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Abstract

This short introduction to shell theory aims at providing civil engineering
students with some natural applications of the theoretical background de-
veloped during the course of Mathematical Physics taught by Prof. Marco
Modugno. It is worth pointing out, in fact, how the whole mechanics of thin
shell structures is basically referable to the geometry of the mid—surface.

After a brief introduction to recall the basic notions on the theory of
surfaces, first the deformation and then the equilibrium of shell continua
will be presented. The linear constitutive law will be just mentioned. At the
end, applications to some typical shell geometries subjected to a membrane
state of stress will also be proposed.

These notes collect the content of two seminars delivered on June 2009
by the Author for the course of Mathematical Physics at School of Civil
Engineering, University of Florence.

A special thanks is devoted to Prof. Marco Modugno for the constructive
discussions.

The text has not been thoroughly revised and may contain typing mis-
takes and mismatching references.
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1 Introduction

1.1 Surfaces

Let E be the affine Euclidean space. The submanifold () C F is a surface if
dim @Q = 2.

Suppose @) C FE is a surface which can be described by an induced coor-
dinate system of dimension ¢ = m — k, where m is the dimension of F and k
denotes the number of constraints (codimension of Q). Since @ is a surface
m =3, k=1 and ¢ = 2. The induced coordinate system is given by

X':Q— R :p— a(p) (1)

From now on the quantities living on @) will be distinguished by the sym-
bol 7 and the components will be written using superscripts and subscripts,
running from 1 to 2, in Greek letters. The Latin indices will denote compo-
nents of quantities that are applied on @ but lie out, namely belonging to
the vector space ToE.

The unit normal vector is defined as follows

i Q — TQ" so that g (7, n) = 1. (2)

where g is the metric tensor defined on TE and Tle is the orthogonal space.
Analogously, on the surface @ it is possible to define the induced metric

as
JdTQxTQ - R

that in componentd| becomes
9" = gapd® ® d?

Given two vectorial fields @ : Q — T'Q and v : Q — TQ, the covariant
derivative of v with respect to @ can be split as follows

Vatv = Vo + Vis (3)

where
Vl:TQ xTQ - TQ (4)
V5 TQ x TQ — TQ (5)

The application VI is called second fundamental form of the surface. For
further details see [I] and [2].

'In some books the covariant components of the metric tensor ¢’ are also denoted as
gn=E, gi2=F, g=0G.



The Weingartenﬂnap L is defined as the following endomorphism
L:=Vn:TQ —TQ :u+— Van (6)

In addition to that, the total curvature (Gauss curvature) K and the
mean curvature H of a surface () are defined as follows

K:=detL:Q — IR (7)
H:=trL:Q— IR (8)

Finally, eigenvalues of L are called principal curvatures. See [I].
Let L be the second order covariant tensor related to the Weingarten
endomorphism L by the metric tensor ¢', so that

L:=Vn:TQxTQ — IR: (4,v) — g (L(u),v) =Vai v 9)

where n = gb (n).
The following differentiation

proves that the scalar quantity L (@, ) represents the normal component to
the surface @ of the covariant derivative, namely

Vat = Vl-‘ﬂ? — L (u,v)n (12)

Dealing with mechanics of shell continuums, equation (12)) will be often
used. For this reason in the following it is worth expanding its expression in
components.

Suppose {5a}, a = 1,2 s a basis related to the induced coordinate system
describing the surface, then

V5,00 =V 00— L (93,00) 0 (13)

and for both right hand terms we have, respectively

Vi Ba =7 (95) (8, (4° (8)) +T50a" (3a) ) & (14)
— 5 (rgkag) 8, =148, (15)

L (55, 5,1) = (L (6_5) : éa) = véﬁﬁ ’ a_a (16)

= L40u - 0a = LY gua = Lja (17)

?Julius Weingarten (March 2, 1836 Berlin - June 16, 1910 Freiburg) was a German
mathematician.



