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Abstract
We start by analysing the Lie algebra of Hermitian vector fields of a Hermitian

line bundle.
Then, we specify the base space of the above bundle by considering a Galilei, or

an Einstein spacetime. Namely, in the first case, we consider, a fibred manifold over
absolute time equipped with a spacelike Riemannian metric, a spacetime connection
(preserving the time fibring and the spacelike metric) and an electromagnetic field.
In the second case, we consider a spacetime equipped with a Lorentzian metric and
an electromagnetic field.

In both cases, we exhibit a natural Lie algebra of special phase functions and
show that the Lie algebra of Hermitian vector fields turns out to be naturally
isomorphic to the Lie algebra of special phase functions.

Eventually, we compare the Galilei and Einstein cases.
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Introduction

A covariant formulation of classical and quantum mechanics on a curved spacetime
with absolute time (“curved Galilei spacetime”) based on fibred manifolds, jets, non
linear connections, cosymplectic forms and Frölicher smooth spaces has been proposed by
A. Jadczyk and M. Modugno some years ago [10, 11] and further developed by several
authors (see, for instance, [2, 8, 12, 13, 16, 19, 20, 21, 22, 23, 24, 31, 32, 33, 34, 37, 38]).
We shall briefly call this approach “Covariant Quantum Mechanics”.

It presents analogies with the approach due to K. Kuchař [26], to Geometric Quantisa-
tion (see, for instance, [1, 6, 7, 25, 36, 35, 40] and references therein) and to the approach
due to C. Duval, Künzle et al. (see, for instance, [4, 5]) in the Bargmann framework. But
it presents several differences and novelties as well. In fact, it produces an effective proce-
dure for quantum operators and overcomes typical difficulties of Geometric Quantisation,
such as the problems of polarisations and quantum energy operator; moreover, in the flat
case, it reproduces the standard quantum mechanics (hence, it allows us to recover all
classical examples).

The main original features of this Covariant Quantum Mechanics are the following.
We are not concerned with a very general and ambitious quantisation programme

(such as, for instance, that of Geometric Quantisation), but we deal with a rather concrete
scheme of spacetime equipped only with classical fundamental fields and follow a criterion
of minimal assumptions.

The main input of our scheme is the requirement of ‘manifest covariance’, which plays
an essential role throughout the theory from the very beginning. Namely, we assume the
principle of general relativity in our curved Galileian framework with absolute time and
Riemannian spacelike metric, detaching it from the more usual Lorentzian viewpont of
the Einstein theory. Even more, we formulate the theory in a way which is manifestly
independent of the choice of units of measurement.

The first consequence of this viewpoint is the nature of time. Thus, spacetime is
equipped with an absolute surjective time map, which yields the fibring into simultaneity
subspaces; but, we have no absolute spacelike space. We need the choice of an observer in
order to achieve (locally) a splitting of the tangent space of spacetime into timelike and
spacelike components. According to the principle of general relativity, the fundamental
steps of the general theory are observer independent; on the other hand, an observer
is required to describe specific measurements. In general, we deal with “accelerated”
observers; inertial observers can be considered only in the flat case. Thus, time is never
considered as a parameter, but it is intimately linked with the other objects of the theory
with strong consequences at any step. Moreover, the absolute time is assumed to be
an oriented affine space and not the real line, as it is most usually done. This is not
just a sophisticated mathematical approach. In fact, the usual viewpoint corresponds
implicitly to the choice of a distinguished time scale; indeed, the fact that we do not
assume distinguished time scales plays a key role in some steps of the theory. We observe
that our “spacetime” and its structures should not be understood in a strict sense; in fact,
spacetime can also play the role of a configuration space for one or several free particles,
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or for a constrained system, allowing more general developments of the theory.
Another of the main consequences of the manifest covariance is the choice of the

1st jet space of motions as classical phase space, instead of the more usual tangent, or
cotangent, or vertical, or covertical spaces of spacetime. If we had chosen the tangent
space of spacetime as classical phase space, then we should have been concerned with the
constraint of time normalisation and the related difficulties. An even worst choice would
have been the cotangent space of spacetime, because of the lack of a Legendre map due
to the spacelike character of the metric. Moreover, the choice of the vertical or covertical
tangent space of spacetime as classical phase space would conflict with the requirement
of covariance for dynamical laws. Indeed, the vertical approach is suitable to describe
covariantly only some geometric aspects of the theory, but not the dynamical laws which
have an “horizontal” character with respect to the time fibring. Other theories assume
implicitly the vertical or covertical tangent space of spacetime as classical phase space
and try to bypass the above problem by additional methods. In our opinion, some of the
typical difficulties of these theories arise from this non dynamically covariant choice of the
phase space. Our classical phase space is odd dimensional; this technical fact has several
important consequences.

Besides the time fibring, we assume as source fields just the spacelike Riemannian
metric, the gravitational connection and the electromagnetic field, linked by the natural
interaction equations which are allowed by the covariance requirement in the Galileian
framework. In fact, these are the only classical fundamental fields and we are involved only
with a “fundamental” theory. Even in the Einstein framework, the metric and the gravita-
tional connection describe essentially distinct phenomena, hence should be considered as
distinct fields; but the fact that the gravitational connection is determined by the metric
induces us to consider the metric just as the potential of the gravitational connection.
However, in the Galilei context, the metric and the gravitational field still describe essen-
tially different phenomena, but the second fact is no longer true. The spacelike metric,
regarded as a metric of spacetime, is degenerate, hence it determines the gravitational
connection only up to a local closed 2–form. The curvature of a (pseudo-)Riemannian
metric has a symmetry property which is not guaranteed in the Galilei case: it should
be assumed as a postulate (this assumption has been considered also by other authors
[4, 26]). Indeed, this property is equivalent to the closure of the cosymplectic form and
turns out to be an esential integrability condition for the quantum connection.

It is wellknown that we cannot write in a Galilei framework the Maxwell and Einstein
equations, which link the gravitational and electromagnetic fields with their charge and
masses sources. This is due to the degeneracy of the spacetime metric. However, we can
write in a covariant way the above equations in a reduced form, which is able to account
only for the static effects of charges and masses on the corresponding fields (see also
[28]. Actually, this fact is a weak aspect not specifical of our approach, but of the Galilei
framework, any way. Indeed, the Einstein spacetime is the right framework for the true
Maxwell and Einstein equations. On the other hand, the standard quantum mechanics
and the Schrödinger equation are so important that it is worth considering the Galilei
framework. Actually, in the present theory the gravitational and electromagnetic fields
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are considered as given external fields. Therefore, we are not explicitly involved with
their sources. For this reason, in this paper, we are not interested in the above reduced
equations.

In the Galilei framework, we can merge in a covariant way the electromagnetic field
into the gravitational field, by exploiting the metric and the time fibring. In this way, we
obtain a “joined spacetime connection”, which incorporates both the gravitational and
the electromagnetic fields. This “joining” effects the theory at all steps in a convenient
way.

Our phase space is equipped with a cosymplectic form, instead of the more usual
symplectic form. This technical fact has several strategic consequences. For instance, the
classical Hamiltonian function is not an additional, absolute starting object of the theory,
but it is locally extracted from the cosymplectic form by choosing an observer. Indeed,
the Hamiltonian function is an “horizontal” object with respect to the time fibring and is
introduced independently of the momentum, on the same footing of this. This strategic
fact allows us to skip the difficulties of ordering, because energy is not derived from mo-
mentum. Actually, our cosymplectic form restricts to a fibrewise symplectic form on the
vertical or covertical tangent spaces of spacetime. But this symplectic form has a purely
geometric role. Again, trying to derive dynamical consequences from this symplectic form
would lead us to artificial and problematic procedures. We stress that the cosymplectic
2-form cannot be even regarded as the family of those fibrewise symplectic forms. In-
deed, in order to do this we should add a “horizontal” term, which cannot be expressed
in a covariant way. In the Geometric Quantisation, the symplectic form is usually as-
sumed as a postulate. In our approach, the cosymplectic form is not postulated, but is
naturally generated by the starting fields, hence by the metric and the joined spacetime
connection. On the other hand, the cosymplectic form encodes completely these fields. A
typical aspect of the approaches based on a symplectic framework is the Darboux theorem
and the symmetry between p’s and q’s. Actually, this viewpoint does not play a role in
our approach, because it would break the time fibring; we do not believe that this is a
real problem, because the above symmetry has no true physical necessity, but it is just
suggested by the usual formalism.

Our approach is not concerned with the quantisation of any cosymplectic manifold.
But, we deal only with the cosymplectic form which arises from the starting fundamental
fields (metric, gravitational and electromagnetic fields) on a manifold equipped with a
time fibring. Indeed, this cosymplectic form has some specific properties induced by the
above physical structure. In particular, we stress the fact that this cosymplectic form
admits “horizontal” potentials.

In the quantum theory for a scalar charged particle effected by a given gravitational
and electromagnetic field we assume a Hermitian line bundle over spacetime. Moreover,
on the pullback of the quantum bundle with respect to the classical phase space, we
assume a “phase quantum connection”, i.e. a Hermitian connection which is “universal”
and whose curvature is proportional to the classical cosymplectic form. Thus, the quan-
tum bundle lives on spacetime (and not on the classical phase space), on one hand, and
the phase quantum connection is “universal”, on the other hand. The existence of such
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a connection is strictly linked to the fact that the cosymplectic form admits horizontal
potentials. We have to mention analogies with the earlier works by C. Duval, Künzle et
al. [4, 5]. These are original aspects of our approach with respect to Geometric Quan-
tisation, which have strategic and fruitful consequences. Actually, in this way we skip
the problem of polarisation, by replacing a difficult search for an inclusion of a subspace
with an easier and successful criterion of projectability. This criterion turns out to be the
way of implementing the principle of relativity in our context, because it yields observer
independent objects. By the way, we observe that a similar scheme can be applied to a
spin particle with a few additional assumptions [2].

The Schrödinger equation on a curved spacetime can be achieved in a covariant way by
different geometric procedures from the only starting classical and quantum objects (the
time fibring, the spacelike metric, the joined spacetime connection, the quantum Hermi-
tian metric and the phase quantum connection). In fact, we can exhibit a global, gauge free
and observer independent quantum Lagrangian, which yields the Schrödinger equation by
a usual procedure. Moreover, we can achieve the Schrödinger equation through a purely
differential procedure induced by the quantum connection. Even more, we can show that
the Schrödinger equation is determined just by a covariance requirement, which involves
not only the independence of observers but also of time scales. Thus, our approach to
the Schrödinger equation is detached from any Hamiltonian scheme and has nothing to
do with energy at first step; the link with energy comes into only later by a comparison
with the pre–quantum energy operator. This viewpoint is conceptually quite different
from most usual approaches. However, we have to mention some partial analogies with
the earlier works by Kuchař [26] and C. Duval, Künzle et al. [4, 5]. The explicit discussion
of the Schrödinger equation is not the subject of the present paper: the reader can refer
to [11, 20].

Perhaps, the most original aspect of our approach consists in the Lie algebra of special
phase functions and the way the quantum operators are achieved. The special phase
functions can be selected among all phase functions by taking into account just the
time fibring and the metric. These functions are quadratic with respect to the velocity
coordinates and the coefficient of the quadratic term is proportional to the metric. Indeed,
this space of functions includes the spacetime coordinates, the components of the classical
momentum and the classical Hamiltonian, treating them on the same footing. In order
to achieve their Lie bracket we need the cosymplectic form. This bracket can be regarded
as a modification of the Poisson bracket achieved in a covariant way by adding to it a
“horizontal” term. In fact, in the Galilei framework, the phase 2–vector generating the
Poisson bracket is vertical and does not encode all fields of spacetime. The special bracket
apparently resembles the Jacobi bracket [30], but it is really a new bracket which makes
sense only for special phase functions. We stress that this bracket depends on the 2nd jet of
the functions. The special Lie bracket reduces to the Poisson bracket in the particular case
of affine special phase functions. But it is essentially different from the Poisson bracket if
one of the two special functions is energy. Thus, the Lie algebra of special phase functions
turns out to be one of the key points, which allow us to quantise energy without the usual
difficulties. In particular, we stress that in this context it would be useless to express the
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Hamiltonian via the momentum, because the special bracket has not the usual behaviour
with respect to the scalar multiplication of functions. One of the main features of the
special phase functions is that they admit in a covariant way, besides the linear and affine
Hamiltonian lift, also a tangent lift. This last allows us to achieve also a holonomic lift.
It is noticeable that the special phase functions, and their bracket, arise naturally and
independently in several aspects of the classicasl and quantum theory. For instance, we
can prove that a distinguished Lie subalgebra of the special phase functions generates all
classical and quantum infinitesimal symmetries [31]. However, in the present paper we
treat explicitly only those aspects of special phase functions which are directly related to
the main aim of this paper. In Geometric Quantisation [1], the wellknown Gröenewald
and van Hove no go theorems show the role of quadratic functions. In the context of
Covariant Quantum Mechanics, the special phase functions have a clear link with the
above result, but also relevant conceptual differences.

Another basic aspects of Covariant Quantum Mechanics concerns quantum operators
on quantum sections associated with special phase functions. In the original formulation
of the theory, this goal was achieved by a rather intricate way. The present paper is aimed
at presenting a greatly improved approach to this correspondence.

The essential idea is the following. The Lie derivatives are natural candidates as 1st
order covariant operators on sections of the quantum bundle. But, we want to select
Lie derivatives with respect to vector fields which reflect the geometric (hence physical)
structure of spacetime and quantum bundle. For this purpose, we consider the Hermitian
vector fields and classify them. Actually, by the help of an auxiliary quantum connection,
we prove, in a general context, that the Lie algebra of Hermitian vector fields is isomorphic
to a Lie algebra of pairs constituted by a spacetime function and a spacetime vector field.
In the Galilei framework, we obtain a further result. In fact, we can prove that each
observer yields an isomorphism of the Lie algebra of special phase functions with the
above Lie algebra of pairs. Moreover, the phase quantum connection can be regarded
as a system of observed quantum connections with a certain transition law. Hence, if
we classify the Hermitian vector fields by means of any observed quantum connection of
the above system, we find a natural isomorphism with the Lie algebra of special phase
functions. Moreover, we can prove that this correspondence turns out to be observer
independent. Summing up, we exhibit the “correspondence principle” as a consequence
of the classification of Hermitian vector fields and show a covariant isomorphism between
the Lie algebras of Hermitian vector fields and special phase functions. Thus, in our
approach, we do not start from a postulate of quantisation of some classical Lie algebra.
The principle of covariance naturally suggests a class of 1st order operators on quantum
sections as candidate for quantum operators. Then, the link with a Lie algebra of classical
phase functions arises from a classification theorem and not from a postulate. By the way,
we stress that the Lie algebra of special phase functions appears naturally in our classical
theory, but it could be recovered independently while classifying the Hermitian vector
fields.

