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CHAPTER 1

LINEAR ALGEBRA

In this chapter we briefly review the fundamental notions of linear algebra that
are used throughout the book.

1.1 Vector spaces

Here, we give the definition and main properties of vector spaces. We introduce
the concept of linear map and bilinear map, and study the direct sum splittings.
The subject is developed for arbitrary vector spaces; only in the final section we
specialise the above notions to the case of finitely generated vector spaces, which is
the most important case to our purposes.

1.1.1 Vector spaces

1.1.1 Definition. A vector space is defined to be a 3plet (V,+, ·) , where V is a
non–empty set, and

+ : V × V → V and · : IR× V → V ,

are two maps which fulfill the following properties:

1. ∀v, w, z ∈ V , we have (v + w) + z = v + (w + z) ,

2. ∃0 ∈ V such that, ∀v ∈ V , we have v + 0 = 0 ,

3. ∀v ∈ V , ∃ − v ∈ V , such that v + (−v) = 0 ,

4. ∀v, w ∈ V , we have v + w = w + v ,

5. ∀v, w ∈ V , λ ∈ IR , we have λ(v + w) = λv + λw ,

6. ∀v ∈ V , λ, µ ∈ IR , we have λ(µv) = (λµ)v ,

7. ∀v ∈ V , λ, µ ∈ IR , we have (λ+ µ)v = λv + µv ,

8. ∀v ∈ V , we have 1v = v .

5



6 Chapter 1. Linear Algebra

1.1.2 Note. As a consequence of the axioms, we obtain

0 v = 0 , for all v ∈ V .

From now on, we will denote a vector space (V,+, ·) by V , by abuse of notation.

1.1.3 Note. Let V be a vector space. A non–empty subset V ′ ⊂ V is said to be a
vector subspace of V if

v + w ∈ V ′ and λv ∈ V ′ , for all v, w ∈ V ′ , λv ∈ V ′ .

So, a vector subspace V ′ ⊂ V turns out to be a vector space, whose operations + and
· coincide with the restriction of the corresponding operations of V .

1.1.4 Note. Let V be a vector space and I a non empty set. A vector v ∈ V is said
to be a linear combination of the vectors {bi}i∈I if there exists a finite family {vi}i∈J of
elements of IR , where J ⊂ I is a finite subset, such that v is equal to the following finite
sum of elements of {bi}i∈I

v =
∑
i∈J

vi bi .

The family {bi}i∈I is said to be independent if the vector 0 is a linear combination of
{bi}i∈I in a unique way, namely, the trivial one.

In other words, if J ⊂ I is a finite subset and {vj}j∈J is a family of real numbers, then

0 =
∑
j∈J

vj bj ⇒ vj = 0 , ∀ j ∈ J .

Given a non empty subset S ⊂ V , we define the linear span of S in V to be the
following vector subspace of V

span(S) :=
{∑
j∈J

vj xj | {vj}j∈J ⊂ IR , {xj}j∈J ⊂ S , J finiteset
}
.

It can be proved that span(S) is the smallest vector subspace (with respect to the
inclusion) of V containing S .

1.1.5 Note. Now, suppose that V,W be vector subspaces of a vector space Z . We
observe that V ∩W is a subspace of Z , while, in general, V ∪W is not a subspace of Z .

We define the following subspace of Z

V +W := span(V ∪W ) =
{
λv + µw | v ∈ V , w ∈ W , λ, µ ∈ IR

}
.

It can be easily shown that

1. V ∩W is the greatest subspace of Z contained both in V and in W ;
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1.1. Vector spaces 7

2. V +W is the smallest subspace of Z containing V ∪W .

1.1.6 Definition. A non empty subset G ⊂ V is said to be a set of generators of
V if any vector of V is a linear combination of the vectors of G , or, equivalently, if
V = span(G) .

A non empty subset B ⊂ V is said to be a basis if B is a set of independent genera-
tors.

It can be shown that any vector space admits a basis. More precisely, the following
Theorem holds.

1.1.7 Theorem. Let V be a vector space, G ⊂ V a set of generators and I ⊂ G an
independent set. Then, there exists a basis B such that

I ⊂ B ⊂ G .

1.1.8 Note. If B is a basis of a vector space V , then each vector of V can be expressed
as a linear combination of vectors of B .

Moreover, in virtue of the independence of B , such a linear combination turns out
to be unique. Namely, if B = {bi}i∈I and v ∈ V , then v can be uniquely written as
v =

∑
i∈J v

i bi , where J ⊂ I is a finite subset.

1.1.9 Note. It can be shown that any two bases of the same vector space have the
same cardinality (i.e., the same “number of elements”). Such a cardinality is said to be
the dimension of the vector space.

In particular, a vector space is said to be
– finite dimensional if it admits a basis with finite cardinality;
– infinite dimensional if it admits a basis with infinite cardinality.
In this book, we are mostly concerned with finite dimensional vector spaces.

1.1.10 Note. Any subspace of a finite dimensional vector space Z is a finite dimen-
sional vector space, whose dimension is less than or equal to the dimension of the space
Z .

Suppose that V and W be subspaces of a finite dimensional vector space Z . Then,
we have the Grassmann’s formula

dim(V +W ) = dimV + dimW − dim(V ∩W ) .

We have distinguished examples of vector spaces.

1.1.11 Example. The set of real numbers IR is endowed with sum and product which
make IR a vector space.

We have the distinguished basis {1} of IR ; hence, dim IR = 1 .

1.1.12 Example. Let V and W be two vector spaces. Then, the cartesian product
V ×W is endowed with a natural structure of vector space.
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8 Chapter 1. Linear Algebra

Namely, for all x, y ∈ V , z, t ∈ W and λ ∈ IR , we set

+ : (V ×W )× (V ×W )→ V ×W : ((x, z), (y, t)) 7→ (x+ y, z + t) ,

· : IR× (V ×W )→ V ×W : (λ, (x, z)) 7→ (λx, λz) .

It is easily proved that, if B and C are bases of V and W respectively, then B ×C is
a basis of V ×W .

1.1.13 Example. Let V be a vector space and W ⊂ V a subspace.
Then, we introduce an equivalence relation in V . Namely, if v, v′ ∈ V , then we set

v ∼ v′ ⇔ v − v′ ∈ W .

The quotient set V/W has a natural structure of vector space. We say that V/W is
the quotient vector space.

1.1.14 Example. Let S be a set and V a vector space, and consider the set of maps

Map(S, V ) := {f | f : S → V } .

The set Map(S, V ) is endowed with a natural structure of vector space, with the
operations + and · defined as follows. For all f, g ∈ Map(S, V ) and all λ ∈ IR we set

f + g : S → V : x 7→ f(x) + g(x) , for all f, g ∈ Map(S, V ) ,

λf : S → V : x 7→ λf(x) , for all λ ∈ IR , f ∈ Map(S, V ) .

The properties of + and · can be easily checked.

1.1.15 Example. Let S be a set. We can define a vector space naturally generated
by S , in the following way.

We define Free(S) to be the set of formal linear combinations of elements of S∑
j∈J

vj xj , where J is a finite set, {vi}i∈J ⊂ IR , {xi}i∈J ⊂ S .

In other words, more precisely, we define Free(S) to be the set

Free(S) := {f : S → IR | f−1(IR \ {0}) finite set} ⊂ Map(S, IR) .

The set Free(S) turns out to be equipped with the natural operations of vector space.
Even more, we can easily seen that the set Free(S) is a vector subspace of the vector
space M(S, IR) .

Moreover, if x ∈ S , we define fx ∈ Free(S) to be the map

fx : S → IR : y 7→

{
1 if y = x

0 if y 6= x
.
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1.1. Vector spaces 9

Then, we obtain a natural injection

S → Free(S) : x 7→ fx .

We call Free(S) the free vector space generated by S.
One can easily prove that the set S is a basis of Free(S) .

1.1.2 Linear maps

1.1.16 Definition. Let V,W be vector spaces, and f : V → W a map. Then, f is
said to be linear if the following properties hold, for all v, w ∈ V and λ ∈ IR ,

f(v + w) = f(v) + f(w) and f(λv) = λf(v) .

The following result ensures the existence of non trivial linear maps.

1.1.17 Theorem. Let V,W be vector spaces, B ⊂ V a basis of V and f : B → W a
map. Then, f can be uniquely extended to a linear map.

Namely, if B = {bi}i∈I and v ∈ V , then v can be uniquely written as v =
∑

i∈J v
i bi ,

where J ⊂ I is a finite subset and {vj}j∈J is a family of real numbers, hence the unique

linear extension f̂ of f is determined on v by setting

f̂(v) = vif(bi) .

1.1.18 Note. Let V and W be vector spaces. With each map f : V → W we can
associate the two subsets

ker f := {v ∈ V | f(v) = 0} ⊂ V and im f := {w ∈ W | v ∈ V : f(v) = w} ⊂ W .

The sets ker f and im f are said to be, respectively, the kernel and the image of f .
If f is linear, then ker f is a vector subspace of V and im f is a vector subspace of W .
A remarkable property of the kernel of a linear map f is that f is injective if and only

if ker f = {0} .
A linear map f : V → W is said to be an isomorphism if it is bijective. In this case,

ker f = {0} and im f = W ,

and f−1 turns out to be linear.

The following important property holds for finite dimensional vector spaces.

1.1.19 Proposition. Let V and W be two finite dimensional vector spaces.
For each linear map f : V → W , we have

dimV = dim ker f + dim im f .
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10 Chapter 1. Linear Algebra

1.1.20 Corollary. Two finite dimensional vector spaces are isomorphic if and only if
they have the same dimension.

Proof. It follows from the above Proposition 1.1.19 and Theorem 1.1.17. QED

1.1.21 Note. If Z is a vector space, and f : V → W and g : W → Z are two linear
maps, then the composition

f ◦ g : V → Z : v 7→ f(g(v))

turns out to be a linear map.

1.1.22 Note. The subset

L(V,W ) := {f : V → W | f linear} ⊂M(V,W )

turns out to be a vector subspace.

1.1.23 Definition. An f ∈ L(V, V ) is said to be an endomorphism of V . We set

End(V ) :=L(V, V ).

1.1.24 Definition. An isomorphism f ∈ End(V, V ) is said to be an automorphism
of V . We set

Aut(V ) := {f ∈ End(V ) | f automorphism} .

1.1.25 Remark. The subset Aut(V ) ⊂ End(V ) is not a vector subspace.
On the other hand, Aut(V ) is endowed with the natural structure of (non abelian)

group with respect to the composition of maps.

1.1.26 Definition. We define the dual space of v to be the vector space

V ∗ :=L(V, IR) .

1.1.27 Definition. We define the transpose of the linear map f ∈ L(V,W ) to be the
linear map

f ∗ : W ∗ → V ∗ : α 7→ α ◦ f .

We define the transposition to be the linear map

∗ : L(V,W )→ L(W ∗, V ∗) : f 7→ f ∗ .

1.1.28 Note. If Z is a vector space, and f : V → W and g : W → Z are two linear
maps, then we have

(g ◦ f)∗ = f ∗ ◦ g∗ .

Hence, the transpose of an injective map is surjective and the transpose of a surjective
map is injective.
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1.1. Vector spaces 11

1.1.29 Note. We have the natural linear map

V → V ∗∗ : v 7→ v∗∗ ,

where
v∗∗ : V ∗ → IR : α 7→ α(v) .

The above map turns out to be injective.
We will see that in the finite dimensional case this map is an isomorphism.

1.1.30 Note. We have the natural isomorphism

L(IR, V )→ V : f 7→ f(1) ,

which allows us to make the important identification

L(IR, V ) ' V .

1.1.3 Multilinear maps

Now, we generalise the definition of linear map. Namely, we consider maps
defined on a cartesian product of vector spaces, and define a multilinear map to be
a map which is linear with respect to every factor.

We start by introducing bilinear maps; then, the definition can be easily gener-
alised to cartesian products of several vector spaces.

Let us consider three vector spaces V, W, Z .

1.1.31 Definition. A map
f : V ×W → Z

is said to be bilinear if the following properties hold for each v, v′ ∈ V , w,w′ ∈ W ,
λ, µ ∈ IR ,

f(λv + µv′, w) = λf(v, w) + µf(v′, w) ,

f(v, λw + µw′) = λf(v, w) + µf(v, w′) .

1.1.32 Note. The above definition admits a further straightforward generalisation
to cartesian products of p vector spaces. In this case, we speak of tp–linear map, or of
multilinear map.

1.1.33 Remark. If f : V ×W → Z is a bilinear map, then f is NOT a linear map
between the vector spaces V ×W and Z .

1.1.34 Note. Let f : V ×W → Z be a bilinear map. If v ∈ V and w ∈ W , then we
set

f(v, ·) : W → Z : w 7→ f(v, w) and f(·, w) : V → Z : v 7→ f(v, w) .
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12 Chapter 1. Linear Algebra

Clearly, the maps f(v, ·) and f(·, w) are linear.
Hence, we obtain the linear maps

fV : V → L(W,Z) : v 7→ f(v, ·) and fW : W → L(V, Z) : w 7→ f(·, w) .

The following result ensures the existence of non trivial bilinear maps.

1.1.35 Theorem. Let V,W,Z be vector spaces, B ⊂ V a basis of V , C ⊂ W a basis
of W , and f : B × C → Z a map. Then, f can be uniquely extended to a bilinear map.

Proof. In fact, we recall that B × C turns out to be a basis of V × W . If B = {bi}i∈I and
C = {cj}j∈J , then a vector (v, w) ∈ V ×W can be written as a finite linear combination

(v, w) = (vibi, w
jcj) ,

and the unique bilinear extension f̂ of f is determined on (v, w) by setting

f̂(v, w) = viwj f(bi, cj) .QED

1.1.36 Definition. Let us consider a bilinear map f : V ×W → Z .
We define the radicals of f to be the following subspaces of V and W

NV (f) := {v ∈ V | f(v, ·) = 0} ≡ ker fV ,

NW (f) := {w ∈ W | f(·, w) = 0} ≡ ker fW .

The map f is said to be non degenerate if

NV (f) = 0 and NW (f) = 0 .

A non degenerate bilinear map f : V × W → IR with values in IR is said to be a
duality.

1.1.37 Note. A duality f : V ×W → IR yields the linear injections

fV : V → W ∗ : v 7→ fv and fW : W → V ∗ : w 7→ fw .

1.1.38 Definition. Let us consider a duality f : V × W → IR and suppose that
dimV = dimW . Let (bi)i∈I and (ci)i∈I be two bases of V and W , respectively.

We say that (bi) and (ci) are dual bases (with respect to f) if

f(bi, cj) =

{
1 if i = j ,

0 if i 6= j .

1.1.39 Note. We denote the subset of bilinear maps V ×W → Z by

L2(V,W ; Z) := {f : V ×W → Z | f is bilinear} ⊂M(V ×W,Z) .
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1.1. Vector spaces 13

Clearly, this subset turns out to be a vector subspace.

1.1.40 Example. A remarkable example of bilinear map is provided by the contrac-
tion

〈 , 〉 : V ∗ × V → IR : (α, v) 7→ α(v) .

1.1.41 Note. The contraction is a non degenerate bilinear map.

Proof. 1) If α ∈ V ∗ and f(α, ·) = 0 , then α = 0 , hence NV ∗ = 0 .
2) If 0 6= v ∈ V , then there exists a basis B of V such that v ∈ B .
Then, we define the map αv : B → IR such that α(w) = 1 if w = v and α(w) = 0 otherwise.
We can extend αv to a unique element of V ∗ , which turns out to be non zero.
This proves that NV = 0 .QED

1.1.42 Example. The composition of linear maps yields the bilinear map

◦ : L(V,W )× L(W,Z)→ L(V, Z) : (f, g) 7→ g ◦ f .

Analogously, if V1, . . . , Vp and Z are vector spaces, then we denote the subset of p–
linear (or multilinear) maps V1 × . . .× Vp → Z by

Lp(V1, . . . , Vp;Z) ⊂M(V1 × . . .× Vp; Z) .

In the particular case when V = V1 = · · · = Vp , we set

Lp(V ; Z) :=Lp(V, . . . , V ;Z) .

1.1.4 Algebras

Besides sum and scalar product, it is very useful to consider further algebraic
operations on a vector space. To this aim, we give the following definition.

1.1.43 Definition. Let V be a vector space, and · : V × V → V a bilinear map.
Then, we say the pair (V, ·) to be an algebra.

An algebra (V, ·) is said to be

1. associative if, for any v, w, z ∈ V , we have

(v · w) · z = v · (w · z) ;

2. with unity if there exists an element 1V ∈ V such that, for any v ∈ V , we have
1V · v = v · 1V = v ;

3. commutative if for any v, w ∈ V , we have v · w = w · v ;

4. anticommutative if, for any v, w ∈ V , we have v · w = −w · v ;
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14 Chapter 1. Linear Algebra

5. a Lie Algebra if it is anticommutative and, for any v, w, z ∈ V , we have

[v, [w, z]] + [z, [v, w]] + [w, [z, v]] = 0 .

Lie algebras are of fundamental importance in many fields of mathematical physics. In
the second part of this book, we will see concrete examples of Lie algebras in mechanics.

By analogy with the concept of vector subspace, we can introduce the concept of
subalgebra. Namely, if (V, ·) is an algebra, then a vector subspace W ⊂ V is said to be a
subalgebra if the bilinear map · restricts to a bilinear map · : W ×W → W .

Given two algebras, we introduce the class of linear maps between them which “pre-
serve” the algebra operations.

1.1.44 Definition. Let (V, (, )) , (W, {, }) be an algebra, and f ∈ L(V,W ) . We say
that f is an algebra morphism if, for any v, v′ ∈ V , we have

f((v, v′)) = {f(v), f(v′)} .

The set of algebra morphisms f ∈ L(V,W ) is a vector subspace of L(V,W ) . Of course,
we say that f ∈ End(V ) is an algebra endomorphism if it is an algebra morphism.

Given an algebra, one can consider two further sets of linear endomorphism which
“preserve” the algebra operation in a different way from the one above.

1.1.45 Definition. Let (V, (, )) be an algebra and f ∈ End(V ) . We say that f is

1. a derivation of (V, (, )) if, for any v, v′ ∈ V , we have

f((v, v′)) = (f(v), v′) + (v, f(v′)) ;

2. an antiderivation of (V, (, )) if, for any v, v′ ∈ V , we have

f((v, v′)) = (f(v), v′)− (v, f(v′)) .

The set of derivations (antiderivations) f ∈ End(V ) is a vector subspace of End(V ) .

1.1.46 Example. If (V, ·) is an algebra, then we define a new bilinear map

[, ] : V × V → V : (v, w) 7→ [v, w] := v · w − w · v .

It turns out that (V, [, ]) is a Lie algebra. The map [, ] is said to be the commutator,
due to the fact that, if (V, ·) is commutative, then [, ] = 0 .

1.1.47 Example. The composition ◦ endows the vector space End(V ) with the
structure of associative algebra with the unity idV . This algebra is nor commutative
neither anticommutative. Anyway, End(V ) can be endowed with the commutator, hence
(End(V ), [, ]) is a Lie algebra.
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1.1. Vector spaces 15

1.1.48 Example. The space M(V, IR) has a natural structure of associative and
commutative algebra with unity. Namely, we define

· : M(V, IR)×M(V, IR)→M(V, IR) : (f, g) 7→ f · g

where f · g : V → IR : v 7→ f(v)g(v) .