Finally, equation in components becomes
V0o =T%,0, — Lgan (18)

Note that in the remainder of this book, for the sake of brevity, we will
use V- instead of Vgﬁa

Analogously, for an element of the contravariant basis, recalling the gen-
eral equation for covariant derivatives, and considering the above Gauss split-
ting, we have the following expression

Vpd® = —T'§,d* — Lin (19)

Often in the following shell theory we will deal with vector fields which
do not belong to the tangent space, so it is useful to present an example of
derivative of vectors applied in @ but lying out of the tangent space. Namely,
suppose that v € TéE . We can decompose the field ¥ into the tangent and
orthogonal component as follows

v =0l +ot (20)
that in components is written as
T = 0"y + v°7 (21)
Hence, given 4 € T'Q the derivative of ¥ with respect to @ is
Vat = Vol + Vot = visl — L (a 17”) i+ Vaor- (22)
that in components turns into
Vad = uP (aﬂua +T5,07 + ’UEL%) Do + P (v% - Laﬂvo‘) n (23)
In the same way, the dual form v € TéE can be differentiated as follows
Vav = Vaul + Vaut = Vil - L(a,ol)n + Voot (24)
that in components becomes
Vau = uf (35% — Flﬁvv + UfLﬂv) dY +uf (vg,g — Lgva) n (25)
Examples of surfaces will be provided in appendix [5, where, within the

application of the shell theory, the above results will be applied to some well
known geometries.



1.2 Shell continuum

We define a shell-shaped region modeled on a surface () and with thickness 2¢
as a continuous medium G (€) embedded in the Euclidean space E each point
of which is determined through a coordinate system {z%, ¢} : G (€) — IR3.
Therefore, given p* € G (¢) it is defined by its position p normally projected
on @ - by using the surface coordinate system introduced in (1)) - and by the
normal coordinate ¢ taken along the unit normal vector n. In fact we have

P (2% (p),€(p)) (26)

The basis induced by the coordinate system {z%, £} is {5a, ﬁ}

It is worthwhile pointing out that mechanics of shells - by virtue of such
above statements - is traced back to the theory of surfaces, in fact vectors
and tensors fields belonging to TéE will always be split into the parallel and
normal components.

Note also that the symbol x denotes quantities belonging to the shell
continuum.

1.3 General assumptions

The shell theory here introduced is based on the following hypotheses

Hypothesis 1 The shell is sufficiently thin, so that

2
fe <1 L = min {Rmina Lmin} (27)

where Ry, and Ly are the minimum radius and a typical dimension of
the shell structure, respectively.

Hypothesis 2 (LINEAR THEORY) Displacements are infinitesimally small such
that their products can be neglected in the kinematic expressions. This as-
sumption allows us to write the equilibrium equations in the unstrained shell
configuration.

Hypothesis 3 The material filaments along the coordinate & remain straight
throughout the deformation and no length change is allowed. Namely, the
distance between p* € G(e) and the surface Q is unaltered

& = const. (28)

Hypothesis 4 (KiRcHHOFF-LOVE THEORY) The line elements initially nor-
mal to the shell’s mid—surface remain normal to it during the deformation.

G (Oay,Ma) =0 (29)

where the subscript d is denotes quantities related to deformed configuration.
Note that the last hypothesis is nothing but the extension to a two-—
dimensional model of the Bernoulli theory for beams.



2 Strain tensor

A generic point p* € G(e) is determined by the vector 7* referred to the
global Cartesian axes, so that

M=+ &n (30)

where £ € (—¢,€). See figure
Let us suppose now that a quasi—static motion produces a deformed shell
configuration points of which are univocally determined by the vector

Ty = Tq + &ifg (31)

where &; € (—¢,€).
The displacement field is obtained by subtracting equations and

, so that

*

Ty— 7 =Tqg—TF+& (Mg —n) (32)

where we have made use of hypothesis . Equation allows us to define
the positional field as a function of two vector fields

Figure 1: Two dimensional sketch of the displacement field for Kirchhoff-Love
shells.