In a covariant formulation of quantum mechanics we do not deal just with one Hilbert
space, but we need a Hilbert space for each time. In other words, we deal with a Hilbert
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bundle, which is not naturally trivial, even in the flat case. We need the choice of an
observer in order to obtain a splitting of this bundle.

If we apply the above correspondence principle to the position and momentum ob-
servables we obtain the standard quantum operators, which act on the quantum sections
fibrewisely with rewspect to the Hilbert bundle. But, we obtain the partial derivative
with respect to time for the energy; this operator does not act fibrewisely. On the other
hand, by combining this operator with the Schrödinger operator, we obtain the quantum
operator for energy. Actually, in the present paper, we discuss only the operators on the
sections of the quantum bundle. The further developments related to the Hilbert quantum
bundle are beyond the scope of the present paper and can be found in the literature (see,
for instance, [20]).

It is well known that quantum mechanics fails in an Einstein relativistic context. On
the other hand, we can prove that all quantum results of Covariant Quantum Mechanics
in the Galilei framework, previous the stuff related to the Hilbert quantum bundle, can
be essentially rephrased in an Einstein framework. The basic ideas work on the same
footing in the two cases. However, several technical differences appear, due to the different
structure of spacetime in the two cases. These developments in the Einstein case seem to
be interesting by themselves. Moreover, we deem that the reader can understand better the
Galilei case by seeing how the results of this theory look like in the Einstein case. For these
reasons and aims, this paper deals also with the Einstein case (see also [14, 15, 17, 18]).

Here, we just list a few typical features of our approach to the Einstein case, as a
specific section is devoted to the comparison between the Galilei and the Einstein cases.
The classical phase space is the 1st jet space of timelike one dimensional submanifolds
of spacetime. In this framework we can recover the contact structure via the Lorentz
metric. The time form lives on the phase space, instead of spacetime. The gravitational
cosymplectic form is globally exact and has a distinguished potential. The special phase
functions and their Lie bracket can be defined analogously to the Galilei case, but they
are not quadratic and we do not need an observer to split them. We can split the phase
quantum connection into the electromagnetic quantum connection and the gravitational
correcting term.

Thus, the paper is aimed at discussing the updated approach to quantum operators
via the classification of Hermitian vector fields and comparing these results achieved in
the Galilei case with analogous results for the Einstein case. The paper is organised in
the following way.

First, we consider a generic spacetime and quantum bundle and classify the Hermitian
vector fields by an auxiliary quantum connection.

Then, we specify the geometric structures of the Galilei spacetime and quantum bun-
dle, and analyse several classical and quantum consequences of these postulates, sum-
marising as briefly as possible all introductory matter.

Accordingly, we achieve the classification of Hermitian vector fields in terms of special
phase functions.
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Next, we repeat an analogous procedure in the Einstein case.
Eventually, we devote a specific section for the discussion on the main differences

between the Galilei and Einstein cases.

In order to make classical and quantum mechanics explicitly independent from scales,
we introduce explicitly the “spaces of scales”, treating this aspect of the theory in a
rigorous mathematical way [11]. Even if several formulas appear in an unusual aspect,
this method has several technical effects, which produce some strategic consequences. An
example is related to the affine Hamiltonian lift of phase functions and its consequences
on the energy pre–quantum operator. Another example is related to the additional scalar
curvature term in the Schrödinger equation.

Roughly speaking, a space of scales S has the algebraic structure of IR+ but has no
distinguished ‘basis’. We can define the tensor product of spaces of scales and the tensor
product of spaces of scales and vector spaces. We can define rational tensor powers Um/n

of a space of scales U . Moreover, we can make a natural identification S∗ ' S−1 .
The basic objects of our theory (metric, electromagnetic field, etc.) will be valued into

scaled vector bundles, that is into vector bundles multiplied tensorially with spaces of
scales. In this way, each tensor field carries explicit information on its “scale dimension”.

Actually, we assume the following basic spaces of scales: the space of time intervals
T , the space of lengths L , the space of masses M .

We assume the following “universal scales”: the Planck’s constant ~ ∈ T−1 ⊗ L2 ⊗M
and the speed of light c ∈ T−1 ⊗L . Moreover, we will consider a particle of mass m ∈M
and charge q ∈ T−1 ⊗ L3/2 ⊗M1/2 .

If M and N are manifolds, then the sheaf of local smooth maps M →N is denoted
by map(M , N ) . If F → B is a fibred manifold, then the sheaf of local sections B → F
is denoted by sec(B, F ) . If F → B and F ′ → B are fibred manifolds, then the sheaf of
local fibred morphisms F → F ′ over B is denoted by fib(F , F ′) .

If F → B is a fibred manifold, then the vertical restriction of forms will be denoted
by a check symbol

∨
.
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1 Hermitian vector fields

First of all, we analyse the Lie algebra of Hermitian vector fields of a Hermitian
line bundle.

Let us consider a manifold E , which will be specified in the next sections as Galilei,
or Einstein spacetime. We denote the charts of E by (xλ) and the associated local bases
of vector fields of TE and forms of T ∗E by ∂λ and dλ , respectively.

1.1 Quantum bundle

We consider a Hermitian line bundle π : Q→ E , called quantum bundle, i.e. a com-
plex vector bundle with 1-dimensional fibres, equipped with a scaled Hermitian product
h : E → (L−3 ⊗ C)⊗ (Q∗ ⊗Q∗) .

We shall refer to (local) quantum bases , i.e. to scaled sections b ∈ sec(E, L3/2 ⊗Q) ,
such that h(b,b) = 1 , and to the associated (local) scaled complex linear dual functions
z ∈ map(Q, L−3/2 ⊗ C) . We shall also refer to the associated (local) real basis (ba) ≡
(b1,b2) := (b, i b) and to the associated scaled real linear dual basis (wa) ≡ (w1, w2) =(

1
2

(z+ z̄), 1
2
i (z̄− z)

)
. We denote the associated vertical vector fields by (∂a) ≡ (∂1, ∂2) .

The small Latin indices a, b = 1, 2 will span the real indices of the fibres.

For each Φ,Ψ ∈ sec(E,Q) , we write

Ψ = Ψa ba = ψ b and h(Φ,Ψ) = (Φ1 Ψ1 + Φ2 Ψ2) + i (Φ1 Ψ2 − Φ2 Ψ1) = φ̄ ψ ,

with Ψ1,Ψ2 ∈ map(E, L−3/2 ⊗ IR) and ψ = Ψ1 + i Ψ2 ∈ map(E, L−3/2 ⊗ C) .

Each Ψ ∈ sec(E, Q) can be regarded as a vertical vector field Ψ ' Ψ̃ ∈ sec(Q, VQ) :

qe 7→
(
qe,Ψ(e)

)
, according to the coordinate expression Ψ ' Ψ̃ = Ψa ∂a . We can regard

h as a scaled complex vertical valued form h : Q→ (L−3 ⊗ C)⊗ V ∗Q , according to the
coordinate expression h = (w1 ď1 + w2 ď2) + i (w1 ď2 − w2 ď1) .

The unity and the imaginary unity tensors

1 = idQ : E → Q∗ ⊗Q and i = i idQ : E → Q∗ ⊗Q

will be identified, respectively, with the Liouville and the imaginary Liouville vector fields

I : Q→ VQ = Q×
E

Q : q 7→ (q, q) and i I : Q→ VQ = Q×
E

Q : q 7→ (q, i q) .

We have the coordinate expressions

1 = idQ = w1 b1 + w2 b2 = z ⊗ b , I = w1 ∂1 + w2 ∂2 = z ⊗ ∂1 ,

i = i idQ = w1 b2 − w2 b1 = i z ⊗ b , i I = w1 ∂2 − w2 ∂1 = i z ⊗ ∂1 .
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12 1 Hermitian vector fields

Each quantum basis b yields (locally) the flat connection χ[b] : Q → T ∗E ⊗ TQ ,
with coordinate expression χ[b] = dλ ⊗ ∂λ .

Next, let us consider a Hermitian connection of the quantum bundle, i.e. a tangent
valued form [9, 39] c : Q→ T ∗E ⊗ TQ , which is projectable on 1E , complex linear over
its projection and such that ∇h = 0 .

Then, c can be written (locally) as c = χ[b] + iA[b]⊗ I , with A[b] ∈ sec(E, T ∗E) .

Moreover, we obtain c1
λ1 = c2

λ2 = 0 and c2
λ1 = −c1

λ2 , and the coordinate expression
c = dλ ⊗ (∂λ + iAλ I) , with Aλ = c2

λ1 ∈ map(E, IR) .

We have the coordinate expression ∇Ψ = (∂λψ − iAλ ψ) dλ ⊗ b , ∀Ψ ∈ sec(E,Q) .

The curvature of c is R[c] := −[c, c] = −i Φ[c]⊗ I , where [ , ] is the Frölicher-Nijenhuis
bracket and Φ[c] : E → Λ2T ∗E is the closed 2–form given locally by Φ[c] = 2 dA[b]
[9, 29, 39]. Thus, we have the coordinate expression Φ[c] = 2 ∂µAλ d

µ ∧ dλ .

1.2 Hermitian vector fields

1.2.1 Projectable vector fields

A vector field Y ∈ sec(Q, TQ) is said to be projectable (on E) if Tπ ◦Y ∈ fib(Q, TE)
factorises through a section X ∈ sec(E, TE) . Thus, Y ∈ sec(Q, TQ) is projectable if and
only if its coordinate expression is of the type Y = Xλ ∂λ + Y a ∂a = Xλ ∂λ + Y z b , where
Xλ ∈ map(E, IR) , Y a ∈ map(Q, IR) , Y z = Y 1 + iY 2 ∈ map(Q,C) .

The projectable vector fields constitute a subsheaf proj(Q, TQ) ⊂ sec(Q, TQ) , which
is closed with respect to the Lie bracket. Moreover, the projection Tπ : proj(Q, TQ) →
sec(E, TE) turns out to be a morphism of Lie algebras.

1.2.2 Linear vector fields

A vector field Y ∈ proj(Q, TQ) is (real) linear over its projection X ∈ sec(E, TE) if
and only if its coordinate expression is of the type Y = Xλ ∂λ +Y a

b w
b ∂a , with Xλ, Y a

b ∈
map(E, IR) , i.e., of the type Y = Xλ ∂λ + Y z

b w
b b , with Xλ ∈ map(E, IR) and Y z

b =
Y 1

b + iY 2
b ∈ map(E,C) .

The linear projectable vector fields constitute a subsheaf lin IR(Q, TQ) ⊂ proj(Q, TQ) ,
which is closed with respect to the Lie bracket.

1.1 Lemma. If Y ∈ lin IR(Q, TQ) and Ψ ∈ sec(E,Q) , then, by regarding Ψ as a
vertical vector field Ψ̃ ∈ sec(E, VQ) , we obtain the Lie derivative L[Y ] Ψ̃ ∈ sec(Q, VQ) ,
which can be regarded as a section Y.Ψ ∈ sec(E,Q) . We have the coordinate expression
Y.Ψ = (Xλ ∂λΨ

a − Y a
b Ψb) ba .

1.2 Lemma. If α ∈ sec(Q, V ∗Q) and Y ∈ proj(Q, TQ) , then the Lie derivative
L(Y )α is well defined, in spite of the fact that the form α is vertical valued, and has
coordinate expression L(Y )α = (Y µ ∂µαa + Y b ∂b αa + αb ∂a Y

b) ďa .
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1.2 Hermitian vector fields 13

Proof. If α̃ ∈ sec(Q, T ∗Q) is any extension of α (obtained, for instance through a connection of the
line bundle), then let us prove that the vertical restriction L(Y )α := (L(Y )α̃)∨ ∈ sec(Q, V ∗Q) does not
depend on the choice of the extension α̃ . The coordinate expression of α̃ is of the type α̃ = αµ d

µ+αa d
a .

Then, the expression Y = Y λ ∂λ + Y a ∂a , with ∂b Y
λ = 0 , yields

L(Y ) α̃ = (Y µ ∂µαλ + Y b ∂b αλ + αµ ∂λY
µ + αb ∂λY

b) dλ + (Y µ ∂µαa + Y b ∂b αa + αb ∂a Y
b) da .

Eventually, by considering the natural vertical projection ∨ : T ∗Q → V ∗Q , we obtain the section(
L(Y ) α̃

)∨
= (Y µ ∂µαa + Y b ∂bαa + ∂aY

b αb) ďa .

For each Y ∈ lin IR(Q, TQ) , we have the coordinate expression

L(Y ) h =
(
2Y 1

1 w
1 + (Y 2

1 + Y 1
2 )w2 − iY a

a w
2
)
ď1

+
(
2Y 2

2 w
2 + (Y 2

1 + Y 1
2 )w1 + iY a

a w
1
)
ď2 .

Each Y ∈ lin IR(Q, TQ) is complex linear over its projectionX if and only if L[Y ] (i I) =
0 , i.e. if and only if L[Y ] (i Ψ) = iY.Ψ , for each Ψ ∈ sec(E,Q) , i.e. if and only if Y 1

1 = Y 2
2

and Y 2
1 = −Y 1

2 , i.e. if and only if its coordinate expression is of the type Y = Xλ ∂λ+Y z I ,
with Xλ ∈ map(E, IR) and Y z = Y 1

1 + iY 2
1 = Y 2

2 − iY 1
2 ∈ map(Q,C) .

