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PREFACE

These brief notes are aimed at sketching a few basic ideas about Riemannian manifolds
and submanifolds, with emphasis on the hypersurfaces of a Euclidean three dimensional
space.

The reader is supposed to be familiar with the elementary notions concerning linear
and multilinear algebra, manifolds, tangent space and the Lie derivative of vector fields
and forms.
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INTRODUCTION

All manifolds will be finite dimensional and smooth and all maps between manifolds
will be smooth.

We consider a manifold M of dimension m .

We denote the tangent and cotangent spaces of M by T'M and T*M , respectively;
moreover, we denote the set of local vector fields X : M — T'M and local forms o : M —
T*M by T(M) and T*(M), respectively.

We denote the set of local functions f : M — IR by F(M).

We denote the k™-tensor power of T (M) and T*(M) by T#(M) and T*¥(M), respec-
tively. In particular, we have T°(M) = F(M) = T*°(M).

Thus, the tensor algebra of M is constituted by the direct sum

AM)= P THM e P THM).

0<k<oo 1<k<oo

We shall refer to local charts (z) of M .

We denote the local basis of vector fields and forms induced by the above local charts
by (0z;) C T(M) and (dz*) C T*(M), respectively.

We denote the local charts induced on T'M and T*M | respectively, by (z?, %) and
(x%, &) . Thus, for each vector field X = X*0x; and form w = w; dr’, we can write

i'o X = (dz', X) = X", Tiow = (w, 0r;) = w;.

If p: E— B and qg: F — B are two bundles over the same base space B, then we
denote their fibred product over B by

EEF::{(e,f)6E><F|p(e):q(f)}CE><F.
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CHAPTER 1

CONNECTIONS ON MANIFOLDS

In this chapter we introduce the notion of linear connection on a manifold M ,
in terms of the covariant differential V , and analyse the torsion T and the curvature
R of a linear connection.

Then, we introduce the Riemannian metric g and study the induced linear con-
nection. In this context, we discuss also the relation between the Lagrange formulas
and the acceleration of a curve.



10 Chapter 1. Connections on manifolds

1.1 Linear connections

We start by introducing a general linear connection on a manifold and discussing
its torsion, curvature tensor and Ricci tensor.

1.1.1 Covariant differential

We introduce the notion of linear connection by means of the associated covari-
ant differential and show its coordinate expression.

1.1.1 Definition. A linear connection is defined to be a map
V:TM)x AM)— AM) : (X,t) — Vxt,

which fulfills the following properties:
1) for each X € T (M), Vx preserves the degree of tensors;
2) V commutes with local restrictions;

3) for each X,Y € T(M), f € F(M), t € AM),
Vxiyt =Vxt+Vyt,  Vixt= fVxt;
4) for cach X € T(M), t,t' € A(M),
Vx({t+t)=Vxt+Vxt';

5) for each X € T(M), t,t' € A(M),

Vx(tet)=(Vxt) @t +t® (Vxt');
6) for each X € T(M), f € F(M),

Vxf=X[f={f, X);

7) foreach X e T(M),Y € T(M),w € T*(M),

XAw,Y) = (Vxw, V) + (w, VyY).

For each X € T(M),t € A(M), we say that Vxt € A(M) is the covariant derivative
of ¢t with respect to X; moreover, we say that the induced tensor Vi € T*(M) ® A(M),
given by
Vt:T(M)— AM) : X — Vxt,

is the covariant differential of t .0

1.1.2 Proposition. The map V is characterised by its restriction to vector fields

Vo T(M) x T(M) = T(M): (X,Y)— VyV .
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1.1. Linear connections 11

Proor. It follows immediately from properties 5) and 7). QED

Thus, let us consider a linear connection V .

1.1.3 Note. From the above definition we obtain immediately the following result.
Foreach X e T(M), fe F(M),t e A(M),

Vx(ft) = fVxt + (X.f)t;
Hence, in particular, for each X € T(M), ke R, t € A(M),
Vi (kt) = kVxt.O

1.1.4 Proposition. The coordinate expression of V is given by the following formu-
las.
For each X € T(M),t e T*(M),

th = X](ajt“““ —+ Fjilh thizmik 4+ -4 Fjikh til'"ik_lh) al’z‘l RX... 8I% R
and, for each X € T(M), t € T**(M),
VXt = X](ﬁjtlllk — F]’hil thig...ik — s — thik tiLuik—lh) dl’il ®...Q dl’Zk s

where

I = (Vou,0x)" = —(Vog,da"); .

Proor. It follows easily from the properties in the definition of V.QED

1.1.2 Torsion

We introduce the notion of torsion tensor of a linear connection and show its
coordinate expression.

1.1.5 Lemma. The map
T:T(M)xT(M)—TM),
given by
T(X, Y) = ny - VYX - [X, Y] s

is a tensor. Moreover, T is antisymmetric.

PrOOF. Clearly, for each X, X' Y,Y’ € T(M), we have

TX+X,Y)=TX,V)+T(X",Y), TX,Y+Y)=TX,Y)+T(X,Y).
Moreover, for each X,Y € T(M), f € F(M), we have

TUXY)=fVxY = fVy X = (Y.)) X - fIX, Y]+ (V) X = fTX)Y),
T(X, fY)=fVxY +(X.f)Y — fVyX — f[X,Y] - (X.f)Y = fT(X,Y).
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12 Chapter 1. Connections on manifolds

Hence, T is a tensor.
Furthermore, we can immediately see that T is antisymmetric. QED

1.1.6 Definition. The tensor T is called the torsion tensor of V .O

1.1.7 Proposition. The coordinate expression of the torsion tensor is
T = Tijh dr' @ dr’ ® Oz,
= (Fih]‘ — thi) d!L‘Z X d![‘j (9 8[Eh
=20 dz' A da? ® Oy,

with
Tijh = Fz‘hj — thi O

1.1.3 Curvature
We introduce the notion of curvature tensor and Ricci tensor of a linear con-

nection and show their coordinate expressions.

1.1.8 Lemma. The map
R:T(M)xT(M)xT(M)—T(M),
given by
R(X,Y;Z2):=VxVyZ -VyVxZ —VxyZ,
is a tensor. Moreover, R is antisymmetric with respect to the first two entries.
PRrROOF. Clearly, for each X, X" Y, Y’ Z,Z' € T(M), we have

RX+X'Y:Z)=R(X,Y; Z) + R(X",Y; Z),
RX,Y +Y';Z2) =R(X,Y;Z)+R(X,Y"; Z),
RX,Y;Z+2')=R(X,Y;Z) +R(X,Y; Z').

Moreover, for each X,Y,Z € T(M), f € F(M), we have

R(fX,)Y;Z) = fVXxVyZ - fVyVxZ - (Y./)VxZ - fVixy1Z +(Y.f)VxZ
= fR(X,Y;2),

RIX, fY:Z) = [VXVyZ+ (XY.f) Z — [VyVxZ — (Y.X.f) Z
~fVixyZ - (X, Y].f) Z
— [R(X,Y: 7).

Hence, R is a tensor.
Moreover, we can immediately see that R is antisymmetric with respect to the first two entries. QED

1.1.9 Definition. The tensor R is called the curvature tensor of V.O
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1.1. Linear connections 13

1.1.10 Proposition. The coordinate expression of the curvature tensor is

R = Rza pdrt @ da? @ 0z, @ da®
= (aF] k — FZ k F] 1 — @-Fihk + Fjlk Fihl) de’Z ® d[Ej ® al‘h ® dﬂfk
=2(0,1;", — T ;") da' A da? @ Oy, @ da®

with
zgk argk szrjl_arzk+rjkrzlm

1.1.11 Proposition. The curvature tensor fulfills the identities
Rzg k= Rﬂ k and Rijhk -+ Rkih]’ + Rjkhi =0.0

1.1.12 Corollary. If dim M = n, then the number i of independent components of
the curvature tensor is
n?(n? —1)
3 :

PRrOOF. It follows by taking into account the symmetry properties of R. We omit a detailed proof
(see [15]). QED

IR =

1.1.13 Example. We have the following particular cases:
1) if dim M =1, then ig = 0, hence R =0;

2) if dim M = 2, then ig = 4;

3) if dim M = 3, then ig = 24.0

1.1.14 Definition. We define the Ricci tensor to be the tensor
I::C'llR ET(M)RT* (M),

where C denotes the contraction of the first contravariant index with the first covariant
index. O

1.1.15 Proposition. The coordinate expression of the Ricci tensor is

Tr= Iij dZEZ X d([’j
= Rhihj dxl ® dl’j
= (8hFl-hj — Fhkj Fihk — &-thj + Fikj thk) dIZ X d&?j ,

with
Iij:ahrij Phg zk 3Fh]+F”Fth
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14 Chapter 1. Connections on manifolds

1.2 Riemannian connections

A Riemannian manifold is a manifold whose tangent fibres are equipped with a metric.

