Incontri Olimpici 2013

Problemi di Teoria dei Numeri

Bologna, 15 ottobre 2013

Appunti redatti da Ercole Suppa

Sommario

In questo documento sono riportate le soluzioni dei problemi di teoria dei numeri proposti e risolti da Giovanni Paolini.

Problema 1. Qual è il più piccolo numero intero positivo composto solo da cifre 5 e 7 che sia multiplo di 9?

Soluzione. Indicato con x il numero di cifre 5 e con y il numero di cifre 9, dal noto criterio di divisibilità per 9 segue che

$$5x + 7y \equiv 0 \pmod{9}$$
 \Rightarrow $10x + 14y \equiv 0 \pmod{9}$ \Rightarrow $x + 5y \equiv 0 \pmod{9}$ \Rightarrow $x \equiv -5y \equiv 4y \pmod{9}$ (*)

Da (*) segue che;

- se $y \equiv 0 \pmod{9} \Rightarrow x \equiv 0 \pmod{9}$; i più piccoli numeri di questo tipo sono 555555555 e 777777777.
- se $y \equiv 1 \pmod{9} \Rightarrow x \equiv 4 \pmod{9}$; il più piccolo numeri di questo tipo è 55557

Il numero richiesto è 55557

Problema 2. Determinare tutti i numeri interi x tali che $x^4 \equiv 13 \pmod{17}$.

Soluzione. Osserviamo che $3^4=81\equiv 13\ (\mathrm{mod}\ 17),$ quindix=3è una soluzione. Inoltre

$$x^{4} \equiv 3^{4} \pmod{17} \implies (x^{2} - 9)(x^{2} + 9) \equiv 0 \pmod{17} \implies (x^{2} - 9)(x^{2} - 16 \cdot 9) \equiv 0 \pmod{17} \implies (x^{2} - 9)(x^{2} - 144) \equiv 0 \pmod{17} \implies (x - 3)(x + 3)(x - 12)(x + 12) \equiv 0 \pmod{17}$$
(*)

Dato che \mathbb{Z}_{17} è un campo, dalla (*) segue le soluzioni dell'equazione proposta sono:

$$x \equiv 3, \ x \equiv 14, \ x \equiv 12, \ x \equiv 5 \pmod{17}$$

Problema 3. Determinare tutte le coppie (x, y) di numeri interi tali che

$$7x - 5y = 2$$

Soluzione. Abbiamo:

$$7x - 5y = 2 \Leftrightarrow$$
 $7x \equiv 2 \pmod{5} \Leftrightarrow$
 $2x \equiv 2 \pmod{5} \Leftrightarrow$
 $x \equiv 1 \pmod{5}$

Pertanto
$$x = 1 + 5t$$
 ed $y = \frac{7x - 2}{5} = \frac{7 + 35t - 2}{5} = 1 + 7t$ con $t \in \mathbb{Z}$.

Problema 4. Qual è il più piccolo intero positivo n tale che n+2 sia multiplo di 11, n+4 sia multiplo di 13 e n+6 sia multiplo di 15?

Soluzione. Abbiamo:

$$\begin{cases} n+2 \equiv 0 \pmod{11} \\ n+4 \equiv 0 \pmod{13} \Rightarrow \begin{cases} n \equiv 9 \pmod{11} \\ n \equiv 9 \pmod{13} \\ n \equiv 9 \pmod{15} \end{cases}$$

quindi $n \equiv 9 \pmod{11 \cdot 13 \cdot 15}$, ossia $n = 9 + 2145t \pmod{t} \in \mathbb{Z}$.

Problema 5. Dimostrare il criterio di divisibilità per 7: un numero è multiplo di 7 se e solo se è multiplo di 7 il numero ottenuto rimuovendo la cifra delle unità e sottraendola due volte a ciò che rimane. Per esempio 182 è multiplo di 7 perchè $18 - 2 \cdot 2 = 14$ lo è.

Soluzione. Abbiamo

$$10a + b \equiv 0 \pmod{7} \Leftrightarrow 3a + b \equiv 0 \pmod{7} \Leftrightarrow a - 2b \equiv 0 \pmod{7}$$

Problema 6. Qual è il più grande fattore primo del numero che in base 238 si scrive "143"?

