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Josef Janyška 1, Marco Modugno 2

1 Department of Mathematics and Statistics, Masaryk University

Kotlářská 2, 611 37 Brno, Czech Republic

email: janyska@math.muni.cz

2 Department of Mathematics and Informatics “U. Dini”, University of Florence

Via S. Marta 3, 50139 Florence, Italy

email: marco.modugno@unifi.it
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Abstract

We discuss several features of the classical quantum potential appearing in Co-
variant Quantum Mechanics.

In particular, we compare the “observed potential” A[K,G, o] of the joined
spacetime connection K with the potential A↑ of the cosymplectic phase 2–form
Ω[K,G] and with the potential A↑ of the upper quantum connection Q↑ .

Moreover, we discuss the distinguished observer o[Ψ] and the distinguished time-
like potential A[Ψ] associated with a non vanishing quantum section Ψ .

We show that the above objects play a natural role in the context of the ki-
netic quantum momentum Q[Ψ] , of the quantum probability current J[Ψ] , of the
Schrödinger operator S[Ψ] and of the classical fluid associated with a non vanishing
quantum section Ψ .

Key words: covariant classical mechanics, covariant quantum mechanics, galileian
metric, phase space, quantum connection, quantum potential.
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4 Contents

Introduction

Starting from E. Cartan [8], there have been proposed several formulations of
Quantum Mechanics in a curved spacetime with absolute time (see, for instance,
[2, 3, 4, 12, 13, 19, 20, 22, 21, 23, 24, 25, 26, 32, 42, 43, 44, 45, 46, 47, 58, 59, 61, 68, 69]
and citations therein).

Covariant Quantum Mechanics is an approach to Quantum Mechanics in a
curved spacetime fibred over time and equipped with absolute time and a rie-
mannian metric on its fibres, aimed at implementing several features of General
Relativity in this riemannian framework. This formulation started some years ago
[29] and has been further developed by several papers (see, for instance, [6, 7, 28,
31, 32, 36, 50, 52, 53, 55, 56, 65, 66] and citations therein).

Several ideas and methods are typical features of Covariant Quantum Mechan-
ics. For instance, we consider as phase space the 1st jet space J1E , we couple
the gravitational field K\ and the electromagnetic field F into a joined spacetime
connection, which yields several joined objects of the phase space, such as the
cosymplectic 2–form Ω , which plays a fundamental role in classical and quantum
mechanics. Moreover, we introduce the special phase functions and their Lie bracket.
In the quantum theory, we introduce a complex line bundle Q over spacetime and
an upper quantum connection Q↑ , which is hermitian and “reducible” and whose
curvature is proportional to Ω . All main further quantum objects are derived in
a natural way from this connection, by means of a ”criterion of projectability”,
which allows us to get rid of observers, in view of the covariance of the theory. The
quantum operators are achieved via the classification of hermitian quantum vector
fields and their Lie algebra isomorphism with the special phase functions.

Scales

We deal with units of measurement on the same footing of gauges, observers
and coordinates. So, in order to make our theory explicitly independent of “units
of measurement”, we use the notion of “spaces of scales” [37].

We define a positive space to be a semi-vector space U on the semi–field IR+ ,
such that the scalar product · : IR+ × U → U is a left free and transitive action of
the group (IR+, ·) on U . We can define in a natural way the tensor product U⊗U′
of two positive spaces, the rational powers Um/n of a positive space and the dual
U∗ of a positive space. We make a natural identification U∗ ' U−1 . Moreover, we
can define in a natural way the tensor product U ⊗ V of a positive space with a
vector space; indeed, it turns out to be a vector space.

We consider the following basic positive spaces: 1) the space T of time intervals,
2) the space L of lengths, 3) the space M of masses. Then, we define a space of
scales to be any tensor product of rational powers of the above positive spaces.

We consider the Planck constant ~ ∈ T−1 ⊗ L2 ⊗ M as a “universal scale”.
Moreover, we will consider a mass m ∈ M and charge q ∈ T−1 ⊗ L3/2 ⊗ M1/2 .
We denote a time unit of measurement and its dual, respectively, by u0 ∈ T and
u0 ∈ T∗ ' T−1 .
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5

1 Setting of the classical theory

We start by summarising some achievements of Covariant Classical Mechanics.

1.1 Spacetime

We consider time to be an oriented 1–dimenesionl affine space T , associated with
the vector space T ⊗ IR , and spacetime to be an oriented 4–dimensional manifold
E equipped with a time fibring

t : E → T .

The time fibring yields the distinguished time form dt : E → T⊗ T ∗E .

A motion is defined to be a section s : T → E .

We shall refer to spacetime charts (xλ) ≡ (x0, xi) , defined as charts of the
manifold E , which are adapted to the time fibring, the affine structure of T and
the orientation of E and T . Every spacetime chart (xλ) yields a time scale u0 ∈ T .
We shall denote the associated bases of vector fields and forms by (∂λ) ≡ (∂0, ∂i)
and (dλ) ≡ (d0, di) . Accordingly, we shall denote the linear fibred charts of the
tangent bundle TE → E by (xλ, ẋλ) .

We denote by VE ⊂ TE the 3–dimensional vertical subbundle annihilated by
dt and by H∗E ⊂ T ∗E the 1–dimensional horizontal subbundle generated by dt .
The vertical projection T ∗E → V ∗E is denoted by the restriction symbol ∨ .

1.2 Phase space

We choose, as phase space, the 1st jet space [57] of motions t10 : J1E → E .

It turns out to be the 7–dimensional affine subbundle J1E ⊂ T∗ ⊗ TE over E
characterised by the constraint u0⊗∂0 = 1 . The associated vector space is T∗⊗VE .
We shall denote the affine fibred charts of the phase space by (xλ, xi0) .

The phase space is naturally equipped with the contact map and the comple-
mentary contact map

d : J1E → T∗ ⊗ TE and θ : J1E → T ∗E ⊗ VE ,

with coordinate expressions

d = u0 ⊗ (∂0 + xi0 ∂i) and θ = (di − xi0 d0)⊗ ∂i .

The contact maps yield a splitting, over J1E , of the tangent bundle TE → E
and of the cotangent bundle T ∗E → E .