The complex linear vector fields constitute a subsheaf lin C(Q, TQ) ⊂ lin IR(Q, TQ) ,
which is closed with respect to the Lie bracket.

If Y ∈ lin C(Q, TQ) and Ψ ∈ sec(E,Q) , then we obtain the coordinate expression
Y.Ψ = (Xλ ∂λψ − Y z ψ) b . If Y̆ ∈ map(E,C) , then we obtain (Y̆ I).Ψ = −Y̆ Ψ .

1.2.3 Hermitian vector fields

A vector field Y ∈ lin IR(Q, TQ) projectable on X ∈ sec(E, TE) is said to be Hermi-
tian if L[Y ] h = 0 , where we regard h as a vertical valued form.

In other words, Y is Hermitian if and only if

(1.1) L[X]
(
h(Ψ, Φ)

)
= h

(
Y.Ψ, Φ

)
+ h

(
Ψ, Y.Φ

)
, ∀Ψ,Φ ∈ sec(E,Q) .

1.3 Proposition. Each Hermitian vector field Y turns out to be complex linear.
Moreover, Y ∈ lin IR(Q, TQ) is Hermitian if and only if Y 1

1 = Y 2
2 = 0 and Y 2

1 = −Y 1
2 ,

i.e. if and only if its coordinate expression is of the type Y = Xλ∂λ + i Y̆ I , with Xλ ∈
map(E, IR) and Y̆ = Y 2

1 = −Y 1
2 ∈ map(E, IR) .

Proof. If Y is Hermitian, then, for each Φ ∈ sec(E,Q) , we obtain

h
(
Y.(i Ψ),Φ

)
= L[X]

(
h
(
(i Ψ),Φ

))
− h

(
(i Ψ), Y.Φ

)
= −iL[X]

(
h
(
Ψ,Φ

))
+ i h

(
Ψ, Y.Φ

)
= −i h

(
Y.Ψ,Φ

)
= h

(
(iY.Ψ),Φ

)
,

which yields Y.(i Ψ) = iY.Ψ , hence Y is complex linear. Hence, its coordinate expression is of the type
Y = Xλ∂λ + Y z I , with Xλ ∈ map(E, IR) and Y z = Y 1

1 + iY 2
1 = Y 2

2 − iY 1
2 ∈ map(E,C) .

Moreover, the equality (1.1) reads as Xλ ∂λ(ψ̄ φ) = (Xλ ∂λψ − Y z ψ)φ+ ψ̄ (Xλ ∂λφ− Y z φ) , which
implies Ȳ z + Y z = 0 , i.e. Y z = i Y̆ , with Y̆ ∈ map(E, IR) .QED
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14 1 Hermitian vector fields

1.4 Proposition. The Hermitian vector fields constitute a subsheaf her (Q, TQ) ⊂
sec(Q, TQ) of

(
map(E, IR)

)
-modules, which is closed with respect to the Lie bracket.

Proof. If Y ∈ her (Q, TQ) and α ∈ map(E, IR) , then

L[αX](h(Ψ,Φ)) = (αL[X])(h(Ψ,Φ))
(αY ).Ψ = α (Y.Ψ) , (αY ).Φ = α (Y.Φ) ,

hence αY ∈ her (Q, TQ) . Clearly, if Y1, Y2 ∈ her (Q, TQ) , then Y1 + Y2 ∈ her (Q, TQ) .
The closure of her (Q, TQ) with respect to the Lie bracket follows from the identities

L
[

[X1, X2]
]

=
[
L[X1], L[X2]

]
, L

[
[Y1, Y2]

]
=
[
L[Y1], L[Y2]

]
.QED

1.2.4 Global classification of Hermitian vector fields

Let us consider a Hermitian connection c .

If ξ ∈ sec(E, TE) , then c(ξ) ∈ her (Q, TQ) .

1.5 Proposition. We have the following mutually inverse isomorphisms

h[c] : her (Q, TQ)→ sec(E, TE)×map(E, IR) ,

j[c] : sec(E, TE)×map(E, IR)→ her (Q, TQ) ,

given by h[c] : Y 7→
(
X, −i tr

(
ν[c](Y )

))
and j[c] : (X, Y̆ ) 7→ c(X) + i Y̆ ⊗ I , i.e., in

coordinates, h[c](Y ) =
(
Y λ ∂λ , Y

2
1 −Aλ Y λ

)
and j[c](X, Y̆ ) = Xλ ∂λ+ i (AλX

λ+ Y̆ )⊗I .

1.6 Lemma. Let us consider a closed 2-form Φ of E and define the bracket of
sec(E, TE)×map(E, IR) by[

(X1, Y̆ 1) , (X2, Y̆ 2)
]

Φ
:=

(
[X1, X2] , Φ(X1, X2) +X1.Y̆ 2 −X2.Y̆ 1

)
.

Then, the above bracket turns out to be a Lie bracket.

Proof. The 1st component [X1, X2] is just the Lie bracket.
Moreover, the anticommutativity of the 2nd component is evident.
Next, let us prove the Jacobi property.
Let us consider three pairs Πi := (Xi, Y̆ i) , with Xi ∈ sec(E, TE) , Y̆ i ∈ map(E, IR) , i = 1, 2, 3 , and

set (X, Y̆ ) :=
[
Π1, [Π2, Π3]Φ

]
Φ

+
[
Π2, [Π3, Π1]Φ

]
Φ

+
[
Π3, [Π1, Π2]Φ

]
Φ
, where

[Πi,Πj ]Φ :=
(
[Xi, Xj ] , Φ(Xi, Xj) +Xi.Y̆ j −Xj .Y̆ i

)
.

Then, the Jacobi property of the 1st component follows from the Jacobi property of the Lie bracket

X :=
[
X1, [X2, X3]

]
+
[
X2, [X3, X1]

]
+
[
X3, [X1, X2]

]
= 0 .
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1.2 Hermitian vector fields 15

Moreover, the Jacobi property of the 2nd component follows from the following equalities

Y̆ = Φ
(
X1, [X2, X3]

)
+ Φ

(
X2, [X3, X1]

)
+ Φ

(
X3, [X1, X2]

)
+X1.Φ(X2, X3) +X2.Φ(X3, X1) +X3.Φ(X1, X2)

+
(
X1.X2.−X2.X1.− [X1 , X2].

)
Y̆ 3

+
(
X2.X3.−X3.X2 − [X2 , X3].

)
Y̆ 1

+
(
X3.X1.−X1.X3.− [X3 , X1].

)
Y̆ 2

= Φ(X1, [X2, X3]) + Φ(X2, [X3, X1]) + Φ(X3, [X1, X2])
+X1.Φ(X2, X3) +X2.Φ(X3, X1) +X3.Φ(X1, X2)

= Φ
(
X1, [X2, X3]

)
+ Φ

(
X2, [X3, X1]

)
+ Φ

(
X3, [X1, X2]

)
+X1.Φ(X2, X3) +X2.Φ(X3, X1) +X3.Φ(X1, X2)

= dΦ(X1, X2, X3) = 0 .QED

Now, let us refer to the 2–form Φ[c] := i trR[c] associated with the curvature of c .

1.7 Theorem. The map j[c] is a Lie algebra isomorphism with respect to the Lie
bracket [ , ]Φ[c] and the standard Lie bracket.

Proof. We have

[c(X1), c(X2)] = c
(
[X1, X2]

)
−R[c](X1, X2) = c

(
[X1, X2]

)
+ i Φ[c](X1, X2) I ,[

c(X1), i Y̆ 2 I
]

= i (X1.Y̆ 2) I ,
[
c(X2), i Y̆ 1 I

]
= i (X2.Y̆ 1) I , [i Y̆ 1 I, i Y̆ 2 I] = 0 ,

which implies[
j(X1, Y̆ 1) , j(X2, Y̆ 2]

]
=
[
c(X1) + i Y̆ 1 I , c(X2) + i Y̆ 2 I

]
=
[
c(X1), c(X2)] +

[
c(X1), i Y̆ 2 I

]
+
[
i Y̆ 1 I, c(X2)

]
+
[
i Y̆ 1 I, i Y̆ 2 I

]
= c([X1, X2]) + i

(
Φ[c](X1, X2) +X1.Y̆ 2 −X2.Y̆ 1

)
I

= j
(
[X1, X2] , Φ[c](X1, X2) +X1.Y̆ 2 −X2.Y̆ 1

)
= j
([

(X1, Y̆ 1) , (X2, Y̆ 2)
]
Φ[c]

)
.QED

1.8 Corollary. The map her (Q, TQ)→ sec(E, TE) : Y 7→ X is a central extension
of Lie algebras by map(E, IR) .

So far, we have considered a generic Hermitian connection c in order to achieve a
global classification of the Lie algebra of vector fields.

In the next sections, dealing with the Galilei and Einstein frameworks, we shall be
involved with two more specific base manifolds E equipped with an additional structure,
which yields a distinguished system of Hermitian connections.
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16 1 Hermitian vector fields

This circunstance will provide a further isomorphism of the Lie algebra of Hermitian
vector fields with a Lie algebra of functions. Indeed, this isomorphism is at the basis of
the theory of quantum operators in CQM.
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2 Galilei case

Now, we specify the setting of the first section, by considering the base manifold
E as a Galilei spacetime equipped with a certain fundamental structure.

2.1 Classical setting

2.1.1 Spacetime

We consider the absolute time, consisting of an affine 1–dimensional space T associated
with the vector space T̄ := T⊗ IR .

We assume spacetime E to be oriented and equipped with a time fibring t : E → T .
We shall refer to a time unit u0 ∈ T , or, equivalently, to its dual u0 ∈ T∗ , and to a

spacetime chart (xλ) ≡ (x0, xi) adapted to the orientation, to the fibring, to the affine
structure of T and to the time unit u0 . Greek indices will span all spacetime coordinates
and Latin indices will span the fibre coordinates. The induced local bases of VE and
V ∗E are denoted, respectively, by (∂i) and (ďi) .

In general, the vertical restriction of forms will be denoted by a “check”
∨

symbol.
The differential of the time fibring is a scaled form dt : E → T⊗T ∗E , with coordinate

expression dt = u0 ⊗ d0 .
A motion is defined to be a section s : T → E . The 1st differential of the motion s

is the map ds : T → T∗ ⊗ TE . We have dt(ds) = 1 .

2.1.2 Spacelike metric

We assume spacetime to be equipped with a scaled spacelike Riemannian metric
g : E → L2 ⊗ (V ∗E ⊗ V ∗E) . With reference to a mass m ∈ M , it is convenient to
introduce the rescaled metric G := m

~ g : E → T ⊗ (V ∗E ⊗ V ∗E) . The associated con-
travariant tensors are ḡ : E → L−2⊗ (VE⊗VE) and Ḡ = ~

m
ḡ : E → T∗⊗ (VE⊗VE) .

We have the coordinate expressions g = gij ď
i ⊗ ďj and G = G0

ij u0 ⊗ ďi ⊗ ďj , with
gij ∈ map(E, L2 ⊗ IR) and G0

ij ∈ map(E, IR) .
The spacetime orientation and the metric g yield the scaled spacelike volume 3–form

η : E → L3 ⊗ Λ3V ∗E and its dual η̄ : E → L−3 ⊗ Λ3VE , with coordinate expressions

η =
√
|g| ď1 ∧ ď2 ∧ ď3 and η̄ = (1/

√
|g|) ∂1 ∧ ∂2 ∧ ∂3 .

2.1.3 Phase space

We assume as classical phase space the 1st jet space J1E of motions s ∈ sec(T ,E) .
The 1st jet space can be naturally identified with the subbundle J1E ⊂ T∗ ⊗ TE , of

scaled vectors which project on 1 : T → T∗ ⊗ T . Hence, the bundle J1E → E turns out
to be affine and associated with the vector bundle T∗ ⊗ VE .

The velocity of a motion s : T ⊂ E is defined to be its 1-jet j1s : T → J1E .
A space time chart (xλ) induces a chart (xλ, xi0) on J1E .
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18 2 Galilei case

The time fibring yields naturally the contact map d : J1E → T∗ ⊗ TE and the com-
plementary contact map θ := 1−d◦dt : J1E → T ∗E⊗VE , with coordinate expressions
d = u0⊗ (∂0 +xi0 ∂i) and θ = (di−xi0 d0)⊗∂i . The fibred morphism d is injective. Indeed,
it makes J1E ⊂ T∗ ⊗ TE the fibred submanifold over E characterised by the constraint
ẋ0

0 = 1 . We have d y dt = 1 . For each motion s , we have d ◦ j1s = ds .

2.1.4 Contact splitting

The dt–vertical tangent space of spacetime and the dt–horizontal cotangent space of
spacetime are defined to be, respectively, the vector subbundles over E

VE := {X ∈ TE | X ∈ ker dt} and H∗E := {ω ∈ T ∗E | ω ∈ im dt} .

Moreover, we define the d–horizontal tangent space of spacetime and the d–vertical
cotangent space of spacetime, to be, respectively, the vector subbundles over J1E

HdE := {(e1, X) ∈ J1E ×
E
TE | X ∈ im d(e1)}

V ∗d E := {(e1, ω) ∈ J1E ×
E
T ∗E | ω ∈ ker d(e1)} .

We have the natural linear fibred splittings over J1E and the projections

J1E ×
E
TE = HdE ⊕ VE , J1E ×

E
T ∗E = H∗E ⊕ V ∗d E ,

d⊗ τ : J1E ×
E
TE → HdE , τ ⊗ d : J1E ×

E
T ∗E = H∗E ,

θ : J1E ×
E
TE → VE , θ∗ : J1E ×

E
T ∗E → V ∗d E .

2.1.5 Vertical bundle of the phase space

Let V0J1E ⊂ V J1E ⊂ TJ1E be the vertical tangent subbundle over E and the vertical
tangent subbundle over T , respectively. The affine structure of the phase space yields the
equality V0J1E = J1E×

E
(T∗⊗VE) , hence the natural map ν : J1E → T⊗(V ∗E⊗V0J1E) ,

with coordinate expression ν = u0 ⊗ ďi ⊗ ∂0
i .

