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Abstract

We define an almost–cosymplectic–contact structure which generalizes cosym-
plectic and contact structures of an odd dimensional manifold. Analogously, we
define an almost–coPoisson–Jacobi structure which generalizes a Jacobi structure.
Moreover, we study relations between these structures and analyse the associated
algebras of functions.

As examples of the above structures, we present geometrical dynamical struc-
tures of the phase space of a general relativistic particle, regarded as the 1st jet
space of motions in a spacetime. We describe geometric conditions by which a
metric and a connection of the phase space yield cosymplectic and dual coPois-
son structures, in case of a spacetime with absolute time (a Galilei spacetime), or
almost–cosymplectic–contact and dual almost–coPoisson–Jacobi structures, in case
of a spacetime without absolute time (an Einstein spacetime).

Keywords Spacetime, phase space, phase connection, Schouten bracket, Frölicher–Nijenhuis bracket,
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4 Contents

Introduction

In [2, 3, 5, 6, 7] we studied geometrical structures on the phase space of a spacetime
naturally induced (in the sense of [10]) by a metric and a phase connection. Some of
these structures are well known and some are less standard. In the present paper, we
generalize these structures on odd dimensional manifolds and study general properties of
such structures.

First, in Section 1, we recall some standard structures and introduce new structures,
namely almost–cosymplectic–contact, coPoisson and almost–coPoisson–Jacobi structures.
In Section 2 we study algebras of functions which are associated with the new geometrical
structures.

As examples of the above new structures, we study the geometrical structures on the
phase space of a spacetime. Actually, the geometric objects arising in Section 3.1, in the
framework of the Galilei’s phase space [2, 5, 6], involve mainly the concepts of cosym-
plectic and (regular) coPoisson structures. On the other hand, the analogous geometric
objects arising in Section 3.2, in the framework of the Einstein’s phase space [3, 7], in-
volve mainly the concepts of almost–cosymplectic–contact and almost–coPoisson–Jacobi
structures (eventually contact and Jacobi structures).

In the standard non relativistic analytical mechanics, the usual phase space is defined
by the vertical tangent space, or by the vertical cotangent space of spacetime. These
spaces are even dimensional and equipped with a symplectic structure induced, respec-
tively, by the metric, or by the canonical Liouville form. Passing to relativistic analytical
mechanics, the above spaces are usually replaced by the tangent space, or by the cotan-
gent space of spacetime. However, for physical reasons, the velocity of motions needs to
be normalised through the time component, in the Galilei case, or through the metric,
in the Einstein case. These constraints yield an odd dimensional phase space, where the
symplectic structure is no longer the appropriate geometric framework. Morerover, we
can get rid of normalization constraints, with all related complications, and also of the
choice of units of measurement of time, by describing the phase space in terms of jets. In
the Galilei case we deal with jets of sections (related to absolute time) and in the Einstein
case we deal with jets of submanifolds (related to the Lorentz metric). Indeed, this will
be the framework for the examples of the geometric structures discussed in the present
paper.
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1 Geometrical structures

We use the inner product i of k–vectors with r–forms defined by

iX1∧...Xkβ = iXk . . . iX1β ,

for each r-form β and k vector fields X1, . . . , Xk , with k ≤ r . We use the same symbol
for the dual inner product of k-forms with r-vectors.

For the Schouten bracket we use the identity, [11, 12, 16],

i[P,Q]β = (−1)q(p+1)iPdiQβ + (−1)piQdiPβ − iP∧Qdβ ,

for each p–vector P , q–vector Q and (p + q − 1)–form β . In particular, for each vector
field E and 2–vector Λ , we have

i[E,Λ]β = iEdiΛβ − iΛdiEβ ,

for each closed 2-form β , and i[Λ,Λ]β = 2 iΛdiΛβ , for each closed 3–form β .

In what follows, M is a (2n+ 1)–dimensional smooth manifold.

1.1 Covariant and contravariant pairs

1.1 Definition. We define a covariant pair to be a pair (ω,Ω) consisting of a 1–form
ω and a 2–form Ω of constant rank 2r , with 0 ≤ r ≤ n , such that ω ∧ Ωr 6≡ 0 , and a
contravariant pair to be a pair (E,Λ) consisting of a vector field E and a 2–vector Λ of
constant rank 2s , with 0 ≤ s ≤ n , such that E ∧ Λs 6≡ 0 . Thus, by definition, we have
Ωr 6≡ 0 , Ωr+1 ≡ 0 and Λs 6≡ 0 , Λs+1 ≡ 0 .

We say that the pairs (ω,Ω) and (E,Λ) are regular if, respectively,

ω ∧ Ωn 6≡ 0 and E ∧ Λn 6≡ 0 .

Let us consider a covariant pair (ω,Ω) and a contravariant pair (E,Λ) .

We define the following linear maps and subspaces

Ω[ : TM → T ∗M : X 7→ X[ := iXΩ , Λ] : T ∗M → TM : α 7→ α] := iαΛ ,

〈ω〉 := {λω | λ ∈ IR} ⊂ T ∗M , 〈E〉 := {λE | λ ∈ IR} ⊂ TM ,

kerE := {α ∈ T ∗M | α(E) = 0} , kerω := {X ∈ TM | ω(X) = 0} .

We have dim (im Ω[) = 2r and dim (im Λ]) = 2s .

If (ω,Ω) is regular, then r = n , dim (im Ω[) = 2n , dim (ker Ω[) = 1 , dim (kerω) = 2n .

If (E,Λ) is regular, then s = n , dim (im Λ]) = 2n , dim (ker Λ]) = 1 , dim (kerE) = 2n .
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6 1 Geometrical structures

1.2 Structures given by covariant pairs

According to [12], a pre cosymplectic structure on M is defined by a regular covariant
pair (ω,Ω) .

Two distinguished types of pre cosymplectic structures appear in the literature. Na-
mely, we recall that a cosymplectic structure [1] and a contact structure [11] are defined
by a covariant pair (ω,Ω) such that, respectively,

dω = 0 , dΩ = 0 , ω ∧ Ωn 6≡ 0 ,(1.1)

Ω = dω , ω ∧ Ωn 6≡ 0 .(1.2)

Thus, a contact structure is characterised just by a 1–form ω such that

ω ∧ (dω)n 6≡ 0 .

We can easily generalize the above structures in the following way.

1.2 Definition. We define an almost–cosymplectic–contact structure to be a covariant
pair (ω,Ω) such that

dΩ = 0 , ω ∧ Ωn 6≡ 0 .

Clearly, for dω = 0 we obtain a cosymplectic structure and for Ω = dω a contact struc-
ture. So, almost–cosymplectic–contact structures are regular structures which generalize
both cosymplectic and contact structures.

1.3 Structures given by contravariant pairs

Two distinguished types of contravariant pairs appear in the literature.
Namely, we recall that a Jacobi structure is defined by a contravariant pair (E,Λ)

such that
[E,Λ] = 0 , [Λ,Λ] = −2E ∧ Λ ,

where [ , ] denotes the Schouten bracket.
In the particular case when E = 0 , we obtain

[Λ,Λ] = 0

and the pair (E,Λ) := (0,Λ) is called Poisson structure.
On the other hand, in the particular case when Λ = 0 , we obtain [E,Λ] = 0 and

[Λ,Λ] = 0 and the pair (E,Λ) := (E, 0) is called trivial structure.
In the following we assume E 6≡ 0 and Λ 6≡ 0 .

1.3 Remark. In the literature (see for instance [12]) the condition E ∧ Λs 6≡ 0
is considered just as a possible non necessary property of the Jacobi pair (E,Λ) . So,
our definition is a little more restrictive; however, the assumption E ∧ Λs 6≡ 0 is quite
reasonable and it is needed for our subsequent develompents.

AlmoStruc-Long-2008-05-07.tex; [output 2009-05-04; 17:44]; p.6



1.4 Dual structures 7

In the literature (see for instance [11, 12, 16]) the Jacobi structure is usually defined
by the identities [E,Λ] = 0 , [Λ,Λ] = 2E ∧ Λ . The difference in the sign in the second
identity, with respect to our definition, is caused by the different convention on the inner
product, hence by the different sign in definition of Λ] .

In order to exhibit a certain symmetry between geometric structures given by covariant
and contravariant pairs, we introduce the following notions.

1.4 Definition. We define a pre coPoisson structure to be a contravariant pair
(E,Λ) .

In particular, a coPoisson structure is defined by a contravariant pair (E,Λ) such that

[E,Λ] = 0 , [Λ,Λ] = 0 .

1.5 Definition. We define an almost–coPoisson–Jacobi structure to be a 3–plet
(E, Λ, ω) , where (E,Λ) is a contravariant pair and ω a 1–form, such that

[E,Λ] = −E ∧ Λ](LEω) , [Λ,Λ] = 2E ∧ (Λ] ⊗ Λ])(dω) , iEω = 1 , iωΛ = 0 .

The 1-form ω is said to be the fundamental 1-form of the almost–coPoisson–Jacobi
structure.

1.6 Remark. Almost–coPoisson–Jacobi structures generalize both coPoisson and Ja-
cobi structures.

Indeed, if dω = 0 , then we have LEω = iEdω = 0 , hence from Definition 1.5 we
obtain [E,Λ] = 0 and [Λ,Λ] = 0 , i.e. (E,Λ) turns out to be a coPoisson structure.

Moreover, if LEω = 0 and (Λ] ⊗ Λ])(dω) = −Λ , then we obtain [E,Λ] = 0 and
[Λ,Λ] = −2E ∧ Λ , i.e. (E,Λ) turns out to be a Jacobi structure.

1.7 Proposition. Let (E,Λ) be a regular contravariant pair. Then, there exists a
unique 1–form ω , such that iω(E ∧ Λn) = Λn . Indeed, such an ω satisfies the equalities
iEω = 1 and iωΛ = 0 .

Thus, the 3–plet (E,Λ, ω) turns out to be an almost–coPoisson–Jacobi structure if
and only if [E,Λ] = −E ∧ Λ](LEω) and [Λ,Λ] = 2E ∧ (Λ] ⊗ Λ])(dω) .

Thus, a regular almost–coPoisson–Jacobi structure can be defined just as a suitable
contravariant pair (E,Λ) , as the additional 1–form ω is naturally determined by the
above pair itself.

1.4 Dual structures

Let us consider a covariant pair (ω,Ω) and a contravariant pair (E,Λ) .

1.8 Definition. The pairs (ω,Ω) and (E,Λ) are said to be mutually dual if they are
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8 1 Geometrical structures

regular, the maps

Ω[
|im (Λ]) : im (Λ])→ im (Ω[) ⊂ T ∗M and Λ]

|im (Ω[) : im (Ω[)→ im (Λ]) ⊂ TM

are isomorphisms and

(Ω[
|im (Λ]))

−1 = Λ]
|im (Ω[) , (Λ]

|im (Ω[))
−1 = Ω[

|im (Λ]) , iEΩ = 0 , iωΛ = 0 , iEω = 1 .