1.3 Observers

An observer is defined to be a section o : E → J1E . Thus, an observer o is the
velocity field of a classical continuum motion c : (T ⊗ IR) × E → E , which plays
the role of reference system.
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6 1 Setting of the classical theory

An observer o is characterised by the associated observed contact map and the
complementary observed contact map

d[o] :=d ◦ o : E → T∗ ⊗ TE and θ[o] := θ ◦ o : E → T ∗E ⊗ VE ,

with coordinate expressions

d[o] = u0 ⊗ (∂0 + oi0 ∂i) and θ[o] = (di − oi0 d0)⊗ ∂i .

The observed contact maps yield a splitting, over E , of the tangent bundle
TE → E and of the cotangent bundle T ∗E → E .

A spacetime chart (xλ) is said to be adapted to an observer o if oi0 = 0 . Many
spacetime charts (xλ) are adapted to an observer o . Conversely, each spacetime
chart (xλ) is associated with a unique observer o , which is characterised by the
condition d[o] = u0 ⊗ ∂0 .

Given an observer o : E → J1E , the other observers ó : E → J1E are of the
type ó = o+ v , where v : E → T∗ ⊗ VE .

In comparison with the einsteinian general relativity, in both cases, the ob-
servers can be defined as normalised spacetime scaled vector fields [35]. But, in the
einsteinian case, the normalisation is achieved via the lorentzian metric, while, in
the galileian case, the normalisation is achieved via the time fibring.

1.4 Galileian metric

Next, we consider spacetime to be equipped with a scaled spacelike riemannian
metric

g : E → L2 ⊗ (V ∗E ⊗ V ∗E) .

With reference to a particle of mass m ∈ M , and by taking into account the
Planck constant ~ ∈ T−1 ⊗ L2 ⊗M , we define the rescaled spacelike metric

G := m
~ g : E → T⊗ (V ∗E ⊗ V ∗E) .

Actually, in the classical theory, any value of ~ with the above scale dimension
would do, while in the quantum theory the value of ~ has an essential role. We have
the coordinate expressions

g = gij
∨
di ⊗

∨
dj and G = G0

ij u0 ⊗
∨
di ⊗

∨
dj ,

with gij ∈ map(E,L2 ⊗ IR) and G0
ij ∈ map(E,T⊗ IR) .

In comparison with the einsteinian general relativity, we have replaced the
lorentzian spacetime metric with the time fibring and a riemannian spacelike metric
[35]. Indeed, this is the main difference between the two theories; all other differ-
ences arise from this one. In particular, in the galileian case, the speed of the light
c has no meaning.

The spacelike metric g and the time form dt , along with the time and space-
time orientations yield naturally the scaled spacelike volume form and the scaled
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1.5 Galileian spacetime connection 7

spacetime volume form

η : E → L3 ⊗ Λ3T ∗E and υ := dt ∧ η : E → (T⊗ L3)⊗ Λ4T ∗E ,

with coordinate expressions

η =
√
|g|
∨
d1 ∧

∨
d2 ∧

∨
d3 and υ =

√
|g|u0 ⊗ d0 ∧ d1 ∧ d2 ∧ d3 .

Given an observer o , we define the observed kinetic energy, the observed kinetic
momentum and the observed Poincaré–Cartan form to be, respectively, the sections

K[G, o] := 1
2 G (∇[o],∇[o]) ∈ sec(J1E, H

∗E) ,

Q[G, o] := θ[o] y (G[∇[o]) ∈ sec(J1E, T
∗E) ,

Θ[G, o] := −K[G, o] +Q[G, o] ∈ sec(J1E, T
∗E) ,

with coordinate expressions

∇[o] = (xi0 − oi0)u0 ⊗ ∂i ,
K[G, o] = 1

2 G
0
ij(x

i
0 − oi0) (xj0 − o

j
0) d0 ,

Q[G, o] = G0
ij(x

j
0 − o

j
0) (di − oi0 d0) ,

Θ[G, o] = (−1
2 G

0
ij x

i
0 x

j
0 + 1

2 G
0
ij o

i
0 o

j
0) d0 +G0

ij (xj0 − o
j
0) di .

1.5 Galileian spacetime connection

We define a metric preserving spacetime connection to be a connection of E

K : TE → T ∗E ⊗ TTE ,

which is linear, torsion free and which fulfills the conditions

∇dt = 0 and ∇g = 0 .

Moreover, such a spacetime connection K is said to be galileian if its curvature
fulfills the additional condition Riµjν = Rjνiµ (see, also, for instance, [42, 46]).

The coordinate expression of a metric preserving spacetime connection K is of
the type

K = dλ ⊗ (∂λ +Kλ
i
µ ẋ

µ ∂̇i)

= dλ ⊗ ∂λ − 1
2 G

ij
0

(
(∂0G

0
hj ẋ

h d0 + ẋ0 dh) + (∂hG
0
jk + ∂kG

0
jh − ∂jG0

hk) ẋ
k dh

)
⊗ ∂̇i

−Gij0
(
Φ0j ẋ

0 d0 + 1
2 Φhj (ẋh d0 + ẋ0 dh)

)
⊗ ∂̇i ,

where
Φ ≡ Φ[K,G, o] = Φλµ d

λ ∧ dµ : E → Λ2T ∗E

is a spacetime 2–form, which depends on K , on G and on the observer o associated
with the chosen spacetime chart (xλ) .
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8 1 Setting of the classical theory

Thus, a metric preserving spacetime connection K is not fully determined by
the metric, as in the riemannian case. Actually, it is defined up to a gauge, which
is represented by the observed spacetime 2–form Φ[K,G, o] .

Moreover, we can prove that a metric preserving connection K is galileian if
and only if, for any observer o , the spacetime 2–form Φ[K,G, o] is closed. In such
a case, Φ[K,G, o] can be written (locally) as

Φ[K,G, o] = 2 dA[K,G, o] ,

where the (local) potential A[K,G, o] : E → T ∗E is locally defined up to a gauge
of the type df : E → T ∗E , with f ∈ map(E, IR) .

In the classical theory, there is no way to parametrise this gauge; on the other
hand, it will be possible in the quantum theory, by means of the quantum basis b .

1.6 Gravitational and electromagnetic fields

Further, we consider the gravitational field as a galileian spacetime connection
K\ : TE → T ∗E ⊗ TTE .