2.1.6 Observers

An observer is defined to be a section o ∈ sec(E, J1E) .
Each observer yields the scaled vector field d[o] := d ◦ o ∈ sec(E, T∗ ⊗ TE) and

the tangent valued 1–form ν[o] ≡ θ[o] := θ ◦ o ∈ sec(E, T ∗E ⊗ TE) , with coordinate
expressions d[o] = u0 ⊗ (∂0 + oi0 ∂i) and θ[o] = (di − oi0 d0)⊗ ∂i , where oi0 := xi0 ◦ o . Each
of the above objects characterises o . Thus, an observer can be regarded as the velocity
of a continuum.

A spacetime chart (xλ) is said to be adapted to o if oi0 = 0 , i.e. if the spacelike functions
xi are constant along the integral motions of o . Actually, infinitely many spacetime charts
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2.1 Classical setting 19

are adapted to an observer o ; the transition maps of two such charts (xλ) and (x́λ) are
of the type ∂0x́

i = 0 . Conversely, each spacetime chart (x0, xi) is adapted to the unique
observer o determined by the equality d[o] = u0 ⊗ ∂0 .

Each observer o yields the affine fibred isomorphism ∇[o] := id−o : J1E → T∗⊗ VE
and the linear fibred projection ν[o] : TE → VE , with coordinate expressions ∇[o] =
(xi0 − oi0)u0 ⊗ ∂i and ν[o] = (di − oi0 d0)⊗ ∂i .

For each observer o , we define the kinetic energy and the kinetic momentum as
K[o] = 1

2
G (∇[o],∇[o]) ∈ fib(J1E, T

∗E) and Q[o] = ν[o] y
(
G[(∇[o])

)
∈ fib(J1E, T

∗E) .

In an adpeted chart, we have K[o] = 1
2
G0
ij x

i
0 x

j
0 d

0 and Q[o] = G0
ij x

j
0 d

j .
We define the kinetic Poincaré–Cartan form Θ[o] := −K[o] + Q[o] ∈ fib(J1E, T

∗E)
and obtain K[o] = −d[o] y Θ[o] and Q[o] = θ[o] y Θ[o] .

For each motion s and observer o , we define the observed velocity to be the map
~v := ∇[o] ◦ j1s = ν[o] ◦ ds : T → T∗ ⊗ VE . Then, we can write j1s = o ◦ s + ~v and
d ◦ j1s = d[o] + ~v .

2.1.7 Gravitational and electromagnetic fields

We assume spacetime to be equipped with a given torsion free linear spacetime con-
nection, called gravitational field , K\ : TE → T ∗E ⊗ TTE , which fulfills the identities
∇\dt = 0 , ∇\g = 0 , R\

λiµj = R\
µjλi . The coordinate expression of K\ is

K\
λ

0
µ = 0

K\
0
i
0 = −Gij

0 Φ\
0j

K\
h
i
0 = K\

0
i
h = −1

2
Gij

0 (∂0G
0
hj + Φ\

hj)

K\
h
i
k = K\

k
i
h = −1

2
Gij

0 (∂hG
0
jk + ∂kG

0
jh − ∂jG0

hk) ,

where we have set K\
λ
ν
µ := −(∇\

λ∂µ)ν , and where Φ\ = Φ[K\, o] = Φ\
λµ d

λ ∧ dµ is a
closed spacetime form, which depends on the spacetime chart, through the associated
observer o .

We assume spacetime to be equipped with a given electromagnetic field , which is a
closed scaled 2–form F : E → (L1/2 ⊗M1/2)⊗Λ2T ∗E . With reference to a particle with
mass m and charge q , we obtain the unscaled 2–form q

~ F : E → Λ2T ∗E .
We define the magnetic field and the observed electric field to be the scaled vector

fields

~B := 1
2
i(F̌ ) η̄ : E → (L−5/2 ⊗M1/2)⊗ VE

~E[o] := −ḡ y(i(o) yF ) : E → (T−1 ⊗ L−3/2 ⊗M1/2)⊗ VE ,

where F̌ : E → L1/2 ⊗M1/2 ⊗ Λ2V ∗E is the spacelike restriction of the electromagnetic
field. We have the coordinate expressions

~B = 1
2

1√
|g|

εhki Fhk ∂i and ~E[o] = −gij F0j u
0 ⊗ ∂i .
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20 2 Galilei case

Then, we obtain the observed splitting F = −2 dt ∧ g[( ~E[o]) + 2 ν∗[o]
(
i( ~B) η

)
.

The closure of F yields the Galilei version of the 1st two Maxwell equations

curlη ~E[o] + L(o) ~B + ~B divη o = 0 and divη ~B = 0 .

In the case of a “flat spacetime” and of an “inertial observer”, the above equations
reduce to the standard equations curlη ~E[o] + ∂0

~B = 0 and divη ~B = 0 .
The fact that the metric g is spacelike does not allow us to write, in the Galilei

framework, the 2nd two Maxwell equations, which are related to the source charges. Only
a reduced version of these equations can be written in covariant way in this framework.
On the other hand, we consider the electromagnetic field as given, hence, in the present
scheme, we are not essentially involved with its source.

The electromagnetic field can be merged into the gravitational connection in a covari-
ant way, so that we obtain the joined connection

K := K\ +Ke = K\ − q
2m

(dt⊗ F̂ + F̂ ⊗ dt) , with F̂ = g]2(F ) ,

which fulfills the same identities of the gravitational connection.
Thus, from now on, we shall refer to this joined connection, which incoroporates both

the gravitational and the electromagnetic fields.

2.1.8 Induced objects on the phase space

We have a natural bijective map χ between time preserving linear spacetime connec-
tions K and affine phase connections Γ : J1E → T ∗E⊗TJ1E , with coordinate expression
Γ = dλ ⊗ (∂λ + Γλ

i
0 ∂

0
i ) , where Γλ

i
0 = Γλ

i
0

0
0 + Γλ

i
0

0
j x

j
0 . In coordinates, the map χ reads as

Γλ
i
0

0
µ = Kλ

i
µ .

Then, the joined spacetime connection K yields a torsion free affine connection, called
joined phase connection, Γ := χ(K) : J1E → T ∗E ⊗ TJ1E , which splits as Γ = Γ\ + Γe ,

where Γe = − q
2m
g]2
(
F + 2dt∧ (d yF )

)
: J1E → T∗ ⊗ (T ∗E ⊗ VE) and Γ\ = χ(K\) . We

have Γe = − q
2~ G

ih
0

(
Fjh d

j + (Fjh x
j
0 + 2F0h) d

0
)
⊗ ∂0

i .
The joined phase connection Γ yields the 2nd order connection, called joined dynamical

phase connection, γ := d y Γ : J1E → T∗ ⊗ TJ1E , with coordinate expression γ =
u0 ⊗ (∂0 + xi0 ∂i + γ0

i
0 ∂

0
i ) , where γ0

i
0 = Kλ

i
µ δ̆

λ
0 δ̆

µ
0 , where δ̆α0 := δα0 + δαh x

h
0 . Moreover, γ

splits as γ = γ\ + γe , where γ\ = d y Γ\ and γe = − q
m

d y F̂ : J1E → (T∗ ⊗ T∗)⊗ VE .
Indeed, γe turns out to be just the Lorentz force, whose observed expression is γe =

− q
m

( ~E[o] +∇[o] × ~B) and in coordinates γe = − q0
m

(F0
i + Fh

i xh0)u0 ⊗ u0 ⊗ ∂i .
Next, let us consider the vertical projection ν[Γ] : J1E → T∗ ⊗ (T ∗J1E ⊗ VE)

associated with Γ , whose coordinate expression is ν[Γ] = (di0 − Γλ
i
0 d

λ)u0 ⊗ ∂i .
The joined phase connection Γ and the rescaled spacelike metric G yield the 2–form,

called joined phase 2–form, Ω := G y
(
ν[Γ] ∧ θ

)
: J1E → Λ2T ∗J1E , with coordinate

expression Ω = G0
ij (di0−Γλ

i
0 d

λ)∧ (dj − xj0 d0) . Moreover, Ω splits as Ω = Ω\ + Ωe , where

Ω\ = G y
(
ν[Γ\] ∧ θ

)
and Ωe = q

2~ F .
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2.1 Classical setting 21

The joined phase 2–form Ω is cosymplectic, i.e. dΩ = 0 and dt ∧ Ω ∧ Ω ∧ Ω 6≡ 0 .
Moreover, Ω admits potentials, called horizontal , of the type A↑ ∈ fib(J1E, T

∗E) ,
which are defined up to a gauge of the type α ∈ sec(E, T ∗E) . Indeed, for each observer
o , we have A↑ = Θ[o] + A[o] , where A[o] = o∗A↑ .

We define the Lagrangian and the momentum associated with a horizontal potential
A↑ to be the horizontal 1–forms L := d yA↑ and P := θ yA↑ , with coordinate expressions
L = (1

2
G0
ij x

i
0 x

j
0 + Ai x

i
0 + A0) d0 and P = (G0

ij x
j
0 + Ai)θ

i .
Each observer o yields the closed spacetime 2–form Φ[o] = Φ[Γ, G, o] := 2 o∗Ω and,

for each potential A↑ , the spacetime 1-form A[o] = A[Γ, G, o] := o∗A↑ . Clearly, we have
Φ[o] = 2 dA[o] . Moreover, we have Φ[Γ, G, o] = Φ[K, o] .

The joined phase connection Γ and the rescaled spacelike metric G yield the vertical 2–
vector, called joined phase 2–vector , Λ := Ḡ y(Γ∧ ν) : J1E → Λ2V J1E , with coordinate

expression Λ = Gij
0

(
∂i + Γi

h
0 ∂

0
h

)
∧ ∂0

j . Moreover, Λ splits as Λ = Λ\ + Λe , where Λ\ =

Ḡ y(Γ\ ∧ ν) and Λe = q
2~ G

](F ) : J1E → (T∗ ⊗ T∗) ⊗ Λ2VE . We have the coordinate

expression Λe = q
2~ G

ih
0 Gjk

0 Fhk ∂
0
i ∧ ∂0

j .
From now on, we shall refer to the joined objects Γ, γ, Ω, Λ.
Summing up, we have the following identities

i(γ) dt = 1 , i(γ) Ω = 0 , γ = d y Γ , Ω = G y
(
ν[Γ] ∧ θ

)
, Λ = Ḡ y(Γ ∧ ν) .

2.1.9 Hamiltonian lift of phase functions

Given a time scale σ ∈ map(J1E, T̄) , we define the σ–Hamiltonian lift to be the map

X↑ham [σ] : map(J1E, IR)→ sec(J1E, TJ1E) : f 7→ X↑ham [σ, f ] := γ(σ) + i(df)Λ ,

with X↑ham [σ, f ] = σ0 (∂0 + xi0 ∂i + γ0
i
0 ∂

0
i )−G

ij
0 ∂

0
j f ∂i +

(
Gij

0 ∂jf + (Γi0
j
0 − Γj0

i
0) ∂0

j f
)
∂0
i ,

where Γi0
j
0 := Gih

0 Γh
j
0 .

Indeed, for each f ∈ map(J1E, IR), we obtain the distinguished time scale

σ[f ] := 1
3
Ḡ yD2f ≡ f 0 u0 = 1

3
Gij

0 (∂0
i ∂

0
j f)u0 ∈ map(J1E, T̄) .

2.1.10 Poisson bracket of phase functions

We define the Poisson bracket of map(J1E, IR) as {f, g} := i(df ∧ dg) Λ .
Its coordinate expression is {f, g} = Gij

0 (∂if ∂
0
j g − ∂ig ∂0

j f)− (Γi0
j
0 − Γj0

i
0) ∂0

i f ∂
0
j g .

The Poisson bracket makes map(J1E, IR) a sheaf of (map(T , IR))–Lie algebras.

2.1.11 The sheaf of special phase functions

An f ∈ map(J1E, IR) is said to be a special phase function if D2f = f ′′ ⊗ G , with
f ′′ ∈ map(E, T̄) . If f is a special phase function, then we obtain σ[f ] = f ′′ ∈ map(E, T̄) .

The special phase functions constitute a (map(E, IR))–linear subsheaf spec(J1E, IR) ⊂
map(J1E, IR) .
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22 2 Galilei case

Let us consider an f ∈ map(J1E, IR) , an observer o and a spacetime chart.
Then, f ∈ spec(J1E, IR) if and only if f = f ′′ yK[o] + f ′[o] y(Q[o]) + f [o] , where

f ′[o] := G](Df) ◦ o ∈ sec(E, T∗ ⊗ VE) and f [o] := f ◦ o ∈ map(E, IR) .
Moreover, f ∈ spec(J1E, IR) if and only if f = f 0 1

2
G0
ij x

i
0 x

j
0 + f iG0

ij x
j
0 + f̆ , with

f 0, f i, f̆ ∈ map(E, IR) .
Hence, with reference to a chart adapted to o , we obtain f ′[o] = f i ∂i and f [o] = f̆ .
If f ∈ spec(J1E, IR) and o, ó = o + v ∈ sec(E, J1E) , then we obtain the transition

formulas f ′[ó] = f ′[o] + f ′′ y v and f [ó] = f [o] + f ′[o] yG[(v) + 1
2
f ′′ yG (v, v) .

For each f ∈ spec(J1E, IR) , the map f ′′ yd − G](Df) ∈ fib(J1E, TE) factorises
through a spacetime vector field, X[f ] ∈ sec(E, TE) , called the tangent lift of f , whose
coordinate expression is X[f ] = f 0 ∂0 − f i ∂i .

For each f ∈ spec(J1E, IR) and o ∈ sec(E, J1E) , we obtain f = −X[f ] y Θ[o] + f [o] .

2.1 Proposition. For each observer o , we have the mutually inverse (map(E, IR))–
linear isomorphisms

s[o] : spec(J1E, IR)→ sec(E, TE)×map(E, IR) : f 7→
(
X[f ], f ◦ o

)
.

r[o] : sec(E, TE)×map(E, IR)→ spec(J1E, IR) : (X, f̆) 7→ X y Θ[o] + f̆ .