1.1.5 Symmetric and antisymmetric multilinear maps

We introduce the definition and main properties of symmetric and antisymmet-
ric multilinear maps. We begin to deal with bilinear maps.

1.1.49 Definition. Let f ∈ L2(V ; IR) . We say f to be symmetric if, for all v, v′ ∈ V ,
we have

f(v, v′) = f(v′, v) .

We denote the subset of symmetric bilinear maps by

S2(V, IR) ⊂ L2(V, IR) .

1.1.50 Note. The subset S2(V, IR) ⊂ L2(V, IR) turns out to be a vector subspace.

1.1.51 Note. Let f : V × V → IR be a symmetric bilinear map.
We define the linear map

f [ : V → V ∗ : v 7→ f(·, v) ≡ f(v, ·) .

If f is non degenerate, then the map f [ : V → V ∗ is injective.

1.1.52 Definition. Let q : V → IR be a map. Then, q is said to be quadratic if, for
all v, w ∈ V and λ ∈ IR ,

q(λv) = λ2q(v) ,

q(v + w)− q(v)− q(w) = 2bq(v, w) ,

where bq : V ×V → IR is a symmetric bilinear map. The set of quadratic maps is a vector
subspace of the vector space M(V, IR) .

1.1.53 Theorem. [Carnot] Let f : V × V → IR be a symmetric bilinear map. Then,
the map

f � : V → IR : v 7→ f(v, v)

is quadratic.
Indeed, the map f 7→ f � is a bijection between the set of symmetric bilinear maps and

the set of quadratic maps. The inverse isomorphism is the map q 7→ f which associates
with every quadratic map q : V → IR the bilinear form

f : V × V → IR : (v, w) 7→ 1
2

(
q(v + w)− q(v)− q(w)

)
.
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16 Chapter 1. Linear Algebra

1.1.54 Definition. A symmetric bilinear map f ∈ S2(V, IR) is said to be positive
definite if, for all v ∈ V , with v 6= 0 , we have

f(v, v) > 0 .

1.1.55 Note. Clearly, a positive definite bilinear map is non degenerate.

Note that the set of positive definite maps is not a vector space (even if the sum of
two positive definite maps is a positive definite map).

1.1.56 Definition. Let f ∈ L2(V ; IR) . We say f to be antisymmetric if, for all
v, v′ ∈ V , we have

f(v, v′) = −f(v′, v) .

We denote the subset of antisymmetric bilinear maps by

A2(V, IR) ⊂ L2(V, IR) .

1.1.57 Note. The subset A2(V, IR) ⊂ L2(V, IR) turns out to be a vector subspace.

Now, we generalise the definition of symmetric and antisymmetric map also to maps
in Lp(V ; IR) .

Let us denote by Sp the group of permutations of the set of integers (1, . . . , p) .

A basic example of permutation is an exchange of two elements of (1, . . . , p) . Each
permutation σ ∈ Sp can be written as the composition of either an even or an odd number
of exchanges. Accordingly, we say a permutation to be even or odd.

If σ ∈ Sp , then we set

|σ| :=

{
+1 if σ is even

−1 if σ is odd
.

1.1.58 Definition. We say a map f ∈ Lp(V, IR) to be, respectively, symmetric, or
antisymmetric, if, for all v1, . . . , vp ∈ V and σ ∈ Sr ,

f
(
σ(v1), . . . , σ(vp)

)
= f(v1, . . . , vp) ,

f
(
σ(v1), . . . , σ(vp)

)
= |σ|f(v1, . . . , vp) .

We denote the subsets of symmetric and antisimmetric bilinear maps, respectively, by
by

Sp(V, IR) ⊂ Lp(V, IR) and Ap(V, IR) ⊂ Lp(V, IR) .

1.1.59 Note. The subsets Sp(V, IR) ⊂ Lp(V, IR) and Ap(V, IR) ⊂ Lp(V, IR) turn out
to be a vector subspaces.
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1.1.6 Direct sums

1.1.60 Definition. Let Z be a vector space, and V,W ⊂ Z two vector subspaces.

We say that Z splits into the direct sum of V and W if

Z = V +W and V ∩W = {0} .

In such a case, we write

Z = V ⊕W .

We can characterise Z = V ⊕W in the two following equivalent ways.

1.1.61 Theorem. Let Z be a vector space, and V,W ⊂ Z two vector subspaces.

Then, the following conditions are equivalent.

1. Z = V ⊕W .

2. To every z ∈ Z there exists a unique v ∈ V and a unique w ∈ W such that z = v+w .

3. There exist two maps

π1 : Z → V , π2 : Z → W ,

which fulfill

π1|V = idV , π1|W = 0 , π1 + π2 = idZ , π2|V = 0 , π2|W = idW .

Proof. 1) ⇔ 2). Suppose that Z = V ⊕ W and z ∈ Z , v, v′ ∈ V , w,w′ ∈ W , such that
z = v + w = v′ + w′ . Then, v − v′, w − w′ ∈ V ∩W , so that v = v′ and w = w′ .

Conversely, let z ∈ Z , v ∈ V and w ∈W , such that z = v+w . If x ∈ V ∩W , then z = (v−x)+(w+x)
is another decomposition of z . It turns out that x = 0 .

2) ⇒ 3). If the second condition holds, then we define the maps π1 and π2 as the unique maps
such that, for any z ∈ Z , we have z = π1(z) + π2(z) . We can prove that π1 and π2 are linear, and fulfill
the third condition.

3) ⇒ 2). Conversely, if the third condition holds and z ∈ Z , then we have z = π1(z) + π2(z) . If
v ∈ V and w ∈W such that z = v + w , then π1(z)− v, w − π2(z) ∈ V ∩W . Hence, we have

π1(π1(z)− v) = π1(z)− v = 0 , π2(w − π2(z)) = w − π2(z) = 0 .QED

The maps π1 and π2 are said to be the projections of the splitting Z = V ⊕W .

We have some consequences of the above Theorem together with Theorem 1.1.7.

1.1.62 Corollary. Let Z = V ⊕W . If B is a basis of V and C is a basis of W , then
B ∪ C is a basis of Z .
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18 Chapter 1. Linear Algebra

A basis of Z = V ⊕ W of the above type is said to be a adapted to the splitting
Z = V ⊕W .

If Z = V ⊕ W is a finite dimensional vector space, then the Grassmann’s formula
yields

dim(V ⊕W ) = dimV + dimW .

1.1.63 Corollary. Let Z be a vector space and V ⊂ Z a vector subspace. Then,
there exists a vector subspace W ⊂ Z such that

Z = V ⊕W .

1.1.64 Remark. We stress that the above subspace W above is not uniquely deter-
mined.

It is possible to introduce splittings into direct sums of a finite number of vector spaces
by means of a straightforward generalisation of our definition. We will make use of such
splittings in next section.

1.1.65 Example. Let V and W be two vector spaces.
We have the two distinguished subspaces of V ×W

Ṽ := {(v, 0) | v ∈ V } and W̃ := {(0, w) |w ∈ W} .

Clearly, Ṽ and W̃ are naturally isomorphic, respectively, to V and W , and we have
the splitting

V ×W = Ṽ ⊕ W̃ .

We remark that, in the more general case, in which V and W are just sets, the cartesian
product V ×W has no distinguished subsets.

1.1.66 Example. We have the splitting

L2(V, IR) = S2(V, IR)⊕ A2(V, IR) .

In fact, we have the two surjective linear maps

S : L2(V, IR)→ S2(V, IR) : f 7→ S(f) ,

A : L2(V, IR)→ A2(V, IR) : f 7→ A(f) ,

where S(f) and A(f) are defined to be the maps

S(f) : V × V → IR : (v, v′) 7→ 1
2

(f(v, v′) + f(v′, v)) ,

A(f) : V × V → IR : (v, v′) 7→ 1
2

(f(v, v′)− f(v′, v)) .

Each map f ∈ L2(V, IR) can be written in a unique way as the sum f = S(f) +A(f) .
It is worth noting that such a splitting does not hold for p > 2 .
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1.1. Vector spaces 19

1.1.67 Example. We will meet several examples of algebras which have the structure
of a direct sum. More precisely, suppose that (V, ·) is an algebra, where

V ≡ ⊕n∈NVn

and
v ∈ Vn, v′ ∈ Vm ⇒ v · v′ ∈ Vn+m .

Then, (V, ·) is said to be a graded algebra. Elements of Vn are said to have degree n.
It is possible to introduce the notions of graded associative algebras, graded commu-

tative algebras, graded anticommutative algebras and graded Lie algebras. Moreover, it
is possible to introduce the concept of graded algebra morphism and graded derivation.
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20 Chapter 1. Linear Algebra

1.2 Finite dimensional vector spaces

In this section, we specialise the definitions and results of the above section to
the case of finite dimensional vector spaces.

In particular, we give the definition and main properties of matrices. The con-
ventions on indices and sums that we adopt are often used in mathematical physics
and geometry.

Then, we introduce the matrix representations of finite dimensional vector spaces,
and give the matrix representations of some examples from the above section. The
conventions on indices allow us to know the transformation properties of any index
of every matrix representation with respect to any change of basis.

1.2.1 Matrices

In this subsection we give a general definition of matrix, by which we recover
the usual one.

It is convenient to adopt a positional notation for matrix indexes. The position
(upper or lower) of an index will label a transformation property of the index under
a change of basis. In concrete examples and computations, this notation will be
quite useful.

We introduce an important notation on sums, which allows us to skip the summation
symbol, making formulas more compact and readable. If the same index appears both as
a subscript and as a superscript, a sum over the range of the index is understood. For
example ∑

i∈J

vi bi is denoted by vibi .

Let n ∈ N \ {0} . We set

n := {1, . . . , n}

1.2.1 Definition. Let n,m, r, s ∈ N \ {0} .
A matrix with r contravariant indices in n and s covariant indexes in m is defined to

be a (partially ordered) family of real numbers

(xi1...ir j1...js) , where i1, . . . , ir ∈ n , j1, . . . jr ∈ m.

We denote by

Mn...n
m...m

the set of matrices with r contravariant indexes in n and s covariant indexes in m.

1.2.2 Note. The set Mn...n
m...m has a natural structure of vector space. Namely, if

(xi1...ir j1...js), (yh1...hrk1...ks) ∈Mn,...,n
m,...,m
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and λ ∈ IR , then we define the operations + and · as follows

(xi1...ir j1...js) + (yh1...hrk1...ks) := (xi1...ir j1...js + yi1...ir j1...js) ,

λ (xi1...ir j1...js) := (λxi1...ir j1...js) .

1.2.3 Note. More formally, a matrix (xi1...ir j1...js) ∈Mn...n
m...m can be regardeded as

the map

x : n× . . .× n×m× . . .×m ≡ nr ×ms → IR : (i1, . . . , ir, j1, . . . , js) 7→ xi1...ir j1...js .

In this way, we have the vector space isomorphism

Mn...n
m...m →M(n× . . .×m, IR)

(see Example 1.1.14).

1.2.4 Definition. We define the map

δ : nr × nr → IR :

((a1, . . . , ar), (b1, . . . , br)) 7→ δa1...arb1...br
≡

{
1 (a1, . . . , ar) = (b1, . . . , br)

0 otherwise
.

If r = 1 , then δij is said to be the Kronecker’s symbol.
Indeed, we have δa1...arb1...br

= δa1b1 . . . δ
ar
br
.

1.2.5 Note. We have the distinguished subset of matrices of Mn...n
m...m , consisting

of the matrices whose entries vanish all except one.
More precisely, for any i1, . . . , ir,∈ n , j1, . . . , js ∈ m, we set

Mi1...ir
j1...js := (δh1...hri1...ir

δj1...jsk1...ks
) ,

The subset of the above matrices turns out to be a natural basis of Mn...n
m...m . In

fact, if x := (xi1...ir j1...js) ∈ Mn...n
m...m , then we can write x in a unique way as a linear

combination of the vectors Mi1...ir
j1...js , namely

x = xi1...ir j1...js Mi1...ir
j1...js .

Hence, we have
dimMn...n

m...m = nrms .

1.2.6 Note. It is possible to introduce more general sets of matrices with mixed
covariant and contravariant indexes with different ranges.

For example, the set of matrices (xi
j
k) , with i and k covariant and j contravariant,

and 1 ≤ i ≤ n , 1 ≤ j ≤ m, 1 ≤ k ≤ p , is denoted by Mn
m
p .

We leave to the reader the task of generalising the above definition.
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22 Chapter 1. Linear Algebra

1.2.7 Note. The vector spaces of matrices are endowed with further natural opera-
tions, which we define only in particular cases, leaving to the reader the task of generalising
them.

1. If x ∈Mm
n , and x ∈Mn

p , then we define the (generalised) matrix product

xy ∈Mm
n
n
p

to be
((xy)ij

h
k) := (xij · yhk) .

The matrix product can be regarded as a bilinear map on the cartesian product
Mm

n ×Mn
p . It is easy to extend the above product to a bilinear map defined on

the cartesian product of any kind of set of matrices.

2. Let z ∈Mm
n
n
p , and i ∈ r , j ∈ s . We define the contraction C2

1(x) of x to be

C2
1(x) ∈Mm

p , where C2
1(x) := (xij

j
k).

The contraction can be seen as a linear map which is defined, more generally, on
sets of matrices with at least a contravariant index and a covariant index ranging
on the same set.

1.2.8 Example. We have two kinds of set of matrices with one index, namely Mn

and Mn .
If x ≡ (xi) ∈Mn , then we can write x with respect to the natural basis as

x = xiMi .

Equivalently, we write x as the arrayx
1

...
xn

 ,

which is said to be a column vector.
If y ≡ (yi) ∈Mn , then we can write y with respect to the natural basis as

y = yiM
i .

Equivalently, we write y as the array

y = (y1, . . . , yn) ,

which is said to be a row vector.
The matrix sets Mn and Mn will be used in the matrix representation of a vector

space and its dual, respectively.
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1.2.2 Square matrices

Now, we discuss the distinguished particular case of sets of matrices with two
indices.

1.2.9 Definition. We define a square matrix M to be an element of one of the
following four vector spaces

Mnm , Mn
m , Mn

m , Mnm .

We first consider the vector space Mn
m , introducing here some operations.

1.2.10 Note. Let x ≡ (xij) ∈Mn
m .

Then, we can write x with respect to the natural basis as

x = xij Mi
j .

Equivalently, we write the matrix x as a rectangular array, where the first index of the
matrix is said to be the row index, and the second index is said to be the column indexx

1
1 . . . x1m

... . . .
...

xn1 . . . xnm


We define the transposition to be the linear map

t :Mn
m →Mm

n : (xij) 7→ (xij)
t ≡ (xi

j) .

The trasposition turns out to be a linear isomorphism. The transposition can be
defined analogously for Mnm ,Mnm .

We define the trace to be the linear map

C1
1 :Mn

n → IR : (xij) 7→ xii .

The trace can be defined also for Mn
n .

We define the (square) matrix product to be the linear map

Mn
m ×Mm

p →Mn
p : ((xij), (y

h
k)) 7→ (xijy

j
k) .

which is the composition of the (generalised) matrix product with the contraction C2
1 .

The above map coincides with the standard matrix product.

One can do an analogous construction also for Mn
m .

1.2.11 Note. In the case m = n , the above map endows Mn
n with the structure of

an associative algebra with the unit matrix (δij) .
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We denote by

Inn ⊂Mn
n

the subset consisting of invertible elements, i.e. the subset of matrices (xi
′
j) ∈Mn

n such
that there exists a matrix x−1 ≡ (xij′) ∈Mn

n which fulfills

xi
′
j x

j
j′ = δi

′
j′ and xij′ x

j′
j = δij .

1.2.12 Note. One can show that, for a given matrix, the maximal number of inde-
pendent columns is equal to the maximal number of independent rows. Such a number is
defined to be the rank of the matrix.

It can be shown that a matrix in Mn
n is invertible if and only if it is of rank n . The

subset Inn is endowed, by the restriction of matrix product, with a group structure.

1.2.3 Symmetric and antisymmetric matrices

First of all, we consider the vector space Mnn .

1.2.13 Definition. We define the map

ς : nr × nr → IR : ((a1, . . . , ar), (b1, . . . , br)) 7→ ςa1...arb1...br
:=
∑
σ∈Sr

δa1...arbσ(1)...bσ(r)
.

1.2.14 Note. In particular, let us consider the cases r = 1, 2 .
If r = 1 , then ς ij = σij .
If r = 2 , then

ς ijhk =

{
1 if (i, j) = (h, k) or (i, j) = (k, h)

0 if (i, j) 6= (h, k) and (i, j) 6= (k, h) .

1.2.15 Definition. We define the map

ε : nr × nr → IR : ((a1, . . . , ar), (b1, . . . , br)) 7→ εa1...arb1...br
:=
∑
σ∈Sr

|σ|δa1...arbσ(1)...bσ(r)
.

1.2.16 Note. In particular, let us consider the cases r = 1, 2 and r = n .
If r = 1 , then εij = σij .
If r = 2 , then

ς ijhk =


1 if (i, j) = (h, k)

−1 if (i, j) = (k, h)

0 if (i, j) 6= (h, k) and (i, j) 6= (k, h) .

If r = n , then we set εi1...in := ε1...ni1...in
. .
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1.2. Finite dimensional vector spaces 25

1.2.17 Definition. We define a matrix (xij) ∈ Mnn to be symmetric, or antisym-
metric, if, respectively,

xij = xji , or xij = −xji .

1.2.18 Note. The subsets of symmetric and antisymmetric matrices

Snn ⊂Mnn and Ann ⊂Mnn

are vector subspaces.
A basis of Snn and a basis of Ann are provided, respectively, by the families of matrices

Sij = (ςhkij ) , 1 ≤ i ≤ j ≤ n ,

Aij = (εhkij ) , 1 ≤ i < j ≤ n .

Thus, we have

dimSnn = 1
2

(n2 + n) and dimAnn = 1
2

(n2 − n) .

We have the splitting

Mnn = Snn ⊕Ann .

In fact, we have the linear maps

S :Mnn → Snn : (xij) 7→ S(xij) and A :Mnn → Ann : (xij) 7→ A(xij) ,

where

S(xij) := 1
2

(xij + xji) , and A(xij) := 1
2

(xij − xji) .

Hence,

S(xij) + A(xij) = (xij) .

Now, we generalise the definition of symmetric and antisymmetric square matrices to
matrices in Mn...n , with r covariant indices.

1.2.19 Definition. We say a matrix (xi1...ir) ∈Mn...n to be

1. symmetric if, for any σ ∈ Sr , we have

xσ(i1)...σ(ir) = xi1...ir ;

2. antisymmetric if, for any σ ∈ Sr , we have

xσ(i1)...σ(ir) = |σ|xi1...ir .
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1.2.20 Note. The subsets of symmetric and antisymmetric matrices

Sn...n ⊂Mn...n and An...n ⊂Mn...n

are vector subspaces.

A basis of Sn...n and a basis of An...n are provided, respecctively, by the families of
matrices

Si1...ir = (ςh1...hri1...ir
) , 1 ≤ i1 ≤ · · · ≤ ir ≤ n ,

Ai1...ir = (εh1...hri1...ir
) , 1 ≤ i1 < · · · < ir ≤ n .