In comparison with the einsteinian general relativity, in the galileian case we
cannot say that the spacelike metric represents the gravitational field, because g
does not determine K\ . Indeed, this fact turns out to be an opportunity to help
us distinguishing the great different role of g and K\ in the description of physical
phenomena.

Moreover, we consider the electromagnetic field as a scaled spacetime 2–form
F : E → (L1/2 ⊗M1/2)⊗ Λ2T ∗E , which fulfills the 1st Maxwell equation dF = 0 .

We define the observed electric vector field and the magnetic vector field as the
scaled spacelike vector fields

~E[o] := − g]
(
d[o] yF

)
: E → (T−1 ⊗ L−3/2 ⊗M1/2)⊗ VE ,

~B := 1
2 i∨F

η̄ : E → (L−5/2 ⊗M1/2)⊗ VE ,

where η̄ : E → L−3 ⊗ Λ3VE is the spacelike volume vector.

In comparison with the einsteinian general relativity, the electromagnetic field F
and the 1st Maxwell equation dF = 0 are formally the same. On the other hand, a
difference arises when we consider the observed electric field ~E[o] and the magnetic
field ~B . In fact, formally, the observed electric field is defined in the same way in
both cases, by means a contraction of the electromagnetic field with the observer;
but a difference is due to the difference of the concept of observer. Moreover, the
magnetic field is defined, in the galileian case, via the vertical restriction of F and, in
the einsteinian case, via the orthogonal projection of F . Eventually, in the galileian
case, the magnetic field turns out to be observer independent. For a comparison
with the literature, see, for instance, [18, 48].

In the present paper, we consider the gravitational and electromagnetic fields
as given. On the other hand, if we would like to relate these fields to their mass
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1.7 Joined spacetime connection 9

and charge sources, then we could not avail of the true Einstein and Maxwell equa-
tions, because they require the lorentzian metric, hence are not consistent with the
galileian framework. Indeed, we should consider just a reduced feeble version of
these equations, where the effects of movement of masses and charges are lost. This
is the price that we pay to couple, in a consistent way, the electromagnetic field
with quantum mechanics based on a classical background with absolute time.

1.7 Joined spacetime connection

With reference to a particle of mass m and charge q , we can couple the gravi-
tational field K\ and the electromagnetic field F into the joined galileian spacetime
connection

K ≡ K\ +Ke :=K\ − 1
2
q
~ (dt⊗ F̂ + F̂ ⊗ dt) ,

where the scaled tensor

F̂ :=G]2(F ) : E → (L−3/2 ⊗M1/2)⊗ (T ∗E ⊗ VE)

turns out to be given by

F̂ = ~
m (−dt⊗ ~E[o] +B[o]) , where B[o] := 2 g]2

(
i ~Bθ
∗[o]η

)
.

From now on, we shall refer to the joined spacetime connection K .

The joined observed spacetime 2–form Φ ≡ Φ[K,G, o] splits as

Φ = Φ\ + 1
2
q
~ F .

Accordingly, the observed potential A ≡ A[K,G, o] splits as A = A\ + Ae , but
we stress that there is no distinguished way to assign the arbitrary gauge to the
two components of A .

We consider as law of motion for a particle, with mass m and charge q , effected
by the gravitational and electromagnetic fields K\ and F , to be the equation

∇[K]ds = 0 .

This equation splits as

∇ds = ∇\ds− ~f ◦ ds = 0 ,

where
→
f turns out to be the Lorentz force

→
f = q

m ( ~E[o] + θ[o] × ~B) .

1.8 Analytical Mechanics

Further, in order to achieve a consistent formulation of the classical Analytic Me-
chanics and the consequent formulation of Quantum Mechanics in our framework,
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10 1 Setting of the classical theory

we define the following objects.

We define a phase connection to be a connection of the bundle t10 : J1E → E

Γ : J1E → T ∗E ⊗ TJ1E .

We can prove that there is a bijection between time preserving, linear spacetime
connections K and affine phase connections Γ . Therefore, the joined spacetime
connection K yields a distinguished affine phase connection Γ ≡ Γ[K] .

Each affine phase connection Γ yields the “quadratic” dynamical phase connec-
tion

γ ≡ γ[Γ] :=d yΓ : E → T∗ ⊗ TJ1E ,

which can be regarded as a connection of the fibred manifold t1 : J1E → T .

Therefore, the joined spacetime connection K yields the distinguished dynamical
phase connection γ ≡ γ[K] .

Each phase connection Γ yields the dynamical phase 2–form

Ω ≡ Ω[Γ, G] :=G y
(
ν[Γ] ∧ θ

)
: J1E → Λ2T ∗J1E ,

where ν[Γ] is the vertical projection ν[Γ] : J1E → T ∗E ⊗ (T∗ ⊗ VE) associated
with Γ .

Therefore, the joined spacetime connection K yields the distinguished dynamical
phase 2–form Ω ≡ Ω[K,G] .

Each phase connection Γ yields the dynamical phase two vector

Λ ≡ Λ[G,Γ] := Ḡ y (Γ̌ ∧ ν) : J1E → Λ2V J1E ,

where ν is the natural scaled vertical form ν : J1E → T ⊗ (V ∗E ⊗ VEJ1E) and
Γ̌ : J1E → V ∗E ⊗ (T∗ ⊗ VE) is the vertical restriction of Γ .

Therefore, the joined spacetime connection K yields the distinguished dynamical
phase 2–vector Λ ≡ Λ[K,G] .