Their coordinate expressions are

s[o] : f 0 1
2
G0
ij x

i
0 x

j
0 + f iG0

ij x
j
0 + f̆ 7→

(
(f 0 ∂0 − f i ∂i) , f̆

)
r[o] : (Xλ ∂λ, Y̆ ) 7→ X0 1

2
G0
ij x

i
0 x

j
0 −X iG0

ij x
j
0 + Y̆ .

We can characterise the special phase functions via the Hamiltonian lift, as follows.

2.2 Proposition. Let σ ∈ map(J1E, T̄) and f ∈ map(J1E, IR) . Then, the following
conditions are equivalent:

1) X↑ham [σ, f ] ∈ sec(J1E, TJ1E) projects on a vector field X ∈ sec(E, TE) ,
2) f ∈ spec(J1E, IR) and σ = f ′′.
Moreover, if the above conditions are fulfilled, then we obtain X = X[f ] .

Proof. X↑ham [σ, f ] = σ0 γ0−Gij0 ∂0
j f ∂i+

(
Gij0 ∂jf+(Γi0

j
0−Γj0

i
0) ∂0

j f
)
∂0
i is projectable if and only if

σ0 γ0−Gij0 ∂0
j f ∂i is projectable, i.e., if and only if ∂0

hσ
0 = 0 and σ0 ∂0

hx
i
0−G

ij
0 ∂00

hjf = 0 , i.e. if and only if
∂0
hσ

0 = 0 and G0
ik σ

0 δih− δ
j
k ∂

00
hjf = 0 , i.e. if and only if ∂0

hσ
0 = 0 and ∂00

hkf = G0
hk σ

0 , i.e., by integration
on the affine fibres of J1E → E , if and only if f = σ0 1

2 G
0
ij x

i
0 x

j
0 + f iG0

ij x
j
0 + f̆ , with f̆ ∈ map(E, IR) .

Moreover, if f ∈ spec(J1E, IR) , then X = σ0 ∂0 + (σ0 xi0 −G
ij
0 ∂0

j f) ∂i = σ0 ∂0 − f i ∂i .QED

2.3 Example. Let us consider a potential A↑ of Ω , an observer o and an adapted
chart. Then, we define the observed Hamiltonian, the observed momentum and the square
of the observed momentum to be, respectively,H[o] := −d[o] yA↑ ∈ sec(E, T ∗E) , P [o] :=
ν[o] yA↑ ∈ sec(E, T ∗E) and C[o] := Ḡ yP [o] ⊗ P [o] ∈ sec(E, T ∗E) with H[o] =
(1

2
G0
ij x

i
0 x

j
0 − A0) d0 , P [o] = (G0

ij x
j
0 + Ai) d

i and C[o] = Gij
0 x

i
0 x

j
0 + 2Ai0G

0
ij x

j
0 + Ai0Ai ,

where Ai0 := Gij
0 Aj .
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2.2 Quantum setting 23

Indeed, xλ ,H0 ,Pi, C0 ∈ spec(J1E, IR) . Moreover, we have X[xλ] = 0 , X[H0] = ∂0 ,
X[Pi] = −∂i , X[C0] = 2 (∂0 − Ai0 ∂i) .

2.1.12 The special bracket

We define the special bracket of spec(J1E, IR) by [[ f, g ]] := {f, g}+γ(f ′′).g−γ(g′′).f .

2.4 Theorem. The sheaf spec(J1E, IR) is closed with respect to the special bracket.
For each f1, f2 ∈ spec(J1E, IR) and for each observer o , we obtain

[[ f1, f2 ]] = −
[
X[f1], X[f2]

]
y Θ[o] +

[
(X[f1], f̆ 1) , (X[f2], f̆ 2)

]
Φ[o]

,

i.e. in coordinates

[[ f, g ]] λ = f 0 ∂0g
λ − g0 ∂0f

λ − fh ∂hgλ + gh ∂hf
λ

˘[[ f, g ]] = f 0 ∂0ğ − g0 ∂0f̆ − fh ∂hğ + gh ∂hf̆ − (f 0 gh − g0 fh) Φ0h + fh gk Φhk .

Thus, X
[

[[ f1, f2 ]]
]

=
[
X[f1], X[f2]

]
and [[ f1, f2 ]] [o] =

[
(X[f1], f̆ 1) , (X[f2], f̆ 2)

]
Φ[o]

.

Indeed, the special bracket makes spec(J1E, IR) a sheaf of IR–Lie algebras and the
tangent prolongation is a morphism of IR–Lie algebras.

2.5 Corollary. The map s[o] : spec(J1E, IR)→ sec(E, TE)×map(E, IR) turns out
to be an isomorphism of Lie algebras, with respect to the brackets [[ , ]] and [ , ]Φ[o] .

For instance, we have [[xλ, xµ ]] = 0 , [[ xλ,H0 ]] = −δλ0 , [[ xλ,Pi ]] = δλi , [[ xλ, C0 ]] =
−2 δλ0 + 2Ah0 δ

λ
h , [[H0,Pi ]] = 0 , [[Pi,Pj ]] = 0 , [[H0, C0 ]] = (∂0G

hk
0 )PhPk + 2 ∂0L0 ,

[[Pi, C0 ]] = −∂iGhk
0 PhPk − 2 ∂iL0 .

2.2 Quantum setting

Let us consider a quantum bundle π : Q→ E over the Galilei spacetime.
We define the phase quantum bundle as π↑ : Q↑ := J1E ×

E
Q→ J1E .

Let {Q[o]} be a “system” of connections of the quantum bundle parametrised by the
observers o ∈ sec(E, J1E) . Then, there is a unique connection Q↑ of the phase quantum
bundle, called universal , such that Q[o] = o∗Q↑, for each o . The universal connection
fulfills the property X↑ yQ↑ = X↑ , for each X↑ ∈ sec(J1E, V J1E) . Conversely, each con-
nection Q↑ of Q↑ of the above type yields a system of connections of the quantum bundle,
whose universal connection is Q↑ . Indeed, the curvatures of the universal connection and
of the connections of the associated system fulfill the property o∗R[Q↑] = R[Q[o]] .

Moreover, the universal connection is Hermitian if and only if the connections of the
associated system are Hermitian.

Let us suppose that the cohomolgy class of Ω be integer.
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24 2 Galilei case

Then, we assume a connection Q↑ : Q↑ → T ∗J1E ⊗ TQ↑ , called phase quantum
connection, which is Hermitian, universal and whose curvature is given by the equality
R[Q↑] = −2 i Ω⊗ I↑ . The existence of such a universal connection and the fact that Ω ad-
mits horizontal potentials are strictly related. Moreover, the closure of Ω is an integrability
condition for the above equation.

With reference to a quantum basis b and to an observer o , the expression of Q↑ is of
the type Q↑ = χ↑[b] + i

(
Θ[o] +A[b, o]

)
⊗ I↑ , where A[b, o] is a potential of Φ[o] selected

by Q↑ and b . Hence, the coordinate expression of Q↑ , in a chart adapted to b and o , is
Q↑ = dλ ⊗ ∂λ + di0 ⊗ ∂0

i + i
(
(−1

2
G0
ij x

i
0 x

j
0 + A0) d0 + (G0

ij x
j
0 + Ai) d

i
)
⊗ I↑ .

For each observer o , we obtain R
[
Q[o]

]
= −i Φ[o]⊗ I .

For each observer o , the expression of Q[o] , with reference to a quantum basis b , is
Q[o] = χ[b]+iA[b, o]⊗I . Hence, in a chart adapted to b and o ,Q[o] = dλ⊗∂λ+iAλ d

λ⊗I .
If b is a quantum basis and o, ó = o+v are two observers, then we obtain the transition

law A[b, ó] = A[b, o]− 1
2
G(v, v) + ν[o] yG[(v) .

2.3 Classification of Hermitian vector fields

Eventually, we apply to the Galilei framework the classification of Hermitian vector
fields achieved in Theorem 1.7. For this purpose, we choose any observed quantum con-
nection Q[o] as auxiliary connection c , use the observed representation s of special phase
functions achieved in Proposition 2.1 and show an identity.

2.6 Lemma. If f ∈ spec(J1E, IR) and o, ó are two observers, then we have the
identity Q[ó] (X[f ]) + i f [ó] I = Q[o] (X[f ]) + i f [o] I .

2.7 Theorem. For each observer o ∈ sec(E, J1E) , we have the mutually inverse Lie
algebra isomorphisms, with respect to special bracket and the Lie bracket of vector fields,

F := j
[
Q[o]

]
◦ s[o] : spec(J1E, IR)→ her (Q, TQ) ,

H := r[o] ◦ h
[
Q[o]

]
: her (Q, TQ) → spec(J1E, IR) ,

given by F(f) = Q[o](X[f ]) + i f [o] I and H(Y ) = −Tπ(Y ) y Θ[o]− i tr
(
ν
[
Q[o]

]
(Y )

)
.

We have the coordinate expressions

F(f 0 1
2
G0
ij x

i
0 x

j
0 + f iG0

ij x
j
0 + f̆) = f 0 ∂0 − f i ∂i + i (f 0A0 − f iAi + f̆)⊗ I ,

H(Xλ ∂λ + i Y̆ I) = X0 1
2
G0
ij x

i
0 x

j
0 −X iG0

ij x
j
0 + Y̆ .

Indeed, the above maps turns out to be independent on the choice of the observer o .

Proof. The fact that the map F is a Lie algebra isomorphism follows immediately from Theorem
1.7 and Theorem 2.4.

The independence of the above maps on the choice of the observer follows from Lemma 2.6. QED
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2.3 Classification of Hermitian vector fields 25

For instance, we have F(xλ) = ixλ I , F(H0[o]) = ∂0 , F(Pi[o]) = −∂i and F(C0[o]) =
2 ∂0 − 2Ai0 ∂i + i (2A0 − Ai0Ai) I .

These vector fields yield “quantum operators” after introducing the “sectional quan-
tum bundle” and the Schrödinger operator (see, for instance, [8, 20]), but this further
development is beyond the scope of the present paper.
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26 3 Einstein case

3 Einstein case

Next, we specify the setting of the first section, by considering the base manifold
E as an Eisntein spacetime equipped with a certain fundamental structure.

3.1 Classical setting

3.1.1 Spacetime and Lorentz metric

We assume spacetime to be an oriented and time oriented 4–dimensional manifold E
equipped with a scaled Lorentzian metric g : E → L2 ⊗ (T ∗E ⊗ T ∗E) with signature
(− + ++) . With reference to a mass m ∈ M , it is convenient to introduce the rescaled
metric G := m

~ g : E → T ⊗ (T ∗E ⊗ T ∗E) . The associated contravariant tensors are
ḡ : E → L−2 ⊗ (TE ⊗ TE) and Ḡ = ~

m
ḡ : E → T∗ ⊗ (TE ⊗ TE) .

We shall refer to a spacetime chart (xλ) ≡ (x0, xi) adapted to the spacetime orienta-
tion and such that the vector ∂0 is timelike and time oriented and the vectors ∂1, ∂2, ∂3 are
spacelike. Greek indices will span all spacetime coordinates and Latin indices will span
the spacelike coordinates. We shall also refer to a time unit u0 ∈ T and its dual u0 ∈ T∗ .

We have the coordinate expressions g = gλµ d
λ ⊗ dµ and G = G0

λµ u0 ⊗ dλ ⊗ dµ , with
gλµ ∈ map(E, L2 ⊗ IR) and G0

λµ ∈ map(E, IR) .

A motion is defined to be a 1–dimensional timelike submanifold s : T ⊂ E .
Let us consider a motion s : T ⊂ E . Moreover, let us consider a spacetime chart (xλ)

and the induced chart (x̆0) ∈ map(T , IR) . Let us set ∂0s
λ := dsλ

dx̆0 . For every arbitrary
choice of a “proper time origin” t0 ∈ T , we obtain the “proper time scaled function”
given by the equality σ : T → T̄ : t 7→ 1

c

∫
[t0,t]
‖ ds
dx̆0 ‖ dx̆0 . This map yields, at least locally,

a bijection T → T̄ , hence a (local) affine structure of T associated with the vector space
T̄ . Indeed, this (local) affine structure does not depend on the choice of the proper time
origin and of the spacetime chart.

Let us choose a time origin t0 ∈ T and consider the associated proper time scaled
function σ : T → T̄ and the induced linear isomorphism TT → T × T̄ .

The 1st differential of the motion s is the map ds := ds
dσ

: T → T∗ ⊗ TE .
We have g(ds, ds) = −c2 and the coordinate expression

ds =
dsλ

dσ
(∂λ◦s) =

c0 u
0 ⊗

(
(∂0◦s) + ∂0s

i (∂i◦s)
)

√
|(g00◦s) + 2 (g0j◦s) ∂0sj + (gij◦s) ∂0si ∂0sj|

.

3.1.2 Jets of submanifolds

In view of the definition of the phase space, let us consider a manifold M of dimension
n and recall a few basic facts concerning jets of submanifolds.

Let k ≥ 0 be an integer. A k–jet of 1–dimensional submanifolds of M at x ∈ M is
defined to be an equivalence class of 1–dimensional submanifolds touching each other at
x with a contact of order k . The k–jet of a 1-dimensional submanifold s : N ⊂ M at
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3.1 Classical setting 27

x ∈ N is denoted by jks(x) . The set of all k–jets of all 1-dimensional submanifolds at
x ∈M is denoted by Jk x(M , 1) . The set Jk(M , 1) :=

⊔
x∈M Jk x(M , 1) is said to be the

k–jet space of 1–dimensional submanifolds of M .
For each 1–dimensional submanifold s : N ⊂M and each integer k ≥ 0 , we have the

map jks : N → Jk(M , 1) : x 7→ jks(x) .
In particular, for k = 0 and for each 1 dimensional submanifold s : N ⊂M , we have

the natural identification J0(M , 1) = M , given by j0s(x) = x .
For each integers k ≥ h ≥ 0 , we have the natural projection πkh : Jk(M , 1) →

Jh(M , 1) : jks(x) 7→ jhs(x) .
A chart of M is said to be divided if the set of its coordinate functions is divided

into two subsets of 1 and n− 1 elements. Our typical notation for a divided chart will be
(x0, xi) , with 1 ≤ i ≤ n−1 . A divided chart and a 1–dimensional submanifold s : N ⊂M
are said to be related if the map x̆0 := x0|N ∈ map(N , IR) is a chart of N . In such a case,
the submanifold N is locally characterised by si◦(x̆0)−1 := (xi◦s)◦(x̆0)−1 ∈ map(IR, IR) .
In particular, if the divided chart is adapted to the submanifold, then the chart and the
submanifold are related.

