Incontri Olimpici 2009 - Geometria

Michele Barsanti

appunti redatti da Ercole Suppa

19 dicembre 2009

Sommario

In questo documento sono riportati gli appunti della conferenza tenuta da Michele Barsanti in occasione degli Incontri Olimpici 2009.

1 Rette parallele e similitudine.

Problema 1. Dagli estremi A, B di un segmento AB tracciamo due segmenti paralleli AC, BD e sia $F = AD \cap BC$. Dal punto E tracciamo la parallela ad AC e sia F il suo punto di intersezione con AB. Dimostrare che:

$$\frac{1}{AC} + \frac{1}{BD} = \frac{1}{EF}$$

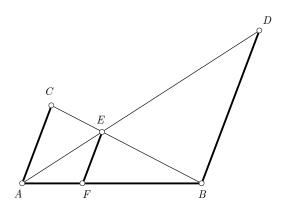


Figura 1

Dalla similitudine dei triangoli $\triangle ABD$ e $\triangle AFE$ abbiamo:

$$\frac{EF}{BD} = \frac{AF}{AB} \tag{1}$$

ed analogamente dalla similitudine dei triangoli $\triangle ABC$ ed $\triangle FBE$ segue che

$$\frac{EF}{AC} = \frac{FB}{AB} \tag{2}$$

Sommando (1) e (2) otteniamo:

$$\frac{EF}{BD} + \frac{EF}{AC} = 1 \qquad \Rightarrow \qquad \frac{1}{AC} + \frac{1}{BD} = \frac{1}{EF} \qquad \Box$$

Problema 2. Sia $\triangle ABC$ un triangolo con $\angle BAC = 120^{\circ}$. Se AD è la bisettrice interna dell'angolo $\angle BAC$, dimostrare che:

$$\frac{1}{AD} = \frac{1}{AB} + \frac{1}{AC}$$

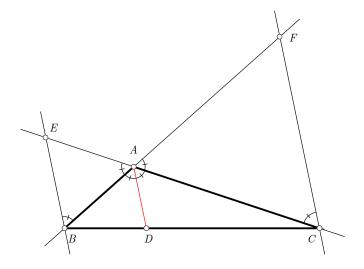


Figura 2

Siano E, F i punti in cui le parallele ad AD passanti per B e C incontrano CA e BA rispettivamente. Si verifica subito che $\angle EBA, \angle BAE, \angle FAC, \angle FCA$ hanno tutti ampiezza 60° . Pertanto i triangoli $\triangle EAB$ e $\triangle FAC$ sono equilateri per cui BE = BA e CF = CA.

Dal problema precedente segue che:

$$\frac{1}{AD} = \frac{1}{EB} + \frac{1}{FC} = \frac{1}{AB} + \frac{1}{AC} \qquad \Box$$

Problema 3. Sia $\triangle ABC$ un triangolo e siano M, N i punti medi di AC e BC rispettivamente e sia G il baricentro. Dimostrare che $MN \parallel AB$, $AB = 2 \cdot MN$ e $AG = 2 \cdot GN$

Dimostrazione.

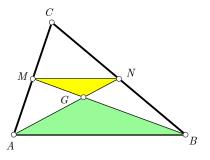


Figura 3

I triangoli $\triangle ABC$ e $\triangle CMN$ sono simili (per il secondo criterio di similitudine) ed hanno rapporto di similitudine 2. Pertanto:

$$MN \parallel AB$$
 , $AB = 2 \cdot MN$

Allora anche i triangoli $\triangle ABG$ e $\triangle MNG$ sono simili con rapporto di similitudine 2, quindi $AB = 2 \cdot MN$.

Problema 4. Sia $\triangle ABCD$ un quadrilatero e siano K, L, P, Q i punti medi di AD, BC, BD, AC rispettivamente. Dimostrare che i segmenti KL e PQ si bisecano.

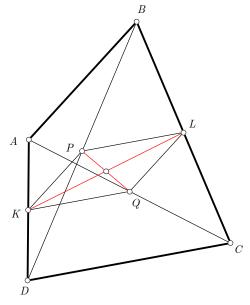


Figura 4

Dal problema precedente segue che

$$KP \parallel AB, \qquad KP = \frac{1}{2}AB$$
 (1)

$$QL \parallel AB, \qquad QL = \frac{1}{2}AB$$
 (2)

Da (1) e (2) discende che $KP \parallel QL$ e KP = QL. Pertanto KQLP è un parallelogrammo per cui le diagonali KL e PQ si bisecano.

