Esercizi - Foglio 2 - Serie di Potenze

Esercizio 2.1 Determinare il raggio di convergenza delle serie

a)
$$\sum_{k=0}^{\infty} z^k$$

b)
$$\sum_{k=0}^{\infty} \frac{z^k}{k+1}$$

a)
$$\sum_{k=0}^{\infty} z^k$$
 b) $\sum_{k=0}^{\infty} \frac{z^k}{k+1}$ c) $\sum_{k=0}^{\infty} (k-1)z^k$ d) $\sum_{k=0}^{\infty} \frac{1}{z^{2k+1}}$

d)
$$\sum_{k=0}^{\infty} \frac{1}{z^{2k+1}}$$

e calcolarne la somma.

Indicato con ρ il raggio di convergenza delle serie, verificare per ciascuna, se esistono $z \in \mathbb{C}$ con $|z| = \rho$ per cui le serie convergono. La serie b) è convergente per z = i?

Esercizio 2.2 Determinare per quali valori di $z \in \mathbb{C}$ convergono la serie

a)
$$\sum_{k=1}^{\infty} \frac{z^k}{k^2}$$

a)
$$\sum_{k=1}^{\infty} \frac{z^k}{k^2}$$
 b) $\sum_{k=0}^{\infty} \frac{z^{2k}}{3^k + 1}$ c) $\sum_{k=1}^{\infty} \frac{z^{k^2}}{2^k k}$

c)
$$\sum_{k=1}^{\infty} \frac{z^{k^2}}{2^k k}$$

Esercizio 2.3 Verificare che la funzione $f(z) = e^{-\frac{1}{z^2}}$ è derivabile infinite volte in x = 0, ma la serie di Taylor di f centrata in zero non converge ad f.

Esercizio 2.4 È possibile determinare dei coefficienti a_k tali che la somma $\sum a_k z^k$

a) sia uguale a
$$|z|$$
 per $|z| < 1$?

a) sia uguale a
$$|z|$$
 per $|z|<1$? c) sia uguale a $\frac{1}{1-z}$ per $|z-2|<1$? b) sia uguale a $\frac{1}{(z-1)^2}$ per $|z|<2$? d) sia uguale a $|z|$ per $|z-2|<1$?

b) sia uguale a
$$\frac{1}{(z-1)^2}$$
 per $|z|<2$?

d) sia uguale a
$$|z|$$
 per $|z-2|<13$

e) coincida con la funzione
$$\begin{cases} 0 \text{ se } x < 1 \\ 1 \text{ se } x \geq 1 \end{cases} \quad \text{per } x \in (0,2)?$$

Esercizio 2.5 Sia $f(x) = \frac{1}{(z-1)(z^2+1)}$.

- a) Verificare che f è analitica in un intorno di z=-1;
- b) Senza determinare esplicitamente la serie, si può dire quanto vale il raggio di convergenza dello sviluppo di f in serie di potenze di centro z=-1?