Let us consider a divided chart (x0, xi) of M .
Then, for each submanifold s : N ⊂ M which is related to this chart, the chart

yields naturally the local fibred chart (x0, xi; xiα)1≤|α|≤k ∈ map(Jk(M , 1), IRn × IRk(n−1))
of Jk(M , 1) , where α := (h) is a multi–index of “range” 1 and “length” |α| = h and the
functions xiα are defined by xiα ◦ j1N := ∂0...0 s

i , with 1 ≤ |α| ≤ k .
We can prove the following facts:
1) the above charts (x0, xi; xiα) yield a smooth structure of Jk(M , 1) ;
2) for each 1 dimensional submanifold s : N ⊂ M and for each integer k ≥ 0 , the

subset jks(N ) ⊂ Jk(M , 1) turns out to be a smooth 1–dimensional submanifold;
3) for each integers k ≥ h ≥ 1 , the maps πkh : Jk(M , 1) → Jh(M , 1) turn out to be

smooth bundles.
We shall always refer to such diveded charts (x0, xi) of M and to the induced fibred

charts (x0, xi; xiα) of Jk(M , 1) .
Let m1 ∈ J1(M , 1) , with m0 = π1

0(m1) ∈M . Then, the tangent spaces at m0 of all 1–
dimensional submanifolds N , such that j1s(m0) = m1 , coincide. Accordingly, we denote
by T [m1] ⊂ Tm0M the tangent space at m0 of the above 1–dimensional submanifolds
N generating m1 . We have the natural fibred isomorphism J1(M , 1) → Grass(M , 1) :
m1 7→ T [m1] ⊂ Tm0M over M of the 1st jet bundle with the Grassmannian bundle of
dimension 1. If s : N ⊂M is a submanifold, then we obtain T [j1s] = span〈∂0 + ∂0s

i , ∂i〉 ,
with reference to a related chart.

3.1.3 Phase space

We assume as phase space the subspace of all 1st jets of motions J1E ⊂ J1(E, 1) .
For each 1–dimensional submanifold s : T ⊂ E and for each x ∈ T , we have j1s(x) ∈

J1E if and only if T [j1s(x)] = TxT is timelike. The velocity of a motion s : T ⊂ E is
defined to be its 1-jet j1s : T → J1(E, 1) .
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28 3 Einstein case

Any spacetime chart (x0, xi) is related to each motion s : T → E . Hence, the fibred
chart (x0, xi, xi0) is defined on tubelike open subsets of J1E . We shall always refer to the
above fibred charts.

We define the contact map to be the unique fibred morphism d : J1E → T∗ ⊗ TE
over E such that d ◦ j1s = ds , for each motion s . We have the coordinate expression

d = c0 α
0 u0 ⊗ (∂0 + xi0 ∂i) , where α0 := 1/

√
|g00 + 2 g0j x

j
0 + gij xi0 x

j
0| .

The fibred morphism d is injective. Indeed, it makes J1E ⊂ T∗ ⊗ TE the fibred
submanifold over E characterised by the constraint gλµ ẋ

λ
0 ẋ

µ
0 = −(c0)2 .

It is convenient to set b0 := ∂0 + xi0 ∂i and ğ0λ := g(b0, ∂λ) = g0λ + giλ x
i
0 . Then, we

obtain (α0)2 (ğ00 + ğ0i x
i
0) = −1 .

We define the time form as the fibred morphism τ := − 1
c2
g[(d) : J1E → T ⊗ T ∗E ,

with coordinate expression τ = τλ d
λ , where τλ = −α0

c0
ğ0λ u0 . We have τ(d) = 1 and

g (d,d) = −c2 .
We define the complementary contact map as θ := 1− d⊗ τ : J1E ×

E
TE → TE . We

have the coordinate expressions θ = dλ ⊗ ∂λ + (α0)2 ğ0λ d
λ ⊗ (∂0 + xj0 ∂j) .

For each motion s , we have (τ ◦ j1s)(ds) = 1 .
With reference to a particle of mass m, we define the unscaled 1–form Θ := −mc2

~ τ ,

with coordinate expression Θ = α0 c0 Ğ
0
0λ d

λ .

3.1.4 Contact splitting

We define the d–horizontal tangent space of spacetime, the τ–vertical tangent space
of spacetime, the τ–horizontal cotangent space of spacetime and the d–vertical cotangent
space of spacetime to be, respectively, the vector subbundles over J1E

HdE := {(e1, X) ∈ J1E ×
E
TE | X ∈ T [e1]} ⊂ J1E ×

E
TE

VτE := {(e1, X) ∈ J1E ×
E
TE | X ∈ T [e1]⊥} ⊂ J1E ×

E
TE

H∗τE := {(e1, ω) ∈ J1E ×
E
T ∗E | 〈ω , T [e1]⊥〉 = 0} ⊂ J1E ×

E
T ∗E

V ∗d E := {(e1, ω) ∈ J1E ×
E
T ∗E | 〈ω , T [e1]〉 = 0} ⊂ J1E ×

E
T ∗E .

We have the natural orthogonal linear fibred splittings over J1E and the projections

J1E ×
E
TE = HdE ⊕ VτE , J1E ×

E
T ∗E = H∗τE ⊕ V ∗d E ,

d⊗ τ : J1E ×
E
TE → HdE , τ ⊗ d : J1E ×

E
T ∗E = H∗τE ,

θ : J1E ×
E
TE → VτE , θ∗ : J1E ×

E
T ∗E → V ∗d E .

We have the mutually dual local bases (b0, bi) and (β0, βi) adapted to the above
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splittings, where

b0 := ∂0 + xi0 ∂i ∈ fib(J1E, HdE) , bi := ∂i − c α0 τi b0 ∈ fib(J1E, VτE) ,

β0 := d0 + c α0 τi β
i ∈ fib(J1E, H

∗
τE) , βi := di − xi0 d0 ∈ fib(J1E, V

∗
d E) .

The restriction of g to HdE and VτE and the restriction of ḡ to H∗τE and V ∗d E yield,
respectively, the scaled metrics

g‖ : J1E → L2 ⊗ (H∗τE ⊗H∗τE) and g⊥ : J1E → L2 ⊗ (V ∗d E ⊗ V ∗d E)

g‖ : J1E → L−2 ⊗ (HdE ⊗HdE) and g⊥ : J1E → L−2 ⊗ (VτE ⊗ VτE) ,

with coordinate expressions in an adapted basis

g‖00 := g (b0, b0) = − 1

(α0)2

g‖00 := ḡ (β0, β0) = −(α0)2

g⊥ij := g(bi, bj) = gij + c2 τi τj

g⊥ij := ḡ(βi, βj) = gij − gi0 xj0 − gj0 xi0 + g00 xi0 x
j
0 .

It is convenient to set

δ̆λ0 := δλ0 + δλi x
i
0 , δ̆iλ := δiλ − δ0

λ x
i
0 ,

ğ0λ := g (b0, ∂λ) = g0λ + giλ x
i
0 , ğ0λ := ḡ (β0, dλ) = −(α0)2 δ̆λ0 ,

ğiλ := g(bi, ∂λ) = giλ + c2 τi τλ , ğiλ := ḡ(βi, dλ) = giλ − g0λ xi0 .

Then, we obtain the following useful technical identities

ğ0λ d
λ = g‖00 β

0 , ğ0λ ∂λ = g‖00 b0 , ğiλ d
λ = g⊥ij β

j , ğiλ ∂λ = g⊥ij bj ,

(ğij)
−1 = (g⊥ij) = (ğij − ği0 xj0) , g⊥jh ğ0h =

1

(α0)2
ğj0 ,

ğλν ğ
µν = δµλ , ğνλ ğ

νµ = δµλ , ğ0λ ğ
0µ = −c2 τλ τ

µ , ğiλ ğ
iµ = δµλ + c2 τλ τ

µ ,

ğ0i ğ
iλ =

1

(α0)2
g0λ + δ̆λ0 , ği0 + ğij x

j
0 = 0 .

and

∂0
jα

0 = (α0)3 ğ0j , ∂0
j

1

α0
= −α0 ğ0j , ∂00

ij

1

α0
= −α0 ğij ,

∂0
i τµ = −α

0

c
ğiµ , ∂λα

0 = 1
2

(α0)3 (∂λg00 + 2 ∂λg0h x
h
0 + ∂λghk x

h
0 x

k
0) .

HermVec-2006-03-28.tex; [output 2009-04-17; 11:58]; p.29



30 3 Einstein case

3.1.5 Vertical bundle of the phase space

Let V0J1E ⊂ TJ1E be the vertical tangent subbundle over E . The vertical pro-
longation of the contact map yields the mutually inverse linear fibred isomorphisms
ντ : J1E → T ⊗ V ∗τ E ⊗ V0J1E and ν−1

τ : J1E → V ∗0 J1E ⊗ T ⊗ VτE , with coordinate
expressions ντ = 1

c0 α0 u0 ⊗ βi ⊗ ∂0
i and ν−1

τ = c0 α
0 u0 ⊗ di0 ⊗ bi .

3.1.6 Observers

An observer is defined to be a section o ∈ sec(E, J1E) . Thus, an observer can be
regarded as the velocity of a continuum.

Each observer yields the scaled vector field d[o] := d ◦ o ∈ sec(E, T∗ ⊗ TE) , the
scaled 1–form τ [o] := τ ◦ o ∈ sec(E, T⊗ T ∗E) and the tangent valued 1–form θ[o] := θ ◦
o ∈ sec(E, T ∗E ⊗ TE) , with coordinate expressions d[o] = c0 α

0[o]u0 ⊗ (∂0 + oi0 ∂i) ,
τ [o] = − 1

c0
α0[o] (g0λ+giλ o

i
0)u0⊗dλ and θ[o] = dλ⊗∂λ−α0[o] (g0λ+giλ o

i
0) dλ⊗(∂0+oi0 ∂i) ,

where oi0 := xi0 ◦ o and α0[o] = 1/
√
|g00 + 2 g0j o

j
0 + gij oi0 o

j
0| . Each of the above objects

characterises o .
A spacetime chart (xλ) is said to be adapted to an observer o if oi0 = 0 , i.e. if the

spacelike functions xi are constant along the integral motions of o . Actually, infinitely
many spacetime charts are adapted to an observer o ; the transition maps of two such
charts (xλ) and (x́λ) are of the type ∂0x́

i = 0 . Conversely, each spacetime chart (x0, xi)
is adapted to the unique observer o determined by the equality d[o] := (c/‖∂0‖) ∂0 .

An observing frame is defined to be a pair (o, ζ) , where o is an observer and ζ ∈
sec(E,T ⊗ T ∗E) is timelike and positively time oriented. In particular, each observer o
determines the observing frame (o, τ [o]) . An observing frame is said to be integrable if
ζ is closed. In this case, there exists locally a scaled function t ∈ map(E, T̄) , called the
observed time function, such that ζ = dt .

A spacetime chart (xλ) is said to be adapted to an integrable observing frame (o, ζ) if
it is adapted to o and x0 = u0 y t . Actually, infinitely many spacetime charts are adapted
to an integrable observing frame (o, ζ) ; the transition maps of two such charts (xλ) and
(x́λ) are of the type ∂0x́

i = 0 , ∂0x́
0 ∈ IR+ . Conversely, each spacetime chart (x0, xi) is

adapted to the observing frames (o, ζ) such that d[o] := (c/‖∂0‖) ∂0 and ζ = u0⊗d0 (thus,
(o, ζ) is determined up to a constant positive factor for ζ).

With reference to an observing frame (o, ζ) , we define the d[o]–horizontal tangent
space of spacetime, the ζ–vertical tangent space of spacetime, the ζ–horizontal cotangent
space of spacetime and the d[o]–vertical cotangent space of spacetime to be, respectively,
the vector subbundles over E

Hd[o]E := {X ∈ TE | X = X0 d[o]0} ⊂ TE

VζE := {X ∈ TE | X y ζ = 0} ⊂ TE

H∗ζE := {ω ∈ T ∗E | ω = ω0 ζ
0} ⊂ T ∗E

V ∗d[o]E := {ω ∈ T ∗E | ω yd[o] = 0} ⊂ T ∗E .
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We have the natural linear fibred splittings over E and the projections

TE = Hd[o]E ⊕ VζE , T ∗E = H∗ζE ⊕ V ∗d[o]E ,

(1/ς) d[o]⊗ ζ : TE → Hd[o]E , (1/ς) ζ ⊗ d[o] : T ∗E = H∗ζE ,

θ[o, ζ] : TE → VζE , θ∗[o, ζ] : T ∗E → V ∗d [o]E ,

where ς := d[o] y ζ ∈ map(E, IR+) and θ[o, ζ] := 1− (1/ς) d[o]⊗ ζ .
With reference to an integrable observing frame and to an adapted chart (xλ) , the

coordinate expression of the above splittings are X = X0 ∂0 +X i ∂i and ω = ω0 d
0 +ωi d

i .

In the particular case when ζ = τ [o] , the above subspaces, splittings and projec-
tions turn out to be obtained from the corresponding contact subspaces, splittings and
projections, by pullback with respect to o .

For each observing frame (o, ζ) , the orientation of spacetime and the metric g yield
a scaled volume form η[o, ζ] : E → L3 ⊗ Λ3V ∗d[o] and the inverse scaled volume vector

η̄[o, ζ] : E → L−3 ⊗ Λ3Vζ .

For each observing frame (o, ζ) , by splitting Θ into the horizontal and vertical com-
ponents, we define the observed kinetic energy and kinetic momentum as K[o, ζ] =
−(1/ς) ζ(d[o] y Θ) ∈ fib(J1E, T

∗E) and Q[o, ζ] = θ[o, ζ] y Θ ∈ fib(J1E, T
∗E) . Thus,

we have Θ = −K[o, ζ] +Q[o, ζ] ∈ fib(J1E, T
∗E) . In the particular case when the observ-

ing frame is integrable, with reference to an adapted chart, we obtain K[o] = −c0 α
0 Ğ0

00 d
0

and Q[o] = c0 α
0 Ğ0

0i d
i .