1.9 Theorem. [12] The relation of duality yields a bijection between regular covariant
pairs (ω,Ω) and regular contravariant pairs (E,Λ) .

Thus, the geometric structures given by dual covariant and contravariant pairs are
essentially the same.

In the literature E is called the fundamental vector field [12], or the Reeb vector field
[13], and Λ the fundamental 2-tensor of (ω,Ω) .

1.10 Note. Summing up, for the convenience of the reader, we provide a schematic
table with the main structures discussed above:

1a) cosymplectic structure = covariant pair (ω,Ω) , such that

dω = 0 , dΩ = 0 , ω ∧ Ωn 6≡ 0 ;

1b) contact structure = covariant pair (ω,Ω) , such that

Ω = dω , ω ∧ Ωn 6≡ 0 ;

1c) almost–cosymplectic–contact structure = covariant pair (ω,Ω) , such that

dΩ = 0 , ω ∧ Ωn 6≡ 0 ;

2a) Jacobi structure = contravariant pair (E,Λ) , such that

[E,Λ] = 0 , [Λ,Λ] = −2E ∧ Λ ;

2b) Poisson structure = contravariant pair (E,Λ) , such that

E = 0 , [Λ,Λ] = 0 ;

2c) coPoisson structure = contravariant pair (E,Λ) , such that

[E,Λ] = 0 , [Λ,Λ] = 0 ;

2d) almost–coPoisson–Jacobi structure = 3–plet (E,Λ, ω) , such that (E,Λ) is a con-
travariant pair and ω a 1–form such that

[E,Λ] = −E ∧ Λ](LEω) , [Λ,Λ] = 2E ∧ (Λ] ⊗ Λ])(dω) , iEω = 1 , iωΛ = 0 ;
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1.5 Relations between structures 9

3) dual pairs = regular pairs (ω,Ω) and (E,Λ) , such that

(Ω[
|im (Λ]))

−1 = Λ]
|im (Ω[) , iEΩ = 0 , iωΛ = 0 , iEω = 1 .

1.5 Relations between structures

Now, let us consider dual pairs (ω,Ω) and (E,Λ) and state some results.

1.11 Lemma. We have

〈E〉 = ker Ω[ , im (Λ]) = kerω and 〈ω〉 = ker Λ] , im (Ω[) = kerE .

Proof. 1) We have 〈E〉 ⊂ ker Ω[ ; hence, dim (ker Ω[) = 1 = dim 〈E〉 implies 〈E〉 = ker Ω[ .
If X ∈ sec(M , im (Λ])) , then there exists α ∈ sec(M , T ∗M) , such that iαΛ = X ; hence,

ω(X) = ω(iαΛ) = Λ(α, ω) = −iαΛ](ω) = 0 , hence X ∈ sec(M , kerω) .

Then, dim (im Λ]) = 2n = dim (kerω) implies im (Λ]) = kerω .
2) In the same way we prove the other two identities. QED

1.12 Proposition. We have the splittings

TM = 〈E〉 ⊕ im (Λ]) and T ∗M = 〈ω〉 ⊕ im (Ω[) .

Accordingly, for each X ∈ sec(M , TM) and α ∈ sec(M , T ∗M ) , we have the split-
tings

X = ω(X)E +
(
X − ω(X)E

)
and α = α(E)ω +

(
α− α(E)ω

)
,

Thus, the maps

Λ] ◦ Ω[ : TM → im (Λ]) and Ω[ ◦ Λ] : T ∗M → im (Ω[)

are the “orthogonal” projections of the splittings of TM and T ∗M .

Proof. The equalities dim〈E〉 + dim im (Λ]) = 1 + 2n and 〈E〉 ∩ im (Λ]) = 〈E〉 ∩ kerω = 0 yield
TM = 〈E〉 ⊕ im (Λ]) .

Clearly, we have

ω(X)E ∈ sec(M , 〈E〉) , X − ω(X)E ∈ sec(M , im (Λ])) = sec(M , kerω) .

Then, we obtain

X − ω(X)E = (Λ] ◦ Ω[)(X − ω(X)E) = (Λ] ◦ Ω[)(X) .

The dual result can be obtained in the same way. QED

1.13 Proposition. For each X, Y ∈ sec(M , TM ) and α, β ∈ sec(M , T ∗M) , we
have

(1.3) Ω(α], β]) = −Λ(α, β) and Λ(X[, Y [) = −Ω(X, Y ) ,
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10 1 Geometrical structures

i.e.

(1.4) (Λ] ⊗ Λ])(Ω) = −Λ and (Ω[ ⊗ Ω[)(Λ) = −Ω .

Proof. We have

Ω
(
Λ](α),Λ](β)

)
= iΛ](β)Ω

[
(
Λ](α)

)
= iΛ](β)

(
α− α(E)ω

)
= Λ

(
β , α− α(E)ω

)
= −Λ(α, β) .

The second identity can be proved in the same way. QED

1.14 Lemma. Let us consider the functions f, g, h ∈ map(M , IR) , the closed forms
α, β, γ ∈ sec(M , T ∗M ) , and the induced vector fields X, Y, Z ∈ sec(M , TM ) , given by

(1.5) X := α] + fE , Y := β] + gE , Z := γ] + hE ,

where f = ω(X) , g = ω(Y ) , h = ω(Z) .
Then, the following equality holds

dΩ(X, Y, Z) = (iE∧(Λ]⊗Λ])(dω) − 1
2
i[Λ,Λ])(α ∧ β ∧ γ)(1.6)

+ f
(
i[E,Λ] + iE∧(LEω)]

)
(β ∧ γ)

+ g
(
i[E,Λ] + iE∧(LEω)]

)
(γ ∧ α)

+ h
(
i[E,Λ] + iE∧(LEω)]

)
(α ∧ β) .

Proof. Let α̃ , β̃ , γ̃ be the projections of α, β, γ on sec(M , im (Ω[)) ⊂ sec(M , T ∗M) .
We have

dΩ(X,Y, Z) =

= dΩ(α] + ω(X)E , β] + ω(Y )E , γ] + ω(Z)E)

= dΩ(α], β], γ]) + ω(X) dΩ(E, β], γ]) + ω(Y ) dΩ(α], E, γ]) + ω(Z) dΩ(α], β], E) .

Then, we obtain
dΩ(α], β], γ]) =

= α].Ω(β], γ]) + β].Ω(γ], α]) + γ].Ω(α], β])

− Ω([α], β]], γ])− Ω([β], γ]], α])− Ω([γ], α]], β])

= −α].Λ(β, γ)− β].Λ(γ, α)− γ].Λ(α, β) + i[α],β]]iγ]Ω + i[β],γ]]iα]Ω + i[γ],α]]iβ]Ω

= −iα]d(Λ(β, γ))− iβ]d(Λ(γ, α))− iγ]d(Λ(α, β))
+ (iα]diβ] − iβ]diα])iγ]Ω + (iβ]diγ] − iγ]diβ])iα]Ω + (iγ]diα] − iα]diγ])iβ]Ω
− iα]∧β]diγ]Ω− iβ]∧γ]diα]Ω− iγ]∧α]diβ]Ω

= Λ(α, d(Λ(β, γ))) + Λ(β, d(Λ(γ, α))) + Λ(γ, d(Λ(α, β)))

− dα̃(β], γ])− dβ̃(γ], α])− dγ̃(α], β])

= −iΛdiΛ(α ∧ β ∧ γ) + α(E) dω(β], γ]) + β(E) dω(γ], α]) + γ(E) dω(α], β])
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1.5 Relations between structures 11

= −iΛdiΛ(α ∧ β ∧ γ) + α(E) (Λ] ⊗ Λ])(dω)(β, γ)

+ β(E) (Λ] ⊗ Λ])(dω)(γ, α) + γ(E) (Λ] ⊗ Λ])(dω)(α, β)

= (iE∧(Λ]⊗Λ])(dω) − iΛdiΛ)(α ∧ β ∧ γ)

= (iE∧(Λ]⊗Λ])(dω) − 1
2 i[Λ,Λ])(α ∧ β ∧ γ) .

Similarly, we obtain
dΩ(α], β], E) =

= E.Ω(α], β])− Ω([β], E], α])− Ω([E,α]], β])
= −E.Λ(α, β) + i[β],E]iα]Ω + i[E,α]]iβ]Ω

= −E.Λ(α, β) + (iβ]diE − iEdiβ] − iβ]∧Ed)α̃+ (iEdiα] − iα]diE − iE∧α]d)β̃
= E.Λ(α, β) + iβ]∧Ed(α(E)ω) + iE∧α]d(β(E)ω)

= iEdiΛ(α ∧ β)− Λ(d(α(E)), β) + Λ(d(β(E)), α)− (α(E) dω(E, β]) + (β(E) dω(E,α])
= (i[E,Λ] + iE∧(LEω)])(α ∧ β) .

Then, the above equalities imply (1.6). QED

It is well known [9, 12] that if (ω,Ω) is contact, then (E,Λ) is Jacobi. Thus, the
geometric structures given by dual contact and regular Jacobi pairs are essentially the
same. But we obtain the equivalence of structures also for other types of dual covariant
and contravariant pairs.

1.15 Theorem. The following facts hold:

(1) (ω,Ω) is an almost–cosymplectic–contact pair if and only if (E,Λ, ω) is an almost–
coPoisson–Jacobi 3–plet;

(2) (ω,Ω) is a cosymplectic pair if and only if (E,Λ) is a coPoisson pair;

(3) (ω,Ω) is a contact pair if and only if (E,Λ) is a Jacobi pair.

Proof. Let us consider a point x ∈M . All 1–forms on M can be obtained, pointwisely, from closed
1–forms. Then, according to the splitting (1.5), all vectorsX,Y, Z ∈ TxM can be obtained, pointwisely, by
means of closed forms; conversely, all closed forms α, β, γ ∈ sec(M , T ∗M) can be obtained, pointwisely,
from all vectors above.

Therefore, from Lemma 1.14 we deduce the following facts, by means of a pointwise reasoning, by
taking into account the fact that the equality (1.6) involves the vectors X,Y, Z and the forms α, β, γ only
pointwisely and by considering their arbitrariness at x ∈M .

1) dΩ = 0 if and only if [Λ,Λ] = 2E ∧ (Λ] ⊗ Λ])(dω) and [E,Λ] = −E ∧ (LEω)] , i.e. the pair (ω,Ω)
is almost–cosymplectic–contact if and only if the 3–plet (E,Λ, ω) is almost–coPoisson–Jacobi.

