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Abstract

We analyse the Schrödinger operator for a quantum scalar particle in a curved
spacetime which is fibred over absolute time and is equipped with given spacelike
metric, gravitational field and electromagnetic field.

We approach the Schrödinger operator by three independent ways: in terms
of covariant differentials induced by the quantum connection, via a quantum La-
grangian and directly by the only requirement of general covariance.

In particular, in the flat case, our Schrödinger operator coincides with the stan-
dard one.
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J. Janyška, M. Modugno 3

Introduction

Since the very beginning of quantum mechanics, the Schrödinger operator has been
approached in several ways and investigated in many respects; the related literature is ex-
tremely huge. Indeed, the Schrödinger equation is one of the greatest successes of physics,
hence it should be taken as a touchstone for any possible variation on this subject.

Certainly, the most usual approaches are based on Hamiltonian techniques related
to the quantisation of the classical Hamiltonian and the standard formalism is basically
analytical.

Among the geometric Hamiltonian approaches, we must mention “geometric quanti-
sation” [1, 21, 44, 90, 91, 100]. In this context one can achieve a Schrödinger operator
(which includes the spacelike scalar curvature) for quantum systems admitting a suitable
polarisation.

The Feynmann path integral is another possible method of achieving the Schrödinger
operator (see, for instance, [39, 20]). However, in spite of the fundamental importance of
this formalism, its formal theoretical troubles are well known.

W. M. Tulczjew has achieved the Schrödinger operator by considering a five dimen-
sional spacetime [94].

Possible modifications of the Schrödinger operator have been investigated as well.
Possible non linear variations have been discussed by H.-D. Döbner, G. A. Goldin et
al. [24, 25, 26, 27, 28, 29, 30] in the framework of non–linear quantum mechanics. A
modification of the quantum dynamics has been proposed by G. C. Ghirardi in view of a
unified picture of microscopic and macroscopic systems [43].

Another interesting aspect of the Schrödinger operator concerns its transformation
rule with respect to the change of frame of reference and coordinates [89].

An even deeper problem would be a formulation of the Schrödinger operator on a
curved spacetime and an analysis of its relation with the general principle of relativity
and the principle of equivalence. A true solution of this problem is today too ambitious
because it would involve well established quantum gravity and quantum field theory on
a curved spacetime.

Among the attempts to formulate a quantum theory in the framework of general
relativity, we quote E. Prugovečki [84, 85]. On the other hand, several authors have
discussed the problem of equivalence principle for a quantum system (see, for instance,
A. Camacho [9, 10, 11, 12, 13, 14, 15, 16]) and analysed the behaviour of a quantum
system with respect to accelerated observers (see, for instance, I. Bialynicki–Birula, M.
Kalinski, B. Mashhoon et al. [4, 5, 62, 77, 86]).

A more limited, but interesting, goal is the formulation of the Schrödinger operator on
a curved spacetime fibred over absolute time and equipped with a spacelike Riemannian
metric, which will be referred to as “Galilei curved spacetime”. The idea of such a space-
time goes back to E. Cartan [18, 19] and has been further analysed by several authors,
including V. Bargmann [3], G. Dautcourt [22], H. D. Dombrowski and K. Horneffer [31],
M. Le Bellac and J. M. Levy–Leblond [73, 74], J. Ehlers [37], P. Havas [45], M. Mangiarotti
[76], A. Trautman [92, 93]. This model of spacetime is intermediate between the Newton
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4 Covariant Schrödinger operator

spacetime and the Einstein spacetime. Hence, it provides an intermediate setting between
the standard non–relativistic quantum mechanics and a possible general relativistic quan-
tum theory. In this framework we can discuss the behaviour of the quantum system in
accelerated frames, but we loose the description of phenomena related to the speed of
light and to Lorentz metric. Among the approaches to the Schrödinger operator in such
a curved spacetime, we would like to mention the pioneering paper by B. S. DeWitt [23],
the paper by K. Kuchař [65], who approaches the Schrödinger operator via Dirac’s con-
straint method in a coordinate independent way, and the papers by J. R. Fanchi [38] and
A. Kyprianidis [71]. A special mention deserves the Lagrangian approach in a Bargmann
framework due to C. Duval and K. Künzle [32, 33, 34, 35, 36, 66, 67, 68, 69, 70].

