Corso di Laurea in Chimica - A.A. 2015-2016

Prova Scritta di Matematica II 17-01-2017

Svolgere almeno due dei seguenti esercizi giustificando il procedimento seguito.

Esercizio 1 È dato il campo vettoriale

$$\underline{F} = \left(\frac{y}{\sqrt{x^2 + y^2}}, -\frac{x}{\sqrt{x^2 + y^2}}, z\right)$$
 definito in $\mathbb{R}^3 \setminus \{(0,0,0)\}$. Siano: $\gamma_1 = \left\{\left(\cos\vartheta,\sin\vartheta,\frac{\vartheta}{\pi}\right),\ \vartheta \in [0,2\pi]\right\}$ e sia
$$\gamma_2 = \left\{\left(\cos\vartheta,\sin\vartheta,\frac{\vartheta}{2\pi}\right),\ \vartheta \in [0,2\pi]\right\}$$
 seguita dal segmento che unisce i punti $(1,0,1)$ e $(1,0,2)$

- a) Calcolare il lavoro di \underline{F} lungo γ_1 e lungo γ_2 e confrontare i valori ottenuti.
- b) Le informazioni raccolte al punto a) permettono di affermare che il campo è conservativo? Giustificare il ragionamento seguito.
- c) Verificare se il campo \underline{F} è conservativo.

Esercizio 2 Determinare tutte le soluzioni dell'equazione differenziale

$$(\sin y)^2 = (x+1)\cos y \cdot y'$$

Esercizio 3 Determinare massa e baricentro della lamina di vertici (0,1), (0,3), (2,3), (4,2), (4,0), (2,0) e densità $\rho(x,y)=x^2+y^2$.

Esercizio 4 Stabilire per quali valori di $\alpha > 0$ la serie

$$\sum_{n=1}^{\infty} n^{\alpha} \left[\sin \left(\frac{1}{n^2} \right) - \sin^2 \left(\frac{1}{n} \right) - \frac{n^{\alpha}}{3} \right]$$

risulta assolutamente convergente.