We have the coordinate expressions

Γ[K] = dλ ⊗
(
∂λ + (Kλ

i
0 +Kλ

i
h x

h
0) ∂0

i

)
,

γ[K] = u0 ⊗
(
∂0 + xi0 ∂i + (K0

i
0 + 2K0

i
h x

h
0 +Kh

i
k x

h
0 x

k
0) ∂̇i0

)
,

Ω[K,G] = G0
ij

(
di0 − (Kλ

i
0 +Kλ

i
h x

h
0) dλ

)
∧ θj ,

Λ[K,G] = Gij0 (∂i +Ki
h
k x

k
0 ∂

0
h

)
∧ ∂0

j ,
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1.8 Analytical Mechanics 11

i.e., more explicitly,

Γ[K] = dλ ⊗ ∂λ −Gij0
(
Φ0j + 1

2 (∂0G
0
hj + Φhj)x

h
0)
)
d0 ⊗ ∂0

i

−Gij0 1
2

(
(∂0G

0
kj + Φkj) + (∂hG

0
jk + ∂kG

0
jh − ∂jG0

hk)x
h
0)
)
dk ⊗ ∂0

i ,

γ[K] = u0 ⊗
(
∂0 + xi0 ∂i

−Gij0
(
Φ0j + (∂0G

0
hj + Φhj)x

h
0 + (∂hG

0
jk − 1

2 ∂jG
0
hk)x

h
0 x

k
0

)
∂0
i

)
,

Ω[K,G] = (∂0G
0
hj x

h
0 + 1

2 ∂jG
0
hk x

h
0 x

k
0) d0 ∧ dj + (∂iG

0
jh x

h
0) di ∧ dj

+G0
hj x

h
0 d

0 ∧ dj0 −G
0
ij d

i ∧ dj0 + 1
2 Φλµ d

λ ∧ dµ ,

Λ[K,G] = Gij0 ∂i ∧ ∂
0
j +Gih0 Gjk0

(
∂hG

0
kr x

r
0 + 1

2 Φhk

)
∂0
i ∧ ∂0

j .

We have the splittings

Γ = Γ\ + q
m

(
dt⊗ ( ~E[o] + 1

2 θ[o] × ~B)− 1
2
~B[o]

)
,

γ = γ\ − q
~ G

] (d yF ) ,

Ω = Ω\ + 1
2
q
~ F ,

Λ = Λ\ + 1
2
q
m B ,

where B := 2G]2
(
i ~B η

)
.

The map Γ 7→ γ[Γ] turns out to be a bijection. Moreover, we can prove that
γ is the unique dynamical phase connection which fulfills the condition iγΩ = 0 .
Therefore, we obtain a sequence of bijections K 7→ Γ 7→ Ω 7→ γ , which is circularly
closed.

We stress that Ω[K,G] encodes full information on the metric and the joined
galileian connection K , while Λ[K,G] turns out to be determined only by the metric
G and the magnetic field ~B .

We can prove the equality

Ω[K,G] = dΘ[G, o] + 1
2 Φ[K,G, o] .

So, Ω[K,G] turns out to be closed if and only if K is galileian.
Hence, the pair (dt,Ω) turns out to be a scaled cosymplectic structure of the

phase space [17, 34]. In other words, dt ∧ Ω ∧ Ω ∧ Ω : J1E → T ⊗ Λ7T ∗J1E is a
scaled volume form of the phase space and dΩ = 0 .

The dynamical phase 2–form Ω turns out to play a fundamental role both in the
classical and the quantum theory.

The law of motion ∇[K]ds = 0 turns out to be equivalent to the equation
∇[γ] ◦ j1s = 0 .

In comparison with Geometric Quantisation [1, 15, 16, 62, 63, 71], in our context,
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12 1 Setting of the classical theory

such a main role is played by a cosymplectic 2–form and not by a symplectic 2–form.
This fact is related to the fundamental role of time (which, in the present theory, is
not just a parameter, but a fundamental object) and to our strategic choice of the
odd dimensional phase space J1E .

1.9 Horizontal potential

One of the main features of the cosymplectic 2–form Ω is to admit (locally) an
“upper” horizontal potential of the type

A↑ : J1E → T ∗E ,

according to the equation Ω = dA↑ . Clearly, the horizontal potential A↑ is locally
defined up to a gauge of the type df : E → T ∗E , with f ∈ map(E, IR) .

Given an observer o , we can prove the equality

Φ[K,G, o] = 2 o∗Ω[K,G] .

Therefore, the observed potential A[K,G, o] of Φ[K,G, o] turns out to be given
(up to a gauge) by the equality

A[K,G, o] = o∗A↑ .

We can split, in a natural way, the potential A↑ into its horizontal and vertical
components A↑ = L[A↑] + P[A↑] , where

L ≡ L[A↑] :=d yA↑ ∈ sec(J1E, H
∗E)

P ≡ P[A↑] := θ yA↑ ∈ sec(J1E, T
∗E)

are the classical lagrangian and the classical momentum. Clearly, the above objects
are local, observer independent and defined up to the gauge of A↑ .

The Euler–Lagrange equation associated with the lagrangian L

E [L] ◦ j2s = 0 ,

where
E [L] =

(
∂iL0 − (∂0 + xj0 ∂j + xj00∂

0
j ) ∂0

i L0

)
u0 ⊗ (di − xi0 d0) ,

turns out to be equivalent to the equations ∇[K]ds = 0 and ∇[γ]j1s = 0 .
Indeed, the Euler–Lagrange operator E [L] turns out to be global, gauge inde-

pendent and observer independent.
The triplet (Ω,L, E) turns out to be an excerpt of a variational sequence [40, 67],

whose starting source, in our context, is Ω .
The pair (Ω, γ) accounts for the fact that the equation of motion ∇[γ]j1s = 0

can be derived from a lagrangian [9, 10, 38, 39, 41, 54].

Moreover, given an observer o , the potential A↑ splits into its horizontal and
vertical components

A↑ = −H[A↑, o] + P[A↑, o] ,
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1.9 Horizontal potential 13

where

H[A↑, o] :=−d[o] yA↑ = K[G, o]−A[G, o] ∈ sec(J1E, H
∗E)

P[A↑, o] := θ[o] yA↑ = Q[G, o] +A[G, o] ∈ sec(J1E, T
∗E)

are the observed classical hamiltonian and the observed classical momentum.
We have the coordinate expressions

L[A↑] = (1
2 G

0
ij x

i
0 x

j
0 +Aj x

j
0 +A0) d0 , P[A↑] = (G0

ij x
j
0 +Ai) (di − xi0 d0) ,

H[A↑, o] = (1
2 G

0
ij x

i
0 x

j
0 −A0) d0 , P[A↑, o] = (G0

ij x
j
0 +Ai) (di − oi0 d0) ,

and the splittings

L[A↑] = L[A↑\] + d yAe , P[A↑] = P[A↑\] + θ y
∨
Ae ,

H[A↑, o] = H[A↑\, o]− d[o] yAe , P[A↑, o] = P[A↑\, o] + θ[o] y
∨
Ae .

Clearly, the above objects are local, observer dependent and defined up to the
gauge of A↑ .

