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Abstract

This short introduction to shell theory aims at providing civil engineering
students with some natural applications of the theoretical background de-
veloped during the course of Mathematical Physics taught by Prof. Marco
Modugno. It is worth pointing out, in fact, how the whole mechanics of thin
shell structures is basically referable to the geometry of the mid�surface.

After a brief introduction to recall the basic notions on the theory of
surfaces, �rst the deformation and then the equilibrium of shell continua
will be presented. The linear constitutive law will be just mentioned. At the
end, applications to some typical shell geometries subjected to a membrane
state of stress will also be proposed.

These notes collect the content of two seminars delivered on June 2009
by the Author for the course of Mathematical Physics at School of Civil
Engineering, University of Florence.

A special thanks is devoted to Prof. Marco Modugno for the constructive
discussions.

The text has not been thoroughly revised and may contain typing mis-
takes and mismatching references.
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1 Introduction

1.1 Surfaces

Let E be the a�ne Euclidean space. The submanifold Q ⊂ E is a surface if
dimQ = 2.

Suppose Q ⊂ E is a surface which can be described by an induced coor-
dinate system of dimension q = m−k, where m is the dimension of E and k
denotes the number of constraints (codimension of Q). Since Q is a surface
m = 3, k = 1 and q = 2. The induced coordinate system is given by

X† : Q→ IRq : p 7→ xα(p) (1)

From now on the quantities living on Q will be distinguished by the sym-
bol † and the components will be written using superscripts and subscripts,
running from 1 to 2, in Greek letters. The Latin indices will denote compo-
nents of quantities that are applied on Q but lie out, namely belonging to
the vector space ¯TQE.

The unit normal vector is de�ned as follows

n̄ : Q→ ¯TQ⊥ so that g (n̄, n̄) = 1. (2)

where g is the metric tensor de�ned on ¯TE and ¯TQ⊥ is the orthogonal space.
Analogously, on the surface Q it is possible to de�ne the induced metric

as
g† : ¯TQ× ¯TQ→ IR

that in components1 becomes

g† = gαβd
	
α ⊗ d

	
β

Given two vectorial �elds ū : Q → ¯TQ and v̄ : Q → ¯TQ, the covariant
derivative of v̄ with respect to ū can be split as follows

∇ūv̄ = ∇‖ūv̄ +∇⊥ū v̄ (3)

where

∇‖ : ¯TQ× ¯TQ→ ¯TQ (4)

∇⊥ : ¯TQ× ¯TQ→ ¯TQ⊥ (5)

The application ∇‖ is called second fundamental form of the surface. For
further details see [1] and [2].

1In some books the covariant components of the metric tensor g† are also denoted as
g11 = E, g12 = F, g22 = G.
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The Weingarten2map L is de�ned as the following endomorphism

L := ∇n̄ : ¯TQ→ ¯TQ : ū 7→ ∇ūn̄ (6)

In addition to that, the total curvature (Gauss curvature) K and the
mean curvature H of a surface Q are de�ned as follows

K := detL : Q→ IR (7)

H := trL : Q→ IR (8)

Finally, eigenvalues of L are called principal curvatures. See [1].
Let L

	
be the second order covariant tensor related to the Weingarten

endomorphism L by the metric tensor g†, so that

L
	

:= ∇n
	

: ¯TQ× ¯TQ→ IR : (ū, v̄) 7→ g (L (ū) , v̄) = ∇ūn̄ · v̄ (9)

where n
	

= g[ (n̄).
The following di�erentiation

0 = ∇ū (g (v̄, n̄)) = g (∇ūv̄, n̄) + g (v̄,∇ūn̄)⇒ (10)

g (∇ūv̄, n̄) = −g (v̄,∇ūn̄) (11)

proves that the scalar quantity L
	

(ū, v̄) represents the normal component to
the surface Q of the covariant derivative, namely

∇ūv̄ = ∇‖ūv̄ − L
	

(ū, v̄) n̄ (12)

Dealing with mechanics of shell continuums, equation (12) will be often
used. For this reason in the following it is worth expanding its expression in
components.

Suppose {∂̄α}, α = 1, 2 is a basis related to the induced coordinate system
describing the surface, then

∇∂̄β ∂̄α = ∇†
∂̄β
∂̄α − L

	

(
∂̄β, ∂̄α

)
n̄ (13)

and for both right hand terms we have, respectively

∇†
∂̄β
∂̄α = d

	
γ
(
∂̄β
) (
∂γ
(
d
	
ω
(
∂̄α
))

+ Γωγλd
	
λ
(
∂̄α
))
∂̄ω (14)

= δγβ

(
Γωγλδ

λ
α

)
∂̄ω = Γωβα∂̄ω (15)

L
	

(
∂̄β, ∂̄α

)
=
(
L
(
∂̄β
)
· ∂̄α
)

= ∇∂̄β n̄ · ∂̄α (16)

= Lωβ ∂̄ω · ∂̄α = Lωβgωα = Lβα (17)

2Julius Weingarten (March 2, 1836 Berlin - June 16, 1910 Freiburg) was a German
mathematician.
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Finally, equation (13) in components becomes

∇β ∂̄α = Γωβα∂̄ω − Lβαn̄ (18)

Note that in the remainder of this book, for the sake of brevity, we will
use ∇β· instead of ∇∂̄β ·.

