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Physique ’ théorique. ,

ABSTRACT. A systematic and geometrical analysis of shock structures
in a Riemannian manifold is developed. The jump, the infinitesimal jump
and the covariant derivative jump of a tensor are defined globally. By
means of derivation laws induced on the shock hypersurface, physically
significant operators are defined. As physical applications, the charged
fluid electromagnetic and gravitational interacting fields are considered.

INTRODUCTION

Several authors have developed the shock waves from different points of
view, under both mathematical and physical aspects.

In General Relativity shock waves assume a peculiar theoretical role.
In fact they constitute one of the few strictly covariant signals occurring
in the space-time manifolds, where the usual way, to describe waves (as
plane waves, Fourier series, etc.) are globally meaningless. Of course shock
may be considered as a mathematical abstraction that approximates more
realistic physical phenomena.
A very large bibliography on shock waves in General Relativity is quoted

in [9].
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28 M. MODUGNO AND G. STEFANI

We refer chiefly to Lichnerowicz’s researches [1], [2], [3], which range
over this topic and employ refined mathematical techniques.
We believe that a deep understanding of shock waves in General Relativity

requires an adequate geometrical analysis.
In fact Hadamard’s formulas have not a tensorial character and their

application to the complex entities occurring in General Relativity leads
to results that could seem involved, if the geometrical structures utilized
are not emphasized.
Our purpose is, following Lichnerowicz’s approach, to develop a syste-

matic geometric theory of tensor jumps in a Riemannian manifold and to
apply it to General Relativity. We get a global theory, expressed by an
intrinsical language, adequate for a geometrical point of view. Care is devoted
to distinguish the role played by different structures, as the differential

structure, the metric, the connection, etc. The case which requires distribu-
tional techniques will be treated in a subsequent work.
We consider a Coo manifold M and an embedded hypersurface E (1),

first we define the jump [t] of a tensors t across E. By means of Lie deriva-
tives we define the higher jumps Ekt, which involve only the manifold
structure : so we get a first generalization of Hadamard’s formulas (which
are local and hold for functions). As a particular case, we consider the jump
of Riemannian metric To describe the jump of the Riemannian connec-
tion we get a veritable tensor [r]k, which is directly expressed by means
of The jump of the covariant derivative is obtained by means of
Ekg and [r]k : this is a second generalization of Hadamard’s formulas

(which operate only on functions by partial derivatives). In this way we get
a global expression of the jump [R] of the curvature tensor. Particular interest
have several derivation laws, induced on E, when the latter is singular,
which replace the induced connection (that cannot be defined, for the tangent
space of M does not split into the tangent space to E and into its orthogonal
one). Some of these maps, as div" and divl, intervene in the physical conser-
vation laws.

In physical applications we analyse the charged fluid, electromagnetic
and gravitational field, as an example. We get compact formulas, that
resemble Lichnerowicz’s results. In particular we get the ((shock conditions »,
the « conservation conditions )) and an intrinsical definition of the shock

energy tensor.

(1) Lichnerowicz considers a manifold, to get the physical significant part of

gravitational potentials. But, for our purposes it seems more simple to assume M COO

deferring to consideration on the Cauchy problem the statement about the physically

significant part of Ekg (namely 
Annales de l’Institut Henri Poincaré - Section A



29SHOCK WAVES IN GENERAL RELATIVITY

1. THE BASIC ASSUMPTIONS

Let M be a ceo manifold without boundary with dimension n  2,
connected, paracompact, oriented and endowed with a pseudo-Riemannian
metric g at least of class C°.
We are mainly concerned with the case in which n = 4 and g is Lorentz-

type, for obvious physical reasons. But we don’t need such a requirement, as
our results are more general.

Moreover, let j : E 2014~ M be a Coo embedded orientable submanifold of M
without boundary and with dimensions 11 - 1 (L:t: are the two orientations).
E will be the support of the shock waves. In General Relativity the phy-

sical fields satisfy equations which impose shock conditions for X. The most
important among them is that E is « singular », i. e. the induced metric j*g
is degenerate. Thus we are led to make a study of the geometry of E which
holds in the singular case too.

Let us introduce some notations :

is the subspace of tensors, p times contravariant and g times
covariant of M, restricted to E (we say that such tensors are oh E) ;

is the subspace of tensors, p times contravariant, of M, that are
tangent to E;

is the subspace of tensors, q times covariant, of M, generated
by 1-forms orthogonal to E (by duality) ;

is the subspace of tensors, p times contravariant, of M, gene-
rated by vectors orthogonal to E (by the metric).