The equation of motion can be equivalently written, in terms of the phase func-
tions f : J1E → IR , via the Poisson bracket, as

(γ.f)0 = ∂0f − {H0, f} −Gij0 ∂0Pi ∂0
j f .

However, while the equations ∇[K]ds = 0 , ∇[γ]j1s = 0 and E [L] ◦ j2s = 0 are
global, gauge independent and observer independent, the above equation has not
so, hence it is not explicitly covariant.

In comparison with Geometric Quantisation [1, 15, 16, 52, 62, 63, 64, 71], we
are not dealing with a symplectic phase 2–form Ω , but with a cosymplectic phase
2–form Ω . Moreover, our observed hamiltonianH is not provided by an assumption,
but is derived from the cosymplectic 2–form Ω . Furthermore, the standard Hamilton
equation iXΩ = −dH is replaced by the identity iγΩ = 0 .
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14 2 Setting of the quantum theory

2 Setting of the quantum theory

Next, we summarise some achievements of Covariant Quantum Mechanics.

2.1 Quantum bundle

We consider the quantum bundle to be a 1–dimensional complex vector bundle
over spacetime

π : Q→ E .

The quantum states are represented by the quantum sections Ψ : E → Q .

In comparison with Geometric Quantisation, our quantum bundle is over spac-
ertime, not over the phase space. This fact will agree, later, with our choice of the
upper quantum connection Q↑ and the horizontal “upper quantum potential” A↑ .

We consider the quantum bundle to be equipped with a scaled hermitian quan-
tum metric

h : Q×
E
Q→ L−3 ⊗ C .

By taking into account the spacelike volume form η , we define the vertical valued
hermitian quantum metric hη : Q×

E
Q→ Λ3V ∗E ⊗ C .

We shall refer to normalised scaled quantum bases

b : E → L3/2 ⊗Q , which fulfill the condition hη(b,b) = η .

Accordingly, we shall refer to scaled linear fibred charts (xλ, z) , where the scaled
complex function z : Q→ L−3/2 ⊗ C , fulfills the condition z(b) = 1 .

We shall write

Ψ = ψ b , with ψ ≡ |ψ| exp(iϕ) ∈ map(E,L−3/2 ⊗ C) .

In view of the forthcoming upper quantum connection Q↑ , we define the upper
quantum bundle to be the 1–dimensional complex vector bundle π↑ : Q↑ → J1E over
the phase space, where Q↑ := J1E×

E
Q . Thus, this bundle is obtained, by pullback,

via an enlargement the base space, leaving the fibres untouched. In the present
context, the base space J1E plays the role of the space of all possible observers o .

2.2 Upper quantum connection

We say that a complex linear connection Q↑ : Q↑ ×
J1E

TJ1E → TQ↑ is reducible

if it factorises through a system of quantum connections Q[o] : Q×
E
TE → TQ . We

can prove that Q↑ is reducible if and only if, in coordinates, Q↑0i = 0 .
We define a galileian upper quantum connection to be a connection of Q↑ → J1E

Q↑ : Q↑ → T ∗J1E ⊗ TQ↑ ,
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2.3 Observed quantum potential 15

such that it is hermitian and reducible and with a curvature fulfilling the condition

R[Q↑] = −2 iΩ⊗ I↑ ,

where I↑ : Q↑ → Q↑ is the Liouville vector field of Q↑ (see also [46]).
The closure of Ω turns out to be a necessary integrability condition for the local

existence of Q↑ , because of the Bianchi identity.
The integer cohomology class of Ω turns out to be a necessary integrability

condition for the global existence of Q↑ [66].
The upper quantum connections Q↑ are defined locally up to a gauge of the

type i df ⊗ I↑ , where f : E → IR .
With reference to a quantum basis b , the coordinate expression of an upper

quantum connection Q↑ is locally of the type

Q↑ = χ↑[b] + iA↑[b]⊗ I↑

= χ↑[b] + i
(
Θ[o] +A[b, o]

)
⊗ I↑

= χ↑[b] + i
(
−K[o] +Q[o] +A[b, o]

)
⊗ I↑

= χ↑[b] + i
(
−H[b, o] + P[b, o]

)
⊗ I↑

= dλ ⊗ ∂λ + di0 ⊗ ∂0
i + i

(
− (1

2 G
0
ij x

i
0 x

j
0 −A0) d0 + (G0

ij x
j
0 +Ai) d

i
)
⊗ I↑ ,

where χ↑[b] : Q↑ → T ∗J1E⊗TQ↑ is the trivial hermitian upper quantum connection
induced by the quantum basis b .

Thus, the upper quantum potential A↑[b] appearing in the above expression of
Q↑ is just a potential of Ω and a potential of K , that have been discussed previously.

Then, we suppose the cohomology class of Ω to be integer and consider, as source
of all further quantum developments, a galileian upper quantum connection Q↑ .

In comparison with Geometric Quantisation [1, 15, 16, 52, 62, 63, 64, 71], we
have a natural polarisation, our upper quantum connection is reducible and the
upper quantum potential is horizontal.

On the other hand, the upper quantum connection Q↑ lives on the pullback
quantum bundle Q↑ , which includes all observers on the base space J1E , and,
in the subsequent developments of our theory, all further quantum objects will be
derived from Q↑ . Then, in order to get rid of observers, according to the principle of
general relativity, we shall follow a criterion of projectability, namely we shall look
for objects defined on the phase space, which factorise through spacetime. This
method of projectability replaces the search of polarisations typical of Geometric
Quantisation.

2.3 Observed quantum potential

We observe that the quantum bases b allow us to parametrise the upper quantum
potentials A↑ , hence the observed quantum potentials A[b, o] .

If b and b́ = exp(iϑ)b are two quantum bases, then we have

A↑[b́] = A↑[b]− i dϑ .
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16 2 Setting of the quantum theory

Moreover, now we can find the transition rule for the observed quantum poten-
tial. In fact, with reference to two quantum bases b and b́ = exp(iϑ)b and two
observers o and ó = o+ v , we have the following transition rule

A[b́, ó] = A[b, o]− dϑ+ θ[o] yG[(v)− 1
2 G(v, v) ,

i.e., in a chart adapted to b and o ,

A[b́, ó] = Aλ[b, o] dλ − ∂λϑ dλ +G0
ij v

j
0 d

i − 1
2 G

0
ij v

i
0 v

j
0 d

0 .

