Theorem 3.1 If for any f € X, f > 0, such that the expression K f(k) is
finite almost everywhere and such that —vf + K f € X, we have

| (0070 + K00 i > 0, (37)

thenT = —vl + K.
Before giving the characterization of T, we prove the following technical
lemma

Lemma 3.1 Let B, = {(g,u) : 0 < e < nhw, u € S%}. Then,

| w700 + (5 10 i = (38)
) (n+1)hw
=—n, D(e)D(e — hw) G(e,e — hw,u,u’) f(e — hw,u’) du’ dude
nhw S2x 852
(n+1)hw
+ (ng+1) D(e)D(e — hw) G(e,e — hw,u',u) f(e,u') du’ dude .
nhw S2x .52

Proof. Function £(k) is invertible on R* if considered as function of
k = |k|: k= /2a(e + ae?), where a = m*/h?. From now on, we will express
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quantities in terms of the energy ¢ instead of k, having k dk = 2a(1 + 2ae) de

and
/ -dk=/ k2 dk -du=/ D(e) de -du
R3 0 S2 0 52

where k = ku, |u| = 1 and D(e) = (2a)%/%(1 + 2ag)Ve + ae?.
Rewriting the operators in terms of €, a straight calculation gives:

/ (—() f (k) + (K £)(K)) dk =

nhw
=—(ng+1) [ D(e— hw) G(e,e — hw,u,u’)D(e) f(e,u) dudu’ de
hw S2xS2
nhw
—ng | DEe+mw) [ G(e,e+ hw,u,u’)D(e)f(e,u) dudu’ de
0 S2x52

nhw
— / D? (6)/ Gol(e,e,u,u') f(e,u) dudu’ de (3.9)
0 S2x 52

nhw

+(ng+1) / DE) [ Gle,e+ hw,u,0)D(e + hw) f(e + hw, u') du du’ de
0 S2x 52

nhw
+ nq/ D(e) G(e,e — hw,u,u')D(e — hw) f (e — hw,u') dudu’ de
h

w S2x 852
nhw
+/ Dz(s)/ Go(e,e,u,u') f(e,u’) dudu’ de . (3.10)
0 52x52

We get immediately that (3.9) + (3.10) = 0, and, shifting e variable in
the other terms in a way to have f(eg,u’) inside the integrals and using the
symmetry of the kernel G, we obtain the r.h.s. of (3.8). Hence the lemma is
completely proved. B

Now we are able to characterize the generator T' in the following way.

Theorem 3.2 Assume that there ezists ng € N such that G, as a function of
€, 15 a strictly positive function for € > ng and that there exists ¢ < 1 such
that for all n > nyg

1
sup G(e,& — hw,u,u’) < qM inf  G(e,e — hw,u’,u), (3.11)
Bni1\Ba Ng  Bu\Bn-1
thenT = —vI+ K.
Proof. Following Lemma 3.1 we denote by b,, the right-hand side of (3.8).

The proof of the characterization of the generator T relies on proving (3.7)
of Theorem 3.1, that is, that the limit of the sequence b,,, that exists by the
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assumption —vf + Kf € X, is non-negative. So, suppose on the contrary
that lim, . b, < 0. Then there exist ng and b > 0 such that b, < —b and
the assumption (3.11) holds for all n > ng. Let

(n+1)hw
G, =sup G(g,e — hw,u,1'), ¢,y = 471'/ / (e,u) dedu’,
52 Jnhw

Bn+1\Bn
(n+1) hw
9n = inf G(e,e — hw,u’, u) —471'/ D(e — hw) f(e — hw,u’) dedu’.
B, +1\Bn S2 Jnhw

Let n = ng + k. Then, for any k& > 0, using the fact that D is an increasing
functi
unction by, > —an((no +k+ 1)hw)Gn0+kCn0+k +

(ng +1)D((no + k — 1)hw)gng+kCno+k+1-

To shorten the notation we introduce 8y = ngD((ng + k + 1)w)Gpytk, and
a = (ng +1)D((no + k — 2)fw) gno+k—1 , then, in the new notation, we have

0> =b2> by > —BrCnot+k + U t1Cnotktl, Vk > 0,
and we obtain the recurrence for cp4py1:
b Br
Crot+k+1 < — + —¢Cnotx  VE2>0.

Op+1 Qg1
By induction, it is easy to show that

A
Crotk < —bAg + ¢nyBr = By, (—bB—: + cn0> (3.12)
where
k k-1 k—
1 ﬂk i =
o By=][—
l 1 i= 1 1=0 Qit1

and we put ngl = 1. Now it is easy to show that the sequence Aj/Bj
is not divergent. In fact, if we assume limy_,oo Ay /Br = 00, it follows that
—bg—: + ¢py, = —00. Thus cpo4 < 0 for k sufficiently large; but this is
impossible as by definition cp4r > 0. After a simple manipulation we have

ZH

lOzl

hence the previous conclusion means that the series Y ;2 C; = > 12, ]_[z A

converges. The generic term of this series has the form

(ng +1)D((no + 1 — 2)hw)gno+i1-1 (ng + 1)D((no — 1)Aw)gn,
ngD((no + 1 + 1)Aiw)Gro41 7 ngD((no + 1)hw)Grg41

C =
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From the hypothesis there exists a ¢ < 1 such that G, 41 < q("jl—:rl)gno_kl,l

D n0+l—2)hw

for [ sufficiently large. Since lim;_, o, Dt The) = 1, we can find ¢’ < 1

such that for [ sufficiently large,

(ng +1)D((no +1 — 2)hw)gng+i1-1
ngD((no + 1 + 1)Aw)G o4

which shows that the sum does not converge. Hence inequality (3.7) is proved
and Theorem 3.1 gives the result. B

In this paper we have studied the initial value problem (1.1) obtaining
existence and uniqueness of the evolution substochastic semigroup by standard
semigroup theory. In Theorem 3.1 we have proved a condition on the growth
of the collision kernel G, as function of the energy, sufficient to characterize
the generator T by the closure of the physical operator —vI + K. Condition
(3.11) implies that the collision kernel, as function of €, belongs to the L!
space with the weighted measure pde, with p < # Conversely, we can
observe that if the collision kernel is of a polynomial growth or behaves as p®

>q¢ >1

with p < ";—H for large €, then condition (3.11) is satisfied.
q
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