Analogously, for an element of the contravariant basis, recalling the gen-
eral equation for covariant derivatives, and considering the above Gauss split-
ting, we have the following expression

∇βd
	
α = −Γαβλd

	
λ − Lαβn	

(19)

Often in the following shell theory we will deal with vector �elds which
do not belong to the tangent space, so it is useful to present an example of
derivative of vectors applied in Q but lying out of the tangent space. Namely,
suppose that v̄ ∈ ¯TQE. We can decompose the �eld v̄ into the tangent and
orthogonal component as follows

v̄ = v̄‖ + v̄⊥ (20)

that in components is written as

v̄ = vα∂̄α + vξn̄ (21)

Hence, given ū ∈ ¯TQ the derivative of v̄ with respect to ū is

∇ūv̄ = ∇ūv̄‖ +∇ūv̄⊥ = ∇†ūv̄‖ − L
	

(
ū, v̄‖

)
n̄+∇ūv̄⊥ (22)

that in components turns into

∇ūv̄ = uβ
(
∂βv

α + Γαβγv
γ + vξLαβ

)
∂̄α + uβ

(
vξ,β − L	αβ

vα
)
n̄ (23)

In the same way, the dual form v
	
∈ T ∗QE can be di�erentiated as follows

∇ūv
	

= ∇ūv
	
‖ +∇ūv

	
⊥ = ∇†ūv

	
‖ − L

	
(ū, v

	
‖)n
	

+∇ūv⊥ (24)

that in components becomes

∇ūv
	

= uβ
(
∂βvα − Γγαβvγ + vξL

	
βγ

)
d
	
γ + uβ

(
vξ,β − Lαβvα

)
n
	

(25)

Examples of surfaces will be provided in appendix 5, where, within the
application of the shell theory, the above results will be applied to some well
known geometries.
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1.2 Shell continuum

We de�ne a shell�shaped region modeled on a surfaceQ and with thickness 2ε
as a continuous medium G (ε) embedded in the Euclidean space E each point
of which is determined through a coordinate system {xα, ξ} : G (ε) → IR3.
Therefore, given p? ∈ G (ε) it is de�ned by its position p normally projected
on Q - by using the surface coordinate system introduced in (1) - and by the
normal coordinate ξ taken along the unit normal vector n̄. In fact we have

p? 7→ (xα (p) , ξ (p)) (26)

The basis induced by the coordinate system {xα, ξ} is
{
∂̄α, n̄

}
.

It is worthwhile pointing out that mechanics of shells - by virtue of such
above statements - is traced back to the theory of surfaces, in fact vectors
and tensors �elds belonging to ¯TQE will always be split into the parallel and
normal components.

Note also that the symbol ? denotes quantities belonging to the shell
continuum.

1.3 General assumptions

The shell theory here introduced is based on the following hypotheses

Hypothesis 1 The shell is su�ciently thin, so that

2ε
L
� 1 L = min {Rmin, Lmin} (27)

where Rmin and Lmin are the minimum radius and a typical dimension of
the shell structure, respectively.

Hypothesis 2 (Linear theory) Displacements are in�nitesimally small such

that their products can be neglected in the kinematic expressions. This as-

sumption allows us to write the equilibrium equations in the unstrained shell

con�guration.

Hypothesis 3 The material �laments along the coordinate ξ remain straight

throughout the deformation and no length change is allowed. Namely, the

distance between p? ∈ G(ε) and the surface Q is unaltered

ξ = const. (28)

Hypothesis 4 (Kirchhoff�Love theory) The line elements initially nor-

mal to the shell's mid�surface remain normal to it during the deformation.

ḡ
(
∂̄αd , n̄d

)
= 0 (29)

where the subscript d is denotes quantities related to deformed con�guration.
Note that the last hypothesis is nothing but the extension to a two�

dimensional model of the Bernoulli theory for beams.

6



2 Strain tensor

A generic point p? ∈ G(ε) is determined by the vector r̄? referred to the
global Cartesian axes, so that

r̄? = r̄ + ξn̄ (30)

where ξ ∈ (−ε, ε). See �gure 1.
Let us suppose now that a quasi�static motion produces a deformed shell

con�guration points of which are univocally determined by the vector

r̄?d = r̄d + ξdn̄d (31)

where ξd ∈ (−ε, ε).
The displacement �eld is obtained by subtracting equations (30) and

(31), so that
r̄?d − r̄? = r̄d − r̄ + ξ (n̄d − n̄) (32)

where we have made use of hypothesis 3. Equation (32) allows us to de�ne
the positional �eld as a function of two vector �elds

v̄ = r̄d − r̄ v̄ ∈ ¯TQE (33)

w̄ = n̄d − n̄ w̄ ∈ ¯TQ (34)

Figure 1: Two dimensional sketch of the displacement �eld for Kirchho��Love
shells.

To obtain the strain tensor no more theoretical concepts are required.
We already know the de�nition and we just need to compute the metric
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tensors associated to the coordinate systems in the strained and the original
con�gurations, so we have

γij =
(
γαβ γα3

γ3α γ33

)
where

γαβ =
1
2
(
g?αβd − g

?
αβ

)
(35)

γα3 = γ3α =
1
2
(
g?α3d

− g?α3

)
(36)

γ33 =
1
2

(n̄d · n̄d − n̄ · n̄) = 0 (37)