The Riemannian metric yields a distinguished linear connection.

The best practical way to compute the coordinate expression of the Riemannian con-
nection is via the Lagrange expression of the covariant acceleration of motions.

The curvature tensor of a Riemannian connection has distinguished properties.

1.2.1 Riemannian metric

We introduce the notion Riemannian metric and analyse the associated algebraic

objects.

1.2.1 Definition. A Riemannian metric of M is defined to be a symmetric and

positive definite bilinear form

g:TM xTM — R.O
M

Its coordinate expression is

g = Gij dr' @ da’ .
Let us assume that M is equipped with a Riemannian metric g.
The metric g yields the mutually inverse isomorphisms

¢ TM -T'M:X = ¢X), ¢:T"M—->TM:w— g W),

characterised by
<gb(X>> Y> - g(X> Y)? g(gﬁ(("))? Y) - <w7 Y>7

for each vector field Y .
Their coordinate expressions are

gb(X) = ginjdxi , gﬁ(u)) = gijwj(()xi,

where
(9) = (gn) ™"
We denote the contravariant metric by
g=(F®d) () :T"M X T°M = IR
Its coordinate expression is
g = 9" 0z; ® 0x; .
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1.2. Riemannian connections 15

We define the metric function to be the function
G:TM - R: X~ $9(X,X),
with coordinate expression

_ 1 S
G—§gij:1:':cj.

1.2.2 Volume form

We introduce the notion of volume form induced by a Riemannian connection.
1.2.2 Definition. A wvolume form of M is defined to be (at least locally) a section
n:M— AN"T"M,

which is identically non vanishing.
The dual volume form of n is defined to be the unique section

7 M — AT*M,

such that
<777 77>/\ - ]- )

where (, ), denotes the contraction, in the sense of exterior forms, defined via the interior
product 7.0

1.2.3 Proposition. The coordinate expression of a volume form and of the dual
volume form is of the type

n=adr' A...Adx" and = (1/a)dz  A...A\Ox,,
where a: M — IR is an identically non vanishing function. O

1.2.4 Remark. The standard contraction between 1 and 7 is different from the above
contraction. In fact, we have

1.2.5 Proposition. The Riemannian metric g determines, up to sign, locally a vol-
ume form
n:M— A"T*"M,

by the condition
(A"g) (n,n) = 1.

Moreover, if the manifold M is orientable, then this volume form exists globally.
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16 Chapter 1. Connections on manifolds

We have the coordinate expression

n = +4/det(g;;)dz' A ... Ada".

In other words, poinwisely, if (¢',...,€") is an orthonormal basis of forms, then we

can write
n=2e'N...AE".O

1.2.6 Corollary. The dual volume form 77 of the volume form 7 induced by the metric

turns out to be just the contavariant tensor of 7.
In other words, we have

Ti=@®..9¢)n and 1= ®...04¢)7.0

1.2.3 Riemannian connection

We introduce the distinguished linear connection induced by the Riemannian
metric.

1.2.7 Theorem. There is a unique linear connection V such that
Vg=20, T=0.
Indeed, V is given, for each X,Y,Z € T(M), by
29(VxY, 2) = X.(9(Y, 2)) + Y.(9(Z, X)) = Z.(9(X,Y))
+9(X, Y], 2) +9(12, X],Y) = 9([Y, Z], X) .
PROOF. Uniqueness. If V exists, then, for each X,Y,Z € T(M), we obtain

X9V, 2) =9(VxY,Z)+g(Y,VxZ)
VxY =VyX +[X,Y],

hence, by cyclic rotation of the vector fields,

+X.(9(Y,2)) = +9(VxY, Z) + g(Y,Vx Z)
—Z.(9(X,Y)) = —g(VzX,Y) + g(X,VzY)

hence, summing side by side,
X.(9(Y,2))+Y.(9(Z, X)) = Z(9(X,Y)) =
=+9(VxY,2) +9(Y,VxZ)
+9(VyZ, X))+ g(Z,Vy X)
—9(VzX,Y) —g(X,VzY),

Surfaces-2012-03-09.tex; [output 2012-03-09; 10:39];
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1.2. Riemannian connections 17

=29(VxY,Z)+g(Y,[X, Z]) + g([Y, Z], X) + g(Z,[Y, X]) .

Ezistence. We can easily prove that the above expression of V fulfills the properties of linear connec-
tions. QED

1.2.8 Definition. The unique linear connection V which fulfills the above conditions
is called the Riemannian connection.O

1.2.9 Proposition. The coordinate expression of the Riemannian connection V is
given by
Fihj - %ghk (Digjx + 0j9ik — Okgij) -

PRrOOF. The above formula can be obtained as the coordinate expression of the intrinsic formula
defining V in the above theorem.
But we can also derive directly the coordinate expression of V. In fact, the assumed conditions read,
in coordinates, as
Ongij = Uhij + Thji s Ling = Tjns

Then, we obtain

—Lhij = Tnji = —0ngij
+Ljni + Ling = +0;59ni
+Lijn + Ljin = +0;gjn.,

hence, summing side by side,
2Tn; = 0igjn + 0j9in — Ongij - QED

1.2.4 Lagrange formulas

A convenient way to compute the coefficients of the Riemannian connection is
via the covariant acceleration of curves, expressed through the Lagrange formulas,
in the following way.

Let us consider a curve ¢ : IR — M and its differential
dc: IR —TM,
with coordinate expression
rtoc=c, i'ode= Dc".
1.2.10 Lemma. The map
Vde:=(VxX)oc:R—>TM,

where X : M — T'M is an extension of dc, does not depend on the choice of the extension,
hence is well defined.
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18 Chapter 1. Connections on manifolds

ProoF. It follows easily from the coordinate expression of VxY .QED

1.2.11 Definition. We say that Vdc is the curvature (or the acceleration) of ¢.O
We have the coordinate expression

Vde = (D*¢" + (T4’ 0 ¢) D" Dc¥) (90 ¢) .
The covariant curvature of ¢ is defined to be the map

¢ (Vde) : IR — T*M ,

with coordinate expression
¢ (Vde) = gijoc (chj + ([ 0 c) D Dck) (dz'oc).

1.2.12 Theorem. [Lagrange formula.] The covariant curvature of ¢ is given by the
following formula

(¢°(Vdc)) = £(G,¢) = (D(a—G: odc) — (% o dc)) (Dz'oc).

PROOF. We have
b o 2 j j h 1y .k
¢’ (Vdc) = gijoc(D*¢” + T,/ 0 e D" Dc”)
=gi; 0 c¢D?d + % (Ongjk + Okgjn — Ojgnk) © c D" DCF .
On the other hand, we have

gg ode) — (8£ ode) = D((gij47) odc) — & (Dignri™i*) o de

or?
= D(gsj 0 cDc?) — % (Oignk) o eDc"Dck

= (gij o C)D2Cj + % (6hgjk + 6kgjh — ajghk) ocDc"DcF . QED

D(

1.2.13 Note. In practice, a quick way to compute the coefficients of V is the following;:
- compute the covariant curvature of a generic curve ¢, through the Lagrange formulas,

- then compute the curvature of ¢ by means of ¢*,
- eventually extract the coefficients of V.0

1.2.5 Riemannian curvature

We discuss the additional properties of the curvature tensor of the Riemannian
connection. In particular, we introduce the Riemannian scalar curvature.

1.2.14 Definition. We define the Riemannian cuvature tensor to be the curvature

tensor R of the Riemannian connection. O
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1.2. Riemannian connections 19

1.2.15 Proposition. The Riemannian curvature tensor fulfills the following identities
Rijnk = —Rjink Rijnk = —Rijkn » Rijnk = Rhukij » Rijnk + Riinj + Rjgni = 0.
PRrOOF. It follows by a computation in coordinates. We omit a detailed proof. QED

1.2.16 Corollary. If dim M = n, then the number i of independent components of
the Riemannian curvature tensor is

n?(n*—1) |

=T

ProoF. It follows by taking into account the symmetry properties of R. We omit a detailed proof
(see [15]). QED

1.2.17 Example. We have the following particular cases:
1) if dim M =1, then ig = 0, hence R=10;
2) if dim M = 2, then ig = 1;

3) if dim M = 3, then ig = 6.0
1.2.18 Corollary. The Ricci tensor of the Riemannian connection is symmetric:
Tij = Tj .U

1.2.19 Proposition. If dim M = 1,2, 3, then the Ricci tensor completely determines
the Riemannian curvature tensor.

Proor. It follows by taking into account the symmetry properties of R. We omit a detailed proof. QED

1.2.20 Definition. We define the Riemannian scalar curvature to be the function
(ry:=gur.O

1.2.21 Proposition. The coordinate expression of the Riemannian scalar curvature
is
(r) = ¢"Rii"; .0

1.2.6 Case when M has dimension 2

In the particular case when dim M = 2, as we have already seen, the Riemannian
curvature tensor has only 1 independent component and it is completely determined
by the Ricci tensor.