2) Moreover, if dΩ = 0 and dω = 0 then [E,Λ] = 0 and [Λ,Λ] = 0 , i.e. (E,Λ) is coPoisson.
On the other hand, if dΩ = 0 and (E,Λ) is coPoisson, then (Λ] ⊗ Λ])(dω) = 0 and (LEω)] = 0 ,

i.e. dω(α], β]) = 0 and dω(E,α]) = 0 , for all 1–forms α, β ∈ sec(M , T ∗M) . Then, from the splitting
TM = 〈E〉 ⊕ im (Λ]) , we have dω = 0 and the pair (ω,Ω) is cosymplectic.

Hence the pair (ω,Ω) is cosymplectic if and only if the pair (E,Λ) is coPoisson.
3) Finally, if dω = Ω , hence dΩ = 0 , we have [E,Λ] = −E ∧ (LEω)] = 0 and [Λ,Λ] = 2E ∧ (Λ] ⊗

Λ])(Ω) = −2E ∧ Λ , hence the pair (E,Λ) is Jacobi.
On the other hand, if dΩ = 0 and the pair (E,Λ) is Jacobi, then (Λ]⊗Λ])(dω) = −Λ and (LEω)] = 0 ,

i.e. dω(α], β]) = −Λ(α, β) and dω(E,α]) = 0 , hence dω = Ω , i.e. the pair (ω,Ω) is contact.
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12 1 Geometrical structures

Thus, the pair (ω,Ω) is contact if and only if the pair (E,Λ) is Jacobi. QED

1.6 Darboux’s charts

First, let us consider an almost–cosymplectic–contact structure (ω,Ω) .

1.16 Note. [11] In a neighborhood of each x ∈ M there exists a local chart (a
Darboux’s chart) (t, xi, xi+n) , with i = 1, . . . , n , adapted to an almost–cosymplectic–
contact structure (ω,Ω) , i.e. such that

(1.7) ω = dt+
∑

1≤i≤n
(ωi dxi + ωi+n dxi+n) , Ω =

∑
1≤i≤n

dxi ∧ dxi+n ,

where ωi, ωi+n ∈ map(M , IR) .
Indeed, the above almost–cosymplectic–contact pair is cosymplectic if, for instance,

ωi = ωi+n = 0 [1] and contact if, for instance, ωi = −xi+n and ωi+n = 0 .

Then, let us consider an almost–coPoisson–Jacobi structure (E,Λ, ω) . We can find
Darboux’s charts adapted to this structure, analogously to the case of almost–cosym-
plectic–contact structures.

1.17 Lemma. Let α, β ∈ sec(M , T ∗M) . Then, we have

[E,α]] =
(
LEα− α(E) (LEω)

)]
+ Λ(LEω, α)E ,

[α], β]] =
(
dΛ(α, β) + 2 iβ]dα− α(E) (iβ]dω)− 2 iα]dβ + β(E) (iα]dω)

)]
− dω(α], β])E .

Proof. For each h ∈ map(M , IR) , we have

[E,α]].h = E.(α].h)− α].(E.h) = E.Λ(α, dh)− Λ(α, d(E.h))
= i[E,Λ](α ∧ dh) + Λ(LEα, dh)
= −iE∧(LEω)](α ∧ dh) + Λ(LEα, dh)

= −iEα((LEω)].h) + Λ(LEω, α)(E.h) + Λ(LEα, dh)

= (LEα− α(E) (LEω))].h+ Λ(LEω, α)E.h

and

[α], β]].h = α].(β].h)− β].(α].h)
= Λ(α, dΛ(β, dh))− Λ(β, dΛ(α, dh))

= − 1
2 i[Λ,Λ](α ∧ β ∧ dh)− Λ(dh, dΛ(α, β)) + 2 dα(β], dh])− 2 dβ(α], dh])

= (dΛ(α, β) + 2 iβ]dα− 2 iα]dβ)].h− iE∧(Λ]⊗Λ])dω(α ∧ β ∧ dh)

= (dΛ(α, β) + 2 iβ]dα− α(E) (iβ]dω)− 2 iα]dβ + β(E) (iα]dω))].h

− dω(α], β])E.h .
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1.6 Darboux’s charts 13

1.18 Proposition. If f, g ∈ map(M , IR) , then

[E, df ]] =
(
d(E.f)− (E.f) (LEω)

)]
+ Λ(LEω, df)E ,

[df ], dg]] =
(
dΛ(df, dg)− (E.f) (idg]dω) + (E.g) (idf]dω)

)]
− dω(df ], dg])E .

Proof. It follows from the above Lemma 1.17, by putting α = df and β = dg .

1.19 Theorem. The (2s+1)-dimensional distribution 〈E〉⊕ im Λ] is completely inte-
grable and (E,Λ, ω) induces a regular almost–coPoisson–Jacobi structure on the integral
submanifolds of 〈E〉 ⊕ im Λ] .

Proof. By the above Lemma 1.17, the distribution 〈E〉 ⊕ im Λ] is involutive and of constant rank,
so it is completely integrable.

Let us consider a (2s+ 1)-dimensional integral submanifold ι : N ↪→M passing through x ∈M .

If f̃ , g̃ ∈ map(N , IR) , then we can extend them (locally) to f, g ∈ map(M , IR) , such that f̃ =
f ◦ ι, g̃ = g ◦ ι . Then, we define EN ∈ sec(N , TN) and ΛN ∈ sec(N ,Λ2TN) by

EN .f̃ = E.f , ΛN (df̃ , dg̃) = Λ(df, dg) = (df ]).g = −(dg)].f .

Indeed, the above EN and ΛN depend only on f̃ , g̃ , since they are computed along the integral curves
of E, (df)], (dg)] through x and these curves belong to N .

Clearly, (EN ,ΛN ) satisfy the equalities

EN (ι∗α) = E(α) ◦ ι , ΛN (ι∗α, ι∗β) = Λ(α, β) ◦ ι , ∀α, β ∈ sec(M , T ∗M) .

Then, from the naturality of the Schouten bracket [10], we have

[EN ,ΛN ](ι∗α, ι∗β) = [E,Λ](α, β) ◦ ι ,
[ΛN ,ΛN ](ι∗α, ι∗β, ι∗γ) = [Λ,Λ](α, β, γ) ◦ ι .

Let us set ωN = ι∗ω and Λ]N : T ∗N → TN : ι∗α 7→ (ι∗α)]N := iι∗αΛN .

Then , iEω = 1 implies iEN
ωN = 1 and iωΛ = 0 implies iωN

ΛN = 0 .
Moreover, for each α, β ∈ sec(M , T ∗M) , we have

ι∗(LEω) = LEN
ωN and dωN

(
(ι∗α)]N , (ι∗β)]N

)
= dω(α], β]) ◦ ι .

Then, we have

[EN ,ΛN ](ι∗α, ι∗β) =

= [E,Λ](α, β) ◦ ι
= −(E ∧ (LEω)])(α, β) ◦ ι = −E(α) Λ(LEω, β) ◦ ι+ E(β) Λ(LEω, α) ◦ ι
= −EN (ι∗α) ΛN (ι∗(LEω), ι∗β) + EN (ι∗β) ΛN (ι∗(LEω), ι∗α)

= −(EN ∧ (LEN
ωN )]N )(ι∗α, ι∗β) .

Similarly, we have

[ΛN ,ΛN ](ι∗α, ι∗β, ι∗γ) =
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14 1 Geometrical structures

= [Λ,Λ](α, β, γ) ◦ ι
= 2(E ∧ (Λ] ⊗ Λ])dω)(α, β, γ) ◦ ι
= 2
(
E(α)dω(β], γ])− E(β)dω(α], γ]) + E(γ)dω(α], β])

)
◦ ι

= 2
(
EN (ι∗α)dωN (ι∗β)]N , (ι∗γ)]N )− EN (ι∗β)dωN ((ι∗α)]N , (ι∗γ)]N )

+ EN (ι∗γ)dωN ((ι∗α)]N , (ι∗β)]N )
)

= 2 (EN ∧ (Λ]N ⊗ Λ]N )dωN )(ι∗α, ι∗β, ι∗γ) .

Hence, (EN , ΛN , ωN ) is a regular almost–coPoisson–Jacobi 3–plet on N .QED

1.20 Proposition. In a neighborhood of each x ∈ M there exists a local chart (a
Darboux’s chart) (W ; t, xi, xi+n) , with i = 1, . . . , n , adapted to the almost–coPoisson–
Jacobi 3–plet (E,Λ, ω) i.e. such that

E =
∂

∂t
,(1.8)

Λ =
∑

1≤i≤s

∂

∂xi+n
∧ ∂

∂xi
−

∑
1≤i≤s

(
ωi+n

∂

∂t
∧ ∂

∂xi
− ωi ∂

∂t
∧ ∂

∂xi+n

)
,

ω = dt+
∑

1≤i≤n

(
ωi dxi + ωi+n dxi+n

)
,

where ωi , ωi+n ∈ map(M , IR) .

Proof. First, let us suppose that Λ be of rank 2s = 2n and let us consider a Darboux’s chart
adapted to the dual almost–cosymplectic–contact pair (ω,Ω) . Then, from (1.7) we can easily see that
(1.8) is satisfied.

Next, let us suppose that 2s < 2n .
Let s = 0 . Then, iEω = 1 implies that there exists a chart (t, xi, xi+n) such that

E =
∂

∂t
, Λ = 0 , ω = dt+

∑
1≤i≤n

(
ωi dxi + ωi+n dxi+n

)
.

Let s > 0 . Then, let us consider an integral submanifold N of the distribution 〈E〉 ⊕ im Λ] . There
exists a coordinate neighborhood (W ; t, xi, xi+n) of each x ∈ N , with i = 1, . . . , n , such that N is
given by xj = 0, xj+n = 0 , with j = s + 1, . . . , n , and such that the coordinate neighborhood (W ∩
N ; t, xi, xn+i) , with i = 1, . . . , s , is the Darboux’s chart on N adapted to (EN ,ΛN , ωN ) .QED

1.21 Remark. It is easy to see that (E,Λ, ω) given by (1.8) satisfies the conditions
for almost–coPoisson–Jacobi pairs. Indeed, we have

(1.9) [E,Λ] =
∂

∂t
∧
∑

1≤i≤s

(
− ∂ωi+n

∂t

∂

∂xi
+
∂ωi

∂t

∂

∂xi+n

)
,

[Λ,Λ] = 2
∂

∂t
∧
[ s∑
i,j=1

(
ωj+n

∂ωi+n

∂t
+
∂ωj+n

∂xi+n

) ∂

∂xi
∧ ∂

∂xj
(1.10)
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1.6 Darboux’s charts 15

+
s∑

i,j=1

(
ωi+n

∂ωj

∂t
− ωj ∂ω

i+n

∂t
+
∂ωi+n

∂xj
− ∂ωj

∂xi+n

) ∂

∂xi
∧ ∂

∂xj+n

+
s∑

i,j=1

(
ωj
∂ωi

∂t
+
∂ωj

∂xi

) ∂

∂xi+n
∧ ∂

∂xj+n

]
,

Λ](LEω) =
∑

1≤i≤s

(
∂ωi+n

∂t

∂

∂xi
− ∂ωi

∂t

∂

∂xi+n
+ (

∂ωi

∂t
ωi+n − ∂ωi+n

∂t
ωi)