Thus,

dimSn...n =

(
n+ r − 1

r

)
and dimAn...n =

(
n

r

)
.

Hence,

1) dimSn...n is an increasing sequence in r converging to +∞ ;

2) dimAn...n = 1 , for r = n , and dimAn...n = 0 , for r > n .

Moreover, for r = n , we have

A1...n = εi1...in M
i1...in .

An analogous construction can be done for the space Mn...n .

1.2.21 Remark. We stress that the splitting of Mn...n into the direct sum of sym-
metric and antisymmetric matrices holds only in the case r = 2 .

1.2.4 Determinant

We give the definition of the determinant of a square matrices.

1.2.22 Note. We identifyMn
n withMn×. . .×Mn by means of the following natural

isomorphism

Mn
n →Mn × . . .×Mn : (xij) 7→ (xi1, . . . , x

i
n) .

The matrix A1...n = (εi1...in) yields the antisymmetric n–linear map

Mn × . . .×Mn → IR : (xi1 , . . . , xin) 7→ εi1...in x
i1 · · ·xin .

1.2.23 Definition. We define the determinant to be the antisymmetric n–linear map

det :Mn
n → IR : (xij) 7→ εi1...in x

i1
1, . . . , x

in
n

The determinant has the following characterisation.
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1.2.24 Proposition. The determinant is the unique antisymmetric n–linear map of
the type

det :Mn
n → IR ,

such that
det(δij) = 1 .

Proof. The vector space of antisymmetric n–linear maps Mn × . . . ×Mn → IR has dimension 1 ,
hence such a map is characterised by its value on an n–tuple of non–zero vectors. QED

1.2.25 Corollary. If A,B ∈Mn
n , then we have det(AB) = detA detB .

Proof. The two antisymmetric n–linear maps

det(A·) :Mn
n → IR : B 7→ det(AB) and det(A) det · :Mn

n → IR : B 7→ det(A) det(B)

assume the same value on the matrix B = (δij)) , as

det(A (δij)) = det(A) det(δij) .

Hence, the two n–linear maps det(A·) and det(A) det · coincide. QED

Analogously, we can define the determinant for elements of Mnn , or Mnn , or Mn
n .

1.2.5 Matrix representations

In this subsection, we show that, for each finite dimensional vector space, the
choice of a basis yields an isomorphism with a vector space of matrices. This iso-
morphism is said to be a matrix representation of the vector space.

We show also that a matrix representation of a vector space yields also matrix
representations of the dual space, of the space of endomorphisms, and so on.

Let us consider the finite dimensional vector spaces V,W,Z , respectively, with di-
mensions

dimV = n , dimW = p , dimZ = q .

Moreover, we assume the ordered bases

(bi)1≤i≤n ⊂ V , (cj)1≤j≤p ⊂ W , (dk)1≤k≤q ⊂ Z .

1.2.26 Proposition. We have the matrix representation

V →Mn : vi bi 7→ (vi) .

Proof. It is an obvious consequence of Theorem 1.1.17 and Proposition 1.1.19. QED

We stress that a change of the basis, or even a change of the order of a basis, yields a
different matrix representation.

A matrix representation of V induced by (bi) yields a matrix representation of V ∗ .
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1.2.27 Lemma. For 1 ≤ i ≤ n , let us denote by βi ∈ V ∗ the unique linear extension
of the map

βi : (bj)→ IR : bj 7→ βi(bj) = δij .

Then, (βi) turns out to be a basis of V ∗ .

Proof. In fact, any linear map α : V → IR is uniquely determined by its restriction to the subset
(bi) ⊂ V .

Hence, we can write α = α(bi)β
i , where the components α(bi) are uniquely determined. QED

1.2.28 Proposition. We have the matrix representation of V ∗

V ∗ →Mn : α 7→ (αi) ≡
(
α(bi)

)
.

Hence, dimV = dimV ∗ . Therefore, V and V ∗ are (not naturally) isomorphic.

1.2.29 Note. If V is finite dimensional, then we have

dimV = dimV ∗∗

and a natural linear isomorphism (see Note 1.1.29)

V → V ∗∗ .

In what follows, we denote by (γj)1≤j≤p and (δk)1≤k≤q the dual bases of W and Z ,
respectively.

1.2.30 Proposition. We have the matrix representation

L(V,W )→Mp
n : f 7→

(
γj(f(bi)

)
.

Hence, dimL(V,W ) = dimV · dimW .

1.2.31 Corollary. Let f ∈ L(V,W ) and h ∈ L(W,Z) . Moreover, suppose that
(f j i) ∈Mp

n and (hkj) ∈Mq
p be their matrix representations.

Then the matrix representation of h ◦ f is the matrix product of (hkj) with (f j i) , i.e.

((h ◦ f)ki) = (hkj f
j
i) .

1.2.32 Note. In particular, we observe that the Kronecker’s symbol is the matrix
representation of idV ∈ EndV .

Hence, the matrix representation

End(V )→Mn
n

is an isomorphism of associative algebras with unity, which restricts to a group isomor-
phism

Aut(V )→ Inn .
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1.2.33 Definition. We define the rank of f ∈ L(V,W ) to be the dimension of the
vector subspace im f ⊂ W .

1.2.34 Note. The rank of f ∈ L(V,W ) is equal to the rank of the matrix which
corresponds to f with respect to the given bases in V and W .

1.2.35 Note. If f ∈ L(V,W ) , then the matrix representation of f induces the linear
map

f̃ :Mn →Mp : (vi) 7→ (vi f j i) ,

which is the unique linear map which makes the following diagram commute

V
f
- W

Mn
? (f̃)

-Mp
?

1.2.36 Note. Let f ∈ L(V,W ) . Then, f ∗ : W ∗ → V ∗ is represented, with respect to
the dual bases, by the matrix (fi

j) ∈Mp
n , which is the transpose of the matrix (f j i) .

1.2.6 Transitions of matrix representations

Next, we discuss the effect of a change of the basis on the matrix representation
of vectors and linear maps.

Let us consider a vector space V with finite dimension dimV = n .

Moreover, let us consider two ordered bases of V and the dual bases of V ∗

(bi)1≤i≤n and (b′j)1≤j≤n ,

(βi)1≤i≤n and (β′j)1≤j≤n .

1.2.37 Note. We can express, in a unique way, the vectors of each of the two bases,
and of their dual bases, as linear combination of the vectors of the other basis as follows

b′i = B′i
j bj and bi = Bi

j b′j ,

β′i = C ′ij β
j and βi = Ci

j β
′j .

1.2.38 Definition. We say (B′i
j) , (Bi

j) , (C ′ij) and (Ci
j) to be the transition matrices

between, respectively the bases (bi) and (b′i) and the dual bases (βi) and (β′i) .

1.2.39 Proposition. The transition matrices are invertible and we have

(Bi
j)−1 = (B′i

j) = (Ci
j) and (Ci

j)
−1 = (C ′ij) = (Bi

j) .
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1.2.40 Corollary. The transition from the basis (bi) to the basis (bi′) induces the
following transitions of matrix representations of V and V ∗

v′i = vj Bj
i and vi = v′j B′j

i ,

α′i = B′i
j αj and αi = Bi

j α′j .

1.2.41 Remark. Let us consider the matrix representation of End(V )

End(V )→Mn
n : f 7→ (f j i) .

induced by the basis (bi) in the domain and the basis (b′i) in the codomain.
This is an isomorphism of vector spaces, but it is not an isomorphism of associative

algebras with unity.
In fact, it does not preserve the product of matrices and the matrix representation of

idV is

idV 7→ Bi
j .

1.2.42 Note. The following practical rule about change of bases holds for matrix
representations of any vector space:

- contravariant indices transform by multiplication with the matrix of the change of
basis,

- covariant indices transform by multiplication with the transpose of the inverse matrix
of the change of basis.

This rule shows the advantages coming from our notation, making very easy to eval-
uate the effect of a change of basis on a matrix representation.

1.2.7 Matrix representation of bilinear maps

We end this section with the matrix representation of bilinear maps.

Let us consider the finite dimensional vector spaces V,W,Z , respectively with dimen-
sions

dimV = n , dimW = p , dimZ = q .

Moreover, we assume the ordered bases and their dual bases

(bi)1≤i≤n ⊂ V , (cj)1≤j≤p ⊂ W , (dk)1≤k≤q ⊂ Z ,

(βi)1≤i≤n ⊂ V ∗ , (γj)1≤j≤p ⊂ W ∗ , (δk)1≤k≤q ⊂ Z∗ .

Then, the induced basis of the cartesian product vector space V ×W is

(bi, cj) 1 ≤ i ≤ n , 1 ≤ j ≤ p .

Thus, we have dimV ×W = dimV dimW .
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1.2.43 Proposition. We have the matrix representation

L2(V,W ;Z)→Mq
np : f 7→ (fkij) = δk

(
f(bi, cj)

)
.

Thus, we have dimL(V,W ;Z) = dimV dimW dimZ .

1.2.44 Example. We have the matrix representation

L2(V ∗, V ; IR)→Mn
n : f 7→ (f j i) :=

(
f(βj, bi)

)
.

The contraction (see Example 1.1.40) turns out to have the matrix representation

(δji ) = (〈βj, bi〉) ∈Mn
n .

1.2.45 Example. We have the matrix representation

L2(V ; IR)→Mnn : f 7→ (fij) :=
(
f(bi, bj)

)
.

Moreover, f is symmetric (antisymmetric) if and only if

fij = fji (fij = −fji) .

Hence, we have the matrix representations

S2(V ; IR)→ Snn and A2(V ; IR)→ Ann ,

and, more generally, we have the matrix representations

Sr(V ; IR)→ Sn...n and Ar(V ; IR)→ An...n .
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32 Chapter 1. Linear Algebra

1.3 Tensors

Tensor products are used in mechanics and field theory because they provide
a very convenient way of representing linear and multilinear maps between finite
dimensional vector spaces. By means of tensor products it is easy to perform oper-
ations in a coordinate free way, such that contractions and determinant.

In this section, we give a brief outline of the general construction of tensor
products between (possibly infinite dimensional) vector spaces. Then, we show how
tensor products yield a way of representing spaces of linear and multilinear maps.

Using this representation we identify several vector spaces of maps which are
naturally isomorphic to a single tensor product of vector spaces. Hence, tensor
products will be distinguished representatives in any class of naturally isomorphic
spaces of linear and multilinear maps.

1.3.1 Tensor product of two vector spaces

In this subsection, we give the definition of tensor product of two vector spaces
V,W as a vector space arising naturally from the cartesian product V ×W .

Then, we show that the tensor product is uniquely characterised by means of a
“universal property”.

Let us consider two vector spaces V,W .

We consider the free vector space generated by V ×W (see Example 1.1.15)

Free(V ×W ) := {f : V ×W → IR} := Map(V ×W, IR) .

Moreover, let us consider the natural vector subspace

N(V ×W ) ⊂ Free(V ×W )

generated by the elements of the type

f(λx1 + µx2, y)− λf(x1, y)− µf(x2, y) and f(x, λy1 + µy2)− λf(x, y1)− µf(x, y2) ,

for each x, x1, x2 ∈ V , y, y1, y2 ∈ W and λ, µ ∈ IR .

1.3.1 Definition. We define the tensor product vector space of the vector spaces V
and W to be the quotient space

V ⊗W := Free(V ×W )
/
N(V ×W ) .

Moreover, we define the tensor product map of the vector spaces V and W to be the
quotient map

⊗ : V ×W → V ⊗W : (x, y) 7→ x⊗ y := [(x, y)] .
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1.3.2 Proposition. The following facts hold.

The tensor product V ⊗W := Free(V ×W )
/
N(V ×W ) turns out to be a vector space.

The tensor product ⊗ : V ×W → V ⊗W turns out to be a bilinear map.

The image im⊗ ⊂ V ⊗W of V ×W consists of the distinguished elements, called
decomposable, of the type v ⊗ w ∈ V ×W , with v ∈ V and w ∈ W .

The image im⊗ ⊂ V ⊗W of V ×W is not a vector subspace of V ⊗W .

The map ⊗ : V ×W → V ⊗W is not surjective.

The tensor product V ⊗W is generated by the image im⊗ ⊂ V ⊗W of V ×W , i.e.,
by the set of decomposable elements.

1.3.3 Theorem. The tensor product (V ⊗W,⊗) fulfills the following universal prop-
erty.

To each vector space S and to each bilinear map f : V ×W → S , there is a unique
linear map f̃ : V ⊗W → S , such that the diagram commutes

V ×W
f

- S

V ⊗W
f̃

-

⊗ -

Proof. Suppose that S be a vector space and f : V ×W → S a bilinear map.

Then, we define the linear map F̃ : Free(V ×W )→ S to be the unique linear extension of the map

F : (V ×W )→ S : x⊗ y 7→ f(x, y) .

The bilinearity of f implies that F̃ |N(V×W ) = 0 , hence the map

f̃ : V ⊗W → S : x 7→ F̃ (x)

turns out to be well defined and linear.

Suppose that f̃ ′ : V ⊗W → S be another map making the diagram of the statement commutative.
Then, for each (v, w) ∈ V ×W , we have f̃(v ⊗ w) = f̃ ′(v ⊗ w) .

So, f and f ′ coincide on a set of generators of V ⊗W (i.e. , the set of decomposable elements), hence

f̃ = f̃ ′ .QED

1.3.4 Corollary. We have the natural mutually inverse isomorphisms

L2(V,W ;S)→ L(V ⊗W,S) : f 7→ f̃ ,

L(V ⊗W,S)→ L2(V,W ;S) : f 7→ f ◦ ⊗ .

The universal property uniquely characterises the tensor product, as is shown in the
following Theorem.

1.3.5 Theorem. Let T be a vector space and t : V ×W → T a bilinear map such
that to each vector space S and to each bilinear map f : V ×W → S there is a unique
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linear map f̃ : T → S such that the following diagram commutes

V ×W
f

- S

T

f̃

-

t -

Then, there is a natural isomorphism between V ⊗W and T such that the following
diagram commutes

V ×W

V ⊗W -

⊗

�
T

t
-

Proof. The Theorem follows easily from the universal property of (V ⊗W,⊗) to (T, t) and vicev-
ersa. QED

1.3.6 Note. The universal property is the fundamental feature of tensor products,
allowing us to pass from bilinear maps to linear maps.

In the following, we use very frequently the universal property, but even if we not give
an explicit mention of this.

More precisely, a linear map on a tensor product is well defined by the assignement
of its value on decomposable elements in terms of a bilinear map.

Accordingly, given a bilinear map f : V ×W → S , the linear map f̃ : V ⊗W → S is
well defined by the assignement

f̃ : V ⊗W → S : x⊗ y 7→ f(x, y) , for each x ∈ V , y ∈ V .

1.3.7 Example. As an example of application of the universal property, we exhibit
the natural isomorphism

IR⊗ V → V : r ⊗ v → r v .

1.3.8 Proposition. Let v ∈ V and w ∈ W . Then

v ⊗ w = 0 ⇒ v = 0 , or w = 0 .

Proof. Let us suppose that v 6= 0 , w 6= 0 and that v ⊗ w = 0 .
Then, the 1st hypothesis implies that there is a bilinear map f : V ×W → IR , such that f(v, w) 6= 0 ,

and the 2nd hypothesis implies that f̃(v ⊗ w) = 0 .

But, in this way, we obtain a contradiction, because f̃(v ⊗ w) = f(v, w) .QED

1.3.9 Proposition. Let (bi)i∈I and (cj)j∈J be bases of V and W , respectively. Then
the subset

{bi ⊗ cj}(i,j)∈I×J ⊂ V ⊗W

turns out to be a basis of V ⊗W .
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If V and W are finite dimensional, then V ⊗W is finite dimensional and

dimV ⊗W = dimV dimW .

Proof. Let us consier any family of real numbers {rij}(i,j)∈I×J .
In virtue of a property of bilinear maps, there is a unique bilinear map f : V ×W → IR , such that

f(vi, vj) = rij .

Hence, in virtue of the universal property of the tensor product, there is a unique linear map
f̃ : V ⊗W → IR , such that f̃(vi ⊗ vj) = rij .

Therefore, in virtue of a property of linear maps, {bi ⊗ cj}(i,j)∈I×J turns out to be a basis of
V ⊗W .QED

1.3.10 Corollary. Let V and W be finite dimensional, and let (bi) and (cj) be bases
of V and W , respectively. Then, we have the matrix representation

V ⊗W →Mnm : zij bi ⊗ cj 7→ (zij) .

1.3.11 Note. The tensor product could be regarded as a commutative operation in
the set of vector spaces. In fact, we have the natural linear isomorphism, called the tensor
transposition,

V ⊗W → W ⊗ V : v ⊗ w → w ⊗ v .

1.3.12 Definition. We define the tensor product of two linear maps f : V → Z and
g : W → T to be the linear map

f ⊗ g : V ⊗W → Z ⊗ T : v ⊗ w 7→ f(v)⊗ g(w) .

1.3.13 Note. If f : V → Z and g : W → T are two linear maps, then we have

im (f ⊗ g) = im f ⊗ im g and ker(f ⊗ g) = ker f ⊗W + V ⊗ ker g .

1.3.14 Note. If V and W split as V = V1 ⊕ V2 and W = W1 ⊕W2 , then we have

V ⊕W = (V1 ⊗W1)⊕ (V1 ⊗W2)⊕ (V2 ⊗W1)⊕ (V2 ⊗W2) .

1.3.2 Tensor product of several vector spaces

The tensor product can be easily generalised to several vector spaces.

1.3.15 Note. We can introduce the tensor product of a finite number of vector spaces
in two ways.

1. By using multilinear maps, instead of bilinear maps, in the universal property.

2. By induction, according to the following procedure.
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There is a natural isomorphism

(V1 ⊗ . . .⊗ Vn)⊗ Vn+1 ' (V1 ⊗ . . . Vn−1)⊗ (Vn ⊗ Vn+1) :

(v1 ⊗ . . .⊗ vn)⊗ vn+1 ' (v1 ⊗ . . . vn−1)⊗ (vn ⊗ vn+1) .

This isomorphism suggests to set

V1 ⊗ . . .⊗ Vn+1 := (V1 ⊗ . . .⊗ Vn)⊗ Vn+1 ' (V1 ⊗ . . . Vn−1)⊗ (Vn ⊗ Vn+1) .

We can easily prove that the above definitions are equivalent. Hence, tensor product
can be regarded as an associative operation in the set of vector spaces.

Indeed, the above induction procedure can be equivalently performed by focusing the
associative rule on different factors.

1.3.16 Corollary. We have the natural mutually inverse isomorphisms

Lp(V1 × . . .× Vn ;S)→ L(V1 ⊗ . . .⊗ Vn , S) : f 7→ f̃ ,

L(V1 ⊗ . . .⊗ Vn , S)→ Lp(V1 × . . .× Vn ;S) : f 7→ f ◦ ⊗ .

1.3.3 Tensor representations

Here we give the isomorphism between the tensor product of two vector spaces
and a certain space of linear maps. In the finite dimensional case, this yields a way
for representing any space of linear maps with a tensor product of two vector spaces.
This tensor product is the same for any pair of naturally isomorphic spaces of linear
maps. Then, we generalise this procedure to spaces of multilinear maps.