Now, we discuss more explicitly this result, by analysing the expression of the
Riemannian curvature tensor. Indeed, we prove that, in this case, the Riemannian
curvature tensor and the Ricci tensor are fully determined by the Riemannian scalar
curvature.
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20 Chapter 1. Connections on manifolds

First, let us observe that the volume form 7 of any Riemannian manifold M is defined
locally up to sign, hence n ® n is uniquely defined globally on M .

1.2.22 Proposition. Let us suppose that dim M = 2.
Then, the covariant Riemannian curvature tensor and the Ricci tensor are given by

R=2(r)n®n and 71=3(1g.

N[ =

In other words, pointwisely, if (¢!, €?) is an othonormal basis of forms, then we have
the expressions
R=1(1)(®EQ QE+EReEQERE —€ QERERE — Qe ®e R,
and
r=1(1) (@ +€@6.

PROOF. We observe that all antisymmetric covariant 2—tensors are proportional to 7. Therefore,
the antisymmetry of R with respect to the indices (1,2) and to the indices (3,4) (see Proposition 1.2.15)
implies that R is of the type

R=un®n, with w:M—>1R.
On the other hand, poinwisely, we have the coordinate expression
A @ (ef A é?)
%(61@)62*62®61)®%(61®62762®61)
:%(61®62®61®62+62®61®62®61 — @Rl —Eod @d @),

nen= (e

Hence, pointwisely, we can write

R:iu(€1®62®61®62+62®61®62®61—61®62®€2®61—62®61®61®62).

(By the way, we observe that the above expression fulfills also the other symmetry properties of R.)
Then, the above expression yields, pointwisely, the following expression of the the Ricci tensor

r=1u e+,

which can be read globally as

r=1ug.

Moreover, the above equality yields the following expression of the Riemannian scalar curvature

Thus, eventually, we obtain

R=2{r)n®n and r=1(r)g.QED

1.2.23 Corollary. Let us suppose that dim M = 2.
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1.2. Riemannian connections

If, pointwisely, (ey, e5) is an orthonormal basis, then we have the equality
R(e1, ez, e1,62) = % (r),

and, equivalently,
R(er1, ez, e1,€2) + R(ea, €1, €9, €9) = (1) . O

1.2.24 Corollary. Let us suppose that dim M = 2.
Then, by denoting the contravariant volume form of M by 7, we obtain

(R, p@n) =3 (r).

PROOF. Let, pointwisely, (e1, e2) be an orthonormal basis and (¢!, €2) the dual basis.
Then, pointwisely, we obtain

ﬁ®ﬁ:(el/\62)®(el/\eg)

%(61®62—62®€1)®%(61®€2—62®61)
=i(e10eRe®eateaRe®ea®e—e1®eaQe®e —eQe Qe ®e).

Hence, pintwisely, we obtain
(men, qeq) =1 .

Eventually, we obtain
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CHAPTER 2

CONNECTIONS AND SUBMANIFOLDS

In this chapter we introduce the notion of submanifold ) of a manifold M .

We discuss and compare two viewpoints for the analysis of geometric structures
of the submanifold:

- the viewpoint of the environing manifold,

- the intrinsic viewpoint of the submanifold.

In this context, we analyse the parallel and orthogonal projections of objects of
the manifold, with respect to the submanifold. In particular, we study the Gauss
splitting of the connection.

Then, we study the hypersurfaces, i.e. the submanifolds of codimension 1.

23



24 Chapter 2. Connections and submanifolds

2.1 Submanifolds

A submanifold of a manifold is defined to be a subset characterised by “regu-
lar” constraints. Then, the environing manifold induces a smooth structure on this
subset.

2.1.1 Basic definition

Let us consider a manifold M of dimension m .

2.1.1 Definition. A submanifold of M is defined to be a subset
j:Q— M,
which is locally characterised by equations (called constraints) of the type
' =0, [+1<i<m,

where x' are local functions which belong to a chart (z7) of M .
Such a chart of M is said to be adapted to Q) .0

Let us consider a submanifold Q) C M .

We can easily see that () inherits a smooth structure of manifold with dim@Q = 1.

The induced atlas is constituted by the charts
(z') = (20, 1<i<I.

We shall always refer to adapted charts of M and to the induced charts of @) .
In general, the symbol T will label objects living on the submanifold.

The coordinate expression of the inclusion j is quite simple:

(@)oj=("), 1<i<i, (oj=(0), I+1<i<m,

2.1.2 Tangent and cotangent spaces

We analyse the basic relations between the tangent and cotangent spaces of the
submanifold ) and of the environing manifold M .

We see that there is a natural inclusion 7'Q) — TH M and a natural projection
TéM — T'Q, whose coordinate expressions are quite simple.

We denote by
ToM Cc TM and T*QM

the subspaces of vectors and forms of M whose base point belongs to @) .
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2.1.2 Proposition. The map j induces the natural maps
Tj:TQ — ToM and 75 : ToM — T7Q ,
which are, respectively, injective and surjective. O

2.1.3 Note. Indeed, the following interpretations hold.

1) The map T'j allows us to regard naturally the vectors tangent to ) as particular
vectors of M .
Accordingly, we shall identify T'Q) with its image Tj(TQ) C T M .

2) By definition of the transposition * of the inclusion 7’7, the projection T%j is just
the restriction of the forms of M over ) to the vectors tangent to the submanifold @ .
In other words, if w is a form of M over (), then, for each vector field X of ), we
have
(T o (W) (X) =w(TjoX)~w(X).O

2.1.4 Proposition. The coordinate expressions of T'j and T™j are
(a',@") o Tj = (21, 21), 1<i<i,  (2",d")oTj=(0,0), I+1<i<m,
(21,57 oT*j = (21, 21,), 1<idi<I.

Thus, each vector field X : Q — T'Q of Q) can be naturally regarded as a vector field
X :Q — ToM of M over (), according to the coordinate expression

X=> X0zt =Y X'(0x;)o0j.

1<i<] 1<i<l

On the other hand, each form w : @ — T5M of M over @ can be naturally projected
onto a form 7(w) : Q — T*Q of @), according to the coordinate expression

m(w) = Z w;da' .0
1<i<l

2.1.5 Remark. We stress that the smooth structure DOES NOT yield a natural
linear projection ToM — T@Q and a natural linear injection 7@ — T5M .

In other words, the smooth structure DOES NOT yield a natural splitting of TyHM
into T'Q) plus a complementary subspace. Of course, each adapted chart yields locally
such a splitting, but different charts yield different splittings.

On the other hand, if M is a Riemannian manifold, then the Riemannian metric g
induces a natural splitting as above. O

2.1.3 Induced Riemannian metric

Next, we assume that the environing manifold M be a Riemannian manifold
equipped with the Riemannian metric g .
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26 Chapter 2. Connections and submanifolds

In this case, the submanifold inherits in a natural way a Riemannian metric g .

From now on, we suppose that M be a Riemannian manifold equipped with the Rie-
mannian metric g .

2.1.6 Proposition. The induced map

gT::j*g:go(zjTj):TQgTQ—HR

turns out to be a Riemannian metric of Q).

2.1.7 Definition. The induced metric g is said to be the first fundamental form of
the submanifold ) .0

2.1.8 Note. We observe that, in any adapted chart, the matrix (g';;) of ¢g' coincides
with the submatrix of (g;; o j) consisting of the first [ rows and ! columns. O

2.1.4 Parallel and orthogonal projections

The Riemannian metric g of the environing manifold M allows us to split the
vectors of M , whose base point belongs to the submanifold (), into their parallel
and orthogonal components with respect to @ .

We show a convenient way to compute the projections into the parallel and
orthogonal components.

We denote the parallel and orthogonal projections induced by g by
l ToM - TQ CcTugM  and 7+ :ToM — TQ*+ C ToM .
Let us compute the coordinate expressions of these projections.
2.1.9 Definition. An adapted chart (z?) is said to be special if
(0x)0j:Q — TQ™, I+1<i<m.

Indeed, the coordinate expressions of the parallel and orthogonal projections are very
simple in a special chart.

2.1.10 Proposition. In a special chart, for each vector field X of M over (), we have
the following coordinate expressions

(X)) = )" X'oaf;

1<i<l

THX)= ) X'(0x;)oj.

1+1<i<m
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Moreover, in any special chart we have
(G =(g")oj, 1<hk<Ii.O

Unfortunately, not all adapted charts are special.
For a general chart, a convenient way to perform the parallel and orthogonal projec-
tions is to pass through forms, as follows.