∂

∂t

)
,(1.11)

(1.12) (Λ] ⊗ Λ])(dω) =

=
∑

1≤i,j≤s
(ωi+n ωj+n

∂ωi

∂t
− ωi ωj+n∂ω

i+n

∂t
− ωi∂ω

j+n

∂xi+n

+ ωi+n
∂ωj+n

∂xi
− ωi+n ∂ωi

∂xj+n
+ ωi

∂ωi+n

∂xj+n
)
∂

∂t
∧ ∂

∂xj

+
∑

1≤i,j≤s
(−ωi+n ωj ∂ω

i

∂t
+ ωi ωj

∂ωi+n

∂t
+ ωi+n

∂ωi

∂xj

+ ωi+n
∂ωj

∂xi
− ωi∂ω

i+n

∂xj
+ ωi

∂ωj

∂xi+n
)
∂

∂t
∧ ∂

∂xj+n

+
∑

1≤i,j≤s
(ωj+n

∂ωi+n

∂t
+
∂ωj+n

∂xi+n
)
∂

∂xi
∧ ∂

∂xj

+
∑

1≤i,j≤s
(ωi+n

∂ωj

∂t
− ωj ∂ω

i+n

∂t
+
∂ωi+n

∂xj
− ∂ωj

∂xi+n
)
∂

∂xi
∧ ∂

∂xj+n

+
∑

1≤i,j≤s
(ωj

∂ωi

∂t
+
∂ωj

∂xi
)

∂

∂xi+n
∧ ∂

∂xj+n
.

1.22 Remark. Let (E,Λ) be a contravariant pair with s < n . Then, there exists a
1–form ω which satisfies iEω = 1 and iωΛ = 0 , (hence also iω(E ∧ Λs) = Λs). But such a
form is not unique.

Moreover, the 3–plet (E,Λ, ω) turns out to be almost–coPoisson–Jacobi if and only if
the equalities [E,Λ] = −E ∧ (LEω)] and [Λ,Λ] = E ∧ (Λ]⊗Λ])(dω) are satisfied. We can
see it in adapted Darboux’s charts; in fact, if the coordinate expressions of E and Λ are
given by (1.8), then the functions ωi, ωi+n , with i = 1, . . . , s , are given uniquely by Λ ,
but ωi, ωi+n , with i = s+ 1, . . . , n , are arbitrary, so ω is not unique.

1.23 Note. The almost–coPoisson–Jacobi 3–plet given in Darboux’s charts by (1.8)
is coPoisson if, for instance, ωi = ωi+n = 0 , with i = 1, . . . , s , and is Jacobi if, for
instance, ωi = −xi+n , ωi+n = 0 , with i = 1, . . . , s .
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16 2 Lie algebra of functions

2 Lie algebra of functions

Next, we study the algebras of functions associated with the geometrical structure
given by a pre coPoisson pair.

2.1 Poisson algebra of functions

First, let us start by considering just a 2–vector Λ ∈ sec(M ,Λ2TM ) .

2.1 Definition. The Poisson bracket of functions f, g ∈ map(M , IR) is defined as

(2.1) {f, g} := idf∧dgΛ = iΛ(df ∧ dg) = Λ(df, dg) .

2.2 Lemma. For each f, g, h ∈ map(M , IR) , we have

{
{f, g}, h

}
+
{
{g, h}, f

}
+
{
{h, f}, g

}
=

1

2
i[Λ,Λ](df ∧ dg ∧ dh) .(2.2)

Proof. We have {
{f, g}, h

}
= Λ

(
d(Λ(df, dg), dh)

)
.

Then,

i[Λ,Λ](df ∧ dg ∧ dh) = 2iΛdiΛ(df ∧ dg ∧ dh)

= 2iΛd
(
Λ(df, dg) dh− Λ(df, dh) dg + Λ(dg, dh) df)

= 2[Λ(dΛ(df, dg), dh) + Λ(dΛ(dh, df), dg) + Λ(dΛ(dg, dh), df)]

= 2
[{
{f, g}, h

}
+
{
{g, h}, f

}
+
{
{h, f}, g

}]
.QED

2.3 Proposition. The following facts are equivalent:

(1) [Λ,Λ] = 0 ;

(2)
{
{f, g}, h

}
+
{
{g, h}, f

}
+
{
{h, f}, g

}
= 0 , ∀f, g, h ∈ map(M , IR) ;

(3) the bracket {, } is a Lie bracket.

Thus, a Poisson structure yields a Lie algebra of functions.

2.4 Lemma. The following facts are equivalent:

(1) [df ], dg]].h = d{f, g}].h , ∀f, g, h ∈ map(M , IR) ;

(2)
{
{f, g}, h

}
+
{
{g, h}, f

}
+
{
{h, f}, g

}
= 0 , ∀f, g, h ∈ map(M , IR) .
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2.2 Jacobi algebra of functions 17

Proof. We have

d{f, g}].h = Λ
(
{f, g}, dh

)
=
{
{f, g}, h

}
,

[df ], dg]].h = df ].dg].h− dg].df ].h =
{
f, {g, h}

}
−
{
g, {f, h}

}
.

Then, (
d{f, g}] − [df ], dg]]

)
.h =

{
{f, g}, h

}
+
{
{g, h}, f

}
+
{
{h, f}, g

}
.QED

2.5 Proposition. The following facts are equivalent:

(1) [df ], dg]] = d{f, g}] , ∀f, g ∈ map(M , IR) ;

(2) the map

Λ] ◦ d : map(M , IR)→ sec(M , TM)

is a Lie algebra homomorphism with respect to the Poisson bracket of functions and the
Lie bracket of vector fields;

(3) (Λ) is a Poisson structure, i.e. [Λ,Λ] = 0 .

2.6 Corollary. Let (E,Λ) be a contravariant pair. Then, Λ defines a Poisson algebra
of functions if and only if (E,Λ) is a coPoisson pair.

2.2 Jacobi algebra of functions

Then, let us consider a contravariant pair (E,Λ) .

2.7 Remark. If (E,Λ) is a Jacobi pair with s > 0 , then the Poisson bracket does
not satisfy the Jacobi identity. In fact, the Jacobi identity turns out to be equivalent to
E ∧ Λ = 0 . But this condition conflicts with our hypothesis E ∧ Λs 6≡ 0 .

2.8 Definition. The Hamiltonian lift of a function f ∈ map(M , IR) is defined to be
the vector field

(2.3) Xf := idfΛ− fE = df ] − fE .

2.9 Definition. The Jacobi bracket of two functions f, g ∈ map(M , IR) is defined as

(2.4) [f, g] := {f, g} − fE.g + gE.f = Λ(df, dg)− fE.g + gE.f .

2.10 Lemma. For each f, g ∈ map(M , IR) , we have

(2.5) E.{f, g} = {E.f, g}+ {f, E.g}+ i[E,Λ](df ∧ dg) .
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18 2 Lie algebra of functions

Proof. We have

i[E,Λ](df ∧ dg) = iEdiΛ(df ∧ dg)− iΛdiE(df ∧ dg)
= iEdiΛ(df ∧ dg)− iΛd(E.f dg − E.g df)
= iEdiΛ(df ∧ dg)− iΛ(d(E.f) ∧ dg)− iΛ(df ∧ d(E.g))
= E.{f, g} − {E.f, g} − {f,E.g} .QED

2.11 Lemma. For each f, g, h ∈ map(M , IR) , we have

(2.6)
[
[f, g], h

]
+
[
[g, h], f

]
+
[
[h, f ], g

]
=

= (1
2
i[Λ,Λ] + iE∧Λ)(df ∧ dg ∧ dh) + i[E,Λ]

(
f dg ∧ dh+ g dh ∧ df + h df ∧ dg

)
.

Proof. We have[
[f, g], h

]
=
{
{f, g}, h

}
− {f, g}(E.h)− {f, h}(E.g) + {g.h}(E.f)

+ h{E.f, g}+ h{f,E.g} − f{E.g, h}+ g{E.f, h}+ hi[E,Λ](df ∧ dg)

+ f(E.g)(E.h)− g(E.f)(E.h)− hfE2.g + hgE2.f .

Then, [
[f, g], h

]
+
[
[g, h], f

]
+
[
[h, f ], g

]
=

=
{
{f, g}, h

}
+
{
{g, h}, f

}
+
{
{h, f}, g

}
+ {f, g}(E.h) + {g, h}(E.f) + {h, f}(E.g)

+ f i[E,Λ](dg ∧ dh) + g i[E,Λ](dh ∧ df) + h i[E,Λ](df ∧ dg)

=
(

1
2 i[Λ,Λ] + iE∧Λ

)
(df ∧ dg ∧ dh) + i[E,Λ]

(
f dg ∧ dh+ g dh ∧ df + h df ∧ dg

)
.QED

2.12 Proposition. [9] The Jacobi bracket defines a Lie algebra of functions if and
only if [E,Λ] = 0 and [Λ,Λ] = −2E ∧ Λ .

So, a Jacobi pair (E,Λ) defines a Lie algebra of functions with respect to the Jacobi
bracket (the Jacobi algebra of functions).

2.13 Remark. A coPoisson pair does not define a Lie algebra of functions with
respect to the Jacobi bracket. Indeed, for a coPoisson pair, we have[

[f, g], h
]

+
[
[g, h], f

]
+
[
[h, f ], g

]
= iE∧Λ(df ∧ dg ∧ dh) ,

so, in general, the Jacobi identity is not satisfied. Indeed, it is satisfied in the particular
case when E ∧ Λ = 0 , but this condition conflicts with our hypothesis E ∧ Λs 6≡ 0 .

2.14 Lemma. For each f, g, h ∈ map(M , IR) , we have

([Xf , Xg]−X[f,g]).h =

= −(1
2
i[Λ,Λ] + iE∧Λ)(df ∧ dg ∧ dh)− f i[E,Λ](dg ∧ dh)− g i[E,Λ](df ∧ dh) .
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2.2 Jacobi algebra of functions 19

Proof. We have
[Xf , Xg].h =

= [df ], dg]].h− [df ], gE].h− [fE, dg]].h+ [fE, gE].h

= d{f, g}].h−
{
{f, g}, h

}
−
{
{g, h}, f

}
−
{
{h, f}, g

}
− df ](gE.h) + gE.(df ].h)− fE.(dg].h) + dg].(fE.h) + fE.(gE.h)− gE.(fE.h)

= d{f, g}].h− 1
2 i[Λ,Λ](df ∧ dg ∧ dh)− 2{f, g}(E.h)

− g{f,E.h}+ gE.{f, h}+ f{g,E.h} − fE.{g, h}+ f(E.g)(E.h)− g(E.f)(E.h)

= d{f, g}].h− 1
2 i[Λ,Λ](df ∧ dg ∧ dh)− 2{f, g}(E.h)− f{E.g, h}+ g{E.f, h}

− fi[E,Λ](dg ∧ dh) + gi[E,Λ](df ∧ dh) + f(E.g)(E.h)− g(E.f)(E.h)

On the other hand,

X[f,g].h = d{f, g}].h− {f, h}(E.g) + {g, h}(E.f)− f{E.g, h}+ g{E.f, h}
− {f, g}(E.h) + f(E.g)(E.h)− g(E.f)(E.h) .