If L is singular, is the subspace, of tensors, p times contravariant,
of E, generated by vectors orthogonal to E (by the metric).
The symbols « /1: o, « 

" 

o, » may be combined, with obvious meaning.
For simplicity, we write also T for and T* for 
The spaces of sections, for each one of the preceding spaces, is denoted

replacing « T » by « ~ o.
Furthermore, the spaces of antisymmetric tensors are denoted by A and

those of their sections by SZ.
The class of differentiability of tensor fields is denoted by an upper

suffix on  and Q.

If necessary, the labels ~, t and t will denote the contravariant, covariant
and mixed form (induced by the metric) of a tensor t.

2. THE ORIENTATION OF ~

For the orientability of E there exists an « Orthogonal form ))

1979. ’



30 M. MODUGNO AND G. STEFANI

If E is singular, we have not the usual unitary normal, but l is defined up
to a positive Coo function of E (2) and it is tangent to E.

2.1. Each orthogonal form l is « closed )) in the following sense.

PROPOSITION. Let 0 ~ and let Then there exists a

neighbourhood U ~ M of x and a COO function

such that

Proo, f : 2014 Let { x°, x1, ..., xn-1 } be an adapted chart on a neighbourhood
of x.

Then, 03C6 == fx0 is the required function 2014

2.2. The orient ability of E induces an important splitting of close enough
neighbourhoods of E.

PROPOSITION. There exist three dimensional submanifolds U,
U +, U - of M, such that :

~) U is an open neighbourhood of I:,

Proo, f : For each x E I:, there is a neighbourhood Ux of x and two Coo

submanifolds UJ, which satisfy a~ and c). Then

(2) We will see " (6. 3) that we can restrict the functions f to be 
" constant along £ the integral

lines of /.

Annales de Henri-Poincaré - Section A



31SHOCK WAVES IN GENERAL RELATIVITY

3. TENSOR JUMPS

The actual purpose is to define the piece-wise differentiability and the

jump of tensors, across E, which will be just the shock carrier.

The space of such tensors is denoted by (-1,~)(p,q)M, or by (-1,~)(p,q)(M - E)
respectively 2014

3.2. DEFINITION. Let t E ~~p,q~°°~M Or t E ~~p,q~°°~(M - ~). Then, the
ump of t is the tensor

given by

Note that if t E (-1,~)(p,q)M and [t] = 0, then, there exists a unique t E (0,~)(p,q)M,
such that

but, not necessarily

On the other hand, if t E ~~°;q~~M, then 

4. INFINITESIMAL TENSOR JUMPS

The best way to calculate the derivatives jump of a tensor t involving
only the differential structure of M, is to evaluate the jump of the Lie deri-
vative Namely, we see that this jump is obtained by a tensor ~t on E,
which depends only on t.

In our treatment, we exclude the case when t is discontinuous across E,
for we don’t get reasonable results, the jumps of t and of the deriva-
tives of t being inextricably bound.

Vol. XXX, nO 1 - 1979. 2



32 M. MODUGNO AND G. STEFANI

Proo, f. 2014 In fact, we have

where the Lie derivative is defined on 03A3 (which is the boundary of U:t)
by means of any local extension of u t and t± :::-

4.2. We can now enunciate the fundamental theorem which gives a
stronger version of Hadamard’s formulas.

THEOREM. Let t E ~~p; ~~11~. There exists a unique tensor

such that

Furthermore, we have

If u ~ ~{i ,o)M , then

Hence, for each 0 5~ /~ there exists a unique

such that

Finally, if { ~ ~B ... , xn ^ 1 ~ is an adapted chart, then the local expression
of t is

Annales de Henri Poincaré - Section A



33SHOCK WAVES IN GENERAL RELATIVITY

Hence the map u 2014~ [Lut] is linear.
Furthermore, if u E we have

hence

4.3. DEFINITION. - Let The INFINITESIMAL JUMP Of t is

the tensor 81 E ~~p,q+ ==

4.4. The calculation of the Lie derivative jump can be extended to the
case when, both u and t are of class 

Previously we introduce the following notation. « &#x3E; » denotes the bilinear
map defined,

where h* is the transpose of h.

Then, we have

As, particular cases,

Proo~ f : If suffices to prove the last three cases.
For this purpose, let us notice that, if a certain map is linear on u and t,

then it can be evaluated on the tensors u and t (in fact, the space of
C(o,co) tensors is generated by the space tensors, by means 
functions).
Then, we see that

XXX, n" 1 - 1979.