2.1.11 Proposition. The following diagram commutes

£l

TQM — TQ

| T

PROOF. Let X be a vector field of M over @ . Then, for each vector field Y of @), we have
g(X1Y) = 9(X,Y) = (¢"(X), Y) = (x(¢’(X)), ) = g ((9")}(x (¢’ (X)), ¥)
=9 (9" (r(g’ (X)), Y).

Hence, we obtain
X = (g"*(r(¢’(X))) . QED

2.1.12 Corollary. For each vector field X of M over (), we have the following coor-
dinate expressions, in any adapted chart,

1<i i<l
A(X) = > (9" g X" 0a,
1<h<m
1<i i<l
(X)) = Z X' (0z;)0j — Z (g")¥ gththTi.D
I+1<i<m I+1<h<m

2.1.13 Note. We can easily verify that the coordinate expressions in the above Corol-
lary 2.1.12, valid for any adapted chart, coincide with the expressions in Proposition
2.1.10, valid for a special adapted chart.

In fact, for a special adapted chart, we have, foreach 1 < h<mand 1 <:i </,

1<5<l
> (g gn = 6,0
2.1.5 Induced Riemannian connection

The submanifold @ inherits in a natural way a Riemannian connection from the
environing Riemannian manifold M .
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In fact, the Riemannian metric g, induced on the submanifold Q, yields a
Riemannian connection V' on the submanifold Q.

In Section 1.2.4, we have discussed a convenient way to compute the symbols
of a Riemannian connction via the Lagrange formulas.

Clearly, this convenient procedure can be applied also to the induced Rieman-
nian connection V! by writing the Lagrange formulas for the induced Riemannian
metric function GT.

Let VT be the Riemannian connection of @) induced by g'.
2.1.14 Proposition. According to the general theory, the coefficients of V1 are given
by

1<ihk<l.0

Next, we refrase the convenient procedure (see Section 1.2.4) for the computation of
the symbols of any Riemannian connection V to the case of the induced Riemannian

connection V1.

Let us consider a curve ¢! : IR — @ and its differential

de' 'R = TQ,

with coordinate expression

zliocl =l i o dc’ = Def?.

2.1.15 Lemma. The map
Vide:=(Vigi XN o : IR = TQ),

where XT : Q — T'Q is an extension of dc' , does not depend on the choice of the extension,
hence is well defined. O
2.1.16 Definition. We say that Vidc' is the (intrinsic) curvature (or the (intrinsic)

acceleration) of ¢ .00
We have the coordinate expression
Vide = (DZC“ + (I, o c) Det? Dch) 0zt 0cl).
The covariant (intrinsic) curvature of ¢’ is defined to be the map
g’(Vide) : R — T*Q,

Surfaces-2012-03-09.tex; [output 2012-03-09; 10:39]; p.28



2.1. Submanifolds 29

with coordinate expression
g (Videh) = gy o cf (D*c'7 + (D)7, o c') Det™ Det®) (dat o ).

2.1.17 Theorem. [Lagrange formula.] The covariant (intrinsic) curvature of c' is
given by the following formula

OGT OGT
AR
951 2 — (55

(9" (V'dch) = E(GT, ') := (D( odc')) (dz'" o c).O

2.1.18 Note. In practice, a quick way to compute the coefficients of V' is the fol-
lowing:

- compute the covariant curvature of a generic curve ¢ , through the Lagrange formulas
of the submanifold @,

- then compute the curvature of ¢’ by means of ¢'*,

- eventually extract the non vanishing coefficients of V1.0

2.1.6 Gauss splitting of connection

The covariant derivative of a vector field of the submanifold @) with respect
to another vector field of the submanifold @ turns out to be a vector field of the
environing manifold M , whose base points belong to the submanifold ) . Hence, we
can split this vector field into its parallel and orthogonal components with respect
to the submanifold @ .

Indeed, these parallel and orthogonal components have very interesting proper-
ties.

2.1.19 Lemma. Let X : Q — TQ and Y : Q — T'QQ be vector fields of (). Then, the
map

VxY:i=ViYo0j:Q—TM,

where X : Q — TQ and Y : Q — T'Q are extensions of X and Y, respectively, does not
depend on the choice of these extensions, hence it is well defined.
We have the coordinate expression

ViV = Y X'(0Y7+(Tino0j)Y") (0x;0)
1<4,5,h<l
I+1<r<n

+ ) X' (Mo )Y (0w 0 ).

1<4,h<l
ProoOF. It follows easily from the coordinate expression of V 5(}7 .QED

2.1.20 Lemma. Let X : Q = TQ and Y : Q — T'QQ be vector fields of ().
Then, we have the splitting

VyY =Vly v+ vty
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where
ViyYi=aloVyY:Q 5TQ and ViyYi=rloVyY:Q — TQ*

2.1.6.1 Parallel component

Then, we can state a first important result, which concerns the parallel com-
ponenent VixY of VxY.

2.1.21 Theorem. The map

VIT@Q) xTQ) - T(Q): (X,Y) = Vigy

turns out to be the Riemannian connection of Q.
Namely, we have

vi=wvt.

Thus, we have the following coordinate expression

+1<r<m
I = (Dh's) o j + Z (g Th"x) 0 g, 1<e,h k<1,
1<5<1
=5 > ()7 (gl + g jn = Oyg'h),  1<ih k<L

1<5<i
PROOF. We can easily see that the map

(X,Y) = Vixy

is a linear connection of @ .
Let us prove that VI is the Riemannian connection of @, that is that

Vigh=0, ViyY-viyy—[X,Y]=0, VX,V eT(Q).
In fact, we have

(Vixgh (v, 2) =VIx (4" (V. 2)) - g"(VIxY, Z) - ¢"(v,VIx 2)

=Vx (9, 2)) —g(VIxY, 2) - g(v,VIx2)
=0.

Moreover, we have
Viy —vixy - (X, Y] = (VeV)l = (Vi X)) - [X,Y]

[7]”[]
=X Y] - [X, Y]

Thus, because of the uniqueness of the Riemannian connection, we obtain

vl = v .QED
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Now, we can compare the computations of the symbols of the Riemannian connection
V in the environing manifold M and of the symbols of the Riemannian connection V1 in
the submanifold () via the Lagrange formulas and find a useful relation between them.

2.1.22 Proposition. Let ¢: R — @) C M be a curve. Then, the following diagram

commutes
Vide
7l
TQH TQ
R (g")*

Kb(VdC)

T M T*
Q T Q

(g")"(VTde)

Thus, the covariant curvature of ¢ in () is just the restriction of the covariant curvature
of cin M .O

The above result can be interpreted by saying that the restriction to @) of the Lagrange
formula for the metric function G' of M is just the Lagrange formula of @) for the restricted
metric function Gt of Q.

2.1.23 Proposition. The following diagram commutes

o=y A%
E(G,c) =g’ (Vdc

IR/ Tj*
E(GT,¢) = ww%m

In other words

(@) =£(G).

ProOOF. The above diagram commutes because it is is a piece of the diagram of the previous theorem.
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On the other hand, the same result could be obtained directly from the Lagrange formula, in the
following way. The restriction to @ of the partial derivatives of a function (G) of M with respect to
adapted coordinates of @ are just the partial derivatives of the restricted function (GT) of Q with respect
to the same coordinates of () . Hence, we obtain

(E@G)T =£(GT).QED

2.1.24 Remark. Indeed, the simple proof of the above Proposition 2.1.23 could also
be taken as an alternative direct proof of the above Theorem 2.1.21.0

2.1.25 Note. The above Proposition 2.1.23 provides also a convenient alternative
method for computing the symbols of the induced Riemannian connection V', when we
have already computed the symbols of the Riemannian connection V .

In fact, the non vanishing covariant symbols I'T;;; of the induced Riemannian connec-
tion VI of @ turn out to be just the restrictions to the submanifold @ of the covariant
symbols I';;; of the Riemannian connection V of M

Iy =Tmjoj, with 1<4,h,j<I.

Eventually, the non vanishing contravariant symbols I'T;"; of the induced Riemannian
connection V1T of @ can be computed by menas of the metric isomorphism g'* as follows

FTihj = Z ghk Lipg . O

1<k<l

2.1.6.2 Orthogonal component
Next, we analyse the orthogonal component V- xY of VxV .
2.1.26 Theorem. The map
N=VTQ) xTQ) = THQ): (X,Y) — V'Y
turns out to be a symmetric tensor

N=TQxTQ — TQ",
Q

whose coordinate expression is

N = Z dz" ® da* @ (7( Z (Th'e8;) 04)) -

1<h,k<l I+1<i<m
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Proor. We have
(ViY) o
=7 ( Z Xh(ath + Fhikyk) 81%) o
1<i,h,k<
+1<i<m

> X"YErt(Ty'r0i) 0 j. QED
1<h,k<I

Thus, we stress that the coordinate expression of N(X,Y):=V+xY does not involve
the partial derivatives of the components of Y, but it depends pointwisely (and in a
symmetric bilinear way) on the components of both X and Y .