To obtain the strain tensor no more theoretical concepts are required.
We already know the definition and we just need to compute the metric



tensors associated to the coordinate systems in the strained and the original

configurations, so we have
[ YaB Va3
i ( Y3 Y33 )

where
1 * *
Yap = 5 (955, — 9as) (35)
1
Vo3 = V30 = 5 (943, — 9a3) (36)
1
Y33 =5 (Ra-ng—n-n) =0 (37)

According to equation (?7) we have
g;ﬂd - égtd ' B_Ed (38)
and o
9ap = O - 05 (39)
so that

o

Yap = d'ggd_gz'éé]:

g + ngﬁd) ’ (5ﬁd + fvﬁﬁd)] +

|
SO RN RO RN -

—
"N —

o+ fVﬁ’fl) . (5g + fvaﬁ)] =

[0y - 03, + Oy - EVRa + 0g, - EV aiig + E2V iy - V gha)

~3 [5a . 55 + Oy - §Van + ég &V + §2vaﬁ : Vgﬁ] (40)

where we realize that the tensor 7,3 can be split in three parts as follows
Yag = Cag + Ewag + EPap (41)

We define the stretching strain tensor as

1.~ = = = 1
Oap = 5 [Oaq * 05, = Oa - 03] = 5 (9aps — 9ap) (42)
next, the first bending strain tensor as
1

Wap = 5 [504(1 . Vﬁﬁd + 5@1 -Valg — 304 . Vﬁﬁ — 3/3 . Vaﬁ] (43)

and the second bending strain tensor as

1
Pag = 3 [Vanig - Vgng — Van - Vﬁﬁ] (44)
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Considering now that the displacements are small enough to be negligible
the second order terms

Va@'V5T) ~(
Vot - Vgw ~ 0

and recalling equations and , the stretching and the bending strain
tensors become, respectively

Gas = 5 (o V04 85 V) = 5 (vajs + vgja + 20 Lag
s = % (- V0 + By - Vow) +

+ % (Val - Vi + Vi - Van) =

= % (walﬂ + wgja + v|7aL,yg + vrﬁLm> +

+ % (v* (£3Ls + L} Lo ) )
ap = % (w] Lo + s Lna )

where we have put

and

and

Vot = <1)7 + U5L2> Dy + (Ufa - UVLM) n

[

L WY
Vo =V +0 I,

— Y 7 o ~y _
Vab = w|a87 W Loyn

Yo Y WY
W, =wy, tw .,

Vit - Vi = L1, (w%dérw - w“’ngﬁ) = Luaufs

Finally, the strain tensor assumes the following form

1
Vap = 5 (an + Vgja T 2U£Laﬁ) +
1 v v
+ 55 (wa\ﬁ T Wgja + V) Ly + U|5L7a> +

1
5 (05 (LaLag + L Lra) ) +

1
+ 58 (wluLyo + wsLan)

|

(45)

(53)



The stretching strain tensor does not depend on the thickness, in fact it
describes the deformation of the mid—surface ). The bending strain tensors
describe the deformation along the thickness.

The transversal components of the strain are

1 _ _
Va = Va3 = 5 (ﬁd ) aad —n- 8a) - U,goz - U’YLOW + wq (54)

2.1 Kirchhoff-Love strain theory

If we take into account the Kirchhoff-Love hypothesis, see hypothesis |4 we
have

Doy Ma=0= (4 w) - (0a+ Vad) =0= (55)
w-3a+ﬁ-va17:0:>wa:’U”La,y—vfa (56)

and we observe that the variables reduce just to the field v. Thus, the strain
tensor turns into

1
QB = 5 (UQW + UB|ex + 2U§L0¢5> (57)
Wap = VoL + Vs Lo + 07 Lyajs = Vg + 0L Ly (58)

2005 = &2 (vfaLMLg + U‘SLMQLg — vgaLg) +

+ 2 (ufyLoy L3 + v Ly LY — 5oL (59)

In the linear theory the second bending strain tensor can be neglected
because ¢ is very small and its square makes the contribution of ¢,z insignif-
icant.

Finally, we have

Y33 = Ya3 = V3a =0 (60)

Consider now a Cartesian coordinate system where all the Christoffel
symbols vanish, we immediately realize the well known expression of the
strain tensor for bending plates

1
Y = 5 (vas + V5.0 — 2605,5) (61)

3 Stress in shell continuums

3.1 Shifters

Before reasoning upon the stress state characterizing a shell continuum it is
worth introducing some geometrical relations linking points belonging to the

10



mid-surface @) with corresponding points belonging to the shell thought as
a three—dimensional continuum.