The standard concepts of “relativistic” and “non relativistic” theory are not adequate
for our discussions. We need a more careful and refined use of these words. In this paper,
the word “general (special) relativity” refers both to the Einstein general (special) rela-
tivity and to the Galilei general (special) relativity. In fact, both theories are formulated
in a way which is independent of the choice of an accelerated (inertial) observer. In both
cases, an observer is described by a normalised timelike vector field, but the mathematical
definition of the “timelike” character and of the “normalisation” is different in the two
models.

The present paper is aimed at analysing the Schrödinger operator on a curved space-
time in the framework of a covariant formulation of quantum mechanics that here will
be referred to as “covariant quantum mechanics”. This formulation has been originally
proposed for scalar particles by A. Jadczyk and M. Modugno [47, 48, 49] and further
developed in cooperation with J. Janyška, D. Saller, C. Tejero Prieto and R. Vitolo
[46, 50, 51, 53, 55, 57, 59, 60, 61, 80, 81, 82, 87, 96, 98, 99]. It has been extended to spin par-
ticles in cooperation with D. Canarutto [17] and partially (up to pre–quantum operators)
to a Lorentzian setting in cooperation with J. Janyška and R. Vitolo [52, 54, 56, 58, 97].
This approach is based on non standard geometric methods, such as fibred manifolds,
jet spaces, non–linear connections, systems of connections, cosymplectic structures and
Frölicher smooth spaces.

In a few words, the scheme of this model is the following. The classical spacetime is
constituted by a manifold fibred over absolute time and equipped with a spacelike Rie-
mannian metric, a time preserving and metric preserving connection (gravitational field)
and a closed 2–form (electromagnetic field). As classical phase space we assume the 1st
jet space of spacetime. The above fundamental fields yield, in a covariant way, a 2nd order
connection, hence a covariant formulation of the law of motion. Moreover, they yield, in a
covariant way, a global cosymplectic 2–form, which induces locally a gauge dependent La-
grangian and a gauge and observer dependent Hamiltonian. We show a distinguished Lie
algebra of quadratic functions (including the Hamiltonian) different from the Poisson Lie
algebra. Then, we formulate the covariant quantum theory for a scalar particle, affected
by the given gravitational and electromagnetic fields, by considering a complex bundle
over spacetime equipped with a Hermitian metric with values in the space of spacelike
volume forms and a universal, Hermitian connection, whose curvature is proportional to
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J. Janyška, M. Modugno 5

the cosymplectic 2–form. From these two objects, we derive, in a covariant way, all other
quantum objects. In order to get rid of the observers we use a criterion of projectability.
In particular, this method yields good candidates for the quantum operators, through
the isomorphism between the Lie algebra of Hermitian quantum vector fields and the Lie
algebra of projectable quadratic classical functions. Moreover, this method yields a good
candidate for the Schrödinger operator, equivalently, via quantum covariant differentials
and via a quantum Lagrangian.

Let us summarise the main features of “covariant quantum mechanics”, for a scalar
particle, in view of a comparison with more standard formulations.

We are concerned only with “fundamental fields”. Therefore, we consider only exter-
nal gravitational and electromagnetic fields for the classical background of the quantum
system. In fact, we think that only a fundamental setting has the right to demand a
covariance principle and has a chance to produce results possibly interesting for further
covariant developments.

Our quantum theory is not intended as a “quantisation procedure” of a classical system
into a quantum system. We just propose a direct approach to quantum mechanics. The
classical theory is involved essentially through the spacetime structure and not really
through the classical particle mechanics. Actually, the classical spacetime plays the role
of background space, as it carries the information of the external classical gravitational
and electromagnetic fields affecting the quantum particle. More precisely, this information
is carried by the classical spacetime itself as base space of the quantum bundle and by the
classical phase space, which plays here the role of space of classical observers. The main
information of the given classical gravitational and electromagnetic fields is encoded in
the cosymplectic 2–form of the classical phase space, which plays the role of curvature of
the quantum connection.

We take the well established results of quantum mechanics, such as the standard
Schrödinger equation and quantum operators, as touchstone of our model. On the other
hand, according to the aims of our theory, we disregard those standard methods for
deriving quantum objects, which are incompatible with general covariance.