According to equation (??) we have

g?αβd = ∂̄?αd · ∂̄
?
βd

(38)

and
g?αβ = ∂̄?α · ∂̄?β (39)

so that

γαβ =
1
2
[
∂̄?αd · ∂̄

?
βd
− ∂̄?α · ∂̄?β

]
=

=
1
2
[(
∂̄αd + ξ∇αn̄d

)
·
(
∂̄βd + ξ∇βn̄d

)]
+

− 1
2
[(
∂̄α + ξ∇βn̄

)
·
(
∂̄β + ξ∇αn̄

)]
=

=
1
2
[
∂̄αd · ∂̄βd + ∂̄αd · ξ∇βn̄d + ∂̄βd · ξ∇αn̄d + ξ2∇αn̄d · ∇βn̄d

]
− 1

2
[
∂̄α · ∂̄β + ∂̄α · ξ∇βn̄+ ∂̄β · ξ∇αn̄+ ξ2∇αn̄ · ∇βn̄

]
(40)

where we realize that the tensor γαβ can be split in three parts as follows

γαβ = ααβ + ξωαβ + ξ2ϕαβ (41)

We de�ne the stretching strain tensor as

ααβ =
1
2
[
∂̄αd · ∂̄βd − ∂̄α · ∂̄β

]
=

1
2

(gαβd − gαβ) (42)

next, the �rst bending strain tensor as

ωαβ =
1
2
[
∂̄αd · ∇βn̄d + ∂̄βd · ∇αn̄d − ∂̄α · ∇βn̄− ∂̄β · ∇αn̄

]
(43)

and the second bending strain tensor as

ϕαβ =
1
2

[∇αn̄d · ∇βn̄d −∇αn̄ · ∇βn̄] (44)
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Considering now that the displacements are small enough to be negligible
the second order terms

∇αv̄ · ∇β v̄ ' 0
∇αv̄ · ∇βw̄ ' 0

and recalling equations (33) and (34), the stretching and the bending strain
tensors become, respectively

ααβ =
1
2
(
∂̄α · ∇β v̄ + ∂̄β · ∇αv̄

)
=

1
2

(
vα|β + vβ|α + 2vξLαβ

)
(45)

ωαβ =
1
2
(
∂̄α · ∇βw̄ + ∂̄β · ∇αw̄

)
+

+
1
2

(∇αv̄ · ∇βn̄+∇β v̄ · ∇αn̄) =

=
1
2

(
wα|β + wβ|α + vγ|αLγβ + vγ|βLγα

)
+

+
1
2

(
vξ
(
LγαLγβ + LγβLγα

))
(46)

ϕαβ =
1
2

(
wγ|αLγβ + wγ|βLγα

)
(47)

where we have put

∇αv̄ =
(
vγ|α + vξLγα

)
∂̄γ +

(
vξ,α − vγLαγ

)
n̄ (48)

vγ|α = vγ,α + vωΓγαω (49)

and

∇αw̄ = wγ|α∂̄γ − w
γLαγn̄ (50)

wγ|α = wγ,α + wωΓγαω (51)

and
∇αn̄ · ∇βw̄ = Lγα∂̄γ ·

(
wω|β

¯derω − wωLβωn̄
)

= Lωαw
ω
|β (52)

Finally, the strain tensor assumes the following form

γαβ =
1
2

(
vα|β + vβ|α + 2vξLαβ

)
+

+
1
2
ξ
(
wα|β + wβ|α + vγ|αLγβ + vγ|βLγα

)
+

+
1
2

(
vξ
(
LγαLγβ + LγβLγα

))
+

+
1
2
ξ2
(
wγ|αLγβ + wγ|βLγα

)
(53)
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The stretching strain tensor does not depend on the thickness, in fact it
describes the deformation of the mid�surface Q. The bending strain tensors
describe the deformation along the thickness.

The transversal components of the strain are

γ3α = γα3 =
1
2
(
n̄d · ∂̄αd − n̄ · ∂̄α

)
= vξ,α − vγLαγ + wα (54)

2.1 Kirchho��Love strain theory

If we take into account the Kirchho�-Love hypothesis, see hypothesis 4, we
have

∂̄αd · n̄d = 0⇒ (n̄+ w̄) ·
(
∂̄α +∇αv̄

)
= 0⇒ (55)

w̄ · ∂α + n̄ · ∇αv̄ = 0⇒ wα = vγLαγ − vξ,α (56)

and we observe that the variables reduce just to the �eld v̄. Thus, the strain
tensor turns into

ααβ =
1
2

(
vα|β + vβ|α + 2vξLαβ

)
(57)

ωαβ = vγ|αLγβ + vγ|βLγα + vγLγα|β − v
ξ
,αβ + vξLγαLγβ (58)

2ϕαβ = ξ2
(
vδ|αLδγL

γ
β + vδLδγ|αL

γ
β − v

ξ
γαL

γ
β

)
+

+ ξ2
(
vδ|βLδγL

γ
α + vδLδγ|βL

γ
α − v

ξ
γβL

γ
α

)
(59)

In the linear theory the second bending strain tensor can be neglected
because ξ is very small and its square makes the contribution of ϕαβ insignif-
icant.

Finally, we have
γ33 = γα3 = γ3α = 0 (60)

Consider now a Cartesian coordinate system where all the Christoffel
symbols vanish, we immediately realize the well known expression of the
strain tensor for bending plates

γαβ =
1
2

(
vα,β + vβ,α − 2ξvξ,αβ

)
(61)

3 Stress in shell continuums

3.1 Shifters

Before reasoning upon the stress state characterizing a shell continuum it is
worth introducing some geometrical relations linking points belonging to the
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mid�surface Q with corresponding points belonging to the shell thought as
a three�dimensional continuum.