2.1.27 Definition. We call N the Gauss tensor.O

2.1.6.3 The splitting

Eventually, we can summarise the above results concerning the parallel and
orthogonal components of VxY as follows.

2.1.28 Corollary. [Gauss splitting]
For each vector fields X,Y of @), the splitting of the covariant derivative VY into
the parallel and orthogonal components to () reads as

VxY =ViyY + N(X,Y).O
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2.2 Hypersurfaces

In the particular case when the dimension of the submanifold @ is dim Q) =
dim M — 1, we can achieve several further interesting results.

2.2.1 Definition. We say that Q C M is a hypersurface if | =m — 1.0

From now on, we assume that Q) be a hypersurface.

2.2.1 Unit normal vector field

An important feature of the hypersurface depends on its unit normal vector
field.

Indeed, this object and the further objects derived from it are “estrinsic” with
respect to the hypersurface, as they depend on how the hypersurface () is embedded
in the environing manifold M .

2.2.2 Definition. A unit normal vector field is defined to be a vector field

n:Q—TQ*
such that
gln,n)=1.0
2.2.3 Proposition. A unit normal vector field can be expressed (up to sign) by the
equality
n.= gﬁ(iﬁQ 7_7M> : Q — TQJ' s
where

g : Q — A*TQ and v 2 Q — ATM

be the volume vector of () and the contravariant volume form of M .
Thus, we have the coordinate expression (up to sign)

\‘fg:i))l\gmar, with  1<hk<m, 1<ij<m-1, s=m.0O
gl

ﬁl
(]

1<r<m

2.2.4 Corollary. The above Proposition implies that a unit normal vector field exists
at least locally and is unique up to sign.

Moreover, if M and () are orientable, then a unit normal vector field exists globally
and is unique up to sign.d

Now, let us assume that such a unit normal vector field exists globally and let us
choose its sign.
So, from now on, we consider a global unit normal vector field n .
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2.2.2 Weingarten tensor and second fundamental form

The Weingarten tensor and the associated second fundamental form are further
important “extrinsic” objects derived from the unit normal.

2.2.5 Lemma. For each vector field X : Q — To M , we obtain the section
Vxn:Q —TQ.
PROOF. The identity g(n,n) = 1 yields
g(Vxn,n)=0.
Hence, Vxn is tangent to @ . QED

2.2.6 Definition. We define the following tensors.
We define the Weingarten tensor of @ to be the (1,1)-tensor

L::V”TL:TQ—)TQ : X = Vxn.
We define the second fundamental form of @ to be the (0,2)-tensor

L::VHD:TQéTQ—HR: (X,Y) = (Vxn, V),

where n:=¢’(n) : Q — T%Q .0

2.2.7 Proposition. The second fundamental form turns out to be to be the bilinear
form associated with L by the metric ¢', that is

L=g"(L):TQ x TQ —-R: (X,Y) ¢'(L(X),Y).O

Hence, the two tensors L and L are “equivalent”, as they are linked by the mutually
inverse metric isomorphisms ¢ and ¢'* .

We have interesting relations between the second fundamental form, the Riemannian
connection V of the environing manifold, the Riemannian connection V' of the hyper-
surface and the Gauss tensor N ;| according to the following Proposition and Corollaries.

2.2.8 Proposition. For each vector fields X, Y of (), we have
L(X,)Y)=—¢g(VxY,n)=—g(VyX, n).
Thus, second fundamental form is symmetric:

L(X,Y) = L(Y, X).
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PRrROOF. We have

L(X,Y)=g(Vxn,Y)
= X.(g(n, Y)) —g(n,VxY)
=—g(n,VxY)
=—g9(VxY,n).

Analogously, we obtain
L(Y, X) = —g(Vy X,n).

Moreover, we have
L(X,Y)=L(Y, X),

because

2.2.9 Corollary. We have the equality
N=-L®n=-Vnen,
i.e., for each vector fields X,Y of @),
NX,Y)=—(Vxn,Y)n=—(Vyn, X)n,

where
ni=g’'(n): Q —T"M.
PROOF. We have

N(X,Y)=g(VxY,n)n
— _L(X,Y)n
=—g(Vxn,Y)n
— (Vxn,Y)n.QED

2.2.10 Corollary. For the hypersurface (), the Gauss splitting reads as
V=V -L&n,
i.e., for each vector fields X,Y of @),
VxY =ViyY - L(X,Y)n.O

2.2.11 Remark. We stress that the formulas of the above corollaries do not depend
on the sign of n. In fact, Vn ® n depends quadratically on n .

This observation implies that the above corollaries hold even if a global n does not
exist. In fact, the possible obstruction to the global existence of n is due just to the
ambiguity of the sign of n.O
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2.2.3 Distinguished points and vectors

There are possible points of the hypersurface and vectors tangent to the hyper-
surface which have distinguished properties with respect to the Weingarten tensor.

2.2.12 Definition. A point ¢ € @ is said to be
- an umbilic point if
L,=rid,,

- a flat point if
L,=0.0

2.2.13 Definition. Non zero vectors X,Y € T,() are said to be conjugate if
L(X,)Y)=0.
A non zero vector X € T,() is said to be asymptotic if it is self-conjugate, that is if

L(X,X)=0.0O
The Weingarten tensor is a symmetric operator, hence it is diagonalisable.

2.2.14 Definition. We define the principal curvatures and the principal curvature
vectors to be, respectively, the eigenvalues and the eigenvectors of L .O

2.2.15 Definition. A 1-dimensional submanifold ¢ C @) is said to be a line of curva-

ture if its tangent vectors are principal curvature vectors. O

2.2.4 Gauss curvature and mean curvature

The two main invariants of L (i.e. its trace and determinant) play an important
role in the theory of hypersurfaces.

2.2.16 Definition. We define the total curvature (Gauss curvature) and the mean
curvature of @) to be, respectively, the functions

K:=detL:Q — 1R and H=trL:Q—1R.0O
2.2.17 Note. We have
K=detL=X...\ and H=trL=MN+--4+ M\,
where A1, ..., A\ € IR denote the eigenvalues of the Weingarten tensor. O

2.2.18 Note. In the particular case when dim ) = 2 the invariants K and H are the
only invariants of L and they characterise L .
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2.2.5 Second fundamental form and curvature

We can exhibit interesting relations between the “extrinsic” second fundamental
form and the “intrincic” Riemannian curvature tensor of the hypersurface.

2.2.19 Lemma. For each vector fields X,Y, Z of (), we have
L(X,L(Y)) = L(Y, L(X)).

PROOF. We have the coordinate expression

L(X,L(Y)) =Ly X" L;" Y7
=" Lip Lijp XTYV
= g"" Ljx Lin X' Y7
=g" Ljp Lipg X'Y7
=Ly L"X'Y7
=L(Y,L(X)).QED

2.2.20 Proposition. Let us suppose that the Riemannian curvature tensor R of M
vanishes. Then, for each vector fields X,Y of (), we have

Vix(L(Y)) = Vv (L(X)) = L([X,Y]) = 0.
PROOF. By recalling the identities
LY):=Vyn, L(X):=Vxn, VixY=VxY+L(X,Y)n, ViyX=VyX+LY,X)n,
we obtain
Vix(L(Y)) = VIy (L(X)) - L([X,Y]) = VIxVyn — VIy Vxn — Vix yn

= vay’n — VyVX’n — V[X’y]n
+ L(X,L(Y))n— L(Y,L(X)) n

2.2.21 Proposition. Let us suppose that the Riemannian curvature tensor R of M
vanishes. Then, for each vector fields X,Y, Z of (), we have

RIX,Y;Z) = L(Y, Z) L(X) = L(X, Z) L(Y) .
PRrROOF. By recalling the identities

L(Y):=Vyn, L(X):=Vxn, VxV=VixY—g(L(X),Y)n, VyX=ViyX—g(LY) X)n,
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we obtain

0=R(X,Y;Z)
=VxVyZ - VyVxZ - VixyZ

=ViviyZ - g(L(X),ViyZ)n
—9(VIx(L(Y)), 2)) n— g(L(Y),V'xZ)n — g(L(Y), Z) Vxn
~ ViV Z + g(L(Y),VixZ)n
+g(Viy(L(X)), ))n+g(L(X),V*yZ)Hg(L(X),Z)Vyn

~VixvZ - g(L(X,Y]), Z)n
=viviyz

- g(vTX(L(Y))’ Z)) n— g(L(Y)v Z) Vxn
- Vvivixz

+9(Viy(L(X)), Z)) n+ g(L(X), Z) Vyn
~VixyZ +g(L(X,Y]), Z)n

=viviyZz

—9(VIx(L(Y)), Z)) n — L(Y, Z) L(X)
- vivixz

+9(VIv(L(X)), Z)) n+ L(X, Z) L(Y)
- VixyZ +9(L(X,Y]), Z)n

Next, by considering in the above equality the component tangent to ), we obtain

0=ViVlyZ -VivlyZ - Vixy1Z - L(Y,Z2) L(X) + L(X, Z) L(Y)
=R(X,Y,Z) — L(Y, Z) L(X) + L(X, Z) L(Y) .QED

2.2.22 Note. We might prove the above Lemma contextually to the above Proposi-
tion. In fact, in the proof of the above Proposition, the component of

O = R(X,Y, Z) = VvaZ - Vyvxz - V[X,y}Z
orthogonal to @) gives the equality

0

(VIx(L(Y)), 2)) = 9(VIV(L(X)), Z)) - g(L([X,Y]), 2)

9
g(Vix(L(Y)) = VIV (LX) - L(X,Y]), Z),
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which is the staement of the above Lemma. O

2.2.23 Corollary. Let us suppose that the Riemannian curvature tensor R of M
vanishes. Then, for each vector fields X,Y, Z of ), we have

RIX,Y;Z,W) = L(Y,W) L(X,Z) - L(X,W)L(Y, Z) .0

The above Corollary can be reformulated in the following iteresting way.