Hence,

([Xf , Xg]−X[f,g]).h =

= −( 1
2 i[Λ,Λ] + iE∧Λ)(df ∧ dg ∧ dh)− f i[E,Λ](dg ∧ dh)− g i[E,Λ](df ∧ dh) .QED

2.15 Proposition. [12]. The following facts are equivalent:

(1) [Xf , Xg] = X[f,g] , ∀f, g ∈ map(M , IR) ;

(2) the Hamiltonian lift of functions with respect to a pair (E,Λ) is a Lie algebra
homomorphism with respect to the Jacobi bracket and the Lie bracket of vector fields;

(3) the pair (E,Λ) is a Jacobi structure, i.e. [E,Λ] = 0 and [Λ,Λ] = −2E ∧ Λ .

Proof. The equivalence follows from Lemma 2.14 and the arbitrariness of the functions f, g, h .QED

2.16 Note. Summing up, for the convenience of the reader, we provide a schematic
table with the main Lie brackets discussed above:

1) for a Poisson structure (Λ) , we have the Poisson bracket, the Hamiltonian lift and
a Lie algebra homomorphism, according to the equalities

{f, g} := Λ(df, dg) , Xf := idfΛ , [Xf , Xg] = X{f, g} ;

2) for a Jacobi structure (E,Λ) , we have the Jacobi bracket, the Hamiltonian lift and
a Lie algebra homomorphism, according to the equalities

[f, g] := {f, g} − fE.g + gE.f , Xf := idfΛ− fE , [Xf , Xg] = X[f,g] .
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20 2 Lie algebra of functions

2.3 Uniqueness of the Jacobi structure

Now, we revisit the well known Proposition 2.12 [9] in the context of our almost–
coPoisson–Jacobi structures. Actually, we prove that an almost–coPoisson–Jacobi 3–plet
(E,Λ, ω) defines a Lie algebra of functions with respect to the Jacobi bracket if and only
if the pair (E,Λ) is Jacobi.

Let us consider an almost–coPoisson–Jacobi 3–plet (E,Λ, ω) .

2.17 Lemma. The following facts are equivalent:
(1) for each f, g, h ∈ map(M , IR) ,(

1
2
i[Λ,Λ] + iE∧Λ

)
(df ∧ dg ∧ dh) + i[E,Λ]

(
f dg ∧ dh+ g dh ∧ df + h df ∧ dg

)
= 0 ,

(2) for each f, g ∈ map(M , IR) ,

(2.7) {f, g} = −dω(Xf , Xg) .

Proof. We have
iΛ](LEω)df = −dω(E, df ]) .

Then, (
1
2 i[Λ,Λ] + iE∧Λ

)
(df ∧ dg ∧ dh) + i[E,Λ]

(
f dg ∧ dh+ g dh ∧ df + h df ∧ dg

)
=

= i
E∧
(

Λ+(Λ]⊗Λ])(dω)
)(df ∧ dg ∧ dh) + iE∧Λ](LEω)

(
f dg ∧ dh+ g dh ∧ df + h df ∧ dg

)
= (E.f)

(
Λ(dg, dh) + (Λ] ⊗ Λ])(dω)(dg, dh)

)
+ (E.g)

(
Λ(dh, df) + (Λ] ⊗ Λ])(dω)(dh, df)

)
+ (E.h)

(
Λ(df, dg) + (Λ] ⊗ Λ])(dω)(df, dg)

)
+ f(E.g)dω(E, dh])− f(E.h)dω(E, dg])

+ g(E.h)dω(E, df ])− g(E.f)dω(E, dh])

+ h(E.f)dω(E, dg])− h(E.g)dω(E, df ])

= (E.f)
(
{g, h}+ dω(dg], dh])− gdω(E, dh]) + hdω(E, dg]

)
+ (E.g)

(
{h, f}+ dω(dh], df ])− hdω(E, df ]) + fdω(E, dh]

)
+ (E.h)

(
{f, g}+ dω(df ], dg])− fdω(E, dg]) + gdω(E, df ]

)
= (E.f)

(
{g, h}+ dω(dg] − gE, dh] − hE)

)
+ (E.g)

(
{h, f}+ dω(dh] − hE, df ] − fE)

)
+ (E.h)

(
{f, g}+ dω(df ] − fE, dg] − gE)

)
.QED

2.18 Proposition. The almost–coPoisson–Jacobi structure (E, Λ, ω) yields a Lie
algebra of functions with respect to the Jacobi bracket if and only if the Poisson bracket
satisfies (2.7).
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2.3 Uniqueness of the Jacobi structure 21

Proof. It follows from the above Lemma 2.17 end from Lemma 2.11. QED

2.19 Corollary. A Jacobi pair (E,Λ) yields a Lie algebra with respect to the Jacobi
bracket.

A coPoisson pair (E,Λ) yields a Lie algebra with respect to the Jacobi bracket if and
only if Λ = 0 .

Proof. Let (E,Λ) be a Jacobi pair. Then, for each α, β ∈ sec(M , T ∗M) , we have

dω(α], β]) = −Λ(α, β) and dω(E,α]) = 0 ,

hence, for each f, g ∈ map(M , IR) , we obtain

{f, g} := Λ(df, dg) = −dω(df ], dg]) = −dω(df ], dg]) + f dω(E, dg])− g dω(df ], E) :=
:= −dω(Xf , Xg) ,

hence condition (2.7) is satisfied.
Let (E,Λ) be a coPoisson pair. Then, we have dω = 0 , hence condition (2.7) is satisfied if and only

if {f, g} = 0 , i.e. if and only if Λ = 0 .QED

2.20 Theorem. An almost–coPoisson–Jacobi 3–plet (E,Λ, ω) yields a Lie algebra of
functions with respect to the Jacobi bracket if and only if it is Jacobi.

Proof. It is sufficient to prove that (2.7) implies that the 3–plet (E,Λ, ω) is Jacobi.
We can prove it in a local chart.
In a Darboux’s cchart adapted to an almost–coPoisson–Jacobi 3–plet (E,Λ, ω) according to (1.8) we

have

(2.8) Xf =
(
− f +

∑
1≤i≤s

(
ωi+n

∂f

∂xi
− ωi ∂f

∂xi+n
)) ∂
∂t

+
∑

1≤i≤s

( ∂f

∂xi+n
− ωi+n ∂f

∂t

) ∂

∂xi
+
∑

1≤i≤s

(
ωi
∂f

∂t
− ∂f

∂xi
) ∂

∂xi+n
.

Then,
dω(Xf , Xg) =

=
(
f
∂g

∂t
− g ∂f

∂t

)
.

s∑
i=1

(∂ωi
∂t

ωi+n − ∂ωi+n

∂t
ωi
)

+
∑

1≤i≤s

(
f
∂g

∂xi
− g ∂f

∂xi
)∂ωi+n

∂t
−

s∑
i=1

(
f

∂g

∂xi+n
− g ∂f

∂xi+n
)∂ωi
∂t

+
∑

1≤i,j≤s

(∂f
∂t

∂g

∂xi
− ∂g

∂t

∂f

∂xi
)
.
(
ωj+nωi+n

∂ωj

∂t
− ωjωi+n ∂ω

j+n

∂t

+ ωj+n
∂ωi+n

∂xj
− ωj+n ∂ωj

∂xi+n
+ ωj

∂ωj+n

∂xi+n
− ωj ∂ω

i+n

∂xj+n

)
+

∑
1≤i,j≤s

(∂f
∂t

∂g

∂xi+n
− ∂g

∂t

∂f

∂xi+n
)
.
(
ωjωi

∂ωj+n

∂t
− ωj+nωi ∂ω

j

∂t

+ ωj+n
∂ωj

∂xi
− ωj+n ∂ω

i

∂xj
+ ωj

∂ωj+n

∂xi+n
− ωj ∂ω

j+n

∂xi
+ ωj

∂ωi

∂xj+n
− ωj+n ∂ωj

∂xi+n

)
AlmoStruc-Long-2008-05-07.tex; [output 2009-05-04; 17:44]; p.21



22 3 Examples: dynamical structures

+
∑

1≤i,j≤s

∂f

∂xi
∂g

∂xj
(
ωj+n

∂ωi+n

∂t
− ωi+n ∂ω

j+n

∂t
+
∂ωi+n

∂xj+n
− ∂ωj+n

∂xi+n
)

+
∑

1≤i,j≤s

( ∂f
∂xi

∂g

∂xj+n
− ∂g

∂xi
∂f

∂xj+n
)
.
(
ωi+n

∂ωj

∂t
− ωj ∂ω

i+n

∂t
+
∂ωi+n

∂xj
− ∂ωj

∂xi+n

)
+

s∑
1≤i,j≤s

∂f

∂xi+n
∂g

∂xj+n

(
ωj
∂ωi

∂t
− ωi ∂ω

j

∂t
+
∂ωj

∂xi
− ∂ωi

∂xj

)
.

On the other hand,

{f, g} =
∑

1≤i≤s

( ∂f

∂xi+n
∂g

∂xi
− ∂g

∂xi+n
∂f

∂xi

− ωi+n
(∂f
∂t

∂g

∂xi
− ∂g

∂t

∂f

∂xi
)

+ ωi
(∂f
∂t

∂g

∂xi+n
− ∂g

∂t

∂f

∂xi+n
))

Now, if we assume {f, g} = −dω(Xf , Xg) , then we obtain the following system of partial differential
equations, by comparing the above expressions, for all i, j = 1, . . . , s ,

0 =
∂ωi+n

∂t
, 0 =

∂ωi

∂t
, 0 =

∑
1≤j≤s

(
ωj
∂ωj+n

∂xi+n
− ωj+n ∂ωj

∂xi+n

)
,

0 =
(∂ωj
∂xi

− ∂ωi

∂xj

)
, 0 =

(∂ωi+n
∂xj+n

− ∂ωj+n

∂xi+n

)
, δij =

(∂ωi+n
∂xj

− ∂ωj

∂xi+n

)
.

Now, if we use the above identities, then we obtain

[E,Λ] = 0

[Λ,Λ] = 2
∂

∂t
∧
( ∑

1≤i,j≤s

∂ωj+n

∂xi+n
∂

∂xi
∧ ∂

∂xj
+
∑

1≤i≤s

∂

∂xi
∧ ∂

∂xi+n

+
∑

1≤i,j≤s

∂ωj

∂xi
∂

∂xi+n
∧ ∂

∂xj+n

)
= −2E ∧ Λ .