Let us consider a motion s : T ⊂ E and an observer o and refer to an adapted chart.

We have the observed orthogonal splitting d[j1s] = δ
(
d[o]+~v

)
, where δ := d[j1s] y τ [o]

∈ map(T , IR+) and ~v := 1
δ

d[j1s] ◦ θ[o] ∈ map(T , T∗ ⊗ Vτ [o]E) . By setting β := ‖~v‖
c
∈

map(T , IR+) , we obtain δ = 1√
1−β2

> 1 , β =
√
δ2−1
δ

< 1 and

δ = − g00 + g0i ∂0s
i√

|g00|
√
|g00 + 2 g0j ∂0sj + gij ∂0si ∂0sj|

~v = −
c0

√
|g00| ∂0s

h

g00 + g0k ∂0sk
u0 ⊗

(
− g0h

g00

∂0 + ∂h
)

β =

√
(−g00 ghk + g0h g0k) ∂0sh ∂0sk

|g00 + g0i ∂0si|
.

3.1.7 Gravitational and electromagnetic fields

We assume the Levi–Civita connection K\ : TE → T ∗E ⊗ TTE induced by g
(or, equivalently, by G) as gravitational connection. The coordinate expression of K\

is K\
λ
ν
µ = −1

2
Gνρ

0 (∂λG
0
ρµ + ∂µG

0
ρλ + ∂ρG

0
λµ) , where we have set K\

λ
ν
µ := −(∇\

λ∂µ)ν .

HermVec-2006-03-28.tex; [output 2009-04-17; 11:58]; p.31



32 3 Einstein case

We assume spacetime to be equipped with a given electromagnetic field , which is a
closed scaled 2–form F : E → (L1/2 ⊗M1/2)⊗Λ2T ∗E . With reference to a particle with
mass m and charge q , we obtain the unscaled 2–form q

~ F : E → Λ2T ∗E .
Given an observer o , we define the observed magnetic and the observed electric fields

~B[o] := c
2
i(θ[o](F )) η̄[o] ∈ sec(E, (T−1 ⊗ L−3/2 ⊗M1/2)⊗ Vτ [o]E

)
~E[o] := −g](o yF ) ∈ sec

(
E, (T−1 ⊗ L−3/2 ⊗M1/2)⊗ Vτ [o]E

)
.

Then, we obtain the observed splitting F = −2 τ [o] ∧ g[( ~E[o]) + 2
c
i( ~B[o]) η[o] .

The local potentials of F are denoted by Ae , according to 2 dAe = F .
In the Einstein framework there is no way to merge the electromagnetic field into the

gravitational connection, hence we have no joined spacetime connection.

3.1.8 Induced objects on the phase space

We have a natural injective map χ between linear spacetime connections K and phase
connections Γ : J1E → T ∗E⊗TJ1E , with coordinate expressions Γ = dλ⊗ (∂λ+Γλ

i
0 ∂

0
i ) .

In coordinates, the map χ is expressed by Γλ
i
0 = δ̆iν Kλ

ν
ρ δ̆

ρ
0 .

As we have no joined spacetime connection, we start with the gravitational objects
induced on the phase space.

Then, the spacetime connection K\ yields a connection, called gravitational phase
connection, Γ\ := χ(K\) : J1E → T ∗E ⊗ TJ1E .

The phase connection Γ\ yields the 2nd order connection, called gravitational dy-
namical phase connection, γ\ := d y Γ\ : J1E → T∗ ⊗ TJ1E , with coordinate expression
γ\ = c0 α

0 u0 ⊗ (∂0 + xi0 ∂i + γ\0
i
0 ∂

0
i ) , where γ\0

i
0 = δ̆iν Kλ

ν
µ δ̆

λ
0 δ̆

µ
0 .

Next, let us consider the vertical projection ντ [Γ
\] := ν−1

τ ◦ ◦ν[Γ\] : J1E → T∗ ⊗
(T ∗J1E ⊗ VτE) associated with Γ\ , whose coordinate expression is ντ [Γ

\] = c0 α
0 (di0 −

Γλ
i
0 d

λ)u0 ⊗ bi .
The phase connection Γ\ and the rescaled metric G yield the 2–form, called gravita-

tional phase 2–form, Ω\ := G y
(
ντ [Γ

\]∧θ
)

: J1E → Λ2T ∗J1E , with coordinate expression

Ω\ = c0 α
0 Ğ0

iµ

(
di0 − δ̆iν K\

λ
ν
ρ δ̆

ρ
0) dλ

)
∧ dµ .

The pair (Θ,Ω\) is a “contact” structure of J1E , i.e. Ω = dΘ and Θ∧Ω\∧Ω\∧Ω\ 6≡ 0 .
The phase connection Γ\ and the rescaled metric G yield the vertical 2–vector, called

gravitational phase 2–vector , Λ\ := Ḡ y(Γ\ ∧ ντ ) : J1E → Λ2V J1E , with coordinate
expression Λ\ = 1

c0 α0 Ğ
jλ
0 (∂λ + Ğiµ

0 K\
λµρ δ̆

ρ
0 ∂

0
i ) ∧ ∂0

j .
Summing up, the above gravitational phase objects fulfill the following identities

i(γ\) τ = 1 , i(γ\) Ω\ = 0 , γ\ = d y Γ\ , Ω\ = G y
(
ντ [Γ

\] ∧ θ
)
, Λ\ = Ḡ y(Γ\ ∧ ν\) .

Now, we are looking for joined phase objects, obtained by merging the electromagnetic
field into the above gravitational phase objects, in such a way to preserve the above
relations.

By analogy with the Galilei case, we start with the phase connection.
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We define the joined phase connection to be the phase connection Γ := Γ\ + Γe ,
where Γe := − q

2~ ντ ◦ G
]2 ◦

(
F + 2τ ∧ (d yF )

)
. We have the coordinate expression Γe =

− q
2~

1
c0 α0 Ğ

iµ
0 (Fλµ − (α0)2ğ0λ Fρµ δ̆

ρ
0) dλ ⊗ ∂0

i .
The joined phase connection Γ yields the 2nd order connection, called joined dynamical

phase connection, γ := d y Γ : J1E → T∗ ⊗ TJ1E , which splits as γ = γ\ + γe , where
γe = − q

m
ντ ◦ g] ◦ (d yF ) , i.e., in coordinates, γe = − q0

m
ğiµ (F0µ + Fjµ x

j
0)u0 ⊗ ∂0

i .
The joined phase connection Γ and the rescaled metricG yield the 2–form, called joined

phase 2–form, Ω := G y
(
ντ [Γ]∧θ

)
, which splits as Ω = Ω\+Ωe , where Ωe = q

2~ F , i.e., in

coordinates, Ωe = q
2~ Fλµ d

λ ∧ dµ . The pair (Θ, Ω) is a “cosymplectic” structure of J1E ,
i.e, dΩ = dΩ\ + q

2~ dF = 0 and Θ ∧ Ω ∧ Ω ∧ Ω = Θ ∧ Ω\ ∧ Ω\ ∧ Ω\ 6= 0 .
Moreover, Ω admits potentials, called horizontal , of the type A↑ ∈ fib(J1E, T

∗E) ,
according to dA↑ = Ω . They are defined up to a gauge of the type α ∈ sec(E, T ∗E) .
Indeed, we have A↑ = Θ + q

~ A
e , with coordinate expression A↑ = (c0 α

0 Ğ0
0λ + q

~ A
e
λ) d

λ .
Indeed, γ is the unique 2nd order connection such that i(γ)τ = 1 and i(γ)Ω = 0 .

We define the Lorentz force as ~f := −g]◦(d yF ) : J1E → (T−1⊗L−3/2⊗M1/2)⊗VτE .

We have the coordinate expression ~f = −c α0 (gλj F0j + gλµ Fiµ x
i
0) ∂λ and the observed

expression ~f = ~E[o] + 1
c
~∇[o] ×

η[o]

~B[o] . Moreover, we have ~f := := m
q
ν−1
τ ◦ γe .

We assume the law of motion for the unknown motion s ⊂ E of a particle of mass m
and charge q to be the equation ∇[γ]j1s := j2s−γ ◦ j1s = 0 , i.e. m∇⊥[γ\]j1s = q ~f ◦ j1s ,
where ∇⊥ := ν−1

τ ◦ ∇ .
The joined phase connection Γ and the rescaled metric G yield the 2–vector, called

joined phase 2–vector , Λ := Ḡ y(Γ ∧ ν\) , which splits as Λ = Λ\ + Λe , where Λe =
q
2~ (ντ ∧ντ )(G](θ∗(F ))) , i.e., in coordinates, Λe = q

2~
1

(c0 α0)2
Ğiλ

0 Ğjµ
0 Fλµ ∂

0
i ∧∂0

j . From now
on, we shall refer to the above joined phase objects Γ , γ , Ω , and Λ .

3.1.9 Hamiltonian lift of phase functions

For each φ↑ ∈ sec(J1E, T
∗J1E) , we have Λ](φ↑) := i(φ↑)Λ ∈ sec(J1E, VτJ1E) .

Given a time scale σ ∈ map(J1E, T̄) , we define the σ–Hamiltonian lift to be the map

X↑ham [σ] : map(J1E, IR)→ sec(J1E, TJ1E) : f 7→ X↑ham [σ, f ] := γ(σ) + Λ]
0(df) ,

with coordinate expression

X↑ham [σ, f ] = σ0c0α
0 (∂0 + xi0 ∂i + γ0

i
0 ∂

0
i )−

1

c0α0

(
Ğjλ

0 ∂0
j f ∂λ − (Ğiλ

0 ∂λf + Ξ̆ij
00 ∂

0
j f) ∂0

i

)
,

where Ξ̆ij
00 = Ğih

0 Γh
j
0 − Ğ

jh
0 Γh

i
0 .

3.1.10 Poisson bracket of the phase functions

We define the Poisson bracket of map(J1E, IR) as {f, g} := i(df ∧ dg) Λ .

Its coordinate expression is {f, g} = 1
c0 α0

(
Ğiλ

0 (∂λf ∂
0
i g − ∂λg ∂0

i f)− Ξ̆ij
00 ∂

0
i f ∂

0
j g
)
.
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The Poisson bracket makes map(J1E, IR) a sheaf of IR–Lie algebras.

3.1.11 The sheaf of special phase functions

Each X ∈ fib(J1E, TE) yields the time scale σ := τ(X) ∈ map(J1E, T̄) , with coor-
dinate expression σ = −α0

c0
ğ0λX

λ u0 .

If X, X1, X2 ∈ sec(E, TE) , φ ∈ sec(E, T⊗ T ∗E) and f̆ 1, f̆ 2 ∈ map(E, IR) , then

−G(d, X1) + f̆ 1 = −G(d, X2) + f̆ 2 ⇔ X1 = X2 , f̆ 1 = f̆ 2

−G(d, X) + f̆ 1 = −d yφ+ f̆ 2 ⇔ φ = G[(X) , f̆ 1 = f̆ 2

−G(d, X1) + f̆ 1 = −X2 y Θ + f̆ 2 ⇔ X1 = X2 , f̆ 1 = f̆ 2 .

We define a special phase function to be a function f ∈ map(J1E, IR) of the type f =
−G(d, X) + f̆ , with X ∈ sec(E, TE) and f̆ ∈ map(E, IR) .

Moreover, we say that
- X[f ] := X ∈ sec(E, TE) is the tangent lift of f ,
- φ[f ] := G[(X) ∈ sec(E, T⊗ T ∗E) is the cotangent lift of f ,
- σ[f ] := τ(X) ∈ map(J1E, T̄) is the time scale of f ,
- f̆ ∈ map(E, IR) is the spacetime component of f .
Thus, if f is a special phase function, then we have the following equivalent expressions

f = −G(d, X) + f̆ = −d yφ[f ] + f̆ = −X[f ] y Θ + f̆ = mc2

~ σ[f ] + f̆

and, in coordinates,

f = − c0 (G0
λ0 +G0

λi x
i
0) fλ√

|g00 + 2 g0k xk0 + ghk xh0 x
k
0|

+ f̆ = −c0 α
0 (f 0

0 + f 0
i x

i
0) + f̆ ,

with fλ := Xλ = Gλµ
0 φ0

µ and f 0
λ := φ0

λ = G0
λµX

µ .
The special phase functions constitute a (map(E, IR))–linear subsheaf spec(J1E, IR) ⊂

map(J1E, IR) .
Thus, we have the linear maps X : spec(J1E, IR) → sec(E, TE) : f 7→ X[f ] and

˘: spec(J1E, IR)→ map(E, IR) : f 7→ f̆ .

3.1 Proposition. We have the mutually inverse (map(E, IR))–linear isomorphisms

s : spec(J1E, IR)→ sec(E, TE)×map(E, IR) : f 7→
(
X[f ], f̆

)
r : sec(E, TE)×map(E, IR)→ spec(J1E, IR) : (X, f̆) 7→ −X y Θ + f̆ ,

with s : −c0 α
0 Ğ0

0λ f
λ + f̆ 7→ (fλ ∂λ , f̆) and r : (Xλ ∂λ, f̆) 7→ −c0 α

0 Ğ0
0λX

λ + f̆ .
Hence, we have the linear splitting spec(J1E, IR) = spec′′(J1E, IR) ⊕ map(E, IR) ,

where spec′′(J1E, IR) := ker(̆ ) and map(E, IR) = ker(X) .

HermVec-2006-03-28.tex; [output 2009-04-17; 11:58]; p.34



3.1 Classical setting 35

Moreover, with reference to an observer o , we have the mutually inverse (map(E, IR))–
linear isomorphisms

s[o] : spec(J1E, IR)→ sec(E, TE)×map(E, IR) : f 7→
(
X[f ], f [o]

)
r[o] : sec(E, TE)×map(E, IR)→ spec(J1E, IR) : (X, f̄) 7→ −X y Θ + f̄ +X y Θ[o] .