34 M. MODUGNO AND G. STEFANI

are linear respect to u and t, on the C ,00 functions ; moreover, these are
zero, if u and t are of class =-=

4.5. The jump of the exterior derivative is expressed by means of the
infinitesimal jump.

PROPOSITION. Let t E g~g::»M. Then it is

Hence, if we choose

we have

Finally, if { x°, xl, ..., is an adapted chart, then the local expres-
sion 

Proof. 2014 It follows from the definition of dx

4.6. We conclude this section introducing the « k-order infinitesimal
jumps o, for C~k-1 ~°°~ tensors, in the same way as the first one.

PROPOSITION. Let t E ~~pl~~ i°°~M. There exists a unique tensor

such that ... Lu1t] = iuk ... iu1~kt ~ ~ku1,...,ukt, for each u1, ..., 

t is if and only if Ekt = 0.
The tensor Ekt is symmetrical in the first k indices.
Furthermore, we have

Annales de Henri Poincare - Section A



35SHOCK WAVES IN GENERAL RELATIVITY

Hence, for each 0 7~ l E there exists a unique

such that

Finally, if { ..., ~ - 1 } is an adepted chart, then the local expres-
sion of ~kt is

The proposition 4.4 can be extendend to the k order, in a suitable way.

5. THE RIEMANNIAN CONNECTION JUMP

Henceforth, we suppose that the assumed metric g is at least of class 
If g is of class 1 ~ ~ we get the following jumps

The physically significant « part » of ~kg is

Notice that Ekg is different from More precisely, we have

Let g be of class Then, the Riemannian connection V is defined
on M - X. If t E ~~p; q~~ M, with - 1 ~ ~ oo, then O t E ~~ p, q + 1 ~~M - 1:).
In each chart, the Christoffel symbols are of class C( -1,00).

5. t. We can express the jump of the connection by a tensor. For physical
reasons we are concerned with the cases k = 1,2.

THEOREM. 2014 Let g be of class C(k-1,~), with k = 1,2.

The map

given by

Then, we can identify with a tensor

is symmetrical in the last two covariant indices.

Vol. XXX, nO 1 - 1979.
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Furthermore, [r]k is expressed by Ekg, as

Hence, for each 0 "# l E we have

- It suffices to prove that crt + 1 linear with respect toC - functions and then to evaluate [F]’ on tensors of class takinginto account the Riemannian expression of ~ (see [11], p. 127). 
’

Namely, we set

and, ’da, h, c E 

The expression of [r]k gives the following results, 

5.2. COROLLARY. The following conditions are equivalent.

5.3. COROLLARY. The following conditions are equivalent.

Annales de l’Institut Henri Poincaré - Section A
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COROLLARY.

5.5. In the study of shock waves we find a condition on Ekg, which we
want to characterize in an interesting way.

COROLLARY. The following conditions (« harmonicity condition )))
are equivalent.

Proof. - We utilise the previous corollary taking into account that

5.6. COROLLARY. - Let k = 2.

W e have

Hence

Proof. - It v E ~~:~M, we have

From the expression of [r]2 we get the jumps of the Riemannian tensor R,
the Ricci tensor ~ and the scalar curvature ro.

W e have

Vol. XXX, nO 1 - 1979.
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5.8. COROLLARY. Let k = 2.
The following conditions are equivalent.

5.9. We can extend theorem 5.1 in several ways. For example we will
use the following result in the physical applications.

6. CONNECTIONS INDUCED ON E

It is well known that ifE is not singular (i. e. the induced metric j*g on
E is not degenerate or /2 #- 0), then the connection 0 of M can be decom-
posed into the tangent connection respect to E and the second fundamental
form of 1.

But our main interest is, for physical reasons, towards the singular case.
In such a case, we have not a tangent projection and a unitary normal to E
and the vectors orthogonal to E belong to its tangent space. On the other
hand, in the singular case we find other interesting properties of the connec-
tion. In this section we assume g at least of class C 0 ~ (0) and E singular.

6.1. PROPOSITION. The two maps

given by

where t is an extension of t, are well defined (independent of the choice of
the extension) and are derivation laws.

where " each term is zero 0 2014

Annales de Henri Poincoré - Section A



39SHOCK WAVES IN GENERAL RELATIVITY

6.2. PROPOSITION. The two maps

given by

for contravariant tensors and given by duality for covariant tensors, are
derivation laws.

Proof 2014 It suffices to prove that, for contr ovariant vectors we have

This proposition can be generalized in such a way as to concern the « jump
type tensors » by introducing the new derivations V and D1.

