Soluzioni Foglio 1

Esercizio 1.1 In forma polare: $2^{n/2}e^{n^*\frac{\pi}{4}i}$ dove n^* è il resto della divisione di n per 8.

Esercizio 1.3

- a) $z_1 = 0$, $z_2 = 1 i$, $z_3 = 1 + i$.
- b) $z_1 = \frac{\sqrt{2}}{2}(1+i)$ e $z_2 = -\frac{\sqrt{2}}{2}(1+i)$.
- c) Tutti gli z della forma $\alpha(\pm\sqrt{3}+i)$ e tutti quelli della forma $-\alpha i$ con $\alpha\in\mathbb{R}$, $\alpha>0.$

d)
$$\frac{1}{\sqrt[6]{2}} \left\{ \cos \left(\frac{2}{3} k \pi - \frac{\pi}{12} \right) + i \sin \left(\frac{2}{3} k \pi - \frac{\pi}{12} \right) \right\}$$
 per $k = 0, 1, 2$

e)
$$z_1 = \frac{1}{\sqrt{2}}(1+2i)$$
, $z_2 = -\frac{1}{\sqrt{2}}(1+2i)$,

f)
$$z_1 = -1$$
 (doppia) e $z_2 = -1 + \sqrt{2}$

g)
$$z_1 = \frac{1}{\sqrt{2}}(1+i)$$
, $z_2 = -\frac{1}{\sqrt{2}}(1+i)$,

h)
$$z_1 = -1 + i$$
, $z_2 = -1 - \frac{\sqrt{3}}{2} - \frac{i}{2}$, $z_3 = -1 + \frac{\sqrt{3}}{2} - \frac{i}{2}$

Esercizio 1.4

- a) Tutti i numeri reali e tutti i numeri immaginari puri diversi da zero.
- b) La circonferenza di raggio $\sqrt{2}$ e centro in 1+i.
- c) Il quadrato con vertici nei punti 1, i, -1, -i.
- d) Tutti i numeri reali e tutti i numeri immaginari puri.
- e) La circonferenza di raggio 1 e centro l'origine.
- f) La circonferenza di centro -i e raggio 1.
- g) Le semirette uscenti dall'origine con angolo $-\frac{\pi}{6}$ e $-\frac{5}{6}\pi$.

Esercizio 1.5 L'asse del segmento che unisce i punti z=-1 e z=i, ovvero gli z del tipo $\alpha(1+i)$ con $\alpha\in\mathbb{R}$.