Therefore, let us recall the relation already met to compute the compo-
nents of the metric tensor g;ﬁ, see equation on page , between the
basis in p* € G(e€) and the basis in p projection of p* on @ along the normal
coordinate curve £. So we have

= 0a +EL203 (62)
n=n" (63)

which in a short notation assumes the following form

o = Shoy, (64)

Hence, with respect to the basis associated to the coordinate system
) p Yy
{z“, £} the tensor S has the following components

1+€E0) €030
St — ELy  1+€L% 0
0 0o 1

Therefore, the superficial part of S can be expressed by the following
tensor product

St=d"@ 0} (65)
so that B B - B
ST (95) = (4" ® 33) (95) = 95 (66)
In the same way we define FT as follows
FIl =0, ®d" (67)
so that
Fi(a%) = (8,0 a7) (¢7) = (68)

Tensors ST and FT are called shifter tensors.

3.2 Contraction of surface forces

Consider now a curve ¢ : IR — @ representing the intersection of the surface
Q. normal to @ which splits the shell continuum G(e) into two portions.
Let 7 € TQ be the unit normal vector applied in p outward pointing
from c and let [ € TQ be the unit vector tangent to ¢ applied in the same
point. Then the three unit vectors { v,l, ﬁ} form a local basis in p. A similar
triplet of vectors can be defined in p* as {17*, I*, ﬁ} Note that the symbol x
denotes as usual quantities belonging to the shell thickness. See figure [2|

11



Figure 2: Local bases in G(¢) and in Q.

In order to ensure the equilibrium condition, the portion of the shell
included by (. must exert on the remaining part of the continuum a ten-
sion such as for each point p* is entirely described by the stress vector t*.
Moreover the stress vector t* can be equivalently expressed by Cauchy stress
tensor as follows

(") =0 ()" (69)
where o* is the contravariant form of the stress tensor defined in p*. For the
sake of brevity hereafter o* (p*) will be denoted simply by o.

Now our goal is to establish a relation between the stress state distributed
along the surface Q). and the stress state along the boundary of the mid—
surface of the shell. This can be done by means of a reduction, i.e. a
contraction, of the stress per unit area to a stress per unit line.

Therefore, let us define two vector fields n and m such as

/ n(p, v)di = / P (5", ) dA* (70)
[mviat= [ (@t =p) G )ia (71)

Equalities and guarantee that the stress system n and m is
statically equivalent to the stress system t* along the fiber £ passing through
.

The oriented elemental area in equations and with respect to
the local basis {D*, I*, ﬁ} is given by the following vectorial product

v dA* = dIl* x dén (72)

12



and since dll* = dI®0, equation (72)) can be equivalently expressed as follows

vdA* = I}, x dén = n}adl*déd™? = eqp/g*dl*dEd*” (73)

where g* = det (935)-
Moreover, back to the mid—surface we notice it is possible to write

dll x 7 = vl (74)
which in the coordinate system {z%,{} becomes
A% X 71 = Napdl®d® = e,p./gdl*d? (75)

where g = det (gag)-
Equation and allow us to rewrite equations and as

follows
/ (p,v)dl = /Q oeapr/grdl®ded*? (76)
[ mo.v)ar - / (0" — ) x oeasy/grdI®dgd*? (77)
Next, by virtue of the shifter FT, the latter equations become
/ (p,v)dl —/Q oeapy/grdl*d¢ (0, ® d*7) d° (78)
/ m(p,v)dl = / &n X oeapy/g*dl*dé (0, @ d*7) dP (79)

which, taking into account equations and , become

/ n(p, v)dl = / / \f 3, ® d*7) valde (80)
/C m(p,v)dl = / 5 fnx\/g (0, ® d*7) vdldg (81)

and finally

+e€
nip.) = [ g0 (8 07 vt (2)

—€

+e€ _
mipv) =nx [ cgo (0,0 d47) v (83)

—€

where we have put g = \/g*/g

13



Both integrands in and can be further simplified just substitut-

ing 0 = o 51-* ® 3]*- and v = v,d® as follows

n(p,v) = ( / ” gaaja;d§> Vo (84)

—€

+e .
m(p,v) =7 X (/ gﬁo‘”@*df) Vo (85)

and using once again equations and they assume the following form
+e +e€ _
n(p,v) = < / go“7d¢ + / go*” fdeg> OyVat

—€ —€

+ (/+6 gaa5d£> Vg (86)

+e +e _
m(p,v) = 7 x ( | e [ go—wﬁdf%) e (87)