6.3. PROPOSITION. The two maps

given by

are derivation laws.

Proof - It suffices to prove the statement for p = 0 = = 1. In fact,
we have

6.4. PROPOSITION. The two maps

given by

are derivation laws.

It suffices to prove the statement for p = 0 = = 1. In fact,
we have Vu E ,o~~,

Wence, may be viewed as a connection on each integral manifold
L of l, writing

i. e. L is a geodesical submanifold of M, with respect to 0.

Vol. XXX, no 1 - 1979.
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Then induces two affine structures on each L (at least locally) and
we can normalise l, up to a positive constant along each L (in such a way
that ~±ll = 0). Such an l is said to be a « normal ».

6.5. Proposition 6.3 suggests the definition of an interesting differential
operator.

COROLLARY. The two maps

are well defined and are given (for any normal l) by

6.6. Proposition 6.4 suggests the definition of an interesting differential
operator.

COROLLARY. two maps

are well defined and are given (for any normal l) by

6.7. PROPOSITION. The map

given by

is the restriction of and we get

Moreover, a sufficient condition to get

is that the harmonicity condition holds

6.8. We have introduced only those induced derivation laws of tensors
on E we need for applications. Further ones can be interesting.
As an example we mention two of them.

a The map o

Annales de l’Institut Henri Poincare - Section A



41SHOCK WAVES IN GENERAL RELATIVITY

given by

is a derivation Jaw.

Moreover, V is the Riemannian connection induced on E by j*g, as we

b~ The bilinear map

given by

and the linear map

given by

resemble the second fundamental form relative to the non singular case 2014

7. FURTHER USEFUL FORMULAS

In this section we assume that g is of class E is singular and the
harmonicity condition (3) holds.
We have not calculated for tensors and for 

tensors. But we can calculate [div for tensors and j*12[div R].
Such results will be fundamental for physical applications.

7.1. LEMMA. 2014 Let

and

be the canonical projections.

(3) This condition is physically interesting, but it is not necessary for the following
theorems. However it gives simplified formulas.

Vol. XXX, nO 1 - 1979.
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Let t E ~~°; i~~M. Then the following conditions are equivalent.
_ _ _ _ .... ~ ,- .~m ~ Wr

7 . 2. LEMMA. Let t E 0~~:r/M. Let the previous conditions hold.
Then we have

Proof - We can easily prove 
" this algebraic formula . by any adapted 0

basis 2014

Hence, if l is a normal, we get

P~oof. Let x E ~0 ,0)1:. Then the formula

shows that condition 7 . 2 a holds.

Then we can write

Moreover we get :

a)

b)

The statement follows taking into account that, by the harmonicity

condition, we get

Annales de 1’Institut Henri Poincare - Section A
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7.4. THEOREM. - We have

Hence if l is a normal, we get

Proof - Let x E ~~ i ,o~~. Then the formula

shows that condition 7.1 a holds.
Then we can write

Moreover we get :

a)
b)

The statement follows taking into account that, by the harmonicity
condition, we get

This theorem can be viewed as a particular case of the previous one, if
we take into account that the Riemannian tensor R is locally the covariant
derivative of a CCo, (0) tensor.

8. ELECTROMAGNETIC
AND GRAVITATIONAL SHOCK WAVES

We apply now our theory to a physical case, namely to the relativistic
electromagnetic and gravitational shock waves.

Vol. XXX, n° 1 - 1979.
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Henceforth, M represents the space-time manifold and I represents the
support of the shock waves.

8.1. DEFINITION. A « self-interacting system constituted by a gravita-
tional field an electromagnetic field and an incoherent charged fluid» with
a shock of 1 ~ kind is a 6-plet

where

M is a Coo manifold without boundary, with dimension 4, connected,
paracompact, oriented and time oriented with respect to g;
E is a Coo embedded submanifold of M, without boundary, with dimen-

sion 3, oriented;
g is a Lorentz metric ;
F is a 2-form;
C is a family { Dp }p~P of embedded, connected, time like, maximal sub-

manifolds, such that D == ~Dp is open and there exists locally a chart

l3EP

adapted to the family;
,u is a positive function of M which is zero on M - D, p is the func-

tion p = with K E R - ~ 0 ~
Such that

where

v is the unique vector field tangent to the family C, normalized and future
oriented

It is known that from ( 1 ) (2) and (3), by means of Bianchi identity, we
get further equations

8.2. THEOREM. Let (M, E, g, F, C, ~.~, p) be a self interacting system as
in the previous definition.

Moreover, we assume

(4) Such assumption is suggested o by considerations on the Cauchy problem (see [1]
and  [10]) in order to get an effective ’ shock.