So, (E,Λ) is a Jacobi pair. QED

3 Examples: dynamical structures

As examples of the geometric structures analysed above, now we discuss the dynamical
structures arising on the phase spase of a spacetime in classical relativistic theories. We
consider the relativistic Galilei and the Einstein spacetimes, emphasizing the analogies
and the differences between the two cases.

In order to make our theory explicitly independent from units of measurement, we
introduce the “spaces of scales” [8]. Roughly speaking, a space of scales S has the algebraic
structure of IR+ but has no distinguished “basis”. We can naturally define the tensor
product of spaces of scales and the tensor product of spaces of scales and vector spaces.
We can also naturally define rational tensor powers Sm/n of a space of scales S . Moreover,
we can make a natural identification S∗ ' S−1 .
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3.1 Galilei spacetime 23

The basic objects of our theory (the metric field, the phase 2–form, the phase 2–vector,
etc.) will be valued into scaled vector bundles, that is into vector bundles multiplied
tensorially with spaces of scales. In this way, each tensor field carries explicit information
on its “scale dimension”. Actually, we assume the following basic spaces of scales: the
space of time intervals T , the space of lengths L and the space of masses M . Moreover,
we consider the following “universal scales”: the speed of light c ∈ T−1⊗L and the Planck
constant ~ ∈ T∗ ⊗ L2 ⊗M .

A time unit is defined to be an element u0 ∈ T , or, equivalently, its dual u0 ∈ T∗ ,

3.1 Galilei spacetime

First, we study the geometrical structures arising on the phase space of a Galilei
spacetime [2, 5, 6, 14].

3.1.1 Spacetime

We assume absolute time to be an affine 1–dimensional space T associated with the
vector space T̄ := T⊗ IR .

We assume spacetime to be an oriented (3+1)-dimensional fibred manifold E equipped
with a time fibring t : E → T .

A spacetime chart is defined to be a chart (xλ) ≡ (x0, xi) of E , adapted to the
orientation, to the fibring, to the affine structure of T and to a time unit u0 . Greek indices
will span all spacetime coordinates and Latin indices will span the fibre coordinates. In
the following, we shall always refer to spacetime charts. The induced local bases of TE
and T ∗E are denoted, respectively, by (∂λ) and (dλ) .

The vertical restriction of forms will be denoted by the “check” symbol
∨
.

The differential of the time fibring is the scaled 1–form dt : E → T̄ ⊗ T ∗E , with
coordinate expression dt = u0 ⊗ d0 .

We assume spacetime to be equipped with a scaled spacelike Riemannian metric g :
E → L2⊗ (V ∗E ⊗ V ∗E) . The contravariant metric is denoted by ḡ : E → L−2⊗ (VE ⊗
VE) .

We have the coordinate expressions

g = gij ď
i ⊗ ďj , with gij ∈ map(E, L2 ⊗ IR) ,

ḡ = gij ∂i ⊗ ∂j , with gij ∈ map(E, L−2 ⊗ IR) .

3.1.2 Phase space

A motion is defined to be a section s : T → E . The 1st differential of a motion s is
defined to be the map ds : T → T∗ ⊗ TE . We have dt(ds) = 1 .

We assume as phase space the 1st jet space J1E of motions.
A space time chart (xλ) induces naturally a chart (xλ, xi0) on J1E .
The velocity of a motion s is defined to be its 1st jet j1s : T → J1E .
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24 3 Examples: dynamical structures

We define the contact map to be the unique fibred morphism d : J1E → T∗ ⊗ TE
over E such that d ◦ j1s = ds , for each motion s . We have d y dt = 1 . The coordinate
expression of d is

d = u0 ⊗ d0 ≡ u0 ⊗ (∂0 + xi0 ∂i) .

The map d is injective. Accordingly, the 1st jet space can be naturally identified with
the subbundle J1E ⊂ T∗ ⊗ TE , of scaled vectors which project on 1 : T → T̄∗ ⊗ T̄ .
Thus, the bundle J1E → E turns out to be affine and associated with the vector bundle
T∗⊗VE . Indeed, J1E ⊂ T∗⊗TE is the fibred submanifold over E characterised by the
constraint ẋ0

0 = 1 .
We define also the complementary contact map θ := 1− d ◦ dt : J1E → T ∗E ⊗ VE .

The coordinate expression of θ is

θ = θi ⊗ ∂i ≡ (di − xi0 d0)⊗ ∂i .

3.1.3 Vertical bundle of the phase space

Let V0J1E ⊂ V J1E ⊂ TJ1E be the vertical tangent subbundle over E and the vertical
tangent subbundle over T , respectively. The affine structure of the phase space yields the
equality V0J1E = J1E×

E
(T∗⊗VE) , hence the natural map ν : J1E → T⊗(V ∗E⊗V0J1E) ,

with coordinate expression ν = u0 ⊗ ďi ⊗ ∂0
i .

3.1.4 Spacetime connections

We define a spacetime connection to be a torsion free linear connection K : TE →
T ∗E ⊗ TTE of the bundle TE → E . Its coordinate expression is of the type

K = dλ ⊗ (∂λ +Kλ
µ
ν ẋ

ν ∂̇µ) , with Kλ
µ
ν = Kν

µ
λ ∈ map(E, IR) .

A spacetime connection K is said to be time preserving if it preserves the time fibring,
i.e. if ∇dt = 0 . In coordinates, this reads Kλ

0
µ = 0 .

A time preserving spacetime connection K is said to be metric if it preserves the
metric g , i.e. if ∇g = 0 . In coordinates, it reads

K0
i
0 = −gij 2φ0,0j ,

K0
i
h = Kh

i
0 = −1

2
gij (2φ0,hj + ∂0ghj) ,

Kk
i
h = Kh

i
k = −1

2
gij (∂hgjk + ∂kgjh − ∂jghk) ,

where φ ∈ sec(E,T∗ ⊗ L2 ⊗ Λ2T ∗E) is a scaled spacetime 2–form (which depends on K
and on the chosen chart).

The vertical restriction of of a metric spacetime connection K is just the Levi Civita
connection of the spacetime fibres.

A spacetime connection K is said to be a Galilei connection if it is time preserv-
ing, metric and such that its curvature tensor R fulfills a symmetry condition which in
coordinates reads Rλ

i
µ
j = Rµ

j
λ
i , where Rλ

i
µ
j := gjpRλ

i
µp .
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3.1.5 Phase connections

We define a phase connection to be a connection of the bundle J1E → E .

A phase connection can be represented, equivalently, by a tangent valued form Γ :
J1E → T ∗E ⊗ TJ1E , which is projectable over 1 : E → T ∗E ⊗ TE , or by the comple-
mentary vertical valued form ν[Γ] : J1E → T ∗J1E⊗V J1E , respectively, with coordinate
expressions

Γ = dλ ⊗ (∂λ + Γλ
i
0 ∂

0
i ) , ν[Γ] = (di0 − Γλ

i
0 d

λ)⊗ ∂0
i , with Γλ

i
0 ∈ map(J1E, IR) .

The coordinate expression of an affine phase connection Γ is Γλ
i
0 = Γλ

i
0

0
p x

p
0 + Γλ

i
0

0
0 .

We can prove [4] that there is a natural bijective map χ : K 7→ Γ between time
preserving linear spacetime connections K and affine phase connections Γ , with coor-
dinate expression Γλ

i
0

0
µ = Kλ

i
µ .

3.1.6 Dynamical phase connection

The space of 2–jets of motions J2E can be naturally regarded as the affine subbundle
J2E ⊂ T∗ ⊗ TJ1E , which projects on d : J1E → T∗ ⊗ TE .

A dynamical phase connection is defined to be a 2nd–order connection, i.e. a section
γ : J1E → J2E , or, equivalently, a section γ : J1E → T∗ ⊗ TJ1E , which projects on d .

The coordinate expression of a dynamical phase connection is of the type

γ = c α0 (∂0 + xi0 ∂i + γ0
i
0 ∂

0
i ) , with γ0

i
0 ∈ map(J1E, IR) .

If γ is a dynamical phase connection, then we have γ y dt = 1 .

The contact map d and a phase connection Γ yield the section γ ≡ γ[d,Γ] := d y Γ :
J1E → T∗⊗TJ1E , which turns out to be a dynamical phase connection, with coordinate
expression

γ0
i
0 = Γ0

i
0 + Γj

i
0 x

j
0 .

In particular, a time preserving spacetime connection K yields the dynamical phase
connection γ := γ[d, K] := d yχ(K) , with coordinate expression

γi00 = Kh
i
k x

h
0 x

k
0 + 2Kh

i
0 x

h
0 +K0

i
0 .

3.1.7 Phase 2–form and 2–vector

The metric g and a phase connection Γ yield the scaled 2–form Ω , called (scaled)
phase 2–form, and the scaled vertical 2–vector Λ , called (scaled) phase 2–vector,

Ω = Ω[g,Γ] := g y
(
ν[Γ] ∧ θ

)
: J1E → T∗ ⊗ L2 ⊗ Λ2T ∗J1E ,

Λ = Λ[g,Γ] := ḡ y(Γ ∧ ν) : J1E → T⊗ L−2 ⊗ Λ2V J1E ,
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with coordinate expressions

Ω[g,Γ] = gij u
0 ⊗ (di0 − Γλ

i
0 d

λ) ∧ (dj − xj0 d0) ,

Λ[g,Γ] = gij u0 ⊗
(
∂i + Γi

h
0 ∂

0
h

)
∧ ∂0

j .

We can easily see that dt ∧ Ω3 6≡ 0 and γ ∧ Λ3 6≡ 0 .
There is a unique dynamical phase connection γ , such that γ y Ω[g,Γ] = 0 . Namely,

γ = γ[d,Γ] .
In particular, a metric spacetime connection K yields the (scaled) phase 2–form Ω ≡

Ω[g,K] := Ω[g, χ(K)] and the (scaled) phase 2–vector Λ ≡ Λ[g,K] := Λ[g, χ(K)] with
coordinate expressions

Ω = −gij (di − xi0 d0) ∧ dj0 +
(

1
2
∂jghk x

h
0 x

k
0 + ∂0ghj x

h
0 + φ0,0j

)
d0 ∧ dj

+
(

1
2

(∂ighj − ∂jghi)xh0 + 1
2
φ0,ij

)
di ∧ dj ,

Λ = gij ∂i ∧ ∂0
j − 1

2
gih gjk

(
(∂kglr − ∂hglk)xl0 + φ0,kh

)
∂0
i ∧ ∂0

j ,

3.1.8 Dynamical structures of the phase space

We have the following result [2, 5].

3.1 Theorem. Let us consider a spacetime connection K and the induced objects
Γ := χ(K) , γ := γ[d,Γ] , Ω := Ω[g,Γ] and Λ := Λ[g,Γ] . Then, the following assertions
are equivalent.