Our basic guide is the covariance of the theory as heuristic requirement. Even more,
we look for manifest covariance. Nowadays, the concept of “covariance” has been formu-
lated in a rigorous mathematical way through the geometric concept of “naturality” [63].
Our theory provides explicit expressions of all objects for any accelerated observer and
yields, at the same time, an interpretation in terms of gravitational field, according to
the principle of equivalence.

According to the covariance of the theory, time is not just a parameter, but a funda-
mental object. Moreover, the main objects of the theory are not assumed to be split into
time and space components.

As classical phase space we take the 1st jet space of spacetime and not its tangent
space; indeed, this minimal choice allows us to skip anholonomic constraints.

Another consequence of our approach is that classical mechanics is ruled by a cosym-
plectic structure [75] and not by a symplectic structure. Actually, a spacelike symplectic
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6 Covariant Schrödinger operator

structure arises in our model, but it describes only the spacelike aspects of the classical
theory and is insufficient to account, in a covariant way, for classical dynamics.

We emphasize the fact that classical mechanics can be formulated in a covariant way
by a 2nd order connection and by a Lagrangian approach, but not by a Hamiltonian
approach, because the Hamiltonian function depends essentially on an observer.

The Hamiltonian is not postulated as an additional object of our classical setting, but
it can be “extracted” by an observer, from a local potential of the cosymplectic 2–form.

An achievement of our theory is the Lie algebra of “special quadratic functions” (differ-
ent from the Poisson algebra), which allows us to treat energy, momentum and spacetime
functions on the same footing. This algebra and its subalgebras control fully the classical
and quantum symmetries.

All objects of quantum mechanics are derived, in a covariant way, from three minimal
objects . Here, we have some novelties.

The quantum bundle lives on spacetime and not on the phase space and the quantum
connection is “universal”. These assumptions allow us to skip all troubles of polarisations
[100]. In a sense, we obtain naturally a covariant polarisation and this is sufficient for our
purposes. Indeed, we replace the problematic search for such inclusions with a method of
projectability , which turns out to be our implementation of covariance in the quantum
theory.

Another new feature concerns the Hermitian metric of the quantum bundle, which
takes its values in the space of spacelike volume forms. This assumption allows us to
skip the problems related to half–densities. On the other hand, this assumption requires
the projectability of Hermitian vector fields. Indeed, this feature turns out to be an
opportunity in our approach.

We show the strict relation of the quantum connection with the classical Poincaré–
Cartan form. In a sense, the quantum connection can be regarded as a global and gauge
independent version of the above local and gauge dependent form.

The Schrödinger equation is obtained, in a covariant way, both through a differential
approach and a Lagrangian approach.

The quantum operators arise, in a covariant way, from the classification of distin-
guished 1st and 2nd order differential operators of the quantum framework and not from
a quantisation requirement of a classical system.

The seat for the covariant probabilistic interpretation of quantum mechanics is the
Hilbert bundle over time, which arises naturally from the quantum bundle. This bundle
is observer independent and each observer splits it into time and a Hilbert space.

We do not postulate transition maps for the classical and quantum theory (concerning
transition of coordinates, potentials, and so on), but we start from simple intrinsic axioms
and derive the transition rules from them. Thus, the groups involved in the theory arise
as groups of automorphisms of the original geometric structures.

In a few words, we start with really minimal geometric structures representing funda-
mental physical fields and proceed along a thread naturally imposed by the only require-
ment of general covariance.
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In the flat case, the results of our model fit exactly the corresponding results of stan-
dard quantum mechanics. Thus, in the flat case, we do need to exhibit successful examples,
as it is sometimes required in alternative theories.

The specific aim of the present paper is to prove that, under weak assumptions on the
classical background and minimal assumptions on the quantum bundle, the (2nd order)
Schrödinger operator is determined by the only requirements of covariance and invariance
with respect to time scales. Under these hypotheses, the Schrödinger operator turns out
to be linear and of Lagrangian type.

Thus, we achieve the Schrödinger operator in three independent covariant ways:
- in terms of covariant differential and codifferential induced by the quantum connec-

tion, by using a criterion of projectability (hence, the independence from observers),
- in terms of a quantum Lagrangian associated with the quantum connection and

the quantum metric, by using a criterion of projectability (hence, the independence from
observers),

- by postulating just the covariance of the operator (this approach yields also the
uniqueness).