Therefore, let us recall the relation already met to compute the compo-
nents of the metric tensor g?αβ , see equation (40) on page 8, between the
basis in p? ∈ G(ε) and the basis in p projection of p? on Q along the normal
coordinate curve ξ. So we have

∂̄?α = ∂̄α + ξLβα∂̄β (62)

n̄ = n̄? (63)

which in a short notation assumes the following form

∂̄?i = Shi ∂̄h (64)

Hence, with respect to the basis associated to the coordinate system
{xα, ξ} the tensor S has the following components

Shi =

 1 + ξL1
1 ξL2

1 0
ξL1

2 1 + ξL2
2 0

0 0 1


Therefore, the super�cial part of S can be expressed by the following

tensor product
S† = d

	
γ ⊗ ∂̄?γ (65)

so that
S†
(
∂̄β
)

=
(
d
	
γ ⊗ ∂̄?γ

) (
∂̄β
)

= ∂̄?β (66)

In the same way we de�ne F† as follows

F† = ∂̄γ ⊗ d
	
?γ (67)

so that
F†
(

d
	
β
)

=
(
∂̄γ ⊗ d

	
?γ
) (

d
	
β
)

= d
	
?β (68)

Tensors S† and F† are called shifter tensors.

3.2 Contraction of surface forces

Consider now a curve c : IR→ Q representing the intersection of the surface
Qc normal to Q which splits the shell continuum G(ε) into two portions.

Let ν̄ ∈ ¯TQ be the unit normal vector applied in p outward pointing
from c and let l̄ ∈ ¯TQ be the unit vector tangent to c applied in the same
point. Then the three unit vectors

{
ν̄, l̄, n̄

}
form a local basis in p. A similar

triplet of vectors can be de�ned in p? as
{
ν̄?, l̄?, n̄

}
. Note that the symbol ?

denotes as usual quantities belonging to the shell thickness. See �gure 2.
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Figure 2: Local bases in G(ε) and in Q.

In order to ensure the equilibrium condition, the portion of the shell
included by Qc must exert on the remaining part of the continuum a ten-
sion such as for each point p? is entirely described by the stress vector t̄?.
Moreover the stress vector t? can be equivalently expressed by Cauchy stress
tensor as follows

t̄? (p?, ν
	
?) = σ? (p?) ν

	
? (69)

where σ? is the contravariant form of the stress tensor de�ned in p?. For the
sake of brevity hereafter σ? (p?) will be denoted simply by σ.

Now our goal is to establish a relation between the stress state distributed
along the surface Qc and the stress state along the boundary of the mid�
surface of the shell. This can be done by means of a reduction, i.e. a
contraction, of the stress per unit area to a stress per unit line.

Therefore, let us de�ne two vector �elds n and m such as∫
c
n(p, ν

	
)dl =

∫
Qc

t̄?(p?, ν
	
?)dA? (70)∫

c
m(p, ν

	
)dl =

∫
Qc

((p? − p)× t̄?(p?, ν
	
?))dA? (71)

Equalities (70) and (71) guarantee that the stress system n and m is
statically equivalent to the stress system t̄? along the �ber ξ passing through
p.

The oriented elemental area in equations (70) and (71) with respect to
the local basis

{
ν̄?, l̄?, n̄

}
is given by the following vectorial product

ν
	
?dA? = dll̄? × dξn̄ (72)
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and since dll̄? = dlα∂̄?α, equation (72) can be equivalently expressed as follows

ν
	
dA? = dlα∂̄?α × dξn̄ = η?αβdl

αdξd
	
?β = εαβ

√
g?dlαdξd

	
?β (73)

where g? = det
(
g?αβ

)
.

Moreover, back to the mid�surface we notice it is possible to write

dll̄ × n̄ = ν
	
dl (74)

which in the coordinate system {xα, ξ} becomes

dlα∂̄α × n̄ = ηαβdl
αd
	
β = εαβ

√
gdlαd

	
β (75)

where g = det (gαβ).
Equation (69) and (73) allow us to rewrite equations (70) and (71) as

follows ∫
c
n(p, ν

	
)dl =

∫
Qc

σεαβ
√
g?dlαdξd

	
?β (76)∫

c
m(p, ν

	
)dl =

∫
Qc

(p? − p)× σεαβ
√
g?dlαdξd

	
?β (77)

Next, by virtue of the shifter F†, the latter equations become∫
c
n(p, ν

	
)dl =

∫
Qc

σεαβ
√
g?dlαdξ

(
∂̄γ ⊗ d

	
?γ
)

d
	
β (78)∫

c
m(p, ν

	
)dl =

∫
Qc

ξn̄× σεαβ
√
g?dlαdξ

(
∂̄γ ⊗ d

	
?γ
)

d
	
β (79)

which, taking into account equations (74) and (75), become∫
c
n(p, ν

	
)dl =

∫
c

∫ +ε

−ε

√
g?

g
σ
(
∂̄γ ⊗ d

	
?γ
)
ν
	
dldξ (80)∫

c
m(p, ν

	
)dl =

∫
c

∫ +ε

−ε
ξn̄×

√
g?