(1) K is a Galilei connection.

(2) Ω is closed, i.e. (−dt,Ω) is a scaled cosymplectic pair.

(3) [γ,Λ] = 0 and [Λ,Λ] = 0 , i.e. (−γ,Λ) is a scaled (regular) coPoisson pair.

Moreover, the cosymplectic pair (−dt,Ω) and the coPoisson pair (−γ,Λ) are mutually
dual.

3.2 Remark. If K is a time preserving spacetime connection, then the induced pairs
(−dt,Ω[g,K]) and (−γ[d, K], Λ[g,K]) are scaled.

On the other hand, some results of the general theory of geometrical structures devel-
oped in the first two sections requires unscaled pairs.

Indeed, if we refer to a particle of mass m ∈ M and consider the universal scales
~ ∈ T−1 ⊗ L2 ⊗ M and c ∈ T−1 ⊗ L , then we obtain unscaled pairs in the following
natural way.

We have the unscaled spacetime 1–form

mc2

~ dt : E → T ∗E .

Moreover, the rescaled contact map D := ~
mc2

d : J1E → TE yields the unscaled
phase vector field

γ ≡ γ[D, K] = ~
mc2

γ[d, K] : E → TJ1E .
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Furthermore, the rescaled metric G := m
~ g : E → T⊗V ∗E⊗V ∗E yields the unscaled

phase 2–form and phase 2–vector

Ω ≡ Ω[G,K] = m
~ Ω[g,K] : J1E → Λ2T ∗J1E ,

Λ ≡ Λ[G,K] = ~
m

Λ[g,K] : J1E → Λ2TJ1E .

Thus, if K is a Galilei spacetime connection, then (−mc2

~ dt, Ω) and (− ~
mc2

γ, Λ) turn
out to be mutually dual unscaled cosymplectic and coPoisson pairs of the phase space.

Indeed, the Plank constant does not play any direct role in classical mechanics; nev-
ertheless, such a scale is necessary for getting unscaled objects as above.

3.2 Einstein spacetime

Then, we study the geometrical structures arising on the phase space of an Einstein
spacetime [3, 7].

3.2.1 Spacetime

We assume spacetime to be an oriented 4–dimensional manifold E equipped with a
scaled Lorentzian metric g : E → L2 ⊗ (T ∗E ⊗ T ∗E) , with signature (− + ++) ; we
suppose spacetime to be time oriented. The contravariant metric is denoted by ḡ : E →
L−2 ⊗ (TE ⊗ TE) .

A spacetime chart is defined to be a chart (xλ) ≡ (x0, xi) ∈ map(E, IR× IR3) of E ,
which fits the orientation of spacetime and such that the vector field ∂0 is timelike and
time oriented and the vector fields ∂1, ∂2, ∂3 are spacelike. Greek indices λ, µ, . . . will span
spacetime coordinates, while Latin indices i, j, . . . will span spacelike coordinates. In the
following, we shall always refer to spacetime charts. The induced local bases of TE and
T ∗E are denoted, respectively, by (∂λ) and (dλ) . We have the coordinate expressions

g = gλµ d
λ ⊗ dµ , with gλµ ∈ map(E, L2 ⊗ IR) ,

ḡ = gλµ ∂λ ⊗ ∂µ , with gλµ ∈ map(E, L−2 ⊗ IR) .

3.2.2 Jets of submanifolds

In view of the definition of the phase space, let us consider a manifold M of dimension
n and recall a few basic facts concerning jets of submanifolds [15].

Let k ≥ 0 be an integer. A k–jet of 1–dimensional submanifolds of M at x ∈ M
is defined to be an equivalence class of 1–dimensional submanifolds touching each other
at x with a contact of order k . The k–jet of a 1–dimensional submanifold s : N ↪→ M
at x ∈ N is denoted by jks(x) . The set of all k–jets of all 1-dimensional submanifolds
at x ∈M is denoted by Jk x(M , 1) . The set Jk(M , 1) :=

⊔
x∈M Jk x(M , 1) is said to be

the k–jet space of 1–dimensional submanifolds of M . In particular, for k = 0 , we have
the natural identification J0(M , 1) = M , given by j0s(x) = x , for each 1–dimensional
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submanifold s : N ↪→M . For each integers k ≥ h ≥ 0 , we have the natural projection
πkh : Jk(M , 1)→ Jh(M , 1) : jks(x) 7→ jhs(x) .

A chart of M is said to be divided if the set of its coordinate functions is divided
into two subsets of 1 and n − 1 elements. Our typical notation for a divided chart will
be (x0, xi) , with 1 ≤ i ≤ n − 1 . A divided chart and a 1–dimensional submanifold
s : N ↪→M are said to be related if the map x̆0 := x0|N ∈ map(N , IR) is a chart of N .
In such a case, the submanifold N is locally characterised by si◦(x̆0)−1 := (xi◦s)◦(x̆0)−1 ∈
map(IR, IR) . In particular, if the divided chart is adapted to the submanifold, then the
chart and the submanifold are related.

Let us consider a divided chart (x0, xi) of M .
Then, for each submanifold s : N ↪→ M which is related to this chart, the chart

yields naturally the local fibred chart (x0, xi; xiα)1≤|α|≤k ∈ map(Jk(M , 1), IRn × IRk(n−1))
of Jk(M , 1) , where α := (h) is a multi–index of “range” 1 and “length” |α| = h and the
functions xiα are defined by xiα ◦ j1N := ∂0...0 s

i , with 1 ≤ |α| ≤ k .
We can prove the following facts:
1) the above charts (x0, xi; xiα) yield a smooth structure of Jk(M , 1) ;
2) for each 1–dimensional submanifold s : N ⊂ M and for each integer k ≥ 0 , the

subset jks(N ) ⊂ Jk(M , 1) turns out to be a smooth 1–dimensional submanifold;
3) for each integers k ≥ h ≥ 1 , the maps πkh : Jk(M , 1) → Jh(M , 1) turn out to be

smooth bundles.
We shall always refer to such divided charts (x0, xi) of M and to the induced fibred

charts (x0, xi; xiα) of Jk(M , 1) .
Let m1 ∈ J1(M , 1) , with m0 = π1

0(m1) ∈ M . Then, the tangent spaces at m0

of all 1–dimensional submanifolds s : N ↪→ M , such that j1s(m0) = m1 , coincide.
Accordingly, we denote by T [m1] ⊂ Tm0M the tangent space at m0 of the above 1–
dimensional submanifolds N generating m1 . We have the natural fibred isomorphism
J1(M , 1)→ Grass(M , 1) : m1 7→ T [m1] ⊂ Tm0M over M of the 1st jet bundle with the
Grassmannian bundle of dimension 1. If s : N ↪→ M is a 1–dimensional submanifold,
then we obtain T [j1s] = span〈∂0 + ∂0s

i∂i〉 , with reference to a related chart.

3.2.3 Phase space

A motion is defined to be a 1–dimensional timelike submanifold s : T ↪→ E .
For every arbitrary choice of a “proper time origin” t0 ∈ T , we obtain the “proper

time scaled function” given by the equality σ : T → T̄ : t 7→ 1
c

∫
[t0,t]
‖ ds
dx̆0 ‖ dx̆0 .

This map yields, at least locally, a bijection T → T̄ , hence a (local) affine structure
of T associated with the vector space T̄ . Indeed, this (local) affine structure does not
depend on the choice of the proper time origin and of the spacetime chart.

Let us choose a time origin t0 ∈ T and consider the associated proper time scaled
function σ : T → T̄ and the induced linear isomorphism TT → T × T̄ . Moreover, let
us consider a spacetime chart (xλ) and the induced chart (x̆0) ∈ map(T , IR) . Let us set

∂0s
λ := dsλ

dx̆0 .
The 1st differential of the motion s is defined to be the map ds := ds

dσ
: T → T∗⊗TE .
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We have g(ds, ds) = −c2 .

We assume as phase space the subspace J1E ⊂ J1(E, 1) consisting of all 1–jets of
motions.

For each 1–dimensional submanifold s : T ⊂ E and for each x ∈ T , we have j1s(x) ∈
J1E if and only if T [j1s(x)] = TxT is timelike.

Any spacetime chart (x0, xi) is related to each motion s . Hence, the fibred chart
(x0, xi, xi0) is defined on tubelike open subsets of J1E .

We shall always refer to the above fibred charts.

The velocity of a motion s is defined to be its 1–jet j1s : T → J1(E, 1) .
We define the contact map to be the unique fibred morphism d : J1E → T̄∗⊗TE over

E , such that d ◦ j1s = ds , for each motion s . We have g (d,d) = −c2 . The coordinate
expression of d is

d = c α0 (∂0 + xi0 ∂i) , where α0 := 1/
√
|g00 + 2 g0j x

j
0 + gij xi0 x

j
0| .

The map d : J1E → T∗⊗TE is injective. Indeed, it makes J1E ⊂ T∗⊗TE the fibred
submanifold over E characterised by the constraint gλµ ẋ

λ
0 ẋ

µ
0 = −(c0)2 .

We define the time form to be the map τ := − 1
c2
g[(d) : J1E → T̄ ⊗ T ∗E . We have

τ(d) = 1 and ḡ(τ, τ) = − 1
c2
. The coordinate expression of τ is

τ = τλ d
λ , where τλ = −α

0

c
(g0λ + giλ x

i
0) .

We define also the complementary contact map θ := 1− d⊗ τ : J1E → T ∗E ⊗ TE .
The coordinate expression of θ is

θ = dλ ⊗ ∂λ + (α0)2 (g0λ + giλ x
i
0) dλ ⊗ (∂0 + xj0 ∂j) .

3.2.4 Vertical bundle of the phase space

Let V J1E ⊂ TJ1E be the vertical tangent subbundle over E . The vertical prolonga-
tion of the contact map yields the mutually inverse linear fibred isomorphisms

ντ : J1E → T⊗ V ∗τ E ⊗ V J1E and ν−1
τ : J1E → V ∗J1E ⊗ T∗ ⊗ VτE ,

with coordinate expressions

ντ =
1

c α0
(di − xi0 d0)⊗ ∂0

i , ν−1
τ = c α0 di0 ⊗

(
∂i − c α0τi(∂0 + xp0 ∂p)

)
.

Thus, for each Y ∈ sec(J1E, V J1E) and X ∈ sec(E, TE) , we obtain

ν−1
τ (Y ) ∈ fib(J1E, T∗ ⊗ VτE) and ντ (X) ∈ sec(J1E, T⊗ V J1E) ,
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with coordinate expressions

ν−1
τ (Y ) = c α0 Y i

0

(
∂i − c α0τi(∂0 + xp0 ∂p)

)
and ντ (X) =

1

c α0
X̃ i ∂0

i ,

where X̃ i = X i − xi0X0 .