2 Disuguaglianza triangolare.

Problema 5. Sia a l'asse di un segmento AB e sia P' un punto appartenente al semipiano di origine a contenente B. Dimostrare che P'B < P'A.

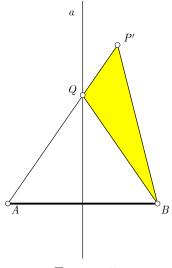


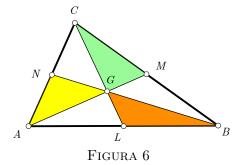
Figura 5

Sia $Q=a\cap AP'$. Dalla disuguaglianza triangolare applicata al triangolo $\triangle P'QB$, tenuto conto che QA=QB, abbiamo:

$$P'B < P'Q + QB \implies P'B < P'Q + QA = P'A$$

Problema 6. Siano L, M, N i punti medi dei lati AB, BC, CA di un triangolo $\triangle ABC$. Dimostrare che

$$AB + BC + CA > \frac{3}{2} \left(AM + BN + CL \right)$$



Indichiamo con G il baricentro del triangolo $\triangle ABC$. La disuguaglianza triangolare applicata rispettivamente a $\triangle AGN$, $\triangle BGL$, $\triangle CGM$ fornisce:

$$AG < \frac{1}{2}AC + GN \tag{1}$$

$$BG < \frac{1}{2}AB + GL \tag{2}$$

$$CG < \frac{1}{2}BC + GM \tag{3}$$

Sommando (1), (2), (3) otteniamo:

$$AG + BG + CG < \frac{1}{2} \left(AB + BC + CA \right) \tag{4}$$

Dalla (4) tenuto conto che il baricentro divide ciascuna mediana in due parti, una doppia dell'altra, segue che

$$\frac{2}{3}\left(AM+BN+CL\right)<\frac{1}{2}\left(AB+BC+CA\right)+\frac{1}{3}\left(AM+BM+CL\right) \qquad \Rightarrow$$

$$AM + BM + CL < \frac{3}{2} \left(AB + BC + CA \right)$$

Osservazione 1. La disuguaglianza $AM + BM + CL < \frac{3}{2} (AB + BC + CA)$ può essere migliorata come, dimostrato nel seguente problema.

Problema 7. Siano L, M, N i punti medi dei lati AB, BC, CA di un triangolo $\triangle ABC$. Dimostrare che

$$AB + BC + CA > AM + BN + CL$$

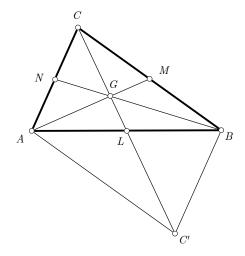


Figura 7

Sia C' il simmetrico di C rispetto ad L. Poichè AC'BC è un parallelogrammo si ha che AC'=BC. Dalla disuguaglianza triangolare applicata al triangolo AC'C otteniamo

$$CC' < AC + AC' \implies 2 \cdot CL < AC + CB$$
 (1)

In moodo analogo si prova che

$$2 \cdot AM < AB + AC \tag{2}$$

$$2 \cdot BN < AB + BC \tag{3}$$

La disuguaglianza richiesta si ottiene sommando (1), (2), (3).

Problema 8. Siano L, M, N i punti medi dei lati AB, BC, CA di un triangolo $\triangle ABC$. Dimostrare che

$$AM+BN+CL>\frac{3}{4}\left(AB+BC+CA\right)$$

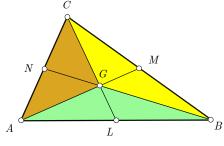


Figura 8

Indichiamo con G il baricentro del triangolo $\triangle ABC$. La disuguaglianza triangolare applicata rispettivamente a $\triangle AGC$, $\triangle AGB$, $\triangle CGB$ fornisce:

$$AG + GC > CA \qquad \Rightarrow \qquad 2 \cdot CL < CA + BC \tag{1}$$

$$AG + GB > AB$$
 \Rightarrow $2 \cdot AM < AB + CA$ (2)
 $CG + GB > BC$ \Rightarrow $2 \cdot BN < AB + BC$ (3)