g
σ
(
∂̄γ ⊗ d

	
?γ
)
ν
	
dldξ (81)

and �nally

n(p, ν
	
) =

∫ +ε

−ε
gσ
(
∂̄γ ⊗ d

	
?γ
)
ν
	
dξ (82)

m(p, ν
	
) = n̄×

∫ +ε

−ε
ξgσ

(
∂̄γ ⊗ d

	
?γ
)
ν
	
dξ (83)

where we have put g =
√
g?/g
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Both integrands in (82) and (83) can be further simpli�ed just substitut-

ing σ = σij
(
∂̄?i ⊗ ∂̄?j

)
and ν

	
= ναd

	
α as follows

n(p, ν
	
) =

(∫ +ε

−ε
gσαj ∂̄?j dξ

)
να (84)

m(p, ν
	
) = n̄×

(∫ +ε

−ε
gξσαj ∂̄?j dξ

)
να (85)

and using once again equations (62) and (63) they assume the following form

n(p, ν
	
) =

(∫ +ε

−ε
gσαγdξ +

∫ +ε

−ε
gσαβξdξLγβ

)
∂̄γνα+

+
(∫ +ε

−ε
gσαξdξ

)
n̄να (86)

m(p, ν
	
) = n̄×

(∫ +ε

−ε
gσαγξdξ +

∫ +ε

−ε
gσαγξ2dξLγβ

)
∂̄γνα (87)

where we can �nally de�ne two tensors N and M

N = Nαβ
(
∂̄α ⊗ ∂̄β

)
+Nαξ

(
∂̄α ⊗ n̄

)
(88)

M = Mαβ
(
∂̄α ⊗ ∂̄β

)
(89)

respectively as

Nαβ =
∫ +ε

−ε
gσαβdξ +

∫ +ε

−ε
gσαγξdξLβγ (90)

Nαξ =
∫ +ε

−ε
gσ?αξdξ (91)

and

Mαβ =
∫ +ε

−ε
gσαβξdξ +

∫ +ε

−ε
gσαγξ2dξLβγ (92)

such as

n(p, ν
	
) = Nν

	
= Nαβνα∂̄β +Nαξναn̄ (93)

m(p, ν
	
) = n̄×Mν

	
= n̄×Mαβνα∂̄β (94)

Two �elds n and m are called surface stress vector and surface couple

vector respectively; while the �eldsN andM are termed surface stress tensor

and surface couple tensor.
From the above results it is immediate to notice that the surface stress

vector n belongs to ¯TQE, consequently it can be split into a super�cial part
and an orthogonal part as follows

n = n‖ + n⊥ (95)
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where

n‖ = Nαβνα∂̄β (96)

n⊥ = Nαξναn̄ (97)

while the surface couple vector m belongs to ¯TQ so that

m = m‖ (98)

As the last remak we point out that the coe�cient g involved in the
integration of Cauchy stress tensor along the thickness depends only on the
geometrical features of the mid�surface Q, in fact it is easy to prove the
following expression

g = det
(
Shi

)
= 1 + ξH + ξ2K (99)

whereH andK are the mean curvature and the total curvature of the surface
Q de�ned in equations (8) and (7).

3.3 Body forces and load density

Suppose the the curve c : IR → Q is closed in such a way as to capture a
surface portion Q′ ⊂ Q bounded by ∂Q ≡ c. Assuming c to be a directrix,
that is a curve through which a line generating a given ruled surface always
passes, the generatrices directed along n̄ de�ne a cylinder Gc(ε) ⊂ G(ε) with
thickness 2ε and also bounded by the surface Qc ∪Qε ∪Q−ε.

We assume that the volume forces acting at every point belonging to the
cylinder Gc(ε) and the load density acting at every point on the upper and
lower surfaces Qε and Q−ε can be integrated along the thickness to yield a
new force system de�ned on the mid�surface Q′ as follows

q̄ : Q′ → ¯TQ′E (100)

s̄ : Q′ → ¯TQ′ (101)

where q̄ = qβ ∂̄β +qξn̄ represents the load vector and s̄ = n̄×sβ ∂̄β represents
the load�moment vector.

See [3] for details.

3.4 Eulero's equations

The equilibrium equations for the mid surface portion Q′ can be written as
follows ∫

∂Q′
n(p, ν

	
)dl +

∫
Q′
q̄dQ′ = 0 (102)∫

∂Q′
(m(p, ν

	
) + r̄ × n(p, ν

	
)) dl +

∫
Q′

(r̄ × q̄ + s̄)dQ′ = 0 (103)
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which yield ∫
∂Q′

Nν
	
dl +

∫
Q′
q̄dQ′ = 0 (104)∫

∂Q′
(n̄×Mν

	
+ r̄ ×Nν

	
)dl +

∫
Q′

(r̄ × q̄ + s̄)dQ′ = 0 (105)

Making use of the divergence theorem, and due to the arbitrariness of
Q′, the above equations become

divN + q̄ = 0 (106)

div(n̄×Mαh∂̄h + r̄ ×Nαh∂̄h) + r̄ × q̄ + s̄ = 0 (107)

Details on the divergence of vector and tensor �eld in curvilinear coordi-
nate systems can be found in [4].

Equations (106) and (107) can be written in components as follows

∇†αNαβ + LβαN
αξ + qβ = 0 (108)

∇αNαξ + LαγN
αγ + qξ = 0 (109)

∇†αMβα −N ξβ + sβ = 0 (110)

ηαβ

(
LαγM

βγ −Nαβ
)

= 0 (111)

where equations (108) assure the translational equilibrium in the tangent
plane, while (109) represents the translational equilibrium along the normal
direction. Next, two equations in (110) impose the rotational equilibrium
about the surface axes, respectively. Finally, the last equilibrium condition
(111) gives the symmetry to the tensor LαγM

βγ −Nαβ .

Proof

Here we want to show all steps we made to pass from the equilibrium equations
(106) and (107) to the corresponding expressions in components (108) to (111).