2.4 Distinguished observer and observed potential

The upper quantum connection Q↑ yields the following distinguished objects.

Given a quantum basis b , there exists a unique distinguished observer o[b] , as-
sociated with b , such that the vertical restriction of the induced observed potential

vanishes, i.e., such that
∨
A
[
b, o[b]

]
= 0 .

Thus, for every quantum basis b , we obtain the distinguished timelike observed
potential A[b] :=A

[
b, o[b]

]
∈ sec(E, H∗E) determined by b .

Indeed, if o is any observer, then we obtain the equalities (where ~A :=G](
∨
A))

o[b] = o−
→
A[b, o] and A[b] = d[o] yA[b, o]− 1

2 G
(→
A[b, o],

→
A[b, o]

)
,

i.e., in a chart adapted to o ,

oi0[b] = −Ai0[b, o] , and A[b] =
(
A0[b, o]− 1

2 Ai[b, o]A
i
0[b, o]

)
d0 .

Given two quantum bases b́ and b́ = exp(iϑ)b , we have the transition rules

(where
→
d :=G] ◦

∨
d)

o[b́] = o[b]−
→
d ϑ and A[b́] = A[b]− d[o].ϑ− 1

2 G (
→
d ϑ,

→
d ϑ) .

Now, we consider the proper quantum subbundle Q/0 :=Q/{0} ⊂ Q .

Let us consider a proper quantum section Ψ ∈ sec(E,Q/0) and the associated
distinguished quantum basis b[Ψ] := Ψ/‖Ψ‖ .

Then, we obtain the distinguished observer and the distinguished potential, which
are determined only by Ψ ,

o[Ψ] := o
[
b[Ψ]

]
: E → J1E ,

A[Ψ] :=A
[
b[Ψ]

]
: E → H∗E .

Thus, o[Ψ] is, by definition, the unique observer, associated with Ψ , such that
the observed potential A

[
b[Ψ], o[Ψ]

]
be timelike, i.e. such that

∨
A
[
b[Ψ], o[Ψ]

]
= 0 .

DGA-1-2018-02-10.tex; [output 2018-02-10; 15:59]; p.16



2.5 Kinetic quantum momentum 17

Indeed, if b is any quantum basis and o any observer, then we obtain the equal-
ities

o[Ψ] = o−
→
A[b, o] +

→
d ϕ ,

A[Ψ] = d[o] yA[b, o]− d
[
o[b]

]
.ϕ− 1

2 G
(→
A[b, o],

→
A[b, o]

)
− 1

2 G (
→
d ϕ,

→
d ϕ)

= −d[o] y
(
dϕ−A[b, o]

)
− 1

2 G
((→
d ϕ−

→
A[b, o]

)
,
(→
d ϕ−

→
A[b, o]

))
,

with coordinates expressions, in a chart adapted to o and b ,

oi0[Ψ] = −Ai0[b, o] +Gij0 ∂jϕ

= Gij0 (∂jϕ−Aj [b, o]) ,
A[Ψ] =

(
A0[b, o]− ∂0ϕ+Ai0[b, o] ∂iϕ− 1

2 G
0
ij A

i
0[b, o]Aj0[b, o]− 1

2 G
ij
0 ∂iϕ∂jϕ

)
d0

= −
((
∂0ϕ−A0[b, o]

)
+ 1

2 G
0
ij

(
∂iϕ−Ai[b, o]

) (
∂iϕ−Ai[b, o]

))
d0 ,

where we have set

ϕ :=ϕ[Ψ,b] ,
→
d ϕ :=G](

∨
dφ) ,

→
A :=G](

∨
A) .

In particular, if o is any observer and we refer to the distinguished quantum
basis b[Ψ] , then we obtain the equality

o[Ψ] = o−
→
A
[
b[Ψ], o]

]
,

with coordinate expression, in a chart adapted to o and b[Ψ] ,

oi0[Ψ] = −Ai0
[
b[Ψ], o]

]
.

Given a proper quantum section Ψ , we are led to regard o[Ψ] as the distinguished
observer at rest with respect to Ψ and A[Ψ] as the distinguished observed potential
“seen” by Ψ , regardless of any further gauge.

2.5 Kinetic quantum momentum

Given a quantum section Ψ , we have the following distinguished scaled fibred
morphisms defined on the phase space J1E

d⊗Ψ : J1E → T∗ ⊗ (TE ⊗Q) and
→
∇↑Ψ : J1E → T∗ ⊗ (TE ⊗Q) ,

where
→
∇↑ :=G] ◦

∨
∇↑ .

Indeed, according to the criterion of projectability, there is a unique complex
combination of these fibred morphisms, which factorises through a section of space-
time (so getting rid of observers)

Q[Ψ] :=d⊗Ψ− i
→
∇↑Ψ : E → T∗ ⊗ (TE ⊗Q) ,
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18 2 Setting of the quantum theory

Thus, the above section Q[Ψ] of spacetime, called kinetic quantum momentum,
is global, gauge independent and observer independent. We have the identity

dt yQ[Ψ] = d
[
o[Ψ]

]
⊗Ψ .

We have the coordinate expression

Q[Ψ] =
(
ψ ∂0 − iGij0 (∂jψ − iAj [b, o]ψ) ∂i

)
⊗ u0 ⊗ b ,

i.e., in the proper domain of Ψ ,

Q[Ψ] = (∂0 −Ai0 ∂i)⊗ u0 ⊗Ψ− iGij0 (∂j log |ψ|+ i ∂jϕ) ∂i ⊗ u0 ⊗Ψ .

In the proper domain of Ψ , with reference to the distinguished quantum basis
b[Ψ] and the distinguished observer o[Ψ] , the coordinate expression of the kinetic
quantum momentum can be written as

Q[Ψ] = ∂0 ⊗ u0 ⊗Ψ− iGij0 ∂j log |ψ| ∂i ⊗ u0 ⊗Ψ .

In other words, we obtain the equality

Q[Ψ] =
(
d
[
o[Ψ]

]
− i

→
d (log ‖Ψ‖)

)
⊗Ψ , where

→
d :=G] ◦

∨
d .