Annales de l’Institut Henri Poincare - Section A
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Then we get the following results.

~) X is singular, i. e.
.. ~7

(where F° is defined up to a multiple of l, while j*F0 is uniquely given).

(we can find such an u, at least locally) then we get the geodesic derivation
formula

If (eo, e~, e2, e3) is an orthonormal local basis, such that v - eo,
l = + e2 and e3 are the eigenvectors of the restriction of g2 to the
plane orthogonal to eo and e1 with eigenvalues 03B32 and 03B33, then we get
(choicing 03BB = 1 )

where y = ~ == 2014 y3 ~

Vol. XXX, nO 1 - 1979.
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Proof. Let us prove a) and bj :
( 1 ) gives

which is equivalent to

or

But the first condition is excluded by (6).
Let us prove c) :

(2)gives
i. e.

moreover (7) gives
(3) gives

(and
Let us prove d) :
(5) gives

hence

v being time-like and l null.
Let us prove e) :
(4) gives

hence

Let us prove/):
Taking into account the Bianchi identity, theorem 7.4 gives

hence

Annales de l’Institut Henri Poincare - Section A
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Let us prove g) :
Theorem 7.3 gives

hence

Let us prove /?):

(5) gives

where ul is the component of u orthogonal to v and l.
Moreover

Furthermore y2 - - y3 follows form b) 2014

Let us remark that the formulas b), c), /*) and g) are compatibility condi-
tions on initial data and they involve only j*F0 andj*g2.

Moreover the equations f ) and g) result into ordinary differential equa-
tions along the null geodesic generated by l.

8 . 3. If /*(F(/)) ~ 0, then an electromagnetic shock induces effectively
a gravitational shock and vice More precisely we get the following
result.

PROPOSITION. 0, then the following conditions are equivalent :

0. then the following conditions are equivalent :

Proof 2014 x) =&#x3E; b)j*g V F(l)) are linearly independent, for the
first one is not decomposable while the second one is.

Vol. XXX, nO 1 - 1979.
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Hence j*(F(1)) = 0.

Then choicing a basis { eo, el, e2, e3 ~ such that

and

Hence, taking into account 8 .2 b, we get

b) =&#x3E; a) and ~) =&#x3E; c) are trivial
Let us remark = 0 means that each observer sees the electric

and the magnetic field parallel to the observed direction of 7.

8.4. Let us remark that if V is a one dimensional vector space then

(8) V is one dimensional and, if p = 2q, it has a natural orientation.
p

LEMMA. The tensors

depend only on and ( j *g2) and are positive.

Proo,f: 2014 ~) (FO)2 depends only and it is positive. In fact, taking
in to account (e"), we get

b ) ~g 2 3 2 - 1 (tr 2~2 depends only onj*g2 and it is positive. In fact, taking
into account (b)’ and using a basis { e2, e3 ~ such that

e1 and e2 are the eigenvectors of g2 restricted to their plane, we find

Annales de l’Institut Henri Poincare - Section A
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Note that l 1g.2)2 - 2 1 (tr g2)2 = b2, where b E ~,2)M~ is any tensor such
thatj*b = j*g and b(l) = 0. Hence we get that b ~ ~(2,0)03A3 and tr b = 0.

8.5. The preceding result suggests to assume as a measure of the shock
the following tensors.

DEFINITION. The « energy of the electromagnetic shock » is the tensor

and the « energy of the gravitational shock » is the tensor

The « energy of the gravitational electromagnetic shock )) is the tensor

8 . 6. For the energy tensor W = we + Wg we find the following conser-
vation law.

PROPOSITION. - div" W = 0

Proof

Here we have developed the interacting gravitational electromagnetic field
as an example. In an analogous way one can easily study the three fields
separately.

LIST OF SYMBOLS

the contraction of the contravariant index i1 ... ip with the
covariant index ./i ... y’p.

Vol. XXX, nO 1 - 1979.
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is the contraction of the index i1 ... ip with the index
jl ... jp, identifying covariant and contravariant indices
by means of the metric.

is the symmetrization operator.

r is the antisymmetrization operator ~cr = permutation,

= symmetric group of order q).
is the symmetrized tensor product.
is the antisymmetrized tensor product.
is the Hodge contraction with the unitary volume form.
is the transpose of the tensor t, by means of the duality.
is the adj oint of the tensor t, by means of the metric.
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