2.2.24 Theorem. [Gauss theorema egregium]

Let us suppose that the Riemannian curvature tensor R of M wanishes and that
dim@ = 2.

Then, we have
M =detl = K.

~~ N

In other words, pointwisely, if (ej.e2) is an othonormal basis, then we obtain

RT<€1,€2,€1,€2> =detL = K.
PROOF. By recalling the equality
RIX,Y, Z,W) = L(Y,W) L(X, Z) — L(X,W) L(Y, Z),
we obtain

R(e1,e2,e1,e2) = L(ea,e2) L(er,e1) — L(er, e2) L(ea, e1)
=det L.

On the other hand, we have (see Proposition 1.2.22)

B(61362761762) = % <I> . QED

2.2.25 Note. The above Theorem can also be expressed by the equality
R, ' @q) =det L = K.O

2.2.26 Remark. We stress that the above results do not depend on the existence of
a global n and on its sign and do not depend on the existence of a global #f and on its
sign. In fact, n and 77 appear quadratically in the above formula. O

2.2.27 Remark. We stress that, in the equality of the above Theorem, the function
% (r)T = (R", 7T @ ;") depends only the “intrinsic metric” g of the submanifold @ , while
the function det L is defined by means of the “extrinsic” covariant differential Vn of the
normal unit vector of the submanifold () .

Thus, the above Theorem links “intrinsic” and “extrinsic” objects of the hypersurface

Q.0
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2.2. Hypersurfaces 41

2.2.28 Corollary. Let consider two hypersurfaces Q C M and )’ C M and let us
suppose that they be isometric, that is that there exists a diffeomorphism f : Q — @’
which preserves the induced metrics g and ¢'T.

Then, we have
K=Kof.

PRrooF. In fact, in virtue of the isometry, we have

M =@Tof,

because the the “intrinsic” scalar curvature of a submanifold depends only on the “intrinsic” metric. QED
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Chapter 2. Connections and submanifolds
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CHAPTER 3

EXAMPLES

In this chapter, we analyse in detail some distinguished examples.

Indeed, we consider an affine space, a sphere, a cylinder and a paraboloid. With
reference to this manifold and these submanifolds, we analyse all general results
studied in the above chapters.

43



44 Chapter 3. Examples

3.1 Euclidean spaces

We introduce the notion of Euclidean space, as a simple example of Riemannian
manifold.

3.1.1 Definition. We define a Fuclidean space to be an affine space E, associated
with the vector space, equipped with a Euclidean metric of £

ge E*® E*.O
From now on, we assume a Euclidean space E'.

3.1.2 Note. We can regard the Euclidean space E as a Riemannian manifold equipped
with the “constant” Riemannian metric

g:E—=T'EQT'E ~ Ex (E*® E*): e (e, g(e)),
where we have taken into account the natural isomorphism

T"E=FEx E*.0

3.1.1 Distinguished charts

We consider distinguished systems of coordinates, namely, the cartesian, sher-
ical, cylindrical and parabolic coordinates. The computations in parabolic coordi-
nates are due to the student Luca Salvatori (2001).

The Euclidean F space admits a distinguished type of global charts, which reflect in
a natural way its affine structure and metric structure.

3.1.3 Definition. A cartesian chart is defined to be a chart (z') constituted by
functions of the type

7 E—R:e—gle—o, e,
where o is a point of E and (e;) is an orthonormal basis of E .0

3.1.4 Proposition. In a cartesian chart, the coordinate curves turn out to be the
maps
i RXxE—E:(\e)re+Adle;.

Hence, we obtain
a!L’i =e¢;.0
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3.1. Euclidean spaces 45

From now on, we assume that dim £ = 3.
We denote the cartesian charts by

$EQJ1, yEIEQ, z = 3.

Il
8

Besides the cartesian charts, we shall be involved with other curvilinear charts.
In particular, we shall consider:

- the spherical chart (r,0,¢),

- the cylindrical chart (p, ¢, z2),

- the parabolic chart (p,0, f),

which are associated with a point 0 € E and an orthonormal basis (e;) of E .

By definition, the transition functions with respect to the cartesian chart are, respec-
tively,

x =rsinfcos ¢,

y =rsinfsing,

z=rcosf,
T =pcoso,
y=psing,
z2=2z,

x = pcosh,
y = psinf,

z2=f+ap*, with a>0.

Hence, we obtain

r=+vx%+y%+ 22,
p=Vatty?,

f=z—ap*.

In order to help the visibility of formulas in the above charts, we shall denote the in-
dices of components of tensors by the corresponding coordinate function. So, for instance,
in a spherical chart, the coordinate expression of a vector field will be written as

X =X"0r + X906 + X%0¢.
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46 Chapter 3. Examples

3.1.2 Riemannian metric

We compute the expressions of the metric and of the volume form in cartesian,
sherical, cylindrical and parabolic coordinates.

The coordinate expression of the covariant and contravariant metrics are

g=drdr+dydy+dz®dz
=dr@dr+1*df ®df+r?* sin’0do @ do
=dp®dp+p*dp @ dp+dz @ dz
=(1+4a®p*)dp@dp+p*di @ d0 +df @ df +2ap(dp @ df +df @ dp),

G= 0,00, +0,®0,+0. 0.
1 1

:8r®3r+ﬁ89®89+m8¢®8¢
1

= 0,00, + 30,80, +0. 0.

1
:ap®8p+E89®89+(1+4a2p2)8f®8f—2ap(8p®8f+8f®8p).

Hence, the coordinate expression of the metric function is

G =3 (@ +y° + 27

(7*2 + 72602 4+ 12 Sin29q52)

(0° + p* ¢ + )
(1+4a*p") >+ 0 + [P +2ap(pf+ fp)) -

N[ NI= N N

—~

The volume form induced by the metric g and by the orientation of the chosen charts
has coordinate expression

n=drNdyNdz
=r%sind dr A df A do
=pdpNdp Ndz
=pdpNdi Ndf .

3.1.3 Riemannian connection

We show that, in a Euclidean space, the Riemannian connection coincides with
the standard differential of vector fields.

Then, we compute the coefficients of the connection V, in cartesian spherical,
cylindrical and parabolic coordinates, by means of the Lagrange formulas.
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3.1. Euclidean spaces 47
3.1.5 Proposition. The Riemannian covariant differential V coincides with the stan-
dard differential D induced by the affine structure:
V=D.

PROOF. In fact, D fulfills all properties of connections; moreover, the torsion tensor of D vanishes
in virtue of the Schwartz theorem and Dg = 0 because g is constant. QED

3.1.6 Proposition. In cartesian coordinates, all symbols of V vanish
h

3.1.7 Proposition. In spherical coordinates the non—vanishing coefficient of V are

Fgrg = T F¢T¢ = —-T sin2 0
1
[0y=", == F¢,9¢ = —sinfcosf
r
1 cos
I‘T¢ :F¢r:— r.2, =1.%, =
¢ ¢ r o ¢ ¢ Sing

PrROOF. The covariant curvature of a curve ¢ : IR — F is given by
(Vde), = D*¢" — ¢ (D)% — ¢ sin? ¢ (De?)?
. 2
(Vdc)g = (c")? (D + — Dc” Dc? —sinc? cosc? (Dc?)?)

C

COs Co

2
(Vde)y = (c")? sin? ¢! (D%c? + 7DCTDC¢ +2 g Dcf Dc?),
c

sin
hence the curvature of ¢ is given by
(Vde)" = D?*¢" — ¢ (D?)? — sin? ¢ (Dc?)?)
(Vde)? = D?¢? + C%Dcr Dc? —sinc? cosc? (De?)?