Let V and W be two vector spaces.

1.3.17 Theorem. We have a natural linear injection

R1 : V ∗ ⊗W → L(V,W ) : α⊗ w 7→ f [α⊗ w] ,

where we have set

f [α⊗ w] : V → W : v 7→ α(v) · w .

If V and W a re finite dimensional, then R1 is an isomorphism.

Proof. The injectivity of R1 comes from f [α⊗ w] = 0 if and only if α = 0 or w = 0 .

In the finite dimensional case, the surjectivity comes from the equality

dim(V ∗ ⊗W ) = dimL(V,W ) .QED
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1.3.18 Corollary. The matrix representations of V ∗ ⊗W and L(V,W ) are related
by the commutative diagram

V ∗ ⊗W
R1 - L(V,W )

Mn
p

�
-

The choice of the representation of V ∗⊗W is the unique one that makes the diagram
commuting.

1.3.19 Remark. If V or W are not finite dimensional, then the representation R1

is valued into the subspace of L(V,W ) such that its matrix representation (which is a
matrix with an infinite number of entries) is a matrix with a finite number of non vanishing
entries.

In the finite dimensional case, the natural isomorphism of remark ?? yields the fol-
lowing result.

1.3.20 Corollary. If V and W are finite dimensional, then

V ⊗W ' V ∗∗ ⊗W ' L(V ∗,W ) .

1.3.21 Theorem. We have the natural linear injection

R2 : V ∗ ⊗W ∗ → L(V,W ; IR) : α⊗ β 7→ f [α⊗ β] ,

where we have set

f [α⊗ β] : V ×W → IR : (v, w) 7→ α(v) · β(w) .

If V and W are finite dimensional, then R2 is an isomorphism.

Proof. The map R2 is clearly injective, because f [α ⊗ β] = 0 implies α = 0 or β = 0 , but this
implies α⊗ β = 0 .

In the finite dimensional case, it is also surjective because

dimV ∗ ⊗W ∗ = dimL(V,W ; IR).QED

1.3.22 Corollary. The natural isomorphism L(V ⊗W, IR) ' L(V,W ; IR) of corollary
?? together with R2 yields the natural linear injection

V ∗ ⊗W ∗ ' L2(V,W ; IR) .

If V and W are finite dimensional, then the above map is an isomorphism.
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1.3.23 Remark. It is easy to construct tensor representations for any space of linear
and multilinear map by using the above representations R1 and R2 as building blocks.
For example, if V is finite dimensional, then we have the isomorphisms

V ∗ ⊗ V ' L(V ∗, V ∗) ' L(V, V ) ' L(V, V )∗ ,

V ⊗ V ∗ ⊗ V ⊗ V ' L(L(V, V ), L(V ∗, V )) ' L(L(V, V )∗, L(V, V ∗)) .

This shows how tensor products yield distinguished representatives in the class of
naturally isomorphic spaces of linear and multilinear maps.

Tensor products prove to be very useful also in coordinate computations. In fact, by
means of tensor products, it is easy to give the rule of change of basis for the matrix
representation of linear maps.

Let (bi) , (bi′) be two bases of V , and (cj) , (cj′) be two bases of W , (βi) , (βi
′
) (γj) ,

(γj
′
) be the corresponding dual bases, and (Bi

i′) , (Cj
j′) be the matrices of the change of

bases, whose inverses are denoted by (Bi′
i) , (Cj′

j) .

1.3.24 Proposition. Let f ∈ V ∗ ⊗W , with

f = f j iβ
i ⊗ cj = f j

′
i′β

i′ ⊗ cj′ .

Then, we have
f j
′
i′ = Cj′

jf
j
iBi′

i ,

where (Bi′
i) = (Bi

i′)
t .

Proof. Due to Proposition ?? we have

f = f jiβ
i ⊗ cj = f ji(Bi′

iβi
′
)⊗ (Cj

′

jcj′) .QED

1.3.4 Tensor algebra

In this section we deal with the spaces of tensors arising from a given vector
space V . We introduce the operations on the spaces of tensors, namely contractions
and interior products. We stress that the definitions hold for any vector space, and
we also give the matrix representations in the finite dimensional case.

If V is finite dimensional, then we choose a basis (bi) of V , and (βi) denotes the dual
basis.

1.3.25 Definition. We define the space of r–contravariant and s–covariant tensors
(or the space of tensors of degree (r, s)) of V to be the tensor product of r copies of V
and s copies of V ∗

⊗rsV :=V ⊗ . . .⊗ V ⊗ V ∗ ⊗ . . .⊗ V ∗ .
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If V is finite dimensional, then we have the natural isomorphism

⊗rsV → Lr+s(V ∗, . . . , V ∗, V, . . . , V ; IR)

and the natural basis

(bi1 ⊗ . . .⊗ bir ⊗ βj1 ⊗ . . .⊗ βjs)

of ⊗rsV , with 1 ≤ i1, . . . , ir, j1, . . . , js ≤ n , so dim(⊗rsV ) = nr+s .
The above basis yields the matrix representation

⊗ r
sV →Mn...n

n...n :

ti1...ir j1...jsbi1 ⊗ . . .⊗ bir ⊗ βj1 ⊗ . . .⊗ βjs 7→ (ti1...ir j1...js) ≡ ti1...ir j1...jsM i1...ir
j1...js .

1.3.26 Remark. It is possible to introduce tensor spaces with mixed covariant and
contravariant indexes, like V ⊗V ∗⊗V . This turns out to be very useful in some concrete
applications (for example, the matrix representation of the curvature tensor).

We can perform several operations with tensor spaces. We give only the basic con-
structions, together with their matrix representations.

We define the tensor product to be the bilinear map

⊗rV ×⊗r′V → ⊗r+r′V : (t, t′) 7→ t⊗ t′

In the finite dimensional case, if t ∈ ⊗rV and t′ ∈ ⊗r′V such that

t = ti1...irbi1 ⊗ . . .⊗ bir , t′ = t′i1...ir′ bi1 ⊗ . . .⊗ bir′ ,

then

t⊗ t′ = ti1...irt′ir+1...ir′ bi1 ⊗ . . .⊗ bir ⊗ bir+1 ⊗ . . .⊗ bir+r′ .

Hence, the matrix representation of the tensor product is the matrix product of the
matrix representations of the tensors.

1.3.27 Remark. The tensor product endows the vector spaces

⊗V := ⊕n∈N ⊗nV , ⊗V ∗ := ⊕n∈N ⊗nV ∗ ,

with the structure of associative graded algebras with unity (see example 1.1.67).

Next, we define the contractions. The starting point is the trace map.

1.3.28 Definition. We define the trace to be the unique linear map tr : V ∗⊗V → IR
corresponding to the contraction 〈, 〉 : V ∗ × V → IR ; equivalently,

tr : V ∗ ⊗ V → IR : (α, v) 7→ 〈α, v〉 ≡ α(v) .
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In the finite dimensional case, we have the matrix representation

tr(f j iβ
i ⊗ bj) 7→ f ii .

We generalise the above definition by introducing the contractions.
Let 1 ≤ h ≤ r and 1 ≤ k ≤ s . We define the contraction to be the linear map

Ch
k : ⊗rsV → ⊗r−1s−1V : v1 ⊗ . . .⊗ vr ⊗ α1 ⊗ . . .⊗ αs

7→ αk(vh) · v1 ⊗ . . .⊗ v̂h ⊗ . . .⊗ vr ⊗ α1 ⊗ . . .⊗ α̂k ⊗ . . .⊗ αs ,

where v̂h and α̂k are omitted.
Hence, as in the case of tr , the contractions are defined by means of the universal

property. In the case r = s = 1 , we have C1
1 = tr .

In the finite dimensional case, if t ∈ ⊗rsV with

t = ti1...ir j1...jsbi1 ⊗ . . .⊗ bir ⊗ βj1 ⊗ . . .⊗ βjs ,

then

Ch
k t =ti1...ih−1iih+1...ir

j1...jk−1ijk+1...js

bi1 ⊗ . . . bih−1
⊗ b̂ih ⊗ bih+1

⊗ bir ⊗ βj1 ⊗ . . .⊗ βjk−1 ⊗ β̂jk ⊗ βjk+1 ⊗ βjs ,

where b̂ih and β̂jk are suppressed.
Hence, the matrix representation of the contraction of a tensor is the contraction of

the matrix representation of the tensor.
Let r ≤ s . We define the interior product to be the bilinear map

y :⊗ rV ×⊗sV ∗ → ⊗s−rV ∗ :

(v1 ⊗ . . .⊗ vr, α1 ⊗ . . .⊗ αs) 7→ α1(v1) . . . α
r(vr)⊗ αr+1 ⊗ . . .⊗ αs .

In the finite dimensional case, if t ∈ ⊗rV and τ ∈ ⊗sV ∗ with

t = ti1...irbi1 ⊗ . . .⊗ bir , τ = τ j1...jsβ
j1 ⊗ . . .⊗ βjs ,

then

t y τ = ti1...irτ i1...irjr+1...jsβ
jr+1 ⊗ . . .⊗ βjs .

Hence, the matrix representation of the interior product of two tensors t, τ is the
product followed by r contractions of the matrix representations of t, τ .

1.3.29 Example. Let v ∈ V . Then the map

v y : ⊗V ∗ → ⊗V ∗
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is a graded derivation of the tensor algebra ⊗V ∗ of degree −1 , i.e. it restricts on elements
of degree s to a linear map

v y : ⊗sV ∗ → ⊗s−1V ∗

and for any α ∈ ⊗sV ∗ , β ∈ ⊗s′V ∗ we have

v y (α⊗ β) = (v yα)⊗ β + α⊗ (v y β) .

1.3.30 Example. In the finite dimensional case, if f ∈ L(V,W ) and g ∈ L(W,Z) ,
then g ◦ f ∈ L(V, Z) can be obtained via f ⊗ g ∈ V ∗ ⊗W ⊗W ∗ ⊗ Z by the contraction
C1

2(f ⊗ g) .

1.3.5 Antisymmetric tensors

The symmetric tensors that we meet in this book are only metric tensors, for
which r = 2 . On the contrary, we shall deal with a wide variety of antisymmetric
tensors. So, in this subsection, we give the definitions of symmetric and antisym-
metric tensor, then we describe some basic facts on antisymmetric tensors.

We consider a finite dimensional vector space V , with dimV = n , then we fix a basis
(bi) of V and denote by (βi) the dual basis of V ∗ .

1.3.31 Definition. A tensor t ∈ ⊗rV is said to be symmetric (respectively, an-
tisymmetric) if the corresponding r–linear map t : V ∗ × . . . × V ∗ → IR is symmetric
(antisymmetric).

So, t = ti1...irbi1 ⊗ . . .⊗ bir is symmetric (antisymmetric) if and only if for any σ ∈ Sr

we have

tσ(i1)...σ(ir) = ti1...ir (tσ(i1)...σ(ir) = |σ|ti1...ir) .

Hence, the matrix representation of a symmetric (antisymmetric) tensor is a symmetric
(antisymmetric) matrix in Mn...n .

We denote the vector subspace of antisymmetric r-tensors by

r
∧V ⊂ ⊗rV .

In the finite dimensional case we have the matrix representation
r
∧V → An...n , hence

dim
r
∧V = dimAn...n =

(
n

r

)
.

The wedge product is defined to be the antisymmetrised tensor product

V × . . .× V →
r
∧V : (v1, . . . , vr) 7→ v1 ∧ . . . ∧ vr ,
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where

v1 ∧ . . . ∧ vr :=
1

r!

∑
σ∈Sr

|σ|vσ(1) ⊗ . . .⊗ vσ(r) .

1.3.32 Remark. The set

(bi1 ∧ . . . ∧ bir)1≤i1<···<ir≤r ⊂
r
∧V

is a basis of
r
∧V ; more precisely, it is the basis which corresponds to the basis

(Ai1...ir)1≤i1<···<ir≤r

of An...n via the matrix representation of
r
∧V .

1.3.33 Remark. Each element w ∈
r
∧V can be decomposed in each of the following

ways

w =
∑

1≤i1,...,ir≤r

wi1...irbi1 ⊗ . . .⊗ bir

=
∑

1≤i1,...,ir≤r

wi1...irbi1 ∧ . . . ∧ bir

= r!
∑

1≤i1<···<ir≤r

wi1...irbi1 ∧ . . . ∧ bir .

1.3.34 Proposition. There is a unique bilinear map

r
∧V ×

s
∧V →

r+s
∧ V : (w, z) 7→ w ∧ z ,

such that, for each v1, . . . , vr+s ∈ V ,

(v1 ∧ . . . ∧ vr) ∧ (vr+1 ∧ . . . ∧ vr+s) = v1 ∧ . . . ∧ vr+s .

We have the component expression

w ∧ z =
1

(r + s)!

∑
σ

wiσ(1)...iσ(r)ziσ(r+1)...iσ(r+s)bi1 ∧ . . . ∧ bir+s .

The above bilinear map ∧ is said to be the exterior product.

1.3.35 Remark. The exterior product endows the vector space

∧V := ⊕n∈N
n
∧V

with the structure of an associative graded algebra with unity. We stress that, even if
∧V ⊂ ⊗V , ∧V is not a subalgebra of ⊗V . Hence, a derivation of ⊗V needs not to
restrict to a derivation of ⊗V .
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The algebra ∧V is a graded anticommutative algebra, i.e. if v ∈
n
∧V and v′ ∈

m
∧V then

v ∧ v′ = (−1)nmv′ ∧ v .

We observe that, in the finite dimensional case, dim∧V = 2n .

Let W be a finite–dimensional vector space, and f : V → W be a linear map. Then

we define the exterior product
r
∧f to be the linear map

(1.3.1)
r
∧f :

r
∧V →

r
∧W : v1 ∧ . . . ∧ vr 7→ f(v1) ∧ . . . ∧ f(vr) .

If (cj) is a basis of W , and f has the matrix representation (f j i) , then we have

f(ti1...irbi1 ∧ . . . ∧ bir) = ti1...irf j1 i1 . . . f
jr
ircj1 ∧ . . . ∧ cjr

Now, let us consider the dual space V ∗ . We recall that the restriction of the natural
isomorphism

(⊗rV )∗ ' ⊗rV ∗

to the subspace of antisymmetric tensors yields the natural isomorphism

(1.3.2) (
r
∧V )∗ '

r
∧V ∗

If we restrict the standard contraction of tensors to antisymmetric tensors, we obtain
the following contraction map.

For each r ≥ 1 , we have the bilinear contraction map

r
∧V ∗ × V →

r−1
∧ V ∗ : (ω,X) 7→ X yω ,

characterised by the following formula, for each α1, . . . , αr ∈ V ∗ ,

X y (α1 ∧ . . . ∧ αr) ≡
1

r!
X y

(∑
σ

|σ|ασ(1) ⊗ . . .⊗ ασ(r)
)

:=
1

r

∑
1≤i≤r

(−1)i−1αi(X)α1 ∧ . . . ∧ α̂i ∧ . . . ∧ αr ,

where the hat on ‘α̂i’ denotes that we have omitted this factor.
By iteration, we obtain the multilinear map, which is antisymmetric with respect to

vectors,

r
∧V ∗ × (V × . . .× V )→ IR : (ω;X1, . . . , Xr) 7→ Xr y . . . yX1 yω ,

characterised by the following formula, for each α1, . . . , αr ∈ V ∗ ,

Xr y . . . yX1 y (α1 ∧ . . . ∧ αr) =
1

r!
det
(
αi(Xj)

)
.
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This map yields a duality

r
∧V ∗ ×

r
∧V → IR : (ω;w) 7→ 〈ω, w〉 ,

characterised by the following formula, for each α1, . . . , αr ∈ V ∗, X1, . . . , Xr ,

〈α1 ∧ . . . ∧ αr, X1 ∧ . . . ∧Xr〉 =
1

r!
det
(
αi(Xj)

)
.

This duality yields the isomorphism (
r
∧V )∗ '

r
∧V ∗ (1.3.2).

The above contraction has a disadvantage: it is a derivation of the tensor product
(example 1.3.29), but it is no longer a derivation of the exterior product. We are going to
give a new kind of contraction which is a graded antiderivation of the exterior product.

For each 1 ≤ r , we define the interior product to be the bilinear map

r
∧V ∗ × V →

r−1
∧ V ∗ : (ω,X) 7→ iXω ,

characterised by the following formula, for each α1, . . . , αr ∈ V ∗ ,

iX(α1 ∧ . . . ∧ αr) :=
∑
1≤i≤r

(−1)i−1αi(X)α1 ∧ . . . ∧ α̂i ∧ . . . ∧ αr .

By iteration, we obtain the multilinear map, which is antisymmetric with respect to
vectors,

r
∧V ∗ × (V × . . .× V )→ IR : (ω;X1, . . . , Xr) 7→ iXr . . . iX1ω ,

characterised by the following formula, for each α1, . . . , αr ∈ V ∗ ,

iXr . . . iX1(α1 ∧ . . . ∧ αr) = det
(
αi(Xj)

)
.

This map yields a duality

r
∧V ∗ ×

r
∧V → IR : (ω;w) 7→ 〈ω |w〉 ,

characterised by the following formula, for each α1, . . . , αr ∈ V ∗, X1, . . . , Xr ,

〈α1 ∧ . . . ∧ αr |X1 ∧ . . . ∧Xr〉 = det
(
αi(Xj)

)
.

This duality yields an isomorphism (
r
∧V )∗ '

r
∧V ∗ which is no longer the restriction of

the isomorphism (⊗rV )∗ ' ⊗rV ∗ , but it is more appropriate in several respects, as we
are going to see.

1.3.36 Corollary. The interior product differs from the contraction for a factor

iXω = rω(X) 〈ω |w〉 = r!〈ω, w〉 .
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1.3.37 Corollary. The interior product is a graded antiderivation of the exterior
product of degree −1 , i.e.

iX : ∧V ∗ → ∧V ∗

restricts to a linear map

iX :
s
∧V ∗ →

s−1
∧ V ∗

and, if X ∈ V and α ∈
s
∧V ∗ , β ∈

s′

∧V ∗ , then

iX(α ∧ β) = iXα ∧ β + (−1)sα ∧ iXβ .

1.3.38 Corollary. In the finite dimensional case, the bases

(bi1 ∧ . . . ∧ bir)1≤i1<···<ir≤n ∈
r
∧V

(βi1 ∧ . . . ∧ βir)1≤i1<···<ir≤n ∈
r
∧V ∗

are dual with respect to the contraction 〈 | 〉 .
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1.4 Euclidean spaces

Here, we recall some basic facts about Euclidean vector spaces. We describe only the
basic facts which will be used throughout the book.

Throughout this section, V will denote a finite dimensional vector space, with dimV =
n . We fix a basis (bi) of V , and denote the dual basis by (βi) .

1.4.1 Euclidean spaces

1.4.1 Definition. A metric on V is defined to be a symmetric positive definite bi-
linear function

g : V × V → IR .

An Euclidean space is defined to be a pair (V, g) , in which g is a metric on V .

A metric can be given, equivalently, as a symmetric tensor

g ∈ V ∗ ⊗ V ∗ ,

whose associated bilinear map is positive definite.
We recall that g[ : V → V ∗ is an isomorphism, due to non degeneracy of g and finite

dimensionality of V . Hence, we set

f ] := f [−1 : V ∗ → V : α 7→ (f [)−1(α) .