—€ —€

where we can finally define two tensors N and M

N =N (9, ® 0g) + N* (0a @ 1) (88)
M = M*? (0, ® 0p) (89)
respectively as
+e +e
NP = / go*Pd¢ + / go*Ed¢Ls (90)
- _
Nt = / go*ed¢ (91)
and
+e€ +e€
M8 = / go“Pede + / go 2 deLy (92)
such as
n(p,v) = Nv = Naﬂuaag + Naguaﬁ (93)
m(p,v) =7 x Mv =n x M*Pv,04 (94)

Two fields n and m are called surface stress vector and surface couple
vector respectively; while the fields NV and M are termed surface stress tensor
and surface couple tensor.

From the above results it is immediate to notice that the surface stress
vector n belongs to TéE , consequently it can be split into a superficial part
and an orthogonal part as follows

n=nl4+nt (95)

14



where

nl = N9y, (96)
nt = N%y,n (97)

while the surface couple vector m belongs to T'Q so that
m = m! (98)

As the last remak we point out that the coefficient g involved in the
integration of Cauchy stress tensor along the thickness depends only on the
geometrical features of the mid-surface ), in fact it is easy to prove the
following expression

g = det (s?) — 14+ ¢H + 82K (99)

where H and K are the mean curvature and the total curvature of the surface

Q) defined in equations and .

3.3 Body forces and load density

Suppose the the curve ¢ : IR — @ is closed in such a way as to capture a
surface portion ' C @ bounded by 0Q = c. Assuming c to be a directrix,
that is a curve through which a line generating a given ruled surface always
passes, the generatrices directed along 7 define a cylinder G.(e) C G(€) with
thickness 2¢ and also bounded by the surface Q.U QU Q_..

We assume that the volume forces acting at every point belonging to the
cylinder G.(€) and the load density acting at every point on the upper and
lower surfaces Q€ and (Q_. can be integrated along the thickness to yield a
new force system defined on the mid—surface Q' as follows

7:Q —TgFE (100)
5:Q —TQ (101)
where § = qﬂég + ¢*7 represents the load vector and 5 = 71 x 3555 represents
the load—moment vector.
See [3] for details.

3.4 FEulero’s equations

The equilibrium equations for the mid surface portion @’ can be written as
follows

/ n(p,v)dl —|—/ qdQ =0 (102)
oQ /

/ (m(p,v) + 7 x n(p,v))dl + / (Fxq+35)dQ =0 (103)
0Q’

/

15



which yield
Nvdl + / qdQ =0 (104)
"dQl /
/ (ﬁxMu—i—Fle/)dl—l—/(fxc7+§)dQ’:0 (105)
8Ql /

Making use of the divergence theorem, and due to the arbitrariness of
@', the above equations become

divN +¢=0 (106)
div(7 x M@y, +7 x N9 +Fx G+5=0 (107)
Details on the divergence of vector and tensor field in curvilinear coordi-

nate systems can be found in [4].
Equations (106) and (107) can be written in components as follows

VING L LN + % =0 (108)
VaN 4+ Loy N 4 ¢5 =0 (109)
ViMPe - N 458 =0 (110)
(111)

T (L$M57 - Naf‘) —0 111

where equations assure the translational equilibrium in the tangent
plane, while represents the translational equilibrium along the normal
direction. Next, two equations in impose the rotational equilibrium
about the surface axes, respectively. Finally, the last equilibrium condition
gives the symmetry to the tensor L;ﬂMﬁ7 — N8B,

Proor
Here we want to show all steps we made to pass from the equilibrium equations

(106) and (107) to the corresponding expressions in components (108) to (111)).
Let us start form equation (106). We invoke the definition of divergence for
second order contravariant tensors already used in equation (?7?), so we have

(divN)" = N 4 12 N 4 TR Nt =
= NP + No + TS NP 479 N 4+ T0,N°* 4+ T, Nt =
= N"gfa + Nfzf + ]:‘gA/N'Y/B + ngNvé_,_
+T0 NV 4 IO N 4+ T§ N 4+ T8 N
Now we just need to separate the tangential and normal components as follows

(divN)” = N7 + T N7 + T N°7 4+ 10 Nt (112)

(divV)® = N9 +T9 N 4+ T5 N +T¢ N (113)