$$CG + GB > BC \qquad \Rightarrow \qquad 2 \cdot BN < AB + BC \tag{3}$$

Sommando (1), (2), (3) ed utilizzando le note relazioni

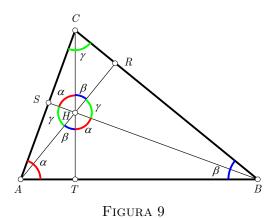
$$AG = \frac{2}{3}AM$$
 , $BG = \frac{2}{3}BN$, $CG = \frac{2}{3}CL$

abbiamo:

$$2 (AG + BG + CG) > AB + BC + CA \implies \frac{4}{3} (AM + BN + CL) > AB + BC + CA \implies AM + BN + CL > \frac{3}{4} (AB + BC + CA)$$

3 Alcune proprietà dell'ortocentro.

Si dimostra facilmente che gli angoli intorno all'ortocentro di un triangolo $\triangle ABC$ sono uguali agli angoli $\angle CAB = \alpha$, $\angle ABC = \beta$, BCA, come illustrato nella seguente figura.



Problema 9. In un triangolo $\triangle ABC$, i simmetrici dell'ortocentro rispetto ai lati appartengono alla circonferenza circonscritta.

Dimostrazione.

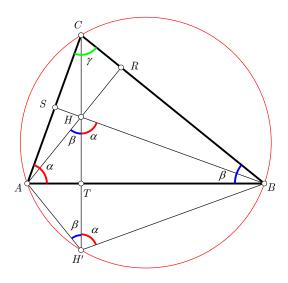


Figura 10

Sia H l'ortocentro e sia H' il simmetrico di H rispetto al lato AB. Dalle proprietà degli angoli intorno all'ortocentro segue che:

$$\angle AH'B + \angle ACB = \angle AH'H + \angle HH'B + \angle ACB =$$

= $\angle AHT + \angle THB + \angle ACB =$
= $\alpha + \beta + \gamma = 180^{\circ}$

Pertanto il quadrilatero AH'BC è ciclico e H' appartiene alla circonferenza circonscritta ad $\triangle ABC$.

Problema 10. In un triangolo $\triangle ABC$, i simmetrici dell'ortocentro rispetto ai punti medi dei lati lati appartengono alla circonferenza circonscritta.

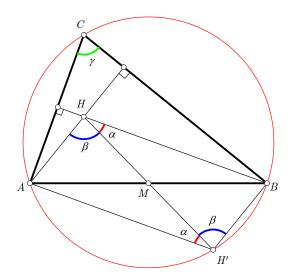


Figura 11

Sia H l'ortocentro e sia H' il simmetrico di H rispetto al punto medio M del lato AB. Il quadrilatero AH'BH è un parallelogramma in quanto le sue diagonali AB e HH' si dimezzano. Pertanto, utilizzando le proprietà degli angoli alterni interni e quelle degli angoli intorno all'ortocentro, abbiamo:

$$\angle AH'B + \angle ACB = \angle AH'H + \angle HH'B + \angle ACB =$$

= $\angle H'HB + \angle H'HA + \angle ACB =$
= $\alpha + \beta + \gamma = 180^{\circ}$

Allora il quadrilatero AH'BC è ciclico, ossia H' appartiene alla circonferenza circonscritta ad $\triangle ABC$.

Problema 11. Sia $\triangle ABC$ un triangolo rettangolo con $\angle ACB = 90^{\circ}$ e siano CD, CE, CF l'altezza, la bisettrice e la mediana uscenti dal vertice C. Dimostrare che $\angle DCE = \angle ECF$.

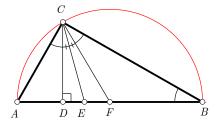


Figura 12

Il triangolo $\triangle ABC$ è inscrivibile nella semicirconferenza di diametro AB. Allora, tenuto conto che AF=CF, si ha

$$\angle FCA = \angle FAC = 90^{\circ} - \angle ABC = \angle BCD$$
 (1)

Poiche CE è la bisettrice di $\angle ACN$ si ha

$$\angle BCE = \angle ECA$$
 (2)

Sottraendo membro a membro (2) ed (1) si ottiene: $\angle DCE = \angle ECF$. \square