COS Ca

2
(Vde)? = D?c¢? + = Dc" Dc? + 2 D¢’ De? . QED
CT

sin 0

3.1.8 Proposition. In cylindrical coordinates the non—vanishing coefficient of V are

Lofo=—p T,%=Ts"=1/p.
PRrROOF. The covariant curvature of a curve ¢ : IR — F is given by
(Vde), = D*c? — ¢ (Dc?)?
(Vde)g = (¢?)*(D*c? + C%DCPDC¢)

(Vde), = D*c*,
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48 Chapter 3. Examples

hence the curvature of ¢ is given by
(Vde)? = D*c? — ¢(Dc?)?
(Vdc)? = D%c? + C%Dc"Dc‘b
(Vde)* = D*c¢* . QED

3.1.9 Proposition. In parabolic coordinates the non—vanishing coefficient of V are
0 0
LyPg = —p, L)% =T¢",=1/p, r,/,=2a, Tolg =2ap®.
PROOF. The covariant curvature of a curve ¢ : IR — FE is given by

(Vdc), = (1 +4a®(c?)?) D*¢” +2ac” D*c/ + 44 c? (Dc?)? — ¢ (Dc?)?
(Vde)g = (¢?)? D?c¢? +2¢” De? D?
(Vde) s = 2ac” D*c? + D*c! +2a(DcP)?,

hence the curvature of ¢ is given by
(Vdc)? = D*c? — c*(Dc?)?
(Vde)? = D?¢? + C%DCPDCQ
(Vde)' = D?¢f +2a(De?)? +2a(c”)? (D?)? . QED

3.1.4 Riemannian curvature

The Riemannian curvature tensor of the Fuclidean space vanishes.

3.1.10 Proposition. The Riemannian curvature tensor of V vanishes:
R=0.
PROOF. In fact, in a cartesian chart the symbols of the connection vanish. QED

3.1.11 Remark. We stress that, if we refer to curvilinear coordinates, then the co-
efficients of V may be different from zero, because they are not the components of a
tensor.

But, also in this curvilinear chart, the components of the Riemannian curvature tensor
R still vanish, because, if they are zero in a chart, then they are zero in all charts. O
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3.2. Ruled and developable surfaces 49

3.2 Ruled and developable surfaces

In this section we discuss a few notions concerning special types of hypersurfaces
of the Euclidean space.

3.2.1 Definition. A ruled surface is defined to be a hypersurface () of £ such that
through each ¢ € @) there passes a segment of a straight line lying on (), which is called
a generator.

A developable surface is defined to be a ruled surface @) such that, for each vector field
X tangent to the generators,

Vxn=0.0

3.2.2 Remark. A ruled surface is developable if and only if its tangent plane is
constant along generators. ]

3.2.3 Proposition. If () is a ruled surface, then
K <O0.

If ) is a developable surface, then
K=0.

PROOF. Let X be a unit vector of @) tangent to the generators and Y a unit vector of @) orthogonal
to X .
If Q is a ruled surface, then we obtain

0=VxX=VixX - L(X,X)n,

which implies
L(X,X)=0.

Then, we obtain
K = L(X,X)L(Y,Y) = L(X,Y) L(Y, X) = —(L(Y, X)) < 0.
If Q is a developable surface, then we have additionally
0=Vxn=L(X),
hence K =0.QED

Conversely, one can prove the following result (we omit the proof).

3.2.4 Proposition. Let ) be a closed connected ruled surface. Then, () is developable
if and only if
K=0.0
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50 Chapter 3. Examples

3.3 Cylinder

Now, we suppose that the submanifold @) be the circular cylinder C' whose axis
is the straight line (0,e3) C E and whose radius ist > 0.

We shall refer to the adapted cylindrical chart (p, ¢, z) .

3.3.1 Riemannian metric

Let us compute the Riemannian metric and the induced algebraic objects.

3.3.1 Proposition. The coordinate expression of the metric and of the contravariant
metric are

1
g =g =12dp @ dp + dz ® dz and QT:—20¢®@¢+32®82.
r
The coordinate expression of the metric function is
Gt=10"¢*+2%).0

3.3.2 Proposition. The volume form induced by the metric g" and by the orientation
of the chosen chart has coordinate expression

n'=1?2dp Adz.O

3.3.2 Extrinsic curvature

Let us compute the unit normal, the Weingarten tensor, the second fundamental
form and the Gauss tensor.

3.3.3 Proposition. We have the global unit normal vector field
n=0p.0

3.3.4 Proposition. The Weingarten map and the second fundamental form are

1 1
L:_ﬂ-ea L:_gTe7
Tr Tr

where 7, is the equatorial projection and ¢'. is the “equatorial metric”.
Namely, we have the coordinate expressions

L=Ylwwos., L-rdieds.C
T
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3.3. Cylinder 51

3.3.5 Corollary. The principal curvatures and the corresponding principal eigenvec-
tors are

N=0 and N = E
r

and
/ "
v =0, and v = 0p.0
Thus, the coordinate curves x4 and z, are curvature lines. O

3.3.6 Corollary. The cylinder is a ruled and developable surface. O

3.3.7 Corollary. The mean curvature and the total curvature are

H=trL=

1
- and K=detL=0.0O
T

3.3.8 Proposition. We have

1
N=--4".®0,.0
T

3.3.3 Riemannian connection

Let us compute the symbols of the Riemannian connection by means of the
Lagrange formulas.

3.3.9 Proposition. All coefficients of VT vanish.
PROOF. The covariant curvature of a curve ¢ : R — C is given by
(Vde)y = 12D?c?,
(Vdc), = D*c*,
hence the curvature of ¢ is given by

(Vdc)? = D%¢?,
(Vdc)* = D*¢*.QED

3.3.10 Note. We can compute the non vanishing symbols of V' in an alternative
way (see Note 2.1.25).

In fact, the non vanishing symbols I'T;,; of V1 are the restrictions to C' of the symbols
Lipj of V, with ¢,5,h = ¢, 2.
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But, all such symbols FTZ-;U- vanish

3.3.4 Riemannian curvature

Let us compute the Riemannian curvature tensor, the Ricci tensor and the
Riemannian scalar curvature.

3.3.11 Corollary. The Riemannian curvature tensor of V' vanishes:
R =0.0
3.3.12 Corollary. The Ricci tensor vanishes
' =0.
3.3.13 Corollary. The Riemannian scalar curvature vanishes
m'=0.0
3.3.14 Note. There is an agreement between the two equalities

It=0=K.0
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3.4. Sphere 53

3.4 Sphere

Now, we suppose that the submanifold () is the sphere S whose center is 0 € E
and whose radius isr > 0.

We shall refer to the adapted spherical chart (r,0, ¢) .

3.4.1 Riemannian metric

Let us compute the Riemannian metric and the induced algebraic objects.

3.4.1 Proposition. The coordinate expression of the metric and of the contravariant
metric are
1
sin? 6

g' =12 (df ® df + sin® 0 dp @ dp) and g = %(89@89—1— 0o ® 09) .

The coordinate expression of the metric function is
Gl =112 (0? +sin6 ¢%) .00

3.4.2 Proposition. The volume form induced by the metric ¢' and by the orientation
of the chosen chart has coordinate expression

' =12sinfdf A dp.O

3.4.2 Extrinsic curvature

Let us compute the unit normal, the Weingarten tensor, the second fundamental
form and the Gauss tensor.

3.4.3 Proposition. We have the global unit normal vector field
n=0,.0

3.4.4 Proposition. The Weingarten tensor and the second fundamental form are
1 1
L= —idTS and L: —gT.
r T

Namely, we have the coordinate expressions

Lzl(d9®6e+d¢®a¢) and L=r1(d0®d)+sin*0dp®dg).
T
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PRrROOF. We have
VO, =T9%.d° @ 9 +T%,d* ® 04

1
:;(d‘9®69+d¢®8¢).QED

3.4.5 Corollary. All directions tangent to the sphere are principal directions and all
eigenvalues \ are given by

3.4.6 Corollary. The sphere is not a ruled hypersurface (hence it is not a developable
hypersurface). O

3.4.7 Corollary. The mean curvature and the total curvature are

2 1
H=trL=- and K:detL:—Q.D
T T

3.4.8 Proposition. We have

N=—--¢g"®0,.
r

PROOF. We have
N=-L®n.QED

3.4.3 Riemannnian connection

Let us compute the symbols of the Riemannian connection by means of the
Lagrange formulas.

3.4.9 Proposition. The non-vanishing coefficients of V1 are

cos 0

M, = —sinfcosb and Iy, =T1,%, = .
¢ ¢ 0 ¢ ¢ 0 sin

PROOF. The covariant curvature of a curve ¢: IR — S is given by

(Vde)g = 1* (D269 —sinc? cosc? (Dc?)?)