The above isomorphism g[ yields a metric g ∈ V ⊗ V on the vector space V ∗ . More
precisely,

g := g ◦ (g], g]) : V ∗ × V ∗ → IR .

We have the expressions

g = gijβ
i ⊗ βj , g = gijbi ⊗ bj

where gijgjk = δik and gijg
jk = δi

k .
Accordingly, the matrix representation of g[ and g] are (gij) , (gij) , respectively.
We define the length function to be the function

V → IR : v 7→ ‖v‖ :=
√
g�(v) ≡

√
g(v, v) .

If v = vibi , then ‖v‖ =
√
gijvivj .

In the rest of the section we suppose that V is endowed with a Euclidean metric g .

1.4.2 Remark. The metric g induces a metric on ⊗rsV , namely

⊗rsg :⊗ r
sV ×⊗rsV → IR

(t1 ⊗ . . .⊗ tr ⊗ t1 ⊗ . . .⊗ ts, q1 ⊗ . . .⊗ qr ⊗ q1 ⊗ . . .⊗ qs) 7→ g(t1, q1) . . . g(ts, qs) .
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If

t = ti1...ir j1...jsbi1 ⊗ . . .⊗ bir ⊗ βj1 ⊗ . . .⊗ βjs ,
s = sh1...hrk1...ksbh1 ⊗ . . .⊗ bhr ⊗ βk1 ⊗ . . .⊗ βks ,

then

⊗rsg(t, s) = gi1h1 . . . girhrg
j1k1 . . . gjsksti1...ir j1...jss

h1...hr
k1...ks .

Moreover, the metric ⊗r0g induces the metric
r
∧g on

r
∧V by restriction.

Let W ⊂ V be a subspace. In general, there is no natural choice of a vector subspace
Z ⊂ V such that V = W ⊕ Z . We are going to show that the metric g yields such a
natural choice.

Let W ⊂ V be a subset, with l = dimW > 0 . Then, we define the following subset

W⊥ := {v ∈ V | g(v, w) = 0 ∀w ∈ W} ⊂ V .

It turns out that W⊥ is a vector subspace of V . We are going to prove that the
following splitting holds

V = W ⊕W⊥ .

We observe that W ∩W⊥ = 0 .

We denote the inclusions of W and W⊥ respectively by

ιW : W ↪→ V , ιW⊥ : W ↪→ V ,

so that ι∗W and ι∗
W⊥ are surjective in virtue of Note 1.1.28.

For practical reasons, we shall adopt the following convention, which will be necessary
for the correct understanding of our formulas:

- indices i, j, h, k will run from 1 to n = dimV ;

- indices a, b, c, d will run from 1 to l = dimW ;

- indices r, s, t will run from l to 3 .

We suppose that the basis (bi) of V is semi–adapted to the splitting of V ; namely, we
suppose that the subset

(ba)1≤a≤l ⊂ (bi)1≤i≤n

is a basis of W . We note that we do not start, at this stage, with a basis of V which is
adapted to both W and W⊥ .

We have the following expressions

ιW (va) = (va, 0) , ι∗W (αi) = (αa) .
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1.4.3 Proposition. The vector subspaces W,W⊥ ⊂ V can be endowed with two
metrics induced naturally by g , namely

g† ≡ g ◦ (ιW , ιW ) : W ×W → IR ,

g⊥ ≡ g ◦ (ιW⊥ , ιW⊥) : W⊥ ×W⊥ → IR ,

We have the matrix representation

g† = gabβ
a ⊗ βb .

We denote by (g†ab) the matrix representation of g† ∈ W ⊗W .

We define the maps

π‖ : V → W π⊥ : V → W⊥ ,

by requiring the commutativity of the diagrams

V
π‖
- W V

π
⊥

- W⊥

V ∗

g[

? ι∗W- W ∗

g†]
6

V ∗

g[

? ι∗
W⊥- W⊥∗

g⊥]
6

1.4.4 Theorem. We have

π‖|W = idW , π
⊥|W⊥ = idW⊥ , π‖|W⊥ = 0 , π

⊥|W = 0 ,

π‖ + π
⊥

= idV ,

hence, by theorem 1.1.61,

V = W ⊕W⊥ .

Proof. In fact, the linear projections are characterised by the following condition. For each v ∈ V ,
w ∈W , w′ ∈W⊥

g(v, w) = g
(
π‖(v), w

)
g(v, w′) = g

(
π⊥(v), w′

)
.QED

1.4.5 Corollary. For each v ∈ V such that v = vibi , we have

π‖(v) =
∑

1≤i≤n

∑
1≤a,b≤l

vi gib g
†ba ba

=
∑

1≤a,b≤l

∑
l+1≤r≤n

(va + vr grb g
†ba)ba ,

π⊥(v) =
∑

1≤a,b≤l

∑
l+1≤r≤l

vr(br − grb g†ba ba) .
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The above formulas become very simple in the particular case when (bi) is adapted to
the splitting of V ((grb) = 0).

We shall be also involved with the covariant counterpart of the above splitting. We
can achieve it in the following way.

Let us consider the subspaces

W⊥ := {α ∈ V ∗ | α|W = 0} ⊂ V ∗ , W‖ := g[(W ) ⊂ V ∗ .

1.4.6 Proposition. We have the direct sum splitting

(1.4.1) V ∗ = W‖ ⊕W⊥ .

However, we observe that, in several respects, the above splitting is not convenient.
So, we introduce an isomorphism of V ∗ with a cartesian product of two vector spaces.

1.4.7 Theorem. We have the isomorphism

g[|W⊥ ◦ g⊥] : W⊥∗ → W⊥ ,

which yields, by a composition with ι∗
W⊥ , the linear map

π⊥ : V ∗ → W⊥ ,

and the linear isomorphism

(π, π⊥) : V ∗ → W ∗ ×W⊥ .

Proof. It comes from the isomorphism

V ∗ ' (W ⊕W⊥)∗ 'W ∗ ×W⊥∗ .QED

We stress that nor W ∗ neither W⊥∗ are defined as vector subspaces of V ∗ . For each
α ∈ V ∗ we have the expression

π⊥(α) =
∑

1≤a,b≤l

∑
l+1≤r≤n

(αr − αa g†ab gbr) βr .

The above splitting of the dual space is sufficient and appropriate for our needs. This
splitting has two important features: namely, its first component is the space of forms
which live on the subspace W ⊂ V ; moreover, the first projection can be easily computed.

Finally, we show that the metric g yields a distinguished subset of the set of bases on
V .

A family (ei)i∈I of vectors of V is said to be

1. orthogonal, if, for any i, j ∈ I such that i 6= j , we have g(ei, ej) = 0 ;
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2. orthonormal, if it is orthogonal and ‖ei‖ = 1 for all i ∈ I .

1.4.8 Lemma. Let (ei)i∈I be an orthogonal family of V . Then (ei)i∈I is an indepen-
dent set.

Proof. Suppose that v = viei = 0 . Then

0 = g(v, xi) = vi .QED

So, if (ei)i∈I is an orthogonal family of V , then the cardinality of I is less than or
equal to dimV .

1.4.9 Proposition. There exists an orthonormal basis (ei) of V .

Proof. We pick v ∈ V and set e1 := v/‖v‖ . Then, one can repeat this procedure on span(e1)⊥ ,
obtaining an orthonormal family (ei) whose cardinality is dimV .QED

1.4.2 Orthogonal maps

1.4.10 Definition. Let (V, g) be a Euclidean space. A map f : V → V is said to be

1. orthogonal (with respect to g) if

g(f(v), f(w)) = g(v, w) ∀v, w ∈ V ,

2. length preserving (with respect to g) if:

‖f(v)‖ = ‖v‖ ∀ v ∈ V .

1.4.11 Remark. Carnot’s Theorem implies that a map is orthogonal if and only if
it is length preserving.

In order to show the main properties of orthogonal maps, we introduce the transpo-
sition operator.

1.4.12 Lemma. Let (V, g) be a Euclidean space, and f : V → V a linear map. Then,
there exists a unique linear map f t : V → V such that

g(f(v), w) = g(v, f t(w)) ∀ v, w ∈ V .

Proof. In fact, if we define the linear endomorphism ·t : End(V ) → End(V ) as the unique map
making the following diagram commute

V ∗ ⊗ V
g] ⊗ g[- V ⊗ V ∗

'- V ∗ ⊗ V

End(V )

'
? ·t - End(V )

'
?
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where ' is the natural isomorphism of Theorem 1.3.17, then the result is obtained by setting f t := ·t
(f) .QED

If (f ij) is the matrix representation of f , then we have

(f t)ij = ghjf
h
kg

ik .

We say the above map f t to be the transpose map of f (with respect to g). We have

(f t)t = f , (f ◦ g)t = gt ◦ f t idtV = idV .

1.4.13 Remark. There is an analogy between the transpose map and the dual map.
In fact, if W is a vector space and f ∈ L(V,W ) , then f ∗ ∈ L(W ∗, V ∗) is the unique map
such that, for each α ∈ W ∗ and v ∈ V

〈f ∗(α), v〉 = 〈α, f(v)〉 .

1.4.14 Lemma. Let (V, g) be a Euclidean space, and f : V → V an orthogonal map.
Then, f is linear.

Proof. Let (ei) be an orthonormal basis of V . Then, being f orthogonal, (f(ei)) is an orthonormal
set, hence an orthonormal basis (proposition 1.4.9). Moreover, for any v ∈ V we have

f(v) = f(v)if(ei) =
∑
i

g(f(v), f(ei))f(ei) =
∑
i

g(v, ei)f(ei) = vif(ei) ,

hence f is linear. QED

1.4.15 Proposition. Let (V, g) be a Euclidean space, and f : V → V . The following
facts are equivalent.

1. The map f is orthogonal.

2. The map f is linear and invertible, and f−1 = f t .

The set of orthogonal maps f : V → V with respect to g is denoted by O(V, g) .

1.4.16 Corollary. The set O(V, g) is a subgroup

O(V, g) ⊂ Aut(V ) .
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1.5 Volume forms

In this section, we deal with antisymmetric tensors of degree n of a fixed vector
space V , with dimV = n . This space is quite important because it is 1-dimensional.
We also fix a basis (bi) of V .

1.5.1 Volume forms

We have
dim

n
∧V = 1 .

The elements
b1 ∧ . . . ∧ bn ∈

n
∧V β1 ∧ . . . ∧ βn ∈

n
∧V ∗

are dual bases with respect to the contraction 〈 | 〉 .
The component expression of ω ∈

n
∧V ∗ is

ω =
∑

1<i1,...,in<n

ωi1...inβ
i1 ∧ . . . ∧ βin = n!ω1...nβ

1 ∧ . . . ∧ βn ,

with

ωi1...in =
1

n!
〈ω | bi1 ∧ . . . ∧ bi1〉 .

Moreover, we can write
ωi1...in = εi1...in ω1...n .

If w ∈
n
∧V is non vanishing, then it is a basis of

n
∧V . Moreover, there is a unique

element ω ∈
n
∧V ∗ , such that

〈ω |w〉 = 1 .

This ω is just the dual basis of w , with respect to the duality 〈 | 〉 .

1.5.1 Definition. We say w ∈ (
n
∧V \ {0}) , or equivalently, the dual element ω ∈

(
n
∧V \ {0}) , to be a volume form.

1.5.2 Orientation

We denote the set of ordered bases of V by B . If (bi′) ∈ B , then we denote with (Bi
i′)

the matrix of the change of basis.
We can define the following equivalence relation in B

(b′1, . . . , b
′
n) ∼ (b1, . . . , bn) ⇐⇒ det(Bi

i′) > 0 .

Clearly, there are exactly two equivalence classes; two elements of B belong to the same
class of to different classes according with the positive or negative sign of the associated
det(Bi

i′) .
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1.5.2 Definition. We say each one of the two equivalence classes of the above relation
to be an orientation of V .

1.5.3 Note. The choice of an orientation is equivalent to the choice of one connected

component of the one–dimensional vector space
n
∧V .

In fact, if (b1, . . . , bn) , (b′1, . . . , b
′
n) ∈ B , then

b′1 ∧ . . . ∧ b′n = det(Bi
i′)b1 ∧ . . . ∧ bn .

Moreover, b′1 ∧ . . . ∧ b′n and b1 ∧ . . . ∧ bn belong to the same connected component if
and only if det(Bi

i′) > 0 .
In virtue of the duality, the choice of an orientation of V determines a choice of the

orientation of V ∗ , and conversely.

A map f ∈ End(V ) is said to be either orientation preserving, or orientation reversing
if either it preserves the equivalence classes of B , or it sends each equivalence class onto
the other.

Let us fix an orientation of V and assume that V is equipped with a Euclidean metric

g . We have the metric
n
∧g on

n
∧V ∗ which is induced by g (remark 1.4.2).

There are only two forms ν ∈
n
∧V ∗ such that

n
∧g(ν, ν) = 1 ;

they differ by the sign.
Hence, there is only one oriented form ν fulfilling the above equation. If (bi) is oriented

and (βi) is the dual basis, then

ν =
√

det(gij) β
1 ∧ . . . ∧ βn ,

hence, if (ei) is oriented and orthonormal, and (εi) is the dual basis,

η = ε1 ∧ . . . ∧ εn .

1.5.4 Definition. We say ν to be the unitary volume form.

1.5.3 Determinant

We introduce the determinant det(f) of a map f ∈ End(V ) .

Suppose that a vector space W has dimension 1 . Then, the vector space W ∗ ⊗ W
has dimension 1 . Moreover, it has the natural basis idW ∈ W ∗ ⊗W . Hence, we have the
natural isomorphism

W ∗ ⊗W → IR .

It is easy to realise that the above isomorphism coincides with tr .
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1.5.5 Definition. We define the determinant to be the (non linear) map

det : End(V )→ IR : f 7→ tr(
n
∧f) .

If f ∈ End(V ) and (f j i) is the matrix representation of f , then we have

n
∧(f)(b1 ∧ . . . ∧ bn) = det(f j i) b1 ∧ . . . ∧ bn ,

where det(f j i) has been defined for matrices of Mn
n , hence

det(f) = det(f j i) .

By the way, we observe that, for each f, g ∈ End(V ) , we have

det(f ◦ g) = det(f) · det(g) , det(idV ) = 1 det(f ∗) = det(f) .

1.5.6 Lemma. We have the equality

Aut(V ) = {f ∈ End(V ) | det(f) 6= 0} .

Proof. It follows from

det(f ◦ f−1) = det(f) · det(f−1) = det(idV ) = 1 ,

and from the definition of determinant. QED

Let us consider the subset

SAut(V ) := {f ∈ Aut(V ) | det(f) > 0} .

It turns out that SAut(V ) ⊂ Aut(V ) is a subgroup. We say SAut(V ) to be the group
of special automorphisms of V .

1.5.7 Lemma. If V is oriented, then the set of orientation preserving maps of V is
the group SAut(V ) .

From now on, in the rest of the section, we suppose that (V, g) is a Euclidean space.

1.5.8 Lemma. Let f ∈ O(V, g) . Then we have det(f) = det(f t) = ±1 .

Proof. In fact, if f ∈ O(V, g) , then
n
∧(f) sends the dual of the unitary volume form η into the dual

of ±η , because f preserves the orientation or reverses the orientation. The fact that det(f) = det(f t)
comes from the fact that f t ∈ O(V, g) .

We define the group of special orthogonal maps to be the subgroup

SO(V, g) :=O(V, g) ∩ SAut(V ) ;

hence, SO(V, g) is the subgroup of O(V, g) whose element have positive determinant.
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1.5.4 Hodge’s isomorphism

We stress that

dim
r
∧V = dim

n−r
∧ V .

1.5.9 Remark. We define the Hodge map to be the linear isomorphism

∗ :
r
∧V ∗ →

n−r
∧ V ∗ : ω 7→ ig](ω)η .

In particular, we have

∗ :
n
∧V ∗ → IR

∗ :
n−1
∧ V ∗ → V ∗

∗ : V ∗ →
n−1
∧ V ∗ .

For

ψ ∈
n
∧V ∗ ω ∈

n−1
∧ V ∗ α ∈ V ∗ ,

we have the expressions

∗ψ = n!
√

det(gij)ψ
1...n

∗ω = (n− 1)!(−1)n−i
√

det(gij)
∑

1≤i≤n

ω1...̂i...nβi

∗α = (−1)i−1
√

det(gij)
∑

1≤i≤n

αiβ1 ∧ . . . β̂i ∧ . . . ∧ βn .

If we exchange the role of V and V ∗ , then we obtain analogous maps, which will be
denoted by the same symbol ∗ .

1.5.10 Remark. By means of a positively oriented orthonormal basis, we can easily

prove the following properties of ∗ , for each ω ∈
r
∧V ∗, ψ ∈

s
∧V ∗ ,

∗ ∗ ω = (−1)r(n−r)ω

(∗ω) ∧ ψ = (−1)s(n+1) ∗
(
ig](ψ)ω

)
s ≤ r

∗(ω ∧ ψ) = ig](ψ) ∗ ω s ≤ r .

1.5.5 Cross product

Now, we specialise the above results to the case when dimV = 3 .
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Thus, let us consider a 3-dimensional vector space V equipped with a Euclidean metric
g and let us choose an orientation.

Let
(b1, b2, b3) , (β1, β2, β3) and (e1, e2, e3) , (ε1, ε2, ε3)

be a positively oriented basis and its dual, a positively oriented orthonormal basis and
its dual, respectively.

1.5.11 Remark. The expression of the unitary volume form is

η =
√

det(gij) β
1 ∧ . . . ∧ βn = ε1 ∧ . . . ∧ εn .

For

ψ ∈
3
∧V ∗ ω ∈

2
∧V ∗ α ∈ V ∗ ,

we have the expressions

∗ψ = 3!
√

det(gij)ψ
123

∗ω = 2!
√

det(gij)(ω
12β3 + ω31β2 + ω23β1)

∗α =
√

det(gij)(α
1β2 ∧ β3 + α3β1 ∧ β2 + α2β3 ∧ β1) .

1.5.12 Definition. The cross product is defined to be the bilinear map

V × V → V : (X, Y ) 7→ X × Y ≡ g]
(
iX∧Y η

)
.

1.5.13 Remark. In a positively oriented orthonormal basis, we have the following
component expression, for each X, Y ∈ V ,

X × Y = (X1Y 2 −X2Y 1)e3 + (X3Y 1 −X1Y 3)e2 + (X2Y 3 −X3Y 2)e1 .

The properties of the ∗ isomorphism (see ) yield the following properties of the cross
product.

1.5.14 Remark. The cross product is characterised by the following properties.
For each X, Y ∈ V ,

‖X × Y ‖2 = ‖X‖2‖Y ‖2 − g(X, Y )2 ,

g(X × Y, X) = 0 = g(Y × Y, X) ,

and, if X, Y ∈ V are independent, then (X, Y,X × Y ) is positively oriented.
It follows that, if X, Y ∈ V are independent, then

X ∧ Y ∧ (X × Y ) ∈
3
∧V ∗
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is non vanishing and positively oriented.

1.5.15 Remark. For each X, Y, Z ∈ V , we have

g(X × Y, Z) = 〈η |X ∧ Y ∧ Z〉
(X × Y ) × Z = g(X, Z)Y − g(Y, Z)X .