Let us start form equation (106). We invoke the de�nition of divergence for
second order contravariant tensors already used in equation (??), so we have

(divN)h = Nαh
,α + ΓααγN

γh + ΓhαtN
αt =

= Nαβ
,α +Nαξ

,α + ΓααγN
γβ + ΓααγN

γξ + ΓβαtN
αt + ΓξαtN

αt =

= Nαβ
,α +Nαξ

,α + ΓααγN
γβ + ΓααγN

γξ+

+ΓβαγN
αγ + ΓβαξN

αξ + ΓξαγN
αγ + ΓξαξN

αξ

Now we just need to separate the tangential and normal components as follows

(divN)β = Nαβ
,α + ΓααγN

γβ + ΓβαγN
αγ + ΓβαξN

αξ (112)

(divN)ξ = Nαξ
,α + ΓααγN

γξ + ΓξαξN
αξ + ΓξαγN

αγ (113)
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By virtue of the the identity (∇αn̄)β = Lβα = Γβαξ equation (112) becomes

(divN)β = ∇†
αN

αβ + LβαN
αξ (114)

where we have just collected the surface divergence3 terms into

∇†
αN

αβ = Nαβ
,α + ΓααγN

γβ + ΓβαγN
αγ (115)

Equation (114) proves the in�plane translational equilibrium expressed in (108).
Concerning equation (113), the translational equilibrium along the normal di-

rection is readily proved remembering both Γξαγ = Lαγ and4

∇αNαξ = Nαξ
,α + ΓααγN

γξ + ΓξαξN
αξ (116)

Hence we obtain
(divN)ξ = ∇αNαξ + LαγN

αγ (117)

which �nally proves equation (109)
In order to prove equations (110) and (111), �rst we simplify equation (107) by

taking into account equation (106). So it becomes

divn̄×Mαh∂̄h + n̄× div
(
Mαh∂̄h

)
+ divr̄ ×Nαh∂̄h + s̄ = 0 (118)

We can split the divergence of the tensor Mαh in accordance with the results
in (114) and (117), thus we have

∇αn̄×Mαh∂̄h + n̄×
(
∇†
αM

αβ + LβγM
γξ
)
∂̄β+

+n̄×
(
∇†
αM

αξ + LαγM
αγ
)
n̄+ r̄,α ×Nαh∂̄h + s̄ = 0 (119)

which after further algebra becomes

Lγα∂̄γ ×Mαω∂̄ω + Lγα∂̄γ ×Mαξn̄+ n̄×
(
∇†
αM

αβ + LβγM
γξ
)
∂̄β+

+∂̄α ×Nαω∂̄ω + ∂̄α ×Nαξn̄+ n̄× sβ ∂̄β = 0 (120)

Collecting the normal and tangential terms we obtain the following three scalar
equations

ηγω (LγαM
αω +Nγω) = 0 (121)

and
n̄×

(
∇†
αM

αβ −Nβξ + sβ
)
∂̄β = 0 (122)

which �nally proves the rotational equilibrium (110) about the surface axes.♦

Usually a new variable is introduced to make easier possible further cal-
culations; in fact we de�ne the pseudo-stress tensor the symmetric tensor

Ñαβ = Nαβ − LαγMβγ (123)

It is straightforward to notice that Ñ ≡ N only when either a mem-
brane stress state holds or for �at shells, namely when Weingarten's tensor
is identically zero.

3In literature the divergence of the surface tensor Nαβ is often denoted by Nαβ
|α .

4In literature the divergence ∇†αNαξ is often denoted by Nαξ
|α .
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3.5 Membrane state of stress

In this last section we introduce an hypothesis on the state of the stress that
enables us to derive a closed form solution for several shell geometries without
invoking the constitutive law. Examples of these closed form solutions will
be provided in appendix 5.

A shell continuum is subjected to a membrane stress state when both
the following condition hold

Nαξ = 0 (124)

Mαβ = 0 (125)

Hence, the equilibrium equations become

∇αNαβ + qβ = 0 (126)

LαγN
αγ + qξ = 0 (127)

ηαβN
αβ = 0 (128)

where equation (126) represents the translational equilibrium along the tan-
gent plane; equation (127) represents the equilibrium along n̄ and �nally
equation (128) states the rotational equilibrium about n̄ and establishes the
symmetry of N .

4 Constitutive equation for shell continuums

The Kirchho��Love hypothesis and the inextensibility of material �bers
along n̄ allows one to consider the shear stress components N ξα unrelated
to strains, so that the constitutive problem can be solved through the plane
stress model. Thus, components N ξα are found only by means of the equi-
librium equations. The analytical derivation of the constitutive equations is
beyond the scope of this book, so we will just present the �nal equations that
will be used in the appendix 5 in order to solve some case studies. However,
readers can �nd thorough discussions in [2] and [5].

Suppose a membrane state of stress, the constitutive equations are the
following

Ñαβ = DHαβλµαλµ (129)

Mαβ = BHαβλµωλµ (130)

where

Hαβλµ =
1− ν

2
(
gαλgβµ + gαµgβλ +

2ν
1− ν

gαβgλµ
)

(131)

The fourth�order tensor Hαβλµ has the following symmetries

Hαβλµ = Hβαλµ = Hαβµλ = Hλµαβ (132)
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Finally, coe�cients D and B are the in�plane and the bending sti�ness,
respectively, de�ned as

D =
E(2ε)
1− ν2

(133)

B =
E(2ε)3

12(1− ν2)
(134)

5 Applications of the shell theory

Here some applications of the above theory are presented. For all cases the
external loads ensure a membrane state of stress and consequently analytical
closed�form solutions can be reached. See also [4] for more details.

5.1 Spherical dome

5.1.1 Geometry

The spherical dome is a shell modeled on a portion of sphere having radius
r and aperture π/2 (hemisphere). Given the geometry, the �rst step is to
identify the simplest coordinate system able to describe such a geometry. Of
course it is a spherical system, see section ?? on page ??.