16



By virtue of the the identity (Vo71)” = LP = Fgf equation (112 becomes

(6]
(divN)? = Vi NP 4 L0 Nos (114)
where we have just collected the surface divergencd?| terms into
VIN®? = NP + T8 NP 4+ T8 N (115)

Equation ([114]) proves the in—plane translational equilibrium expressed in (108).
Concerning equation (113), the translational equilibrium along the normal di-
rection is readily proved remembering both Fg,y = Loy an(ﬂ

VaN = N2 4 T8 N7 4T N (116)
Hence we obtain
(divN)* = V4N + Loy N7 (117)

which finally proves equation ((109))

In order to prove equations (110) and (111]), first we simplify equation (107) by
taking into account equation (106]). So it becomes

divis x M0y, + 7 x div (M*"9y,) + divi x N*"0), +5=0 (118)
We can split the divergence of the tensor M®" in accordance with the results
in (114) and (117)), thus we have
Vot x MM, + 1 x (VIMP + LEM®) 5+
+7i X (VMO + Loy M) i+ 7 0 x N°"0), +5=0 (119)
which after further algebra becomes
L1y x M8, + L7,0y x M®*n+n x (VLM + LEM®) 95+
400 X N0, + 0o x N0 47 x s°05 = 0 (120)
Collecting the normal and tangential terms we obtain the following three scalar
equations
Mo (LM + N7#) = 0 (121)

and -
nx (VM — NP+ 5%) 95 =0 (122)

which finally proves the rotational equilibrium (110) about the surface axes.<

Usually a new variable is introduced to make easier possible further cal-
culations; in fact we define the pseudo-stress tensor the symmetric tensor

NP = NP — L2 M7 (123)
It is straightforward to notice that N = N only when either a mem-

brane stress state holds or for flat shells, namely when Weingarten’s tensor
is identically zero.

3In literature the divergence of the surface tensor N is often denoted by Nlc(“f .
In literature the divergence V{,N°¢ is often denoted by Nﬁ‘f.
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3.5 Membrane state of stress

In this last section we introduce an hypothesis on the state of the stress that
enables us to derive a closed form solution for several shell geometries without
invoking the constitutive law. Examples of these closed form solutions will
be provided in appendix

A shell continuum is subjected to a membrane stress state when both
the following condition hold

No¢ =0 (124)
M =0 (125)

Hence, the equilibrium equations become

VaN +¢7 =0 (126)
Loy N +¢5 =0 (127)
NagN® =0 (128)

where equation (126]) represents the translational equilibrium along the tan-
gent plane; equation (127) represents the equilibrium along 7 and finally
equation states the rotational equilibrium about 7 and establishes the
symmetry of N.

4 Constitutive equation for shell continuums

The Kirchhoff-Love hypothesis and the inextensibility of material fibers
along 7 allows one to consider the shear stress components N unrelated
to strains, so that the constitutive problem can be solved through the plane
stress model. Thus, components N are found only by means of the equi-
librium equations. The analytical derivation of the constitutive equations is
beyond the scope of this book, so we will just present the final equations that
will be used in the appendix [o|in order to solve some case studies. However,
readers can find thorough discussions in [2] and [3].

Suppose a membrane state of stress, the constitutive equations are the

following
NoB — DH“ﬁA“aM (129)
MeB — BHaﬁ)‘”w,\u (130)
where 1 9
— v v
HOM = ——— (g™ + g*'g™ + =g ™) (131)

The fourth-order tensor H** has the following symmetries

OB M — ppBodn _ praBuX _ priues (132)
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Finally, coefficients D and B are the in—plane and the bending stiffness,
respectively, defined as

D :1E£2i)2 (133)
_ E(2)?
B =507 (134)

5 Applications of the shell theory

Here some applications of the above theory are presented. For all cases the
external loads ensure a membrane state of stress and consequently analytical
closed—form solutions can be reached. See also [4] for more details.

5.1 Spherical dome
5.1.1 Geometry

The spherical dome is a shell modeled on a portion of sphere having radius
r and aperture 7/2 (hemisphere). Given the geometry, the first step is to
identify the simplest coordinate system able to describe such a geometry. Of
course it is a spherical system, see section 7?7 on page 77.