1.5.16 Remark. The cross product makes the vector space V a Lie algebra. Namely,
we have the following properties.

For each X, Y, Z ∈ V, k ∈ IR ,

(X + Y ) × Z = X × Z + Y × Z X × (Y + Z) = X × Y +X × Z

(kX) × Y = k(X × Y ) = X × (kY )

X × Y = −Y ×X

(X × Y ) × Z + (Z ×X) × Y + (Y × Z) ×X = 0.

1.5.17 Remark. If ω ∈
2
∧V ∗ , then there is a unique Ω ∈ V , such that, for each

X ∈ V , we have
ω(X) = Ω ×X .

Namely, such an Ω is given by

Ω =
1

2
iωη̄ ,

where η̄ ∈
3
∧V is the dual basis of η ∈

3
∧V ∗ .

Hence, we have the component expression

Ω =
1√

det(gij)
(ω23b1 + ω12b3 + ω31b2) .
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1.6 Affine spaces

Affine spaces are important for classical mechanics because they offer a geomet-
rical model of the basic configuration spaces.

Even more, we observe that affine spaces constitute the appropriate framework
carrying the primitive differential analysis, which is extended to manifolds later.

We will introduce the standard definition of affine space associated with a vector
space in a form which will allow a straightforward generalisation. Indeed, only the
group properties of the vector space are involved in such a definition. Hence, we can
abstract this definition to a definition of affine space associated with a (possibly
non abelian) group.

We will see that the configuration space of a rigid system has a natural structure
of affine space associated with a group. This has very interesting consequences on the
equations of motion of the system. This is one of the new features of our approach
to rigid systems.

1.6.1 Action of a group on a set

Let G be a group and S a set.
A right action of G on S is defined to be a map

a : S ×G→ S : (s, g) 7→ sg ,

such that, for each g, g′ ∈ G, s ∈ S ,

s(gg′) = (sg)g′ s1G = s .

A left action of G on S is defined to be a map

a : G× S → S : (g, s) 7→ gs ,

such that, for each g, g′ ∈ G, s ∈ S ,

(g′g)s = g′(gs) 1Gs = s .

Of course, the maps (s, g) 7→ sg and (g, s) 7→ gs should not be confused, in general,
with the operation in G .

Moreover, a right (left) action is said to be

1. free if no g ∈ G , except 0G , has fixed points,

2. transitive if, for each s, s′ ∈ S there is a g ∈ G such that s′ = sg (s′ = gs).

1.6.1 Remark. If a right (left) action is free and transitive, then for s, s′ ∈ S the
element g ∈ G such that s′ = sg (s′ = gs) is unique. We denote this element by

g = s−1s′ (g = s′s−1) .
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This abuse of notation is quite useful and does not create any inconsistency. In fact,
it well cooperates with the standard notation of groups, according to the formulas

s′ = s(s−1s′) (s−1s′)(s′−1s′′) = s−1s′′

(and analogously for a left action). However, we stress that the symbol s−1s′ (s′s−1) must
be taken as a whole and s−1 has no meaning alone.

Thus, if the right action is free and transitive, then the choice of an ‘origin’ o ∈ S
yields the bijection

ao : G→ S : g 7→ og

and the inverse map

δo : S → G : s 7→ o−1s

(and analogously for a left action).

1.6.2 Remark. Let a be a transitive action. If s ∈ S , then the set

Hs := {h ∈ G | a(s, h) = s} ⊂ G

is a subgroup of G .
We say Hm to be the isotropy subgroup of the action a of G at m.

1.6.2 Affine spaces associated with vector spaces

Here, following the standard convention, we will consider right actions of a vector
space (as an abelian group) on a set. Hence, we will adopt the additive notation
for the group operation and the action. The following definitions and result can be
restated for left actions of a vector space; we leave this task to the reader.

1.6.3 Definition. An affine space is defined to be a triple (P,DP, τ) , where P is a
set, DP is a vector space and

τ : P ×DP → P : (p, v) 7→ p+ v := τ(p, v)

is a free and transitive action (called translation).

We recall (remark 1.6.1) that the choice of an ‘origin’ o ∈ P yields the bijections τo and
δo . If p ∈ P , then we denote by (p−o) ∈ V the unique element such that p = o+(p−o) .
So, we have

τo : V → P : g 7→ o+ g , δo : P → V : s 7→ s− o .

Of course, each vector space turns out to be an affine space associated with itself in a
natural way.

The dimension of an affine space is defined to be the dimension of the associated
vector space. In this book we mainly deal with finite dimensional affine spaces.

DiffGeom-2014-03-25.tex; [output 2014-03-25; 11:17]; p.59



60 Chapter 1. Linear Algebra

Let us consider an affine space (P,DP, τ) . For the sake of simplicity, we often denote
the affine space just by P , omitting to mention explicitly the associated vector space DP
and the translation τ .

1.6.4 Lemma. Let P, P ′ be affine spaces. Let f : P → P ′ be a map which fulfills, for
a certain o ∈ P ,

f(a) = f(o) +Df(a− o), ∀a ∈ P ,

where Df ∈ L(V, V ′) is a linear map. Then Df : V → V ′ is the unique linear map
fulfilling the above properties. Moreover, Df is independent from the choice of o ∈ P .

Proof. Let D′f ∈ L(V, V ′) be such that f(a) = f(o) +D′f(a− o) for any a ∈ P . Then, we have

0 = f(a)− f(a) = f(o) +Df(a− o)− f(o)−D′f(a− o) ,

hence Df = D′f . Moreover, if o′ ∈ P such that f(a) = f(o′) + D̃f(a − o′) for any a ∈ P , where
D̃f ∈ L(V, V ′) , then we have

0 = f(a)− f(a)

= f(o) +Df(a− o)− f(o′)− D̃f(a− o′)
= Df(a− o+ o− o′)− D̃f(a− o′) ,

hence Df = D̃f .QED

1.6.5 Definition. Let P, P ′ be affine spaces. Then an affine map is defined to be a
map f : P → P ′ which fulfills, for a certain o ∈ P ,

f(a) = f(o) +Df(a− o), ∀a ∈ P,

where Df ∈ L(V, V ′) is a linear map.

1.6.6 Remark. Each constant map a′ : P → P ′ between affine spaces is affine and

Da′ = 0DP ′ .

The identity map idP : P → P is affine and

D idP = idDP .

If f : P → P ′ and f ′ : P ′ → P ′′ are affine maps, then the composite map f ′ ◦ f : P →
P ′′ is affine and

D(f ′ ◦ f) = Df ′ ◦Df .

1.6.7 Example. Let P be an affine space. For each o ∈ P , the maps

τo : DP → P δo : P → DP
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are affine and invertible, and τ−1o = δo . Moreover, their derivatives are

Dτo = Dδo = idDP .

1.6.8 Example. If P1, . . . , Pn are affine spaces, then

P ≡ P1 × . . .× Pn

turns out to be naturally an affine space associated with the vector space

DP ≡ DP1 × . . .×DPn

by means of the translation map

τ : P ×DP → P : (a1, . . . , an; v1, . . . , vn) 7→ (a1 + v1, . . . , an + vn) .

1.6.9 Remark. Let P, P ′ be affine spaces. The set of affine maps between P and P ′

A(P, P ′) := {f : P → P ′ | f affine}

turns out to be an affine space associated with the vector space

DA(P, P ′) := {φ : P → DP ′ |φ affine}

according to the natural translation

A×DA → A : (f, φ) 7→ f + φ .

We set End(P ) :=A(P, P ) .

1.6.10 Remark. Let P be an affine space. The subset of affine invertible maps

Aut(P ) := {f : P → P | f affine invertible} ⊂ End(P )

turns out to be a group.

1.6.11 Definition. A Euclidean affine space is defined to be an affine space P asso-
ciated with a Euclidean vector space (DP, g) .

A rigid map of P is defined to be a map f : P → P such that

‖f(p)− f(q)‖ = ‖p− q‖ ∀ p, q ∈ P .

Hence, a Euclidean affine space is finite dimensional.

1.6.12 Theorem. Let P be a Euclidean affine space associated with (DP, g) , and
f : P → P a map. Then, f is a rigid transformation if and only if f is an affine map
whose derivative Df is an element of O(DP, g) .
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Proof. Let us suppose that f be a rigid transformation. Then, if p ∈ P , the map

fp : DP → DP : v 7→ f(p+ v)− f(p)

is orthogonal, hence linear. For each q ∈ P we have

f(q) = f(p) + fp(q − p) ,

hence f is affine. QED

Let P be a Euclidean affine space. We denote by R(P ) the set of rigid transformations
of P . It turns out that R(P ) is a subgroup

R(P ) ⊂ Aut(P ) .

We have the natural injective group morphism map

+ : DP → R(P ) : v → τv ,

where τv : P → P : p 7→ p+ v is the translation by v .
Moreover, we have the natural surjective group morphism

D : R(P )→ O(DP, g) : f 7→ Df .

1.6.13 Theorem. We have a sequence of group morphisms

DP
+→ R(P )

D→ O(DP, g) ,

where + is injective, p is surjective and im + = ker p .

1.6.14 Corollary. Let o ∈ P . Then, we have the group isomorphism

R(P )→ DP ×O(DP, g) : f 7→ (τf(p), Df) .

We set
SR(P ) :=D−1(SO(DP, g)) .

The elements of SR(P ) are said to be special rigid transformations.
Moreover, we have the natural inclusion

DP → SR(P ) : v 7→ fv ,

where fv is the translation by v . It turns out that

DP = D−1({idP}) .

Finally, we point out that there is a natural free right action of DP on R(P ) , namely

R(P )×DP → R(P ) : (f, fv) 7→ f + v ,
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where

f + v : P → P : p 7→ f(p) + v .

We can develop differential calculus starting from finite dimensional affine spaces,
according to the following scheme.

1.6.15 Remark. A map f : P → P ′ between finite dimensional affine spaces is said
to be differentiable if it approximates an affine map at first order, i.e. if we can write

f(a+ h) = f(a) +Dfa(h) + 0a(h), ∀a ∈ P, ∀h ∈ DP ,

where Dfa : DP → DP ′ is a linear map and the map Oa : DP → DP ′ is infinitesimal of
order greater than 11. Then, we can easily prove that the map

df : P ×DP → DP ′ : (a, h) 7→ Dfa(h)

is unique.
We can easily prove the chain rule for differentiable maps.
Of course, affine maps are differentiable.
M oreover, by a simple induction procedure we can define the differentiability of any

order 1 < k <∞ and the corresponding k-differential. If a map is k-differentiable for any
1 < k <∞ , then it is said to be C∞ or smooth.

1.6.3 Affine spaces associated with groups

One can generalise the standard concept of affine space by replacing vector
spaces with (possibly non abelian) groups. The resulting setting is quite similar to
that of standard affine spaces. This generalisation is very useful for the description
of the configuration space of rigid systems.

For a notational convenience, we carry on this generalisation by using left group
actions, rather than right group actions. We leaveto the reader the task of repeating
the following construction for right actions, and to recover the definition and some
results of the previous section.

1.6.16 Definition. A (left) affine space is defined to be a triple (C,DC, l) , where C
is a set, DC is a group and

l : DC × C → C

is a free and transitive left action.

Of course, a group G is an affine space associated to itself with respect to the multi-
plication map.

1There is no need to fix a norm on the vector spaces DP,DP ′ ; in fact, we recall that all norms on
finite dimensional vector spaces are equivalent.
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Let us consider an affine space (C,DC, l) . For the sake of simplicity, we often denote
the affine space just by C , omitting to mention explicitly the associated group DC and
the left action l .

1.6.17 Definition. An affine map is defined to be a map f : C → C ′ between affine
spaces such that, for a certain o ∈ C ,

f(a) = Df(ao−1)f(o), ∀a ∈ C,

where

Df : DC → DC ′

is a group morphism.

As in the previous section we can easily prove that, if such a Df exists, then it is unique
and independent from the choice of o . We say Df to be the (generalised) derivative of
f .

1.6.18 Remark. Each constant map a′ : C → C ′ between affine spaces is affine and

Da′ = 1DC′ .

The identity map idC : C → C is affine and

D idC = idDC .

If f : C → C ′ and f ′ : C ′ → C ′′ are affine maps, then the composite map f ′ ◦ f : C →
C ′′ is affine and

D(f ′ ◦ f) = Df ′ ◦Df .

1.6.19 Example. Let C be an affine space. For each o ∈ C , the maps

lo : DC → C δo : C → DC

are affine and invertible, and l−1o = δo . Moreover, their derivatives are

Dlo = Dδo = 1DC .

1.6.20 Remark. Let C,C ′ be affine spaces associated with groups. The set of affine
maps between C and C ′

A(C,C ′) := {f : C → C ′ | f affine}

turns out to be an affine space associated with the group

DA(C,C ′) := {φ : C → DC ′ |φ affine}
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according to the natural left action

DA(C,C ′)×A(C,C ′)→ A(C,C ′) : (φ, f) 7→ φf .
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CHAPTER 2

DIFFERENTIAL GEOMETRY

This chapter is devoted to a brief outline of the basic facts about manifolds,
bundles and connections, and Lie groups. The purpose is, as in the previous chap-
ter, both to introduce the notation and to serve as a reference for applications in
mechanics.

2.1 Manifolds

In this section we recall a few basic facts concerning manifolds. Manifolds pro-
vide the natural background where many important definition and results of anal-
ysis can be extended. Namely, concepts from analysis having local character can
be reformulated for topological spaces which are locally homeomorphic to a finite
dimensional vector space, i.e. which admit ‘local coordinate systems’. The reformu-
lation does not involve any distinguished choice of such a coordinate system at each
point. For example, the definition of differential, the rank theorem and the implicit
function theorem, the existence and uniqueness theorem for the solution of ordinary
differential equations can be restated for manifolds in a coordinate free way.

We stress that in this book we will only deal with finite dimensional manifolds.

2.1.1 Definition. A topological space is defined to be a set M together with a family
T of subsets (called the topology, or the family of open subsets), which fulfills the following
properties

1. if U, V ∈ T , then U ∩ V ∈ T ;

2. if T ′ ⊂ T , then
⋃

U∈T ′
U ∈ T .

For instance, the family of standard open subsets of IRn make it a topological space.
Let f : M → N be a map between topological spaces. Then, f is said to be continuous

if the pre-image f−1(V ) ⊂M of each open subset V ⊂ N is an open subset. Moreover, f
is said to be a homeomorphism if it is invertible and both f and f−1 are continuous.

Let M be a topological space.
A neighbourhood of a point x ∈ M is defined to be an open subset U which contains

x .

67



68 Chapter 2. Differential Geometry

A base is defined to be a subfamily B ⊂ T , which fulfills the following property:
- for each x ∈ M and each neighbourhood U of x , there is an element U ′ ∈ B , such

that x ∈ U ′ ⊂ U .
For instance, the standard open n-intervals of IRn constitutes a basis of its topology.
The topolological space is said to be separated if any pair of distinct points x, y ∈M

admit disjoint neighbourhoods.
For instance, IRn is separated.

2.1.2 Definition. A topological manifold of dimension m is defined to be a topolog-
ical space which has a countable basis, is separate and each point has a neighbourhood
homeomorphic to an open subset of IRm .

2.1.3 Remark. Infinite dimensional manifolds are defined analogously to the finite
dimensional case by requiring that each point has a neighbourhood homeomorphic to V ,
where V is an infinite dimensional space. But, in order to carry on analysis on M , it is
required that V be a Banach space.

Let us consider a topological manifold M .
Each local homeomorphism x : U → IRm is said to be a topological chart.
A topological atlas is defined to be a family {xα : Uα → IRm}α∈A of topological charts,

such that ∪αUα = M .

2.1.4 Remark. Each chart x : U → IRn yields:
- the local coordinate functions

xα : M → IR 1 ≤ α ≤ m ;

- the family of local coordinate curves

xα : IR×M →M 1 ≤ α ≤ m,

defined by
xα(t, p) :=x−1

(
x1(p), . . . , xα(p) + t, . . . , xm(p)

)
.

Of course, we have the identity

(xα ◦ xβ)(t, p) = xα(p) + δαβ t .

The transition map of two topological charts x, x′ is defined to be the local map
(defined where appropriate)

IRm x−1
- M

x′
- IRm .

A topological atlas is said to be a smooth atlas if its transition maps are local smooth
maps IRm → IRm (in the sense of affine spaces).
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A smooth atlas A is said to be maximal if it fulfills the following property:
- if A′ ⊃ A is a smooth atlas, then A′ = A .
We can easily prove that if A is a smooth atlas, then there is a unique maximal smooth

atlas which contains A .

2.1.5 Definition. A smooth manifold is defined to be a topological manifold M
together with a maximal smooth atlas.

Of course, affine spaces are naturally equipped with a smooth structure.

Let us consider a smooth manifold M .
Let f : M → N be a map between smooth manifolds. Then, f is said to be smooth if,

for any x ∈M and any topological charts

x : U → IRmat x, y : V → IRnat f(x),

its transition maps
y ◦ f ◦ x−1 : IRm → IRn

are local smooth maps. Moreover, f is said to be a diffeomorphism if it is invertible and
both f and f−1 are smooth.

The identity map of any smooth manifold is smooth and the composition of smooth
maps is smooth.

The cartesian product of two smooth manifolds inherits naturally a smooth structure
from its factor manifolds.

The coordinate functions and the coordinate curves are smooth maps.
Now on, all manifolds will be smooth and all maps between smooth manifolds will be

smooth, without explicit mention.
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2.2 Bundles

In this section we recall a few basic facts concerning bundles, with special at-
tention to vector bundles.

Let us consider two manifolds E, B and a surjective map p : E → B . A local bundle
trivialisation is defined to be a map

Φ : p−1(U)→ U × F ,

where U ⊂ B is an open subset, F is a manifold (called the type fibre) and Φ is a
diffeomorphism which makes the following diagram commutative

p−1(U)
Φ

- U × F

U
pro1�

p -

Moreover, a bundle trivialising atlas is defined to be a family

(Φα : p−1(Uα)→ Uα × F )α∈A

of local bundle trivialisations, such that (Uα)α∈A be an open covering of B . 1

2.2.1 Definition. A bundle is defined to be a manifold E (called the total space)
together with a surjective map p : E → B (called the projection) onto a manifold B
(called the base space), which admit a bundle trivialising atlas.

If b ∈ B , then the subset p−1(b) ⊂ E is said to be the fibre over b .

2.2.2 Example. Let B and F be manifolds. Then,

p ≡ pro1 : E ≡ B × F → B

is a bundle. Indeed, this bundle has, by construction, a distinguished global trivialisa-
tion.

2.2.3 Remark. We stress that a generic bundle may not admit a global trivialisa-
tion. Moreover, if a bundle admits a global trivialisation, then it admits many global
trivialisations and it might be that none of them is distinguished.

Let us consider a bundle p : E → B .

1For the sake of simplicity, we shall consider only connected manifolds B’s and the same type fibre
for all bundle trivialisations of the same atlas.
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2.2.4 Remark. Let A be a bundle trivialising atlas. A local manifold chart of the
base space and a local chart of the type fibre

(xλ) : U ⊂ B → IRm (yi) : F → IRl

yield a local manifold chart denoted by

(xλ, yi) : p−1(U)→ IRm × IRl

of E , which is said to be fibred.