Let X be the spherical coordinate system5 so that

X = (ϕ, ϑ, ρ) : E → IR3 (135)

where E is the a�ne Euclidean space in which the surface Q is embedded.
The origin of the system is located at the center of the hemisphere. With
respect to a Cartesian coordinate system, the following transformations hold

x = ρ sinϕ sinϑ (136)

y = ρ sinϕ cosϑ (137)

z = ρ cosϕ (138)

The adapted coordinate system X induces the surface coordinate system
X† by imposing the constraint ρ = r. Therefore, the induced coordinate
system is

X† = (ϕ†, ϑ†) : Q→ IR2 (139)

The covariant and contravariant expressions of the metric tensor g† as-
sociated with the induced coordinate system are, respectively

g
	

= r2d
	
ϕ ⊗ d

	
ϕ + r2 sin2 ϕd

	
ϑ ⊗ d

	
ϑ (140)

ḡ =
1
r2
∂̄ϕ ⊗ ∂̄ϕ +

1
r2 sin2 ϕ

∂̄ϑ ⊗ ∂̄ϑ (141)

5Note that this coordinate system has been slightly changed compared with that de-
picted in �gure ??.
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The nonvanishing Christo�el symbols on Q are

Γϕϑϑ = − sinϕ cosϕ

Γϑϕϑ = Γϑϑϕ =
cosϕ
sinϕ

The unit normal vector of Q is

n̄ = ∂̄ρ (142)

The Weingarten tensor and the second fundamental form for Q are, re-
spectively

L =
1
r

(d
	
ϕ ⊗ ∂̄ϕ + d

	
ϑ ⊗ ∂̄ϑ) (143)

L
	

= r(d
	
ϕ ⊗ d

	
ϕ + sin2 ϕd

	
ϑ ⊗ d

	
ϑ) (144)

5.1.2 Displacements and strains

To compute the in�plane state of stress only the stretching strain tensor α
is required

αϕϕ = vϕ,ϕ +rvξ (145)

αθθ = vϑ,ϑ + sinϕ cosϕ+ r sin2 ϕvξ (146)

αϑϕ =
1
2

(vϕ,θ +vϑ,φ )− cos
sinϕ

vϑ (147)

5.1.3 Equilibrium and constitutive law

The equilibrium equations (126) to (128) for a spherical shell assume the
following form

Nϕϕ,ϕ + cotϕNϕϕ − sinϕ cosϕNϑϑ + qϕ = 0 (148)

−Nϕϕr −Nϑϑr sin2 ϕ+ qξ = 0 (149)

Nϑϕ,ϕ +3 cotϕNϑϕ + qϑ = 0 (150)

The constitutive equations are

Nϕϕ = D
1
r4

(
vϕ,ϕ +rvξ

)
+

+D

(
ν

r4 sin2 ϕ
(vϑ,ϑ + sinϕ cosϕvϕ + r sin2 ϕvξ)

)
(151)

Nϑϑ = D
1

r4 sin4 ϕ

(
vϑ,ϑ + sinϕ cosϕvϕ + r sin2 ϕvξ

)
+

+D
ν

r4 sin2 ϕ

(
vϕ,ϕ +rvξ

)
(152)

Nϑϕ = D

(
1− ν
r4 sin2 ϕ

1
2

(vϕ,θ +vϑ,ϕ )− cosϕ
sinϕ

vϑ

)
(153)
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5.1.4 Load case: self weight

The dead load due to the self weight provides, of course, a symmetrical action
so that the expected solution will not depend on ϑ.

Suppose the load per unit area is q̄, uniformly distributed throughout
the shell. The vector has only the vertical component

q̄ = −qz ēz (154)

whereas, with respect to the basis {∂̄ϕ, ∂̄ϑ, n̄} the vector load q̄ is written
follows

q<> = −qz cosϕn̄+ qz sinϕ∂̄ϕ (155)

By multiplying equation (148) by sinϕ we obtain

(sinϕNϕϕ),ϕ− sin2 ϕ cosϕNϑϑ + sinϕqϕ = 0 (156)

Let us introduce now the physical components of the stress tensor N , so
that

N<αβ> =
Nαβ

|d
	
α||d

	
β|

= Nαβ|∂̄α||∂̄β| (157)

Hence, equation (156) becomes

(sinϕN<ϕϕ>),ϕ− cosϕN<ϑϑ> + r sinϕq<ϕ> = 0 (158)

Analogously, by multiplying equation (150) by sin2 ϕ, considering the
physical components and noticing that qϑ = 0, we obtain

(sinϕN<ϑϕ>),ϕ + cosϕN<ϑϕ> = 0 (159)

The remaining equilibrium equation becomes

− N<ϕϕ>

r
− N<ϑϑ>

r
+ q<ξ> = 0 (160)

where, resolving equation (160) for N<ϑϑ>, equation (158) turns into

(sin2 ϕN<ϕϕ>),ϕ = (q<ξ>r cosϕ− q<ϕ>r sinϕ) sinϕ (161)

which can be integrated as follows

sin2 ϕN<ϕϕ> =
∫ ϕ

ϕ̄
r
(
q<ξ>(φ) cosφ− q<ϕ>(φ) sinφ

)
sinφdφ+K (162)