We can characterise the special phase functions via the Hamiltonian lift, as follows.

3.2 Proposition. Let σ ∈ map(J1E, T̄) and f ∈ map(J1E, IR) . Then, the following
conditions are equivalent:

1) X↑ham [σ, f ] ∈ sec(E, J1TE) is projectable on a vector field X ∈ sec(E, TE) ,
2) f ∈ spec(J1E, IR) and σ = σ[f ] .
Moreover, if the above conditions are fulfilled, then we obtain X = X[f ] .

3.3 Example. For any spacetime chart (xλ) , the functions xλ are special phase
functions and we obtain X[xλ] = 0 .

Moreover, with reference to a potential A↑ and to an observing frame (o, ζ) , we
define the observed Hamiltonian and momentum as H[o, ζ] := −(1/ς) (d[o] yA↑) ζ ∈
sec(E, T ∗E) and P [o] := θ[o, ζ]A↑ ∈ sec(E, T ∗E) .

If the observing frame is integrable, then we have the coordinate expressions, in an
adapted chart, H[o, ζ] = (−c0 α

0 Ğ0
00 − q

~ A
e
0) d0 and P [o, ζ] = (c0 α

0 Ğ0
0i + q

~ A
e
i) d

i .

In this case, H0 and Pi are special phase functions and we obtain X
[
H0

]
= ∂0 and

X
[
Pi
]

= −∂i .

3.1.12 The special bracket

We define the special bracket of spec(J1E, IR) by [[ f, g ]] := {f, g} + (σ[f ]) (γ.g) −
(σ[g]) (γ.f) .

3.4 Theorem. The sheaf spec(J1E, IR) is closed with respect to the special bracket.
For each f1, f2 ∈ spec(J1E, IR) , we have

[[ f1, f2 ]] = −d yG[
[
X[f1], X[f2]

]
+X[f1].f̆ 2 −X[f2].f̆ 1 + q

~ F
(
X[f1], X[f2]

)
,

i.e., [[ f1, f2 ]] = −c0 α0 Ğ
0
0µ (f ν1 ∂νf

µ
2 − f ν2 ∂νf

µ
1 ) + fλ1 ∂λf̆ 2 − fλ2 ∂λf̆ 1 + q

~ f
λ
1 f

µ
2 Fλµ .

Thus, X
[

[[ f1, f2 ]]
]

=
[
X[f1], X[f2]

]
and ˘[[ f1, f2 ]] =

[
(X[f1], f̆ 1) , (X[f2], f̆ 2)

]
q
~ F

.

Indeed, the special bracket makes spec(J1E, IR) a sheaf of IR–Lie algebras and the
tangent prolongation is an IR–Lie algebra morphism.

3.5 Corollary. The map s : spec(J1E, IR) → sec(E, TE) × map(E, IR) turns out
to be an isomorphism of Lie algebras, with respect to the brackets [[ , ]] and [ , ] q

~ F
.

For instance, we have [[xλ, xµ ]] = 0 and, with reference to an integrable observing
frame and to an adapted chart, we have [[xλ,H0 ]] = δλ0 , [[ xλ,Pi ]] = δλi , [[H0,Pi ]] = 0 .
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3.2 Quantum setting

Let us consider a quantum bundle π : Q→ E over the Einstein spacetime.
We define the phase quantum bundle as π↑ : Q↑ := J1E ×

E
Q→ J1E .

We can refrase the notion of Hermitian systems of connections and associated universal
connection that we have discussed in the Galilei case, by replacing J1E with J1E .

Let us assume that the cohomology class of q
~ F be integer.

Then, we assume a connection Q↑ : Q↑ → T ∗J1E ⊗ TQ↑ , called phase quantum
connection, which is Hermitian, universal and whose curvature is given by the equality
R[Q↑] = −2 i Ω⊗ I↑ . The existence of such a universal connection and the fact that Ω ad-
mits horizontal potentials are strictly related. Moreover, the closure of Ω is an integrability
condition for the above equation.

We have the splitting Q↑ = Q↑e + i Θ ⊗ I↑ , where Q↑e : Q↑ → T ∗J1E ⊗ TQ↑ , is
the pull back of a Hermitian connection Qe : Q → T ∗E ⊗ TQ , called electromagnetic
quantum connection, whose curvature is given by the equality R[Qe] = −i q~ F ⊗ I .

With reference to a quantum basis b , the expression of Q↑ is of the type Q↑ =
χ↑[b] + i

(
Θ + q

~ A
e[b]

)
⊗ I↑ , where Ae[b] is a potential of F selected by Q↑ and b . Hence,

in a chart adapted to b , is Q↑ = dλ ⊗ ∂λ + di0 ⊗ ∂0
i + i (c0 α

0 Ğ0
0λ + q

~ A
e
λ) d

λ ⊗ I↑ .
For each observer o , the expression of Q[o] , is Q[o] = i Θ[o] ⊗ I + Qe . Hence, in a

chart adapted to b , Q[o] = dλ ⊗ ∂λ + i (Θ[o]λ + q
~ A

e
λ) d

λ ⊗ I .

3.3 Classification of Hermitian vector fields

Eventually, we apply to the Einstein framework the classification of Hermitian vector
fields achieved in Theorem 1.7. For this purpose, we choose the electromagnetic quantum
connection Qe as auxiliary connection c , use the classification of special phase functions
achieved in Proposition 3.1 and show an identity.

3.6 Theorem. We have the mutually inverse Lie algebra isomorphisms

F := j[Qe] ◦ s : spec(J1E, IR)→ her (Q, TQ) ,

H := r ◦ h[Qe] : her (Q, TQ)→ spec(J1E, IR) ,

given by F(f) = Qe
(
X[f ]

)
+ i f̆ I and H(Y ) = −Tπ(Y ) y Θ− i tr

(
ν[Qe](Y )

)
, with respect

to the Lie bracket of vector fields and the special bracket [[ , ]] .
We have the coordinate expressions

F(f) = fλ∂λ + i ( q~ f
λAe

λ + f̆) I ,

H
(
Xλ (∂λ + i q~ A

e
λ I)

)
+ i Y̆ I = −c0 α

0 Ğ0
λ0X

λ + Y̆ + q
~ A

e
λX

λ .

3.7 Note. If f = −X y Θ + f̆ ∈ spec(J1E, IR) then we obtain(
j
[
Q[o]

]
◦ s[o]

)
(f) := Q[o](X) + i f [o] I = Qe(X) + i f̆ I :=

(
j
[
Qe
]
◦ s
)
(f) .
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3.3 Classification of Hermitian vector fields 37

Hence, the Hermitian vector field associated with f by the connection Q[o] does not
depend on the observer o .

For instance, we have F(xλ) = ixλ I and, with reference to an integrable observing
frame and to an adapted chart, F(H0) = ∂0 and F(Pi) = −∂i .
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4 Galilei and Einstein cases: a comparison

We conclude the paper by discussing the main analogies and differences between
the Galilei and the Einstein cases.

Spacetime. The essential source of all differences between the two cases is the structure
of spacetime. In both cases spacetime is a 4–dimensional manifold. In the Galilei case,
we have a fibring over absolute time and a spacelike (hence degenerate) Riemannian
metric. In the Einstein case, we loose the time fibring, but we gain a spacetime (hence
non degenerate) Lorentz metric.

Nevertheless, in both cases, the time intervals are valued in the absolute vector space
T . Indeed, this fact has no relation with simultaneity.

In the Galilei case, we have used the light velocity c just for the sake of standard
normalisation of some formulas. But, the constant c has no relation with any phenomena
which can be described in the framework of the Galilei theory.

Phase space. In the Galilei theory, the motions are defined as sections of the fibred
manifold; in the Einstein theory, they are defined as timelike 1–dimensional submanifolds.
This fact implies an important difference with respect to the phase space. In the Galilei
case, it is defined as the space of 1st jets of sections; in the Einstein case it is defined
as the space of 1st jets of 1–dimensional timelike submanifolds. Thus, the phase space is
an affine bundle over spacetime in the Galilei case and a projective space in the Einstein
case. This difference yields several technical consequences throughout the theory.

In the Galilei case, the time fibring yields the time form on spacetime, the lift of time
scales to timelike spacetime forms and the contact structure of the phase space. In the
Einstein case, these objects cannot be achieved through the fibring but are recovered by
means of the Lorentz metric. However, in this case, the time form is based on the phase
space; indeed, this is a main feature of this case. Moreover, the coordinate expressions of
these objects are more complicated in the Einstein case, due to the projective structure
of the phase space, instead of an affine structure.

In particular, in the Galilei case, the vertical subspace of the phase space can be
easily compared with the vertical subspace of spacetime. Such a comparison requires a
more complicate description in the Einstein case.

Contact splitting. Passing from the Galilei to the Einstein case, the horizontal and
vertical subspaces of spacetime with respect to the time fibring are replaced by the parallel
and orthogonal subspaces with respect to the metric. However, they are based on the phase
space.

Observers. The observers are defined in an analogous conceptual way in the two cases.
However, relevant technical differences arise due to the different structures of the phase
spaces.

In the Galilei case, an observer and the time fibring - i.e. the observer independent time
form (which is obsviously integrable) - yield a splitting of the tangent space of spacetime.

In the Einstein case, there are two ways in order to achieve an analogous splitting.
Namely, we consider an observer and additionally either the associated observed time
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form (which is not integrable, in general), or an independent time form (which may be
integrable, defining locally a time function). The first pair is sufficient for several purposes;
however, the components of the Hamiltonian and of the momentum turn out to be special
phase functions only if they are defined through an integrable observing frame.

Gravitational and electromagnetic fields. In the Einstein case, we can formulate the
standard theory of the electromagnetic field, with the standard Maxwell equations dF = 0
and δF = j . In the Galilei case, the 1st Maxwell equation can be formulated without
any change, because it involves only the differential structure of spacetime. Conversely,
the 2nd Maxwell equation, which links the electromagnetic field with its charge sources,
cannot be written in a full formulation, due to the degeneracy of the metric; only a static
effect of the charges on the electromagnetic field can be described covariantly. On the
other hand, in the present theory, we are involved just with a given electromagnetic field;
hence, the dependence on its sources does not play an essential role in the present theory.
In the Galilei case, the magnetic field is observer independent; this is not true in the
Einstein case. Nevertheless, the observed electric and magnetic fields can be defined in a
similar conceptual way in the two cases. But differences arise from the different behaviour
of observers in the two cases.

Induced objects on the phase space. In both cases, a connection of the phase space
yields naturally a 2nd order connection, a 2–form and a 2–vector of the phase space,
which fulfill certain identities.

In the Einstein case, the metric determines the gravitational spacetime connection. In
the Galilei case, the metric determines the gravitational connection up to a closed 2–form;
so, the gravitational connection needs an additional postulate.

In the Galilei case, we have a natural bijection between connections of spacetime and
connections of the phase space. Moreover, there is a natural way to merge the electromag-
netic field into the gravitational connection, so obtaining a joined connection. Hence, this
connection yields naturally a joined 2nd order connection, a joined 2–form and a joined
2–vector of the phase space, which fulfill the same identities of the gravitational objects.

In the Einstein case, we have only a natural injection between connections of spacetime
and connections of the phase space. Moreover, there is no natural way to merge the
electromagnetic field into the gravitational connection. Hence, we proceed in a partially
different way. We define a joined phase connection, by analogy with the Galilei case.
Then, we obtain the joined 2nd order connection, 2–form and 2–vector of the phase
space. Indeed, the joined phase connection is not essential by itself in our theory. What is
essential is that all other joined objects be generated by the same phase connection and
that they fulfill certain identities.

In the Einstein case, the gravitational 2–form is globally exact and its potential is
the time form. In the Galilei case, the gravitational 2–form is only closed, but admits
horizontal potentials.

Thus, in the Einstein case, the time form τ plays the roles analogous both to dt and
to Θ (up to a scale factor), in the Galilei case.

Hamiltonian lift of phase functions. In both cases, we have a similar formulation of
the Hamiltonian lift of phase functions and of the Poisson bracket. These aspects of the
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theory have strict analogies with the standard literature, but are not exactly standard
because of our choice of the phase space.

Lie algebra of special phase functions. In the two cases, we have several analogies in
the definition of special phase functions. However, the expression of these functions is
very different in the two cases, due to the different structure of the phase space. In the
Galilei case, we need an observer in order to split a special function. In the Einstein case,
we have a natural splitting of special functions.

The definition of the special bracket is formally identical in the two cases. However,
in the Galilei case, the special bracket involves the metric and the joined 2–form, while
in the Einstein case, it involves only the metric and the electromagnetic field.

Phase quantum connections. The definition of the phase quantum connection is for-
mally identical in the two cases. However, in the Einstein case, it can be split into a natural
gravitational component and an electromagnetic component, due to the exactness of the
2–form. This fact is not true in the Galilei case.

Hence, in the Einstein case we obtain an observer independent purely electromagnetic
quantum connection. Conversely, in the Galilei case, we obtain a system of observed joined
quantum connections, which are related by a transition law.

Classification of Hermitian vector fields. In the first part of the paper, we have shown
that, given a connection of the quantum bundle, the Lie algebra of Hermitian vector
fields can be represented by a Lie algebra of pairs consisting of spacetime vector fields
and spacetime functions.

In the Galilei case, we implement the above result by choosing an observer and refer-
ring to the induced joined quantum connection and the induced splitting of special phase
functions. Indeed, we prove that the transition laws for the above objects are such that
the final result is observer independent.

In the Einstein case, we do not need to choose an observer, because the splitting of the
phase functions is observer independent and we can avail of the electromagnetic quantum
connection.
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[8] A. Jadczyk, J. Janyška, M. Modugno: Galilei general relativistic quantum mechanics revisited,
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[15] J. Janyška, M. Modugno: Classical particle phase space in general relativity, in “Differential
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national Symposium, July 18–21, 2001, Kraków, Poland, World Scientific, London, 2002, 404–411.

[20] J. Janyška, M. Modugno: Covariant Schrödinger operator, J. Phys.: A, Math. Gen., 35, (2002),
8407–8434.
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