Meccanica Razionale 1									
Cognome	Non	Nome			Matricola				
corso o	di laurea ambientale	ea ambientale			corso di laurea edile \qed				
0.1 Esercizio. 5 minuti Consideriamo una base o Il simbolo • indica <u>solo</u>						otto vettoria	de tra due vettori.		
1) Calcolare il prodotto si vettoriale $u \times (\bar{u} \times \bar{v})$, il [se qualcuna delle doman	prodotto misto $\bar{u} \cdot (\bar{u}$	$\times \bar{v}$), il prod	dotto misto i	$\bar{u} \times (\bar{u} \cdot \bar{v})$, ,		to	
$ar{u}$.	$\bar{v} = [$ 0],	$\bar{u} \times \bar{v}$	= [$6ar{e}_3$],		
$ar{u} \cdot (ar{u} \cdot$	$ \bar{v} = \begin{bmatrix} 0 \\ \bar{v} \end{pmatrix} = \begin{bmatrix} PS \\ \bar{v} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $],	$\bar{u} \times (\bar{u} \times \bar{v})$) = [$-6(\bar{e}_1$	$+\bar{e}_2)$],		
$\bar{u} \cdot (\bar{u} \times$	\bar{v}) = $\begin{bmatrix} 0 \end{bmatrix}$],	$\bar{u} \times (\bar{u} \cdot \bar{v})$] = [PS].		
2) Conformemente alla se	eguente uguaglianza								
	$\bar{v} = \bar{v}^{\parallel} + \bar{v}^{\perp}$, con	$\bar{v}^{\parallel} = v^{\parallel} \mathrm{ve}$	$\operatorname{rs} \bar{u}, \bar{v}^{\perp} \cdot \bar{v}$	$\bar{u}=0$,				
calcolare la componente s \bar{v}^{\perp} di \bar{v} ortogonale a \bar{u}	scalare v^{\parallel} di \bar{v} parallela	ad \bar{u} , la com	iponente vet	toriale $ar{v}^{\parallel}$ di	\bar{v} parallela	$ar{u} ext{ e la co}$	omponente vettoria	ıle	
$v^{\parallel} = [0] ,$	$ \bar{v}^{\parallel} = [0 \bar{e}_1 -$	$+ 0 \bar{e}_2 +$	$0 \bar{e}_3],$	$\bar{v}^{\perp} =$	$=$ [3 \bar{e}_1 -	$+ 3 \bar{e}_2 +$	$0 \bar{e}_3$].		
0.2 Esercizio. 15 minut Consideriamo un sistema omogenea ortogonale al dell'anello e la lunghezza	a continuo costituito d piano dell'anello e con	n il suo pun	to medio co	incidente co					
Trovare: 1) il momento d'inerzia II 2) il momento d'inerzia II 3) il momento d'inerzia II 4) il momento d'inerzia II 5) il momento d'inerzia II 6) il momento d'inerzia II	2 dell'asta rispetto ad u 3 dell'anello rispetto al 4 dell'anello rispetto ad 5 dell'anello rispetto ad	una retta orto la retta orto l una retta g l una retta (ogonale all'a gonale all'an iacente sul p giacente sul	ello e passa: iano dell'an piano dell'a	nte per il s ello e pass nello e) tar	uo centro, ante per il s ngente all'as	suo centro, nello,		
$I_1 = \lceil$	0],	$I_2 = \lceil$	$\frac{1}{10} m R^2$],	$I_3 = \lceil$	$m R^2$],		
$I_4 = ig[$	$\begin{bmatrix} 0 & & \\ & \frac{1}{2} m R^2 & \end{bmatrix},$	$I_5 = [$	$\frac{3}{2} m R^2$],	$I_6 = [$	$\frac{5}{2} m L^2$].		
0.3 Esercizio. 5 minuti Supponiamo che gli auto	valori del tensore delle		o $_2 = -3\pi,$	$\lambda_3 = 0$.					
1) Tra tutte le infinite fa orientazioni va contata u nessuna faccia □ solo una famiglia di infinite fa una singola faccia più un tutte le facce □ .	cce quante sono quelle na sola volta.) [Sceglier lo due facce solo acce caratterizzata da 1	relativamente una sola catre facce ■ □ 2□	te alle quali asella, $quella$	lo sforzo di più approp parametri	riata]	nti	faccia con le sue du	ue	

2) Tra tutte le infinite facce quante sono quelle relativamente alle quali lo sforzo normale è nullo? (Ogni faccia con le sue due

 $3 \square$

parametri indipendenti

orientazioni va contata una sola volta.) [Scegliere una sola casella, quella più appropriata]

solo tre facce \square

 $2 \square$

solo due facce \square

una famiglia di infinite facce caratterizzata da 1 \blacksquare

nessuna faccia \square solo una faccia \square

tutte le facce \square .