3.2.5 Spacetime connections

We define a spacetime connection to be a torsion free linear connection K : TE →
T ∗E ⊗ TTE of the bundle TE → E . Its coordinate expression is of the type

K = dλ ⊗ (∂λ +Kλ
ν
µ ẋ

µ ∂̇ν) , with Kµ
ν
λ = Kλ

ν
µ ∈ map(E, IR) .

We denote by K[g] the Levi Civita connection, i.e. the torsion free linear spacetime
connection such that ∇g = 0 .

3.2.6 Phase connections

We define a phase connection to be a connection of the bundle J1E → E .
A phase connection can be represented, equivalently, by a tangent valued form

Γ : J1E → T ∗E ⊗ TJ1E , which is projectable over 1 : E → T ∗E ⊗ TE , or by the
complementary vertical valued form ν[Γ] : J1E → T ∗J1E ⊗ V J1E , respectively, with
coordinate expressions

Γ = dλ ⊗ (∂λ + Γλ
i
0 ∂

0
i ) , ν[Γ] = (di0 − Γλ

i
0 d

λ)⊗ ∂0
i ,

ντ [Γ] = c α0 (di0 − Γλ
i
0 d

λ)⊗
(
∂i − c α0τi(∂0 + xp0 ∂p)

)
, with Γλ

i
0 ∈ map(J1E, IR) .

We define the curvature of a phase connection Γ to be the vertical valued 2–form

R = R[Γ] := −[Γ, Γ] : J1E → Λ2T ∗E ⊗ V J1E ,

where [ , ] is the Frölicher–Nijenhuis bracket.
We can prove that there is a natural map χ : K 7→ Γ between linear spacetime

connections K and phase connections Γ , with coordinate expression

Γλ
i
0 = Kλ

i
0 +Kλ

i
p x

p
0 − xi0 (Kλ

0
0 +Kλ

0
p x

p
0) .

3.2.7 Dynamical phase connection

The space of 2–jets of motions J2E can be naturally regarded as the affine subbundle
J2E ⊂ T∗ ⊗ TJ1E , which projects on d : J1E → T∗ ⊗ TE .

A dynamical phase connection is defined to be a 2nd–order connection, i.e. a section
γ : J1E → J2E , or, equivalently, a section γ : J1E → T∗ ⊗ TJ1E , which projects on d .
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The coordinate expression of a dynamical phase connection is of the type

γ = c α0 (∂0 + xi0 ∂i + γ0
i
0 ∂

0
i ) , with γ0

i
0 ∈ map(J1E, IR) .

If γ is a dynamical phase connection, then we have γ y τ = 1 .
The contact map d and a phase connection Γ yield the section

γ ≡ γ[d,Γ] := d y Γ : J1E → T∗ ⊗ TJ1E ,

which turns out to be a dynamical phase connection, with coordinate expression

γ0
i
0 = Γ0

i
0 + Γj

i
0 x

j
0 .

In particular, a linear spacetime connection K yields the dynamical phase connection

γ := γ[d, K] := d yχ(K) ,

with coordinate expression

γ0
i
0 =

= K0
i
0 +K0

i
h x

h
0 +Kh

i
0 x

h
0 +Kh

i
k x

h
0 x

k
0 − xi0 (K0

0
0 +K0

0
h x

h
0 +Kh

0
0 x

h
0 +Kh

0
k x

h
0 x

k
0) .

3.2.8 Phase 2–form and 2–vector

The metric g and a phase connection Γ yield the scaled 2–form Ω , called (scaled)
phase 2–form, and the scaled vertical 2–vector Λ , called (scaled) phase 2–vector,

Ω := Ω[g,Γ] := g y
(
ντ [Γ] ∧ θ

)
: J1E → (T∗ ⊗ L2)⊗ Λ2T ∗J1E ,

Λ := Λ[g,Γ] := ḡ y(Γ ∧ ντ ) : J1E → (T⊗ L−2)⊗ Λ2TJ1E ,

with coordinate expressions

Ω = c α0 (giµ + c2 τi τµ) (di0 − Γλ
i
0 d

λ) ∧ dµ , Λ =
1

c α0
(gjλ − xj0 g0λ) (∂λ + Γλ

i
0 ∂

0
i ) ∧ ∂0

j .

We can easily see that −c2 τ ∧ Ω3 6≡ 0 and − 1
c2
γ ∧ Λ3 6≡ 0 .

There is a unique dynamical phase connection γ , such that γ y Ω[g,Γ] = 0 . Namely,
γ = γ[d,Γ] .

In particular, a metric and time preserving spacetime connection K yields the (scaled)
phase 2–form Ω[g,K] := Ω[g, χ(K)] and the (scaled) phase 2–vector Λ[g,K] := Λ[g, χ(K)]
with coordinate expressions

Ω = −c (giµ + c2 τi τµ)
(
di0 − (Kλ

i
0 +Kλ

i
j x

j
0 −Kλ

0
0 x

i
0 −Kλ

0
j x

i
0 x

j
0) dλ

)
∧ dµ ,

Λ =
1

c α0
(ghλ − g0λ xh0)

(
∂λ + (Kλ

i
0 +Kλ

i
j x

j
0 −Kλ

0
0 x

i
0 −Kλ

0
j x

i
0 x

j
0) ∂0

i

)
∧ ∂0

h .
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3.2.9 Dynamical structures of the phase space

Let us consider a phase connection Γ and the induced phase objects γ := γ[d,Γ] ,
Ω := Ω[g,Γ] , and Λ := Λ[g,Γ] .

We define the Lie derivatives

LΓτ = (iΓd− diΓ)τ and LRτ = (iRd+ diR)τ .

Then, the following results holds [7].

3.3 Theorem. The following assertions are equivalent.

(1) Lντ (X) LΓ τ = 0 , ∀X ∈ sec(E, TE) , and LR τ = 0 .

(2) dΩ = 0 ,
i.e. (−c2 τ, Ω) is a (scaled) almost–cosymplectic–contact pair.

(3) [− 1
c2
γ, Λ] = 1

c2
γ ∧ Λ](Lγ τ)) and [Λ, Λ] = 2 γ ∧ (Λ] ⊗ Λ])(dτ)) ,

i.e. (− 1
c2
γ, Λ, −c2 τ) is a (scaled regular) almost–coPoisson–Jacobi 3plet.

Moreover, the almost–cosymplectic–contact pair (−c2 τ, Ω) and the (regular) almost–
coPoisson–Jacobi 3plet (− 1

c2
γ, Λ, −c2 τ) are mutually dual.

3.4 Lemma. We have
Ω− c2 LΓ τ = −c2 dτ .

3.5 Theorem. The following assertions are equivalent.

(1) LΓ τ = 0 .

(2) Ω = −c2 dτ , i.e. (−c2 τ,Ω) is a (scaled) contact pair.

(3) [− 1
c2
γ,Λ] = 0 and [Λ,Λ] = 2

c2
γ ∧ Λ , i.e. (− 1

c2
γ,Λ) is a (scaled regular) Jacobi

pair.

Moreover, the contact pair (−c2 τ,Ω) and the (regular) Jacobi pair (− 1
c2
γ,Λ) are

mutually dual.

Next, let us consider a linear spacetime connection K and the induced phase objects
Γ := χ(K) , γ := γ[d,Γ] , Ω := Ω[g,Γ] , and Λ := Λ[g,Γ] .

3.6 Theorem. The following assertions are equivalent.

(1) Lχ(K) τ = 0 .

(2) g(Z,Z)
(
(∇Xg)(Y, Z)− (∇Y g)(X,Z) + g(T (X, Y ), Z)

)
+ 1

2
g(Z,X)(∇Y g)(Z,Z)− 1

2
g(Z, Y )(∇Xg)(Z,Z) = 0 ,

for each X, Y, Z ∈ sec(E, TE) , where T is the torsion of K .

(3) Ω = −c2 dτ , i.e. (−c2 τ,Ω) is a (scaled) contact pair.

(4) [− 1
c2
γ,Λ] = 0 and [Λ,Λ] = 2

c2
γ ∧ Λ , i.e. (− 1

c2
γ,Λ) is a (scaled regular) Jacobi

pair.
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Moreover, if the above conditions are fulfilled, then the contact pair (−c2 τ,Ω) and the
(regular) Jacobi pair (− 1

c2
γ,Λ) are mutually dual.

3.7 Corollary. Let K be a torsion free spacetime connection. If ∇g and g ⊗∇g are
symmetric (0,3) and (0,5) tensor fields, respectively, then (−c2 τ , Ω) and (− 1

c2
γ , Λ) are

mutually dual contact and Jacobi pairs, respectively.

Eventually, let us consider the Levi Civita spacetime connection K[g] and the induced
phase objects Γ ≡ Γ[g] := χ(K) , γ ≡ γ[d, g] := γ[d,Γ] , Ω ≡ Ω[g] := Ω[g,Γ] , and
Λ[g] := Λ[g,Γ] .

Then, the equality ∇g = 0 and Theorem 3.6 yield the following result.

3.8 Theorem. We have:

(1) Ω = −c2 dτ , i.e. (−c2 τ,Ω) is a (scaled) contact pair.

(2) [− 1
c2
γ,Λ] = 0 and [Λ,Λ] = 2

c2
γ ∧ Λ , i.e. (− 1

c2
γ,Λ) is a (scaled regular) Jacobi

pair.

Moreover, the contact pair (−c2 τ,Ω) and the (regular) Jacobi pair (− 1
c2
γ,Λ) are

mutually dual.

3.9 Remark. If K is a spacetime connection, then the induced pairs (−c2 τ, Ω) and
(− 1

c2
γ, Λ) are scaled.

On the other hand, some results of the general theory of geometrical structures devel-
oped in the first two sections requires unscaled pairs.

Indeed, if we refer to a particle of mass m ∈ M and consider the universal scales
~ ∈ T−1 ⊗ L2 ⊗ M and c ∈ T−1 ⊗ L , then we obtain unscaled pairs in the following
natural way.

We have the unscaled spacetime 1–form

−mc2

~ τ : E → T ∗E .

Moreover, the rescaled contact map D := ~
mc2

d : J1E → TE yields the unscaled
phase vector field

−γ[D, K] = − ~
mc2

γ[d, K] : E → TJ1E .

Furthermore, the rescaled metric G := m
~ g : E → T⊗T ∗E⊗T ∗E yields the unscaled

phase 2–form and phase 2–vector

Ω ≡ Ω[G,K] = m
~ Ω[g,K] : J1E → Λ2T ∗J1E ,

Λ ≡ Λ[G,K] = ~
m

Λ[g,K] : J1E → Λ2TJ1E .

Thus, if K is the Levi Civita spacetime connection, then (−mc2

~ τ, m~ Ω) and
(− ~

mc2
γ, ~

m
Λ) turn out to be mutually dual unscaled contact and Jacobi pairs of the

phase space.
Indeed, the Plank constant does not play any direct role in classical mechanics; nev-

ertheless, such a scale is necessary for getting unscaled objects as above.
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