Let X be the spherical coordinate system[ﬂ so that

X =(p,9,p): E— R’ (135)

where F is the affine Euclidean space in which the surface @ is embedded.
The origin of the system is located at the center of the hemisphere. With
respect to a Cartesian coordinate system, the following transformations hold

x = psin psin ¥ (136)
y = psiny cos (137)
zZ=pcose (138)

The adapted coordinate system X induces the surface coordinate system

XT by imposing the constraint p = r. Therefore, the induced coordinate
system is

X =(of, 0" :Q — R? (139)

The covariant and contravariant expressions of the metric tensor ¢ as-
sociated with the induced coordinate system are, respectively

g =1r*d? ® d® + r?sin’ od? © d? (140)
1z = 1 - _

j= — - 141

g T28@®5)@+T28m2¢8ﬁ®8ﬁ (141)

5Note that this coordinate system has been slightly changed compared with that de-
picted in figure 77.
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The nonvanishing Christoffel symbols on @ are

I'7, = —singcos g
N B COS @
FW - FW TG
sin ¢

The unit normal vector of Q) is

=0, (142)

The Weingarten tensor and the second fundamental form for Q) are, re-
spectively

1 _ _
L=—(d*®0, +d’" 0 d)) (143)
L = r(d* ® d? 4 sin® pd” @ d”) (144)

5.1.2 Displacements and strains

To compute the in—plane state of stress only the stretching strain tensor «
is required

Qpp = Vg, +T0° (145)

gy = Vg9 + sin p cos ¢ + 7 sin? pv® (146)
1 coS

gy = 5(1@,9 +v9,¢ ) — singpvﬂ (147)

5.1.83  Equilibrium and constitutive law

The equilibrium equations (126} to (128]) for a spherical shell assume the
following form

N¥#? ,+cot pN¥¥ —singcos N + ¢¥ =0 (148)
—N®r — N"rsin? o+ ¢ =0 (149)
N, 4+3cot pN" +¢” =0 (150)

The constitutive equations are

1
N¥#? = DT—4 (vcp,@ —1—7’1)5) +

+D <7Asiyn2cp(vg”9—|—sin<pcos<pup—l—rsin2 g0v§)> (151)
N — Dr”‘silnA‘ap (Uﬁ,ﬁ + sin p cos v, + rsin? govg) +

+ Dm (vpsp +70°) (152)
N% — D (74418;2”@; (Vs +091 ) — Z?jjw> (153)
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5.1.4 Load case: self weight

The dead load due to the self weight provides, of course, a symmetrical action
so that the expected solution will not depend on .

Suppose the load per unit area is g, uniformly distributed throughout
the shell. The vector has only the vertical component

q=—q¢e; (154)

whereas, with respect to the basis {ao,(%,ﬁ} the vector load ¢ is written

follows
<>

4=~ = —q* cos pn + ¢” sin I, (155)
By multiplying equation (148) by sin ¢ we obtain
(sin pN¥¥),, —sin® p cos N + sin pg? = 0 (156)

Let us introduce now the physical components of the stress tensor IV, so
that

NP = A
= g NPl (157
Hence, equation (156 becomes
(sin pN<¥9>) , — cos pN<U"> 4 1sin pg=*> = 0 (158)

Analogously, by multiplying equation (150) by sin®¢, considering the
physical components and noticing that ¢” = 0, we obtain

(sin pN<¢>) , +cos pN<U¢> = (159)
The remaining equilibrium equation becomes

N <pp> N<1919>
— — +¢ =0 (160)
T T

where, resolving equation (T60]) for N<Y"> equation (158) turns into
(sin? pN<¥?>) = (¢=*7r cos p — ¢~ rsin p) sin ¢ (161)

which can be integrated as follows

sin? Q N<¥¥> = / : (g7 (¢) cos ¢ — ¢~¥7 (¢) sin ¢) sin ¢pdep + K (162)

@

Equation (162)) represents the equilibrium of a spherical cap included by
latitude @ and ¢ € [@,7/2]. In particular the quantity 27r K, excepting the
sign, equilibrates the resultant acting on the cap identified by the aperture

®.
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Considering now equation ((155)

sin? pN<#%> = —rg” [ — cos ¢ ]g (163)
for the latitude ¢ the whole meridian stress when ¢ = 0= K =0 is
R A Gl L (164
sin ¢ 1+ cose
so that equation becomes
N <90> :qu(SiHQSO_COSW) (165)