Hence, we obtain the scaled complexified spacetime vector field

V[Ψ] :=Q[Ψ]/Ψ = d
[
o[Ψ]

]
− i

→
d (log ‖Ψ‖) : E → T∗ ⊗ (TE ⊗ C) ,

which splits into its real and imaginary components

reV[Ψ] = d
[
o[Ψ]

]
: E → T∗⊗TE and imV[Ψ] = −

→
d (log ‖Ψ‖) : E → T∗⊗VE .

Thus, the above real component turns out provide again the distinguished ob-
server o[Ψ] .

2.6 Probability current

Given a quantum section Ψ , we have the following distinguished scaled fibred
morphisms defined on the phase space

d⊗‖Ψ‖2 : J1E → L−3⊗ (T∗⊗TE) and reh(Ψ, iΨ) : J1E → L−3⊗ (T∗⊗TE) .

Indeed, according to the criterion of projectability, there is a unique real com-
bination of these fibred morphisms, which factorises through a section of spacetime
(so getting rid of observers)

J[Ψ] :=d⊗ ‖Ψ‖2 − reh(Ψ, i
→
∇↑Ψ) : E → L−3 ⊗ (T∗ ⊗ TE) .

Thus, the above section J[Ψ] of spacetime, called quantum probability current, is
global, gauge independent and observer independent.
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2.7 Schrödinger operator 19

We have the identity

dt y J[Ψ] = ‖Ψ‖2 .

We have the coordinate expression

J[Ψ] =
(
|ψ|2 ∂0 + (i 1

2 G
ij
0 (ψ ∂jψ̄ − ψ̄ ∂jψ)−Ai0[b, o] |ψ|2) ∂i

)
⊗ u0 ,

i.e., in the proper domain of Ψ ,

J[Ψ] = |ψ|2 u0 ⊗
(
∂0 + (Gij0 ∂jϕ[Ψ,b]−Ai0[b, o]) ∂i

)
.

In the particular case of a flat spacetime with vanishing magnetic field and an
inertial observer, this operator coincides with the standard quantum probability
current.

In the proper domain of Ψ , with reference to the distinguished quantum basis
b[Ψ] and the distinguished observer o[Ψ] , the coordinate expression of the quantum
probability current can be written as

J[Ψ] = |ψ|2 u0 ⊗ ∂0 .

In other words, we obtain the equality

J[Ψ] = ‖Ψ‖2 d
[
o[Ψ]

]
.

Hence, once more, we obtain the distinguished observer

d
[
o[Ψ]

]
= J[Ψ]/‖Ψ‖2 .

2.7 Schrödinger operator

Given a quantum section Ψ , we have the following distinguished scaled fibred
morphisms defined on the phase space

d y∇↑Ψ : J1E → T∗ ⊗Q and δ↑Q[Ψ] : J1E → T∗ ⊗Q ,

where δ↑ is the codifferential operator induced by the upper quantum covariant
differential ∇↑ and the rescaled metric G .

Indeed, according to the criterion of projectability, there is a unique complex
combination of these fibred morphisms, which factorises through a section of space-
time (so getting rid of observers)

S[Ψ] := 1
2

(
d y∇↑Ψ + δ↑(Q.Ψ)

)
: E → T∗ ⊗Q .

Thus, the above section S[Ψ] of spacetime, called Schrödinger operators, is
global, gauge independent and observer independent.

With reference to any observer o , we have the expression

S[Ψ] =
(
∇d[o][o] + 1

2 divη d[o]− i 1
2 ∆[G, o]

)
Ψ ,
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20 2 Setting of the quantum theory

where ∆[G, o] is the quantum laplacian operator associated with the rescaled metric
G and the observer o .

In other words, we have the coordinate expression

S0[Ψ] = (∂0ψ − 1
2 iG

ij
0 ∂ijψ)b− i (A0 − 1

2 AiA
i
0)ψ b

−
(
(Aj0 + 1

2 i
∂i(G

ij
0

√
|g|)√

|g|
) ∂jψ

)
b + 1

2

(∂0

√
|g|√
|g|
−
∂i(A

i
0

√
|g|)√

|g|
)
ψ b .

In the particular case of a flat spacetime with vanishing magnetic field and an
inertial observer, this operator coincides with the standard Schrödinger operator
[49].

We stress that our approach to Schrödinger operator does not involve hamilto-
nian methods and the energy.

In the proper domain of Ψ , the Schrödinger equation S[Ψ] = 0 splits into the
system

0 = ∂0|ψ|+ 1
2 |ψ|G

ij
0 ∂ijϕ+Gij0 ∂i|ψ| (∂jϕ−Aj)

− 1
2 G

ij
0 |ψ| ∂iAj + 1

2 |ψ|
∂0

√
|g|√
|g|

+ 1
2 |ψ|

∂i(G
ij
0

√
|g|)√

|g|
(∂jϕ−Aj) ,

0 = −1
2 G

ij
0 ∂ij |ψ| − 1

2

∂i(G
ij
0

√
|g|)√

|g|
∂j |ψ|

+ |ψ|
(
∂0ϕ+ 1

2 G
ij
0 ∂iϕ∂jϕ−A

i
0 ∂iϕ−A0 + 1

2 AiA
i
0

)
,

i.e., with reference to the distinguished quantum basis b[Ψ] and the distinguished
observer o[Ψ] ,

0 = ∂0|ψ|+ 1
2 |ψ|

∂0

√
|g|√
|g|

,

0 = −1
2 G

ij
0 ∂ij |ψ| − 1

2

∂i(G
ij
0

√
|g|)√

|g|
∂j |ψ| −A0 |ψ| .

Hence, with reference to the distinguished quantum basis b[Ψ] and the distin-
guished observer o[Ψ] , the above system can be written as

0 = d[oΨ].‖Ψ‖+ 1
2 ‖Ψ‖ divη d[oΨ] ,

0 = ∆[G]‖Ψ‖+ 2 ‖Ψ‖A[Ψ] ,

We can regard the 1st equation as the continuity equation for the quantum
probability current J[Ψ] and the 2nd equation as an equation for the distinguished
timelike quantum potential A[Ψ] “seen” by Ψ .
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2.8 Associated classical fluid

Regardless the Schrödinger equation, given a proper quantum section Ψ , we
can naturally associate with it a classical fluid whose mass density and velocity are
given by the equalities [5, 11, 14, 27, 30, 60, 70]

µ :=m ‖Ψ‖2 and V [Ψ] :=d
[
o[Ψ]

]
= reV[Ψ] ,

with coordinate expressions

µ[Ψ] = m |ψ|2 and V [Ψ] = u0 ⊗
(
∂0 +Gij0 (∂jϕ−Aj) ∂i

)
.