We shall refer to a fibred manifold atlas (xλ, yi) .

A section is defined to be a map s : B → E , such that p ◦ s = idB . Thus, the
coordinate expression of the section s is of the type

(xλ, yi) ◦ s = (xλ, si) ,

where (si) : B → IRl .

2.2.5 Definition. The fibred product of the bundles p : E → B and p′ : E ′ → B over
the same base space B is defined to be the bundle whose total space is

E ×
B
E ′ :=

⊔
b∈B

Eb × E ′b

and whose projection map is the natural projection

E ×
B
E ′ → B : (X, Y ) ∈ Eb × E ′b 7→ b .

2.2.6 Definition. A bundle morphism between two bundles p : E → B and p′ :
E ′ → B′ is defined to be a map f : E → E ′ which preserves thefibres, i.e. such that the
following diagram commutes

E
f
- E ′

B

p
? f

- B′

p′
?

where f : B → B′ is a map which turns out to be unique.
We say that f is a bundle morphism over f . In the particular case when B = B′ and

f = idB , we say that f is a bundle morphism over B .

Let N be any manifold. We shall naturally identify the maps f : E → N with the
bundle morphisms f : E → B ×N over B .

Next, we recall a few facts on vector bundles.
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In the case when the fibres of the bundle are equipped with a vector structure, a local
bundle trivialisation Φ : p−1(U) → U × F is said to be linear if the type fibre F is a
vector space and, for each b ∈ U , the map Φb : Eb → F is a linear isomorphism. Moreover,
a bundle trivialising atlas is said to be linear if it is constituted by linear local bundle
trivialisations.

2.2.7 Definition. A vector bundle is defined to be a bundle p : E → B together
with a vector structure on each fibre Eb, b ∈ B , which admits a linear bundle trivialising
atlas.

If p : E → B is a vector bundle, the bundle trivialising atlas is linear and the chart
(yi) is linear, then also the induced manifold chart is said to be linear.

Let p : E → B be a vector bundle and Φ : p−1(U) → U × F a linear local bundle
trivialisation. Then, an (fi) a basis of F and the dual basis (φi) of F ∗ yield the local basis
of sections and the linear fibred chart

bi : U → p−1(U) : b 7→ Φ−1(b, fi) yi : p−1(U)→ IR : v 7→ φi
(

pro2(φ(v))
)
.

If p : E → B, p′ : E ′ → B′ are vector bundles, then a bundle morphism f : E → E ′ is
said to be linear if it restricts to linear maps between fibres.

2.2.8 Remark. Let p : E → B be a vector bundle. Then, the set

E∗ :=
⊔
b∈B

E∗b

constituted by the disjoint union of the dual spaces of the fibres of E turns out to be
naturally a vector bundle over B .

Moreover, each linear fibred chart of E yields, by duality, a linear fibred chart of E∗ .

2.2.9 Remark. Let p : E → B, p′ : E ′ → B be vector bundles over the same base
space. Then, the set

E ⊗
B
E ′ :=

⊔
b∈B

Eb ⊗ E ′b

constituted by the disjoint union of tensor products of the fibres of E and E ′ over the
same base points turns out to be naturally a vector bundle over B .

Moreover, each pair of linear fibred charts of E and E ′ yields, by tensor product, a
linear fibred chart of E ⊗

B
E ′ .

2.2.10 Remark. Let p : E → B be a vector bundle. Then, there is a natural bijection

s : B → E∗ 7→ f : E → IR

between the sections of the dual bundle and the linear fibred functions of the bundle.
Accordingly, we shall identify the above objects.
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2.2.11 Remark. Let p : E → B, p′ : E ′ → B be vector bundles over the same base
space. Then, there is a natural bijection

s : B → E∗ ⊗
B
E ′∗ 7→ f : E ⊗

B
E ′ → IR

between the sections of the dual tensor product bundle and the linear fibred functions of
the tensor product bundle. Accordingly, we shall identify the above objects.

Now, we introduce the concept of fibre metric of a vector bundle.

2.2.12 Definition. Let p : E → B be a vector bundle. Then, a fibred metric on E is
defined to be a section

g : B → E∗ ⊗
B
E∗

of the bundle E∗ ⊗
B
E∗ → B such that, for any b ∈ B , the tensor

gb ∈ E∗b ⊗ E∗b

corresponds to a positive definite symmetric bilinear map

gb : Eb × Eb → IR .
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2.3 Tangent prolongation of manifolds

In this section we recall a few basic facts concerning the tangent prolongation
of manifolds.

Let us consider a manifold M and a manifold atlas xλ : U → IRm .

Let c, c′ : IR → M be two local curves and t, t′ ∈ IR two real numbers. We define the
following equivalence relation

(t, c) ∼ (t′, c′) ⇔ c(t) = c′(t′), Dcλ(t) = Dc′λ(t′) ,

with respect to any manifold chart.

We denote the equivalence class of the couple (t, c) by

dc(t) ≡ [(t, c)] .

Let p ∈M be a point. We define the tangent space of M at p to be the set

TpM := {dc(t)}c(t)=p

constituted by all equivalence classes [(t, c)] such that c(t) = p .

2.3.1 Definition. The tangent space of M is defined to be the set

TM :=
⊔
p∈M

TpM .

2.3.2 Proposition. The natural projection.

τM : TM →M

is a vector bundle.

Proof. Clearly, TM turns out to be a manifold, as each manifold chart xλ : U → IRm yields the
chart

(xλ, ẋλ) : τ−1(U)→ IRm × IRm : dc(t) 7→
(
cλ(t), Dcλ(t)

)
and the transition maps of these charts are smooth.

Moreover, the map τ turns out to be smooth.

Furthermore, τ makes TM a bundle over M .

In fact, each manifold chart xλ : U → IRm yields the bundle trivialisation

τ−1(U)→ U × IRm : dc(t) 7→
(
c(t), Dcλ(t)

)
.

Indeed, different charts induce the same vector structure on the fibres of the tangent bundle. Hence,
τ : TM →M turns out to be naturally a vector bundle. QED
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2.3.3 Remark. We say a manifold M to be parallelisable if TM admits a global
trivialisation TM 'M × IRm .

In general, manifolds are not parallelisable. For example, it can be proved that the
unit sphere S2 ⊂ IR3 is not parallelisable.

Anyway, we have a distinguished class of parallelisable manifolds: affine spaces asso-
ciated with vector spaces.

Namely, if P is an affine space associated with a vector space DP , then we obtain a
natural isomorphism induced by any affine global chart of P

TP ' P ×DP ,

by which we will identify the above spaces.
In particular, by regarding DP as an affine space associated with DP , then

TDP = DP ×DP .

A section X : M → TM is said to be a vector field.
If c : IR→M is a curve, then its tangent prolongation is defined to be the curve

dc : IR→ TM : t→ dc(t) .

By construction, we have the following coordinate expression

(xλ, ẋλ) ◦ dc = (cλ, Dcλ) .

2.3.4 Example. Let P be an affine space and c : IR→ P a curve. Then, we can write

dc = (c, Dc) : IR→ TP = P ×DP .

Let us consider a family of curves parametrised by a manifold N

φ : IR×N →M .

Then, we define the variational differential of f as

∂φ : N → TM : q 7→ d(φq)(0) .

In particular, the tangent prolongation of the coordinate curves xα : IR×M →M are
the vector fields

∂xα : M → TM : p 7→ d(xαp)(0) .

Let f : M → IR be a function. Then, we define the α-th partial derivative of f , with
respect to the coordinate curve xα , to be the function

∂αf ≡ ∂xα.f : M → IR : p 7→ ∂(f ◦ xα) :=D(f ◦ xαp)(0) .
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The standard notation for the partial derivative is

∂f

∂xα
: M → IR ;

however, we prefer the above notation, because the partial derivative depends on the α-th
coordinate curve xα and not on the α-th coordinate function xα . Moreover, we shall see
soon a natural interpretation of our notation.

2.3.5 Proposition. If f : M →M ′ is a map, then there is a unique map

Tf : TM → TM ′ ,

such that the following diagram commutes, for each curve c : IR→M ,

TM
Tf

- TM ′

IR
d(f ◦ c)

-

dc

�

Moreover, Tf is a linear fibred morphism over f , hence the following diagram com-
mutes

TM
Tf−−−→ TM ′

τM

y yτ ′M
M −−−→

f
M ′

2.3.6 Example. Let P, P ′ be affine spaces and f : P → P ′ a map. Then, we can
write

Tf = (f ×Df) : TP = P ×DP → TP ′ = P ′ ×DP ′ .

2.3.7 Definition. We define the cotangent bundle to be the dual bundle of the tan-
gent bundle

τM : T ∗M →M .

The natural fibred chart of T ∗M will be denoted by

(xα, ẋα) .

2.3.8 Remark. Let M be a manifold, P an affine space and f : M → P a map.
Then, we define the differential of f to be the fibred linear map

ḟ = pro2 ◦Tf : TM → DP ,

or, equivalently, the corresponding section

df : M → T ∗M .
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In particular, if f : M → IR is a function, then we obtain

ḟ : TM → IR df : M → T ∗M ⊗DP .

This notation agrees with the notation we have already adopted for affine spaces and
coordinate functions on the tangent space.

2.3.9 Example. Let P be an affine space and f : P → IR a function. Then, we have

ḟ : P ×DP → IR : (a, h) 7→ Dfa(h)

df : P → P ×D∗P : a 7→ (a, Dfa) .

2.3.10 Remark. The differentials of the coordinate functions are the fibred linear
maps

ẋλ = pro2 ◦Txλ : TM → IR ,

or equivalently the sections

dxλ : M → T ∗M .

2.3.11 Lemma. For each p ∈ M , the m vectors ∂xα(p) and the m forms dxα con-
stitute a basis of TpM and the dual basis of T ∗pM .

Proof. In fact, by differentiating the equality

(xα ◦ xβ)(t, p) = xα(p) + δαβ t ,

we obtain

∂(xα ◦ xβ) = δαβ ,

which yields the claim in virtue of a well known result of linear algebra. QED

2.3.12 Theorem. Let f : M → N be a map. Then, the coordinate expression of Tf
is

(x′λ, ẋ′λ) ◦ Tf = (f ′λ,
∂f ′λ

∂xµ
ẋµ) .

In other words, by regarding Tf as a section

Tf : M → T ∗M ⊗ TN ,

we can write

Tf = ∂xµ.f
′λdxµ ⊗ ∂(x′λ ◦ f) .

Proof. The results follows immediately from the chain rule and the definition of partial derivative.
In fact, we can write

(Tf ′)λµ = 〈dx′λ, T f(∂xµ)〉 = ∂(x′λ ◦ f ◦ xµ) := ∂xµ.f
′λ .QED
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2.3.13 Corollary. The coordinate expressions of the tangent prolongation of a curve
c : IR→M and of a function f : M → IR are

dc = Dcλ(∂xλ ◦ c)
df = ∂λfdx

λ .

2.3.14 Remark. The vector subspace

F(M) := {f : M → IR | fsmooth} ⊂ M(M, IR)

is endowed by the operations inM(M, IR) with the structure of a commutative associative
algebra with unity.

2.3.15 Proposition. A vector field X : M → TM yields a derivation of F(M) , i.e.
a linear map

X. : F(M)→ F(M) : f 7→ X.f := 〈df, X〉 ,
with the property, for each f, f ′ ∈ F(M) ,

X.(ff ′) = fX.f ′ + f ′X.f .

We have the coordinate expression

X.f = Xλ∂xλ.f .

2.3.16 Remark. The above notation fits our notation for partial derivatives. In fact,
we can write

∂xλ.f = 〈df, ∂xλ〉 .

Conversely, one can prove that vector fields are characterised by their action on func-
tions.

2.3.17 Proposition. If δ : F(M) → F(M) is a derivation, then there is a unique
vector field X : M → TM such that, for each f ∈ F(M) ,

X.f = δ(f) .

We can use the above fact in order to introduce the commutator of two vector fields.

2.3.18 Remark. If X, Y : M → TM are vector fields, then the map X.Y. : F(M)→
F(M) is not a derivation of F(M) , hence cannot be identified with a vector field. In fact,
we have the following coordinate expression

X.Y.f = Xλ∂λY
µ∂µf +XλY µ∂λµf .

However, we have the following result.
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2.3.19 Proposition. If X, Y : M → TM are vector fields, then the map

X.Y.− Y.X. : F(M)→ F(M)

is a derivation of F(M) , hence can be identified with a vector field, which will be denoted
by

[X, Y ] :=X.Y.− Y.X. : M → TM .

We have the following coordinate expression

[X, Y ] = (Xλ∂µY
µ − Y λ∂µX

µ)∂xλ .

Proof. In fact, we have the following coordinate expression

X.Y.f − Y.X.f = Xλ∂λY
µ∂µf +XλY µ∂λµf − Y λ∂λXµ∂µf − Y λXµ∂λµf .QED

2.3.20 Remark. The set of vector fields of M

T (M) := {X : M → TM}

is a Lie algebra with respect to the operations

T (M)× T (M)→ T (M) : (X,X ′) 7→ X +X ′

IR× T (M)→ T (M) : (k,X) 7→ kX

T (M)× T (M)→ T (M) : (X,X ′) 7→ [X,X ′] .

Moreover, we have the following property, for each X, Y ∈ T (M), f ∈ F(M)

[fX, Y ] = f [X, Y ]− Y.f X [X, fY ] = f [X, Y ] +X.f Y .

2.3.21 Definition. The operation

[, ] : T (M)× T (M)→ T (M) : (X,X ′) 7→ [X,X ′]

is said to be the Lie bracket.

The Lie bracket is preserved by diffeomorphism, as we are going to prove.
Let N be a manifold, X ∈ T (M) , Y ∈ T (N) and f : M → N a smooth map. Then,

we say that X, Y are f–related if the following diagram commutes

TM
Tf
- TN

M

X
6

f
- N

Y
6
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2.3.22 Proposition. Let N be a manifold, X,X ′ ∈ T (M) , Y, Y ′ ∈ T (N) and f :
M → N a smooth map. Suppose that X, Y and X ′, Y ′ are f–related.

Then, [X,X ′] is f–related to [Y, Y ′] .

Let f : M → N be a diffeomorphism, and X ∈ T (M) .
Let us set f∗X :=Tf ◦X ◦ f−1 ∈ T (N) . Then, f∗X is the unique vector field on N

being f–related to X .

2.3.23 Corollary. Let f : M → N be a diffeomorphism, and X,X ′ ∈ T (M) . Then,

f∗[X,X
′] = [f∗X, f∗X

′] .
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2.4 Tangent prolongation of bundles

In this section we recall a few basic facts concerning the tangent prolongation
of bundles.

So, we go back to a generic bundle p : E → B and apply the constructions of
the above section to it.

2.4.1 Remark. The set TE is naturally a manifold equipped with the manifold atlas

(xλ, yi; ẋλ, ẏi) .

Moreover, τE : TE → E turns out to be naturally a vector bundle. We have the
coordinate expression

(xλ, yi) ◦ τE = (xλ, yi) .

Furthermore, we have the linear bundle morphism

Tp : TE → TB ,

over p : E → B , with coordinate expression

(xλ, ẋλ) ◦ Tp = (xλ, ẋλ) .

Thus, the following diagram commutes

TE
Tp−−−→ TB

τE

y yτB
E −−−→

p
B

2.4.2 Remark. We can see that, if p : E → B is a vector bundle with type fibre F ,
then also Tp : TE → TB is a vector bundle with type fibre TF = F × F .

2.4.3 Remark. We can easily see that a vector X ∈ TeE is tangent to the fibre Ep(e)
passing through its base point e ∈ E if and only if Tp(X) = 0 . Such vectors are said to
be vertical. The subset of vertical vectors constitutes a vector subbundle

ι : V E ↪→ TE

over E , which is characterised by the system of equations

ẋλ = 0

and called the vertical bundle.
In particular, if p : E → B is a vector bundle, then we can write

V E = E ×
B
E ,
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because we know that the tangent space of a vector space is the product of the vector
space times itself.

As a special case, we can apply the above constructions to the tangent bundle of the
manifold M

p ≡ τ : E ≡ TM → B ≡M .

In this case we obtain some interesting identifications.

2.4.4 Example. We denote the induced local chart of TTM by

(xλ, ẋλ; x̀λ, ẍλ) .

We have two vector bundle projections

τTM : TTM → TM TτM : TTM → TM ,

with coordinate expressions

(xλ, ẋλ) ◦ τTM = (xλ, ẋλ) (xλ, ẋλ) ◦ TτM = (xλ, x̀λ) .

We have
V TM = TM ×

M
TM .
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2.5 Connections on bundles

In this section we introduce the concept of connection, with special attention to
linear connections on vector bundles.

Let us consider a bundle p : E → B and a fibred manifold atlas (xλ, yi) .

2.5.1 Remark. We have the following situation.

- Given a vector X ∈ TbB , and a point e ∈ Eb , we can prolong it to a vector X ∈ TeE ,
which projects onto X , in many ways; but no distinguished prolongation exists.

- Given a vector X ∈ TeE , we can project it onto the vector Tp(X) ∈ Tp(e)B of the
base space B , hence we are able to say whether it is vertical or not. However, if X is
not vertical, then we can project it to a vertical vector Y ∈ VeE in many ways; but no
distinguished projection exists.

- We can easily see that the two missing operations are equivalent.

- In other words, for each e ∈ Eb , we have several splittings

TeE ' TbB × VeE,

which fit the natural projection TeE → TbB and the natural inclusion VeE ↪→ TeE , but
none of them is distinguished.

So, in order to avail of such a distinguished splitting, we must postulate it by intro-
ducing a new concept, which will be discussed in next section.

2.5.2 Definition. A connection is defined to be a linear splitting over E

TE ' (E ×
B
TB)×

E
V E,

provided by

- the linear bundle morphism over E

γ : E ×
B
TB → TE ,

such that the composition

E ×
B
TB

γ
- TE

(τE, Tp)- E ×
B
TB

is the identity map of E ×
B
TB ,

or, equivalently, by

- the linear bundle morphism over E

ν : TE → V E ,
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such that the composition

V E
ιE - TE

ν
- V E

is the identity map of V E .
The map γ is called the horizontal prolongation and the map ν is called the vertical

projection.

Let us consider a connection γ or, equivalently, ν .

2.5.3 Proposition. If X : B → TB is a vector field of the base space, then its
horizontal prolongation is the vector field

γ(X) : E → TE ,

with coordinate expressions

γ(X)λ = Xλ and γ(X)i = γiλX
λ;

if X : E → TE is a vector field of the total space, then its vertical projection is the vector
field

ν(X) : E → V E ,

with coordinate expressions

ν(X)λ = 0 and ν(X)i = X i − γiλXλ,

where

(γiλ) : E → IRl × IRm

is a matrix, which characterises locally the connection.

2.5.4 Remark. Let s : B → E be a section. The natural differential of s is its tangent
prolongation

Ts : TB → TE ,

with coordinate expression

(Ts)λ = ẋλ and (Ts)i = ∂λs
iẋλ .

The information carried by the section s is encoded just in its components si and
analogously, the information carried by the differential Ts of the section is encoded just
in its components (Tsi) . So, one can be interested in a distinguished vertical projection of
Ts , which would be tangent to the fibres and would have as many significant components
as the section s itself: this is provided by the connection γ .