1+ cosyp

The third equilibrium equation does not depend on the two latter results,
therefore, since ¢ = 0, we have

N<"%> =0 (166)

5.1.5 Load case: uniform load on the horizontal projection of the shell

This load case keeps unaltered the simplifications regarding the symmetry
already discussed in the preceding case. Indeed, here too we are looking for
a solution not depending on 4.
The load ¢* is now projected on the horizontal plane
q = —q~ cos pe, (167)

therefore with respect to the local basis, the physical components are

¢~ = —¢° cos? @ + ¢°n sin p cos <p5<p (168)

By means of a procedure similar to that formerly used we obtain that
equation (|162) now becomes

sin? pN<¢¥> = /so r(q<5> (¢) cosd — ¢=¥7(¢) sin ¢) sin pdg + K

@
%)
= / —rq¢°sinpcosp + K (169)
@

from which 1

sin? g N<¥¥> = —3 [cos® o] 2 (170)
Next, if ¢ = 0= K = 0, the whole meridian stress is

1

N<#PZ = —§rqz (171)

Finally, from equation (160]) we obtain

1
N<O> — —irqz cos 2¢ (172)
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5.2 Cylindrical shell

In this example we want to compute the stress state for a cylindrical shell
subjected to some of the most typical load conditions, e.g. uniform pressure,
dead weight, hydrostatic pressure.

5.2.1 Geometry

Obviously we choose as an adapted coordinate system a cylindrical one with
a little rearrangement compared with the one introduced in section 7?7 on
page 77,

X=(,z2p):E— R (173)

where, as usual, F is the affine Euclidean space in which the cylindrical
surface @) is embedded. The relationships between the Cartesian system,
with the origin along the axis of the cylinder, and the cylindrical coordinates

are
x = psend (174)
y = pcost (175)
z=1z (176)

The above adapted coordinate system induces the surface system X due
to the constraint p = r, where r is the radius of the cylinder. So we have

XT=(67,21): Q — IR (177)

The covariant and contravariant forms of the surface induced metric are,
respectively

g=r’d’ed’ +d*®d* (178)
1 - _ _ _

All Christoffel symbols vanish on Q.
The unit normal vector of Q) is

n=20, (180)
The Weingarten tensor and the second fundamental form are, respec-
tively
1.y =
L=-d"®dy (181)
r
L=rd"®d" (182)
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5.2.2  Displacements and strains

To compute the in—plane state of stress only the stretching strain tensor «
is required

Q9 = Vg9 + TV (183)
1

Qy, = §(Uﬁ,z +02,9 ) (184)

Azy = Vzyz (185)

5.2.3  FEquilibrium and constitutive low

For a cylindrical shell subjected to a membrane state of stress the equilibrium
equations in the scalar form are

Nﬁﬁaﬁ +Nﬁzaz +p19 =0

Nz,ﬁ + sz7z +pz =0

~ NP Lgy+p* =0
Nﬁz — Nzt?

186
187
188

(
(
(
(189

)
)
)
)

The constitutive equations assume the following form

D /1
N = 2 (7,2(%9”9 +rve) + vz,z> (190)
1—
N9 — D < 2r2y (vg, z + vz,g> (191)
v
N? — D (ﬁ(vﬁ,ﬁ +rve) + vz,z> (192)

5.2.4 Load case: uniform pressure and self weight

This load condition is characterized by two load components, namely ¢¢ and
q¢?. The symmetry around the z—axis permits to delate all terms containing
the derivatives with respect to 9.

The equilibrium equations become accordingly

¢
N =2 (193)

T
N% . =0 (194)
N*_ +p* =0 (195)

Next, taking into account the boundary conditions (at z = 0) related to
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the particular load condition and using the physical components, we obtain

N<U> — & (196)
N<"*> . =0= N<"*> =0 (197)

z
N*,.+4+¢ =0= N** :/ —q*d¢+ K =
0
N? = N<zz> — _qz (Z _ h) (198)

Thus, the only nonzero components of v are those along £ and z due to
the self load and to the Poisson effect, which are respectively

o r2q¢ + rvg*(z — h)
N E(2¢)

vi= 2 (126) (—qz <Z; — hz> — yrq€z> (200)

(199)
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