Equation (162) represents the equilibrium of a spherical cap included by
latitude ϕ̄ and ϕ ∈ [ϕ̄, π/2]. In particular the quantity 2πrK, excepting the
sign, equilibrates the resultant acting on the cap identi�ed by the aperture
ϕ̄.
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Considering now equation (155)

sin2 ϕN<ϕϕ> = −rqz
[
− cosφ

]ϕ
ϕ̄

(163)

for the latitude ϕ the whole meridian stress when ϕ̄ = 0⇒ K = 0 is

N<ϕϕ> = −rq
z(1− cosϕ)

sinϕ
= − rqz

1 + cosϕ
(164)

so that equation (160) becomes

N<ϑϑ> = rqz
(sin2 ϕ− cosϕ

1 + cosϕ
)

(165)

The third equilibrium equation does not depend on the two latter results,
therefore, since qϑ = 0, we have

N<ϑϕ> = 0 (166)

5.1.5 Load case: uniform load on the horizontal projection of the shell

This load case keeps unaltered the simpli�cations regarding the symmetry
already discussed in the preceding case. Indeed, here too we are looking for
a solution not depending on ϑ.

The load qz is now projected on the horizontal plane

q = −qz cosϕēz (167)

therefore with respect to the local basis, the physical components are

q<> = −qz cos2 ϕ+ qzn̄ sinϕ cosϕ∂̄ϕ (168)

By means of a procedure similar to that formerly used we obtain that
equation (162) now becomes

sin2 ϕN<ϕϕ> =
∫ ϕ

ϕ̄
r
(
q<ξ>(φ) cosφ− q<ϕ>(φ) sinφ

)
sinφdφ+K

=
∫ ϕ

ϕ̄
−rqz sinϕ cosϕ+K (169)

from which

sin2 ϕN<ϕϕ> = −1
2

[cos2 ϕ]ϕϕ̄ (170)

Next, if ϕ̄ = 0⇒ K = 0, the whole meridian stress is

N<ϕϕ> = −1
2
rqz (171)

Finally, from equation (160) we obtain

N<ϑϑ> = −1
2
rqz cos 2ϕ (172)
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5.2 Cylindrical shell

In this example we want to compute the stress state for a cylindrical shell
subjected to some of the most typical load conditions, e.g. uniform pressure,
dead weight, hydrostatic pressure.

5.2.1 Geometry

Obviously we choose as an adapted coordinate system a cylindrical one with
a little rearrangement compared with the one introduced in section ?? on
page ??,

X = (ϑ, z, ρ) : E → IR3 (173)

where, as usual, E is the a�ne Euclidean space in which the cylindrical
surface Q is embedded. The relationships between the Cartesian system,
with the origin along the axis of the cylinder, and the cylindrical coordinates
are

x = ρsenϑ (174)

y = ρcosθ (175)

z = z (176)

The above adapted coordinate system induces the surface system X† due
to the constraint ρ = r, where r is the radius of the cylinder. So we have

X† = (θ†, z†) : Q→ IR2 (177)

The covariant and contravariant forms of the surface induced metric are,
respectively

g
	

= r2d
	
ϑ ⊗ d

	
ϑ + d

	
z ⊗ d

	
z (178)

ḡ =
1
r2
∂̄ϑ ⊗ ∂̄ϑ + ∂̄z ⊗ ∂̄z (179)

All Christo�el symbols vanish on Q.
The unit normal vector of Q is

n̄ = ∂̄ρ (180)

The Weingarten tensor and the second fundamental form are, respec-
tively

L =
1
r

dϑ ⊗ ∂̄ϑ (181)

L
	

= rd
	
ϑ ⊗ d

	
ϑ (182)

23



5.2.2 Displacements and strains

To compute the in�plane state of stress only the stretching strain tensor α
is required

αϑϑ = vϑ,ϑ + rvξ (183)

αϑz =
1
2

(vϑ,z +vz,ϑ ) (184)

αzz = vz,z (185)

5.2.3 Equilibrium and constitutive law

For a cylindrical shell subjected to a membrane state of stress the equilibrium
equations in the scalar form are

Nϑϑ,ϑ +Nϑz,z +pϑ = 0 (186)

N z,ϑ +N zz,z +pz = 0 (187)

−NϑϑLϑϑ + pξ = 0 (188)

Nϑz = N zϑ (189)

The constitutive equations assume the following form

Nϑϑ =
D

r2

(
1
r2

(vϑ,ϑ +rvξ) + vz,z

)
(190)

Nϑz = D

(
1− ν
2r2

(vϑ, z + vz,ϑ

)
(191)

N zz = D
( ν
r2

(vϑ,ϑ +rvξ) + vz,z

)
(192)

5.2.4 Load case: uniform pressure and self weight

This load condition is characterized by two load components, namely qξ and
qz. The symmetry around the z�axis permits to delate all terms containing
the derivatives with respect to ϑ.

The equilibrium equations become accordingly

Nϑθ =
qξ

r
(193)

Nϑz,z = 0 (194)

N zz,z +pz = 0 (195)

Next, taking into account the boundary conditions (at z = 0) related to
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the particular load condition and using the physical components, we obtain

N<ϑθ> = qξr (196)

N<ϑz>,z = 0⇒ N<ϑz> = 0 (197)

N zz,z +qz = 0⇒ N zz =
∫ z

0
−qzdζ +K ⇒

N zz = N<zz> = −qz (z − h) (198)

Thus, the only nonzero components of v̄ are those along ξ and z due to
the self load and to the Poisson e�ect, which are respectively

vξ =
r2qξ + rνqz(z − h)

E(2ε)
(199)

vz =
1

E(2ε)

(
−qz

(
z2

2
− hz

)
− νrqξz

)
(200)
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