Just in virtue of the definition of V [Ψ] , this fluid turns out to fulfill the equation
of motion

µ[Ψ]∇\V [Ψ]V [Ψ] = −µ[Ψ] q g](V [Ψ] yF )− µ[Ψ] ~
m
~dA[Ψ] ,

where
~dp[Ψ] := − ~

m g]
(∨
dA[Ψ]

)
can be interpreted as the gradient of a quantum pressure. Once more, the distin-
guished timelike potential A[Ψ] “seen” by Ψ appears in the above equation.

This equation can be written, in eulerian form, as

µ[Ψ] E \
[
o[Ψ]

]
= ρ[Ψ] ~E

[
o[Ψ]

]
+ µ[Ψ] ~dp[Ψ]− µ[Ψ]G]

(
d
[
o[Ψ]

]
yΦ\

[
o[Ψ]

])
,

where E \[oΨ] is the eulerian acceleration observed by the distinguished observer
o[Ψ] .

Next, by assuming that Ψ fulfills the Schrödinger equation, the classical fluid
turns out to fulfill the system of continuity equation and equation of motion

divυ
(
µ[Ψ] V [Ψ]

)
= V [Ψ].µ[Ψ] + µ[Ψ] divη V [Ψ] = 0 ,

µ[Ψ]∇\V [Ψ]V [Ψ] = −ρ[Ψ] g](V [Ψ] yF ) + µ[Ψ] ~dp[Ψ] ,

where the quantum pressure fulfills the constitutive equation

p[Ψ] = 1
2

~2
m2

∆[g]
√
µ[Ψ]√

µ[Ψ]
.

This result extends the well known hydrodynamical formulation of quantum
mechanics [11] to our more general framework.
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3 Further developments

Further developments of Covariant Classical and Quantum Mechanics are out
of the scope of the present paper.

Nevertheless, here we shortly mention a few achievements just to indicate the
perspectives of the theory.

The phase 2–vector Λ yields the Poisson bracket {f, f́} := Λ(df, df́) .
However, this bracket cannot be taken as the key issue of Analytical Mechanics,

because Λ does not carry full information on the structure of the phase space, but
it accounts only for its spacelike structure.

On the other hand, the special phase functions of the type

f = f0 1
2 G

0
ij x

i
0 x

j
0 + f iG0

ij x
j
0 + f̆ , with f0 , f i , f̆ ∈ sec(E, IR) ,

are equipped with the special Lie bracket

[[ f, f́ ]] := Λ(df, df́) + γ0(f0).f́ − γ0(f́0).f .

This special Lie algebra turns out to be the source of classical and quantum
symmetries [50, 55, 56].

Moreover, the projectable hermitian quantum vector fields Yη : Q→ Q turn out
to be of the type [33]

Yη[f ] = f0 ∂0 − f i ∂i +
(
i (f̆ + f0A0 − f iAi)− 1

2

(
f0 ∂0

√
|g|√
|g|
−
∂i(f

i
√
|g|)√
|g|

))
I ,

and constitute a Lie algebra naturally isomorphic to the Lie algebra of special phase
functions.

Then, the Schrödinger operator S[Ψ] and the above projectable hermitian vector
fields Yη[f ] yield in a natural way our quantum operators associated with the special
phase functions f [29, 33]

O[f ].Ψ = i
(
Yη[f ].Ψ− f0 S0[Ψ]

)
=
((
f̆ −Ai f i − i (f i ∂i + 1

2

∂i(f
i
√
|g|)√
|g|

)− 1
2 f

0 ∆0

)
ψ
)
b .

Indeed, the above combination makes the partial derivative ∂0 to disappear. In
other words, these operators act on the fibres of spacetime.

So, in comparison with Geometric Quantisation [1, 15, 16, 52, 62, 63, 64, 71], we
replace the Poisson Lie algebra of phase functions with the special phase Lie algebra
and we obtain the quantum operators associated with special phase functions via
the Schrödinger operator and the classification of projectable hermitian quantum
vector fields. Indeed, energy and momentum are treated on the same footing.
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[14] D. A. Deckert, D. Dürr, P. Pickl: Quantum Dynamics with Bohmian Trajecto-
ries, J. Phys. Chem. A 111(41) (2007), 10325-10330.

[15] M. de Leon, J. C. Marrero, E. Padron: On the geometric quantization of Jacobi
manifolds, J. Math. Phys. 38 (1997), 6185–6213.

[16] M. de Leon, J. C. Marrero, E. Padron: Complex polarizations on cosymplectic
and contact manifolds, preprint.

[17] M. de Leon, G. M. Tuynman, A universal model for cosymplectic manifolds, J.
Geom. Phys. 20 (1996), 77-86.

[18] M. de Montigny, G. Rousseaux: On some applications of Galileain electrodynamics
of moving bodies, arXiv:physics/0606228v1, pag. 1–20.

[19] B.S. DeWitt: Dynamical Theory in Curved Spaces. I. A Review of the Classical and
Quantum Action Principles, Rev. Mod. Phys. 29 (1957), 377–397.

[20] H.D. Dombrowski, K. Horneffer: Die Differentialgeometrie des Galileischen
Relativitätsprinzips, Math. Z. 86 (1964), 291–311.

DGA-1-2018-02-10.tex; [output 2018-02-10; 15:59]; p.23



24 References

[21] C. Duval, H.P. Künzle: Minimal gravitational coupling in the Newtonian theory
and the covariant Schrödinger Equation, General Relativity Gravitation, 16 (4) (1984),
333–347.

[22] C. Duval, G. Burdet, H.P. Künzle, M. Perrin: Bargmann structures and
Newton-Cartan theory, Phys. Rev. D(3) 31 (1985), 1841–1853.

[23] J. Ehlers: The Newtonian limit of general relativity, in “Fisica Matematica Classica
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[28] A. Jadczyk, J. Janyška, M. Modugno: Galilei general relativistic quantum me-
chanics revisited, in “Geometria, F́ısica-Matemática e outros Ensaios”, Homenagem a
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