COS 09

Vde)g = r? sin? & (D*c¢? + 2 —— D¢ De?) |
¢

sin c?
hence the curvature of ¢ is given by

(Vde)? = D*? —sinc? cosc? (Dc?)?

COs C(9

(Vdc)? = D?c? 42 Dc? De? . QED

sin ¢?
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3.4.10 Note. We can compute the non vanishing symbols of V' in an alternative
way (see Note 2.1.25).

In fact, the non vanishing symbols I'';,; of V1 are the restrictions to C' of the symbols
Fihj ofV, with i,j,h = 0,925

All such symbols T'f;,; are

Iy = —1% sinf cos and Iygp = TTyse = 1% sin @ cos @,
which yield

cos

I, = —sinfcosd and My, =T1,%2, = )
¢ 9 o9 07 Sing

3.4.4 Riemannian curvature

Let us compute the Riemannian curvature tensor, the Ricci tensor and the
Riemannian scalar curvature.

3.4.11 Proposition. The coordinate expression of the Riemannian curvature tensor

of V1is

Ri =5sin?0df @ dp ®@ 0p @ dop — df ® dop ® Oy @ df
—sin®0do ® df ® Oy @ dp — dp ® df @ Oy @ db)

=2(sin®0dO A dop ® Dy @ de — df A ddp @ Dy @ db) .
PRrROOF. We have

R = (9740 —Tp"; Ty%), — 0sT%; + Ty";T6%,) do @ do @ 90  da?
— (0pT4%; —To"; TP, — 05T + Tu"; T6%,) dop ® dO ® 00 @ da?
4+ (0pT 3% —To" ;T y?) — 0,T6%; + T4 T6%)) dI @ dp @ 09 @ da?
— (0aT%; —To"; Ty — 0sT9%; + T4/ T9%,) dp ® df @ ¢ ® da?

= (9gTy%; —To"; 10, + 14" T9%,) dI @ dp ® 00 ® dx?
— (0T —Toh ;T yb) + 14" T9%,) dp @ df © 90 @ da?

+ (0T 3% — To"; Ty, + Ty, T9%),) dO ® dop @ 8¢ @ dx?
— (0T % —T9"; Ty, + Ty T9%) dp @ dO © 0¢ @ da?

= (0Tl —To"yTylh +Tu" T do @ do @ 00 @ dg
— (0gT 5 —To"y Tyl + Tyl Tp?%1) dop @ d6 @ 00 @ dg
+ (09T 4% — T Ty + Ty T9%1) df @ dp @ D¢ @ db
—(0T4% —T6" 9 Tp?h +Ty"9 To?s) do ® df @ 9¢ @ df
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= (09T —Tp?4 T4l +T4%3Te%) do @ dp @ 90 ® d¢
—(00T4% s —To?4 Tyl + T4 To%) dp ® db @ 00 @ do
+ (0T %9 + Ty T9% ) df @ dp @ Db @ db

— (09T %9 +Tp%gT9?y) dp ® df ® dp © db

osf .

— sinf cosf)) df ® dop ® 00 @ do
sin 6

€080 i cos0)) do @ df © 90 © do
sin 6

= (—cos? 0 +sin? 0 + ¢

— (—cos? 0 +sin?0 +

—sin?0 —cos?20  cos20

df ®d 0 do
+ sin? 0 sin2¢9) ©dp® I ®
o 20_ 29 29
(S T ) dp @ d @ 0 @ df
sin” 6 sin” 6

=5sin0df ® dp @ 90 @ dp — sin? 0 dp ® df @ 90 ® d¢
—dIRdp®IPpRdI+ dop ®dI ® p ® df . QED

3.4.12 Corollary. The coordinate expression of the covariant Riemannian curvature

tensor is
R' =41? sin?0di Adop @ dO A do .

PROOF. We have

RT =212 sin? 0 (df A dp ® df @ dp — dO A dp ® d @ db)
=412 sin?0dh A dop @ do Adg. QED

3.4.13 Corollary. We have the equality

4
Rf =~ yf @y

r

2 ot et
=2 (2n'®n').O
3.4.14 Corollary. The coordinate expression of the Ricci tensor is
' =sin®0d’®d’ +d’ ®d .0

3.4.15 Corollary. We have the equality

T — — gt
=<9
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3.4.16 Corollary. The Riemannian scalar curvature is

2
<I>T:r—2-D

3.4.17 Note. There is an agreement between the two equalities

%@TZI—:K-D
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58
3.5 Paraboloid
Now, we suppose that the submanifold @ is the paraboloid P characterised by
the constraint z = ap?, i.e. f=0.
We shall refer to the adapted parabolical chart (p,0, f).
3.5.1 Riemannian metric
Let us compute the Riemannian metric and the induced algebraic objects.
3.5.1 Proposition. The coordinate expression of the metric and of the contravariant
metric are

1
g =0+4a’H)dp@dp+p*dp®dp and g = ma®a+—a¢®a¢

The coordinate expression of the metric function is
Gl = i ((1+4a2p2)p2+p292) .0

3.5.2 Proposition. The volume form induced by the metric ¢' and by the orientation
of the chosen chart has coordinate expression

n'=p\/1+4a2p?>dpAdb.O

3.5.2 Extrinsic curvature

Let us compute the unit normal, the Weingarten tensor, the second fundamental

form and the Gauss tensor.

3.5.3 Proposition. We have the global unit normal vector field

2
n=——=2l 941414202 0f.0
V1+4a?p?

3.5.4 Proposition. The Weingarten tensor and the second fundamental form are

2a 1
L=- dp®0,+di ® 0
V1+4da?p? (1+4a2 3 dp @0, + 49 0y)
and
2ap 2
L=— (dp @ dp+ p°df @ df).O

V14 4a?p?

Surfaces-2012-03-09.tex; [output 2012-03-09; 10:39]; p.58



3.5. Paraboloid 59

3.5.5 Corollary. The principal curvatures are

N 20 ad N 20

3 _ .
(1+4a2p2)2 V1+4a?p?
The principal vectors are
v =0, and v =0y.0
Thus, the coordinate curve z, and x4 are curvature lines. O

3.5.6 Corollary. The paraboloid is not a ruled hypersurface (hence it is not a devel-
opable hypersurface). O

3.5.7 Corollary. The total curvature and the mean curvature are

4a? da(142a? p?
K—— 20 gq g--telrZap)
(1+da2 p2)t

(14 4a?p?)?

3.5.3 Riemannian connection

Let us compute the symbols of the Riemannian connection by means of the
Lagrange formulas.

3.5.8 Proposition. The non-vanishing coefficients of V1 are

4a?
p FTQPQZ P FTp%:FTGGp:

rte — -
1+4a2p?’

vy =

1
P
3.5.4 Riemannian curvature

Let us compute the Riemannian curvature tensor, the Ricci tensor and the
Riemannian scalar curvature.

3.5.9 Proposition. The coordinate expression of the Riemannian curvature tensor
of VT is
- 8 CL2 ( p2
1 44a2p? 1 +4a2p?

dpANdf @0, ®df —dp N\df & 0y ®dp) .00

3.5.10 Corollary. The coordinate expression of the covariant Riemannian curvature
tensor is
. 16ad*p?

Rt= 2= F
- 1+4a?p?

dpNdf @ dpNdb.O
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3.5.11 Corollary. We have the equality

16 a?
Rt= — 7 ,f
K (1+4a2p2)27} @n
8 a?
_ T T
~ (144a2p?)? @nt@n).0

T

3.5.12 Corollary. The coordinate expression of the Ricci tensor is

4&2 p2
t—e  ——  (dp®d
r 1+4a2p2(p® Pt

3.5.13 Corollary. We have the equality

P
Tl = 59

3.5.14 Corollary. The Riemannian scalar curvature is

8 a?

L
14+ 4a?p?

(r)f

3.5.15 Note. There is an agreement between the two equalities

4 q?

- Y _ k.o
1+4a?p?

3 (o
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CHAPTER 4

SYMBOLS

manifold

tangent space

cotangent space

set of local functions

set of local vector fields

set of local forms

set of local contravariant tensors of order £
set of local covariant tensors of order k
set of local tensors

coordinate functions

coordinate curves

base of forms

base of vector fields

1—th partial derivative

Riemannian metric

covariant differential

torsion tensor

curvature tensor

covariant curvature tensor

Ricci tensor

scalar curvature function
submanifold

metric induced on the submanifold

connection of the submanifold
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Chapter 4. Symbols

Gauss tensor

curvature tensor of the submanifold
covariant curvature tensor of the submanifold
Ricci tensor of the submanifold

scalar curvature function of the submanifold
unit normal vector to an hypersurface
Weingarten tensor

second fundamental form

determinant of the Weingarten tensor

trace Weingarten tensor

Euclidean space

Cartesian coordinates

cylindrical coordinates

spherical coordinates

radius of the cylinder and of the sphere
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