So, we are led to introduce the following concept.
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2.5.5 Definition. Let s : B → E be a section and X : B → TB a vector field of the
base space. The covariant differential of s is defined to be the map

∇Xs := ν ◦ Ts ◦X : B → V E .

2.5.6 Remark. Of course, we have

τE ◦ ∇Xs = s .

2.5.7 Remark. Let s : B → E be a section and X,X ′ : B → TB vector fields. The
covariant derivative fulfills the property

∇X+X′s = ∇Xs+∇′Xs .

We have the coordinate expression

(∇Xs)
i = (∂λs

i − γiλ ◦ s)Xλ .

Next, let us assume that p : E → B is a vector bundle and let us refer to a linear
fibred atlas.

2.5.8 Remark. Let us recall that we can write V E = E ×
B
E . Accordingly, the first

component of the covariant derivative ∇Xs is just s itself. Therefore, in order to simplify
the notation we shall omit, by abuse of language, the first component of the vertical
projection and of the covariant derivative and keep only the second components; hence,
we write

ν : TE → E and ∇Xs : B → E .

We recall that Tp : TE → TB is a vector bundle.

2.5.9 Definition. The connection γ is said to be linear if γ , regarded as a bundle
morphism over TB , is linear.

2.5.10 Proposition. The connection γ is linear if and only if its coordinate expression
is of the type

γiλ = γiλjy
j ,

where
(γiλj) : B → IRm × IRl × IRl .

Let us suppose that the connection γ be linear.

2.5.11 Proposition. Let s, s′ : B → E be sections, f : B → IR a function and
X : B → TB a vector field. Then, the covariant derivative fulfills the properties

∇X(s+ s′) = ∇Xs+∇Xs
′ and ∇X(fs) = X.fs+ f∇Xs .

DiffGeom-2014-03-25.tex; [output 2014-03-25; 11:17]; p.85



86 Chapter 2. Differential Geometry

We have the coordinate expression

(∇Xs)
i = (∂λs

i − γiλjsj)Xλ .

2.5.12 Proposition. Conversely, let us assume to have defined a law ∇ which maps
each local section s : B → E and local vector field X : B → TB onto a local section

∇Xs : B → E ,

with the properties

∇X+X′s = ∇Xs+∇′Xs ,
∇X(s+ s′) = ∇Xs+∇Xs

′ , ∇X(fs) = X.fs+ f∇Xs

and which commutes with local restrictions.
Then, there exist a unique linear connection γ which yields the above law.

Next, we introduce the concept of metrical connection.

2.5.13 Definition. Let us assume a fibred metric on the bundle p : E → B

g : B → E∗ ⊗
B
E∗ .

The linear connection γ is said to be metric if, for any section s, s′ : B → E and
vector field X : B → TB , we have

X.
(
g ◦ (s, s′)

)
= g ◦ (∇Xs, s

′) + g ◦ (s,∇Xs
′) .
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2.6 Connections on manifolds

In this section we apply the above constructions on linear connections to the
tangent bundle τM : TM →M of a manifold M , with special attention to Rieman-
nian connections on Riemannian manifolds.

2.6.1 Remark. A linear connection on the vector bundle τM : TM → M can be
regarded, equivalently, as the horizontal prolongation

γ : TM ×
M
TM → TTM ,

or as the vertical projection
ν : TTM → TM .

The coordinate expression of the connection is of the type

γαλ = γαλµẋ
µ .

The covariant derivative of a vector field Y : M → TM , with respect to a vector field
X : M → TM , is the vector field

∇XY : M → TM ,

with coordinate expression

(∇XY )α = (∂λY
α − γαλµY µ)Xλ .

Thus, we can write
γαλµẋ

µ = −(∇∂xλ∂xµ)α .

2.6.2 Remark. Let c : IR→M be a curve and ν : TTM → TM a linear connection.
We know that the tangent prolongation of c is the curve

dc : IR→ TM .

Moreover, by iterating the tangent prolongation, we obtain the second tangent pro-
longation of c , which is the curve

d2c : IR→ TTM ,

with coordinate expression

(xλ, ẋλ; x̀λ, ẍλ) ◦ d2c = (cλ, Dcλ, Dcλ, D2cλ) .

Thus, d2c is a natural second derivative that we can perform on c by taking into
account only the differentiable structure of M . But, this map has some disadvantages:
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- it has values in TTM , while it might be desirable it had values in the same space
of the first tangent prolongation, namely in TM ;

- its coordinate expression carries a reduntant information, as the first derivatives Dcλ

are repeated twice.
These, problems can be easily overcome by taking into account the connection and

introducing the map

∇dc := ν ◦D2c : IR→ TM ,

with coordinate expression

∇dc =
(
D2cλ − (γλµν ◦ c)DcµDcν

)
∂xλ ◦ c .

We can relate the above map with the standard covariant derivative in this way. Let
X : M → TM be any extension of dc , i.e. any vector field such that X ◦ c = dc . Then,
by a simple computation in coordinates we can prove that

(∇XX) ◦ c = ∇dc .

2.6.3 Example. Let M be a parallelisable manifold. Then, the choice of a bundle
isomorphism TM →M × IRm yields the bundle isomorphism

TTM →M × IRm × IRm × IRm ,

which restricts to the bundle isomorphism

V TM →M × IRm × {0} × IRm .

Hence, we have the connection

pro : TTM → V TM : (x, v, v′, w) 7→ (x, v, 0, w) ,

and, if c : IR→M , then

∇dc := pro ◦D2c

with γλµν = 0 .
If M is an affine space associated with the vector space DM , then the affine structure

induces a distinguished bundle isomorphism TM →M ×DM . Hence, as before, we have
a distinguished connection on M which is induced by the affine structure.

2.6.4 Proposition. Let γ be a linear connection of the vector bundle τM : TM →M .
The map

τ : (X, Y ) 7→ ∇XY −∇YX − [X, Y ]

is bilinear, hence can be regarded as a bilinear fibred morphism over M

τ : TM ×
M
TM → TM .
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Its coordinate expression is

ταλµ = −γαλµ + γαµλ .

Proof. If f : M → IR is a function, then we have

τ(fX, Y ) = f(∇XY −∇YX − [X,Y ])− (Y.f)X + (Y.f)X = τ(fX, Y )

τ(X, fY ) = f(∇XY −∇YX − [X,Y ]) + (X.f)Y − (X.f)Y = τ(X, fY ) .

Moreover, we have

ταλµ = (∇∂xλxµ −∇∂xµxλ)α .QED

The map τ is said to be the torsion of the linear connection γ . Moreover, if τ vanishes,
then γ is said to be torsion free.

Of course, the linear connection γ is torsion free if and only if its coordinate expression
is symmetric in the two subscripts λ and µ with respect to any chart.

2.6.5 Definition. A linear connection on the manifold M is defined to be a linear
torsion free connection on the vector bundle τM : TM →M .

2.6.6 Definition. A Riemannian metric g on the manifold M is defined to be a
fibred metric on TM , i.e.

g : M → T ∗M ⊗
M
T ∗M → IR .

A manifold M , together with a Riemannian metric g , is said to be a Riemannian
manifold.

Let us consider a Riemannian manifold (M, g) .
The coordinate expression of g is

g = gλµ dx
λ ⊗ dxµ .

2.6.7 Theorem (Levi-Civita). There is a unique metric torsion free linear connection
κ on the Riemannian manifold (M, g) . More precisely, the coordinate expression of κ is

κα
λµ = −1

2
gαβ(∂λgβµ + ∂µgβλ − ∂βgλµ) .

Proof. The metricity condition implies

∂βgλµ = −gαµκαβλ − gαλκαβµ

i.e.

∂βgλµ = −κβµλ − κβλµ .
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Moreover, by circular permutation of the subscripts in the above formula, we obtain

∂µgβλ = −κλβµ − κµβλ
∂βgλµ = −κλβµ − κµβλ .

Eventually, we obtain the result by subtracting the above two equalities from the previous one and
by taking into account the symmetry of the symbols of the connection. QED
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2.7 Lie Groups

In this section we recall some basic fact from the theory of Lie groups.

Moreover, we will deal with some distinguished examples which will play an
important role in the second part of the book.

2.7.1 Lie Groups

Here, we recall the definition and the main properties of Lie groups. Some of
the deepest result of the theory of Lie groups will only be stated. The interested
reader can go through details of proofs in the bibliographical references.

2.7.1 Definition. A Lie group is defined to be a group G endowed with a manifold
structure such that the maps

l : G×G→ G : (g, g′) 7→ gg′ , i : G→ G : g 7→ g−1 ,

are smooth.

2.7.2 Remark. Let G be a Lie group. Then, for each g ∈ G , the restriction of the
multiplication

lg : G→ G : h 7→ gh

is a diffeomorphism of G with itself, which is said to be the left translation by g .

Left translation provide a distinguished global trivialisation of TG , as we are going
to see.

2.7.3 Definition. We say a vector field X : G → TG on a lie group G to be left
invariant if for each g ∈ G we have lg∗X = X .

We denote by g the set of left invariant vector fields on G .

In virtue of corollary 2.3.23, g ⊂ T (G) is a Lie subalgebra. We say g to be the Lie
algebra of the Lie group G.

2.7.4 Proposition. There is a natural isomorphism

g→ T1GG : X 7→ X1G .

Proof. We can extend any v ∈ T1GG to a vector field Xv : G→ TG by the formula

Xv : G→ TG : g 7→ T lg(X) ;

of course, we have Xv(1G) = v . This ensures both injectivity and surjectivity of the linear map of the
statement. QED
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Of course, g is a finite dimensional vector space; namely, dim g = dimT1GG = dimG .
We have the tensor representation [, ] = V ∗ ⊗ V ∗ ⊗ V , and, if (ei) is a basis of g , then
we have the matrix representation

[, ] = ckijε
i ⊗ εj ⊗ ek .

The real numbers ckij are said to be the structure constants of G with respect to (ei) .

2.7.5 Proposition. If G is a Lie group, then we have the natural linear bundle
isomorphism over G

G× g→ TG : (g,X) 7→ X(g) ,

by which we identify the above spaces.

2.7.6 Remark. Each Lie group G admits a natural parallelisation. Hence, thefollow-
ing consequences hold in a straightforward way.

1. A non parallelisable manifold M cannot be endowed with the structure of a Lie
group.

2. G is orientable.

3. G is endowed with the natural connection induced by the distinguished parallelisa-
tion (remark 2.6.3).

Let G,H be Lie groups. Then f : G → H is said to be a Lie group morphism if f is
a smooth group morphism. The following straightforward property holds.

2.7.7 Proposition. Let G,H be Lie groups with Lie algebras g, h , and f : G → H
a Lie group morphism. Then, f induces a Lie algebra morphism

g→ h : X 7→ YX

where YX(1H) = T1Gf(X1G) .

2.7.8 Definition. Let G be a Lie group, and H ⊂ G . Then, H is said to be a Lie
subgroup of G if H is a subgroup and a submanifold of G .

2.7.9 Remark. A remarkable example of Lie subgroup of a Lie group G is provided
by the connected component G1G of G containing 1G . The other connected components
are diffeomorphic to G1G by left translations.

2.7.10 Theorem. Let G be a Lie group. Then, there is a bijective correspondence
between connected Lie subgroups of G and Lie subalgebras of the Lie algebra g of G .—END

2.7.11 Theorem. Let G be a Lie group, and H a Lie subgroup. Then, H is an
embedded submanifold of G if and only if H is closed.
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2.7.12 Theorem. Let G be a Lie group, and H ⊂ G . Suppose that H be a closed
set and a subgroup of G . Then, H has a unique manifold structure which makes H a Lie
subgroup of G .

Moreover, as a consequence of the above theorem, with respect to this manifold struc-
ture H is an embedded submanifold of G .

Given a Lie group G , we can consider the quotient G/H with a closed subgroup
H ⊂ G . If H is a normal subgroup of G , then the group structure of G passes to the
quotient, endowing G/H with a natural group structure. But, even if H is not normal,
we are able to give a manifold structure on G/H .

2.7.13 Theorem. Let G be a Lie group, and H a closed subgroup. Denote by pro :
G→ G/H the natural projection. Then, G/H has a unique manifold structure such that
pro : G→ G/H is a bundle.

Moreover, if H is normal, then the manifold G/H with its natural quotient group
structure is a Lie group.

A manifold of the above type G/H is said to be a homogeneous manifold. It has to be
remarked that several concrete examples of manifold are homogeneous manifolds.

Let G be a Lie group, and M a manifold. Then, a (left) action of G on M is a smooth
map

a : G×M →M

which is an action of the group G on the set M .
Suppose that a be a transitive action, and m ∈M . Then, the isotropy subgroup Hm

(see remark 1.6.2) is a closed subgroup of G , hence a Lie subgroup.

2.7.14 Proposition. Let G be a Lie group, M a manifold and a : G ×M → M a
transitive action. Let m ∈M , and consider the map

[am] : G/Hm →M : [g] 7→ a(g,m) .

Then, [am] is a diffeomorphism.

2.7.2 Affine spaces associated with Lie groups

Let C be an affine space associated with a Lie group DC . In this subsection, we
show that C can be endowed with the structure of a manifold which is diffeomorphic
to DC .

2.7.15 Proposition. There exists a unique differentiable structure on C such that,
for each o ∈ C , the map lo : DC → C is smooth.

Proof. For each o ∈ C , the bijection lo : DC → C makes C a smooth manifold. Moreover, if
o′ ∈ C , then lo and lo′ yield the same smooth structure on C , because the transition map, given by
following composition

δo′ ◦ lo : DC → DC : g 7→ (go)o′−1 ≡ g(oo′−1)
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is the left translation loo′−1 : DC → DC , which is smooth. QED

It turns out that for any o ∈ C the map δo : C → DC is smooth.

2.7.16 Proposition. Let Dc be the Lie algebra of DC . Then, we have the natural
isomorphism

TC ' C × g .

by which we identify the above spaces.

Proof. Let o ∈ C . Then, by using the natural parallelisation TDC ' DC ×Dc

(lo, idDc) ◦ Tδo : TC → C ×Dc

is a parallelisation, and is independent from the choice of o .QED

2.7.17 Corollary. The affine space C associated with the Lie group DC is orientable
and is endowed with a natural connection associated with the natural parallelisation
(remark 2.6.3).

2.7.3 Automorphisms of a vector space

Let V be a finite dimensional vector space, with dimV = n . We study the group
Aut(V ) . Namely, we prove that Aut(V ) is a Lie group, and study its Lie algebra.
Finally, we study some of its subgroup.

2.7.18 Lemma. The vector space V , regarded as an abelian group with respect to
the sum of vectors, has a natural structure of Lie group. The Lie algebra of V turns out
to be naturally isomorphic to V itself.

2.7.19 Proposition. The group Aut(V ) is a Lie group with respect to the composi-
tion of maps.

The Lie algebra of Aut(V ) is End(V ) endowed with the commutator.

Proof. The group Aut(V ) is an open subset of the vector space End(V ) , namely Aut(V ) =
det−1(IR \ {0}) (see definition 1.5.5). Hence, Aut(V ) is a manifold and

TidV Aut(V ) ≡ TidV End(V ) ' End(V ) ,

where the last map is the restriction of the natural parallelisation of End(V ) .
The matrix representation of the composition of maps is smooth, hence Aut(V ) is a Lie group.
Let (bi) be a basis of V . Then, the matrix representation induces the vector space isomorphism

End(V )→Mn
n and the group isomorphism Aut(V )→ Inn , where Inn are the invertible matrices.

A left invariant vector field X on Inn is of the type

X : Inn → TInn : (aij) 7→ aikx
k
j∂i

j ,

with xij∂i
j ∈ Mn

n . If Y is another left invariant vector field generated by yij∂i
j ∈ Mn

n , then we see
that

[X,Y ](aij) = aik(xkjy
j
h − ykjxjh)∂i

h ,
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hence [X,Y ](δij) = (xkjy
j
h − ykjx

j
h)∂k

h . This is the matrix representation of the commutator in
End(V ) .QED

2.7.20 Proposition. The Lie group Aut(V ) has two connected components. The
group

SAut(V ) ⊂ Aut(V )

is the connected component of Aut(V ) containing idV .
Hence, SAut(V ) is a Lie subgroup of Aut(V ) having the same Lie algebra.

From now on, we assume a metric g on V .

2.7.21 Proposition. The subgroup O(V ) is a Lie subgroup of Aut(V ) .
The Lie algebra of O(V ) is the following Lie subalgebra so(V ) of End(V )

so(V ) := {f ∈ End(V ) | g(f(v), w) + g(v, f(w)) = 0 ∀v, w ∈ V } .

Proof. In fact, O(V ) is a closed subgroup of Aut(V ) .
Let us consider a smooth curve c : IR → O(V ) such that c(0) = id . If v, w ∈ V , by differentiating

the identity g(c(t)(v), c(t)(w)) = g(v, w) in 0 we obtain the identity

g(Dc(0)(v), w) + g(v,Dc(0)(w)) = 0 .QED

2.7.22 Proposition. The Lie group O(V ) has two connected components. The group

SO(V ) ⊂ O(V )

is the connected component of O(V ) containing idV .
Hence, SO(V ) is a Lie subgroup of O(V ) having the same Lie algebra.

2.7.23 Remark. If dimV = 1 , then O(V ) ≡ {± id} .
If dimV = 2 , then an orthonormal basis yields an isomorphism of SO(V ) with the

unit sphere S1 ⊂ IR2 .

There is a natural action of O(V ) on V , namely

O(V )× V → V : (f, v) 7→ f(v) .

Let us set
SV := {v ∈ V | g(v, v) = 1} ;

the choice of an orthonormal basis of V yields a diffeomorphism SV → Sn−1 ⊂ IRn , hence
SV is a manifold.

2.7.24 Lemma. The above natural action of O(V ) on V restricts to a transitive
action

O(V )× SV → SV : (f, v) 7→ f(v) .
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2.7.25 Proposition. Let v ∈ SV , and let us set v⊥ := span(v)⊥ .
Then, the isotropy group of the above transitive action of O(V ) on SV at v is isomor-

phic to the set of orthogonal maps O(v⊥) of the Euclidean space (v⊥, g⊥) .
Hence, we have the diffeomorphism

O(V )/O(v⊥)→ SV : [f ] 7→ f(v) .

Proof. It is easily proved in coordinates adapted to the splitting V = span(v) ⊕ v⊥ . The last
statement comes from proposition 2.7.14. QED

2.7.26 Remark. Analogous considerations hold for SO(V ):
given v ∈ V , we have the natural diffeomorphism

SO(V )/SO(v⊥)→ SV : [f ] 7→ f(v) .

We end this subsection by showing that the group of rigid transformations of an affine
space associated with a Euclidean space can be endowed with the structure of a Lie group.

2.7.27 Proposition. Let P be an affine space associated with the Euclidean space
(V, g) . Then, the group R(P ) can be endowed with a unique Lie group structure such
that the natural isomorphism

R(P )→ DP ×O(DP, g) : f 7→ (τf(p), Df)

is a Lie group isomorphism for any p ∈ P .

Proof. In fact, the choice of p ∈ P yields a group isomorphism which endows R(P ) with the
structure of a Lie group. Then, it is easy to see that this structure does not depend on the choice of
p .QED
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