Prima soluzione. Dato che

$$(143)_{238} = 1 \cdot 238^2 + 4 \cdot 238 + 3 = 238(238 + 4) + 3 = 242 \cdot 238 + 3 =$$

= $(240 + 2)(240 - 2) + 3 = 240^2 - 1 = 241 \cdot 239$

il più grande fattore primo di $(143)_{238}$ è 241.

Seconda soluzione. Dato che

$$(143)_{238} = 1 \cdot 238^2 + 4 \cdot 238 + 3 = x^2 + 4x + 3 =$$

= $(x+3)(x+1) = 241 \cdot 239$

Problema 7. Determinare tutte le coppie (x, y) di numeri naturali tali che

$$2^x + 1 = 3^y$$

Soluzione. Dimostriamo che le uniche soluzioni sono (1,1) e (3,2).

Se (x, y) soddisfa l'equazione allora (x, y) soddisfa anche una congruenza rispetto ad un qualsiasi modulo.

Analizziamo la congruenza modulo 3:

$$2^x + 1 \equiv 0 \pmod{3} \Rightarrow (-1)^x + 1 \equiv 0 \pmod{3} \Rightarrow x \equiv 1 \pmod{2}$$

Si hanno due possibilità:

- Se $x = 1 \Rightarrow y = 1$.
- $\bullet\,$ Se $x\geq 2$ allora considerando la congruenza modulo 4 abbiamo

$$1 \equiv (-1)^y \pmod{4} \quad \Rightarrow \quad y \equiv 0 \pmod{2}$$

e, posto y = 2u, risulta:

$$2^{x} = 3^{2u} - 1 = (3^{u})^{2} - 1 = (3^{u} + 1)(3^{u} - 1)$$

da cui segue che esistono $m, n \in \mathbb{N}$ tali che:

$$\begin{cases} 3^{u} + 1 = 2^{m} \\ 3^{u} - 1 = 2^{n} \end{cases} \Rightarrow 2 = 2^{m} - 2^{n} = 2^{n} (2^{m-n} - 1)$$

Pertanto n = 1, m = 2, $3^u = 3$, u = 1, y = 2, x = 3.

Problema 8. Dimostrare che l'equazione diofantea

$$y^2 = x^5 - 4$$

non ha soluzioni intere.

Soluzione. Per dimostrare che l'equazione è impossibile basta trovare un modulo m tale che l'equazione $y^2 \equiv x^5 - 4 \pmod{m}$ non abbia soluzioni.

Se vogliamo trovare un numero primo p tale che la congruenza sia impossibile, la speranza è che x^5 ed y^2 abbiano pochi valori. Poichè in generale

$$\operatorname{ord}_p(a) \mid p-1$$

cerchiamo un primo p tale che 5|(p-1). Per questo motivo possiamo provare con p=11. Per il piccolo teorema di Fermat risulta $x^{10}\equiv 1\pmod{11}$, per cui

$$(x^5)^2 \equiv 1 \pmod{11} \Leftrightarrow (x^5+1)(x^5-1) \equiv 0 \pmod{11}$$

quindi $x^5 \equiv 1 \pmod{11}$ oppure $x^5 \equiv -1 \pmod{11}$.

D'altra parte è facile verificare che i quadrati 1 modulo 11 sono 0,1,3,4,5,9e che l'equazione

$$y^2 \equiv x^5 - 4 \pmod{11}$$

non è mai soddisfatta se $x^5 \in \{-1,1\}$ ed $y^2 \in \{0,1,3,4,5,9\}$.

¹Più in generale si può dimostrare che, se p è un numero primo dispari, vi sono esattamente (p+1)/2 quadrati \pmod{p} .

Problema 9. Dimostrare che per ogni primo p esistono infiniti numeri naturali n tali che

$$p \mid 2^n - n$$

Soluzione. Per il teorema cinese dei resti il sistema di congruenze

$$\begin{cases} n \equiv 0 \pmod{p-1} \\ n \equiv 1 \pmod{p} \end{cases}$$
 (*)

ammette infinite soluzioni. Se n=(p-1)k è una soluzione di (*), tenuto conto del piccolo teorema di Fermat, abbiamo

$$2^n = (2^k)^{p-1} \equiv 1 \pmod{p} \quad \Leftrightarrow \quad 2^n \equiv n \pmod{p} \quad \Leftrightarrow \quad p \mid 2^n - n$$