0.4 Esercizio. 25 minuti

La matrice del tensore delle tensioni, in una base ortonormale $(\bar{e}_1, \bar{e}_2, \bar{e}_3) \equiv (\bar{e}_x, \bar{e}_y, \bar{e}_z)$, è

$$\begin{pmatrix} \sigma_1^1 & \sigma_2^1 & \sigma_3^1 \\ \sigma_1^2 & \sigma_2^2 & \sigma_3^2 \\ \sigma_1^3 & \sigma_2^3 & \sigma_3^3 \end{pmatrix} \equiv \begin{pmatrix} \sigma_x^x & \sigma_y^x & \sigma_z^x \\ \sigma_x^y & \sigma_y^y & \sigma_z^y \\ \sigma_x^z & \sigma_y^z & \sigma_z^z \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 3/2 \end{pmatrix}.$$

- 1. La faccia xy è principale? $si \square no \blacksquare$
- 2. La faccia xz è principale? $si \blacksquare no \square$
- 3. La faccia yz è principale? $si \square no \blacksquare$.
- 4. La componente lungo \bar{e}_x dello sforzo relativo alla faccia $xy \ \grave{e} \ \phi = \begin{bmatrix} & -1 & \\ & & \end{bmatrix}$. 5. La componente lungo \bar{e}_y dello sforzo relativo alla faccia $xy \ \grave{e} \ \phi = \begin{bmatrix} & 0 & \\ & & \end{bmatrix}$. 6. La componente lungo \bar{e}_z dello sforzo relativo alla faccia $xy \ \grave{e} \ \phi = \begin{bmatrix} & 3/2 & \\ & & \end{bmatrix}$.
- 7. La traccia T, la somma $S := D_1 + D_2 + D_3$ dei determinanti D_1, D_2, D_3 dei tre minori principali di ordine 2 e il determinante D del tensore delle tensioni (σ_i^i) sono

$$T = \begin{bmatrix} 3/2 \end{bmatrix}, \quad S = \begin{bmatrix} -1 \end{bmatrix}, \quad D = \begin{bmatrix} 0 \end{bmatrix}.$$

8. Gli autovalori di $\hat{\sigma}$, in ordine <u>crescente</u> rispetto al loro valore, ed i **versori** dei corrispondenti autovettori sono

$$\lambda_1 = \begin{bmatrix} & -1/2 & \\ & & \end{bmatrix} \quad \bar{u}_3 = \begin{bmatrix} & 2/\sqrt{5} & \\ & & \end{bmatrix} \bar{e}_x + \begin{bmatrix} & 0 & \\ & & \end{bmatrix} \bar{e}_y + \begin{bmatrix} & 1/\sqrt{5} & \\ & & \end{bmatrix} \bar{e}_z \, ,$$

$$\lambda_2 = \begin{bmatrix} & 0 & \\ & & \end{bmatrix} \quad \bar{u}_2 = \begin{bmatrix} & 0 & \\ & & \end{bmatrix} \bar{e}_x + \begin{bmatrix} & 1 & \\ & & \end{bmatrix} \bar{e}_y + \begin{bmatrix} & 0 & \\ & & \end{bmatrix} \bar{e}_z \, ,$$

$$\lambda_3 = \begin{bmatrix} & 2 & \\ & & \end{bmatrix} \quad \bar{u}_1 = \begin{bmatrix} & 1/\sqrt{5} & \\ & & \end{bmatrix} \bar{e}_x + \begin{bmatrix} & 0 & \\ & & \end{bmatrix} \bar{e}_y + \begin{bmatrix} & -2/\sqrt{5} & \\ & & \end{bmatrix} \bar{e}_z \, .$$

9. Il controllo sugli autovalori, basato sul confronto con gli invariati T, S, D del tensore delle tensioni, dà esito

positivo
$$\blacksquare$$
 negativo \square .

10. Il controllo sugli autovettori, basato sull'ortogonalità dei medesimi, dà esito

positivo
$$\blacksquare$$
 negativo \square .

11. La massima componente (con il suo segno) dello sforzo scalare normale rispetto a tutte le possibili ∞^2 facce è

$$\phi = \begin{bmatrix} 2 \end{bmatrix}$$
.

12. La minima componente (con il suo segno) dello sforzo scalare normale rispetto a tutte le possibili ∞^2 facce è

$$\phi = \begin{bmatrix} -1/2 \end{bmatrix}$$
.

- 13. Tra tutte le ∞^2 facce ve ne sono alcune rispetto alle quali lo sforzo normale è di trazione? sì 🔳 no \square
- 14. Tra tutte le ∞^2 facce ve ne sono alcune rispetto alle quali lo sforzo normale è di pressione? no \square
- 14. Tra tutte le ∞^2 facce ve ne sono alcune rispetto alle quali lo sforzo normale è nullo? no \square
- 16. Lo sforzo relativo alla faccia ortogonale al vettore $\bar{e}_x + \bar{e}_z$ è

$$\bar{\phi} = \begin{bmatrix} & -1/\sqrt{2} & \end{bmatrix} \bar{e}_x + \begin{bmatrix} & 0 & \end{bmatrix} \bar{e}_y + \begin{bmatrix} & 1/(2\sqrt{2}) & \end{bmatrix} \bar{e}_z$$
.

17. La componente scalare dello sforzo normale relativo alla faccia ortogonale al vettore $\bar{e}_x + \bar{e}_z$ è

$$\phi = \begin{bmatrix} & -1/4 & \end{bmatrix}.$$

18. Lo sforzo tangenziale relativo alla faccia ortogonale al vettore $\bar{e}_x + \bar{e}_z$ è

$$\bar{\phi}^{\perp} = \begin{bmatrix} & -3/(4\sqrt{2}) & \ \end{bmatrix} \bar{e}_x + \begin{bmatrix} & 0 & \ \end{bmatrix} \bar{e}_y + \begin{bmatrix} & 3/(4\sqrt{2}) & \ \end{bmatrix} \bar{e}_z .$$

[Nelle risposte esequire le eventuali semplificazioni evidenti. Razionalizzare le frazioni solo quando è veramente conveniente.]