At the first instance, our approach to Schrödinger operator has no direct relation
with Hamiltonian techniques and with the quantisation of the classical Hamiltonian.
Actually, the Schrödinger operator is global, gauge independent and observer independent,
while the classical Hamiltonian is local, gauge dependent and observer dependent. On the
other hand, the quantum Hamiltonian operator can be achieved a posteriori from the
Schrödinger operator by taking into account the pre–quantum operator associated, in a
covariant way, with the classical Hamiltonian [49, 46].

The covariance with respect to the time scales plays a role on the same footing of
covariance with respect to the change of spacetime coordinates, to the change of observers
and to the change of quantum bases.

If we would assume a distinguished time scale, then the requirement of covariance
would be compatible with many additional terms. Actually, we could take into account
some time scales arising from constants which have a room in our model, such as the
Planck constant, the gravitational constant, the mass of the particle and so on. It seems
that these time scales yield additional terms which are too big to be physically reasonable.
But, we cannot exclude that one could find a reasonable distinguished time scale which
breaks the covariance with respect to time scales. We could make similar considerations
for length scales; but nothing essentially new would arise, because time scales and length
scales are related, in the framework of our model, by ~/m.

We denote the sheaf of local sections of a fibred manifold p : F → B and the sheaf
of local fibred morphisms between the fibred manifolds p : F → B and p′ : F ′ → B,
respectively, by sec(B, F ) and fib(F , F ′).
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8 Covariant Schrödinger operator

1 Classical background

In this section we summarise [49, 46] the basic concepts and results concerning
the classical spacetime, in view of the quantum theory. With respect to previous
papers, here we add a new discussion on the covariance group bundles, on metric
extensions, Galileian connections and classical potentials.

1.1 Units of measurement

Covariance requires a rigorous treatment of units of measurement.

We assume [46, 49] the following “positive 1-dimensional semi-vector spaces” over IR+

as fundamental unit spaces: the space T of time intervals, the space L of lengths and the
space M of masses. Moreover, we assume the Planck constant ~ ∈ T∗ ⊗ L2 ⊗M.

We refer to particles with mass m ∈M and charge q ∈ T∗ ⊗ L 3
2 ⊗M 1

2 .
We define a time unit to be an element u0 ∈ T or to its dual u0 ∈ T∗.

1.2 Classical spacetime

We start with our postulate concerning the classical curved Galileian spacetime.

C.1 Postulate. We assume time to be an affine space T associated with the vector
space T̄ := T⊗ IR. We assume spacetime to be an oriented (3 + 1)-dimensional manifold
E fibred over time by the time map t : E → T .

Thus, the time fibring yields the time form dt : E → T⊗ T ∗E .

1.1 Definition. We define the spacetime charts to be charts (xλ) ≡ (x0, xi) of space-
time, which are adapted to the time fibring, to the affine structure of time, to the orien-
tation of time and of spacetime and to a time unit u0.

We shall always refer to spacetime charts.
If (xλ) is a spacetime chart, then the induced local bases of TE, VE, T ∗E and V ∗E

are denoted, respectively, by (∂λ), (∂i), (dλ) and (ďi).

The coordinate expression of the time form is dt = u0 ⊗ d0 .

1.2 Proposition. Let (xλ) and (x́λ) be two spacetime charts, and set

σλµ1...µr
:= ∂́µ1 . . . ∂́µr x

λ , σ́λµ1...µr
:= ∂µ1 . . . ∂µr x́

λ .

Then, we obtain x́0 = σ́0
0 x

0 + σ́0, with σ́0 ∈ IR, σ́0
0 ∈ IR+, σ́0

i = 0, det(σ́ij) > 0.

1.3 Definition. We define the time scale covariance bundle to be the trivial bundle
G(T) := E × IR+ of IR+–linear automorphisms of T.
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1.4 Definition. We define:

- a time automorphism to be an orientation preserving affine isomorphism φ : T → T ;

- a spacetime automorphism to be a local, orientation preserving fibred diffeomorphism
φ : E → E over a time automorphism φ : T → T .

1.5 Proposition. The coordinate expression of a spacetime automorphism φ is of
the type φ0 = a0

0 x
0 + a0, φi ∈ map(E, IR), with a0

0 ∈ IR+, a0 ∈ IR, det(∂jφ
i) > 0.

If φ is a spacetime automorphism, then we set φλµ1...µr
:= ∂µ1 . . . ∂µr φ

λ.

1.6 Note. If x ≡ (xλ) and x́ ≡ (x́λ) are two spacetime charts, then we obtain the
spacetime automorphism φ := x−1 ◦ x́. Hence, we obtain x ◦ φ ◦ x−1 = x́ ◦ x−1 , which
yields φλµ1...µr

= σ́λµ1...µr
.

Let aut(E) ⊂ fib(E, E) be the sheaf of spacetime automorphisms. Then, for each
s ≥ 0 and e ∈ E, we define the set

Gse(E) :=
{

(jsφ)(e)
∣∣∣ φ ∈ aut(E), φ(e) = e

}
.

1.7 Definition. For each integer s ≥ 0, we define the spacetime covariance bundle,
of order s, to be the bundle

Gs(E) :=
⊔
e∈E

Gse(E)→ E .

Clearly, the fibre of G0(E) has dimension 0. We denote the fibred chart of Gs(E)
induced by a spacetime chart (xλ) by (xλ; g0

0,g
i
λ; . . . ; giλ1...λs

).

1.8 Proposition. The bundle Gs(E) turns out a group bundle through the compo-
sition fibred morphism over E

µs : Gs(E)×
E

Gs(E)→ Gs(E) :
(
(js

1

φ)(e), (js
2

φ)(e)
)
7→
(
js(

1

φ ◦
2

φ)
)
(e) .

1.3 Observers

Then, we introduce the notion of observer and the associated transition maps.

1.9 Definition. An observer is defined to be a section o ∈ sec(E, J1E), i.e. a section
o ∈ sec(E, T∗ ⊗ TE), which projects on 1 ∈ T∗ ⊗ T.

The coordinate expression of an observer is of the type o = u0 ⊗ (∂0 + oi0 ∂i), with
oi0 ∈ map(E, IR).

The charts (xλ) for which oi0 = 0 are said to be adapted to o. Each chart (xλ) deter-
mines the observer o := u0 ⊗ ∂0.
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10 Covariant Schrödinger operator

Each observer o yields the spacelike projection TE → VE through the map

ν[o] = (di − oi0 d0)⊗ ∂i ∈ sec(E, T ∗E ⊗
E
VE) .

If o and ó are two observers, then we can write ó = o+ v, with v ∈ sec(E, T∗⊗ VE).

1.10 Definition. The abelian group bundle T(E) := T∗ ⊗ VE → E is called the
observer transition bundle.

Its sections will yield the transition maps for “observed objects”.

1.4 Metric field

Then, we discuss the metric structure of spacetime.

1.11 Definition. We define a spacelike metric to be a scaled Riemannian metric
g : E → L2 ⊗ S2V ∗E of the fibres of E.

With reference to a mass m ∈M, we define the re–scaled spacelike metric

G := m
~ g = G0

ij u0 ⊗ ďi ⊗ ďj : E → T⊗ S2V ∗E .

We denote the contravariant spacelike metric and the contravariant re–scaled spacelike
metric by ḡ : E → L2∗ ⊗ S2VE and Ḡ := ~

m
ḡ : E → T∗ ⊗ S2VE .

We denote the natural bundle of re–scaled spacelike metrics by Met(E) ⊂ T⊗S2V ∗E.

C.2 Postulate. We assume a spacelike metric g.

1.12 Proposition. The spacelike metric g and the spacetime orientation naturally
yield the scaled spacelike volume form and the spacetime volume form

η =
√
|g| ď1 ∧ ď2 ∧ ď3 : E → L3 ⊗ Λ3V ∗E ,

υ := dt ∧ η =
√
|g|u0 ⊗ d0 ∧ d1 ∧ d2 ∧ d3 : E → (T⊗ L3)⊗ Λ4T ∗E .

We set υ0 := υ(u0) =
√
|g| d0 ∧ d1 ∧ d2 ∧ d3.

1.13 Definition. For each projectable vector field X of E, we define the timelike
divergence and the spacelike divergence, respectively,

divdt X ∈ map(E, IR) , by the equality L[X] dt = (divdtX) dt ,

divηX ∈ map(E, IR) , by the equality L[X] η = (divηX) η .

For each vector field X of E, we define the spacetime divergence

divυX ∈ map(E, IR) , by the equality L[X] υ = (divυX) υ .
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1.14 Proposition. We have the coordinate expressions

divdtX = ∂0X
0 , divηX = X0

∂0

√
|g|√
|g|

+
∂i(X

i
√
|g|)√
|g|

, divυX =
∂λ(X

λ
√
|g|)√

|g|
.

1.15 Proposition. The re–scaled spacelike metric G naturally yields:
- the fibre–wise Riemannian connection κ[G] : VE → V ∗E ⊗

VE
V VE ,

- the fibre–wise curvature tensor R[κ] : VE → Λ2V ∗E ⊗
E
VE ,

- the fibre–wise Ricci tensor Ricci[κ] := C1
1R[κ] : E → V ∗E ⊗

E
V ∗E ,

- the fibre–wise scaled scalar curvature r[G] := 〈Ḡ, Ricci[κ]〉 : E → T∗ ⊗ IR.

1.5 Metric extensions

The extensions of the spacelike metric to spacetime metrics will play an inter-
esting role in understanding the Galileian connections and their potentials.

1.16 Definition. A section G̃ ∈ sec(E, T⊗ S2T ∗E), whose vertical restriction is G,
is called a metric extension.

The coordinate expression of a metric extension is of the type

G̃ = u0 ⊗ (G0
ij d

i ⊗ dj +G0
0j d

0 ⊗ dj +G0
i0 d

i ⊗ d0 +G0
00 d

0 ⊗ d0) ,

where G0
ij ≡ G (∂i, ∂j) and G0

0j, G
0
i0, G

0
00 ∈ map(E, IR) with G0

0i = G0
i0.

In particular, each observer o yields the metric extension G̃[o] := ν∗[o]G, whose ex-
pression, in an adapted chart, is G̃[o] = G0

ij u0 ⊗ di ⊗ dj.

1.17 Proposition. Let us consider a metric extension G̃ and an observer o, and let
us refer to an adapted chart. Then, we obtain the section

A[G̃, o] := o y G̃− 1
2
o y o y G̃ = 1

2
G0

00 d
0 +G0

i0 d
i ∈ sec(E, T ∗E) .

Moreover, we obtain G̃ = ν∗[o]G + dt ⊗ A[G̃, o] + A[G̃, o] ⊗ dt. Clearly, we have
o yA[G̃, o] = 1

2
o y o y G̃.

1.18 Corollary. Let us consider a metric extension G̃ and two observers o, ó + v,
and let us refer to a chart adapted to ó. Then, we obtain

A[G̃, ó]− A[G̃, o] = −1
2
G(v, v) + ν[o] yG[(v) = 1

2
G0
ij v

i
0 v

j
0 d

0 +G0
ij v

j
0 d

i .

1.19 Proposition. Let us consider a form A ∈ sec(E, T ∗E) and an observer o, and
let us refer to an adapted chart. Then, we obtain the metric extension

G̃[A, o] := ν∗[o]G+ dt⊗ A+ A⊗ dt .
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12 Covariant Schrödinger operator

Moreover, we obtain A
[
G̃[A, o], o

]
= A. Clearly, we have 1

2
o y o y G̃[A, o] = o yA.

1.20 Corollary. Let us consider an observer o. Then, the maps G̃ 7→ A[G̃, o] and
A 7→ G̃[A, o] are inverse bijections.

1.6 Galileian connections

Galileian connections are fundamental objects of our theory.

1.21 Definition. We define a spacetime connection to be a connection K of the
vector bundle TE → E, which is linear, torsion free and such that ∇dt = 0.

A spacetime connection K is said to be metric if ∇G = 0.
A metric spacetime connection K is said to be Galileian if its curvature tensor fulfills

the condition Rj
0λ
i
µ = Ri

0µ
j
λ.

1.22 Proposition. The coordinate expression of a spacetime connection is of the
type K = dλ ⊗ ∂λ + Kλ

µ
ν ẋ

ν dλ ⊗ ∂̇µ, with Kλ
0
ν = 0 and Kµ

i
ν = Kν

i
µ. The spacetime

connections are the sections of a 2nd order natural bundle Con(E)→ E.

1.23 Lemma. Let us consider a spacetime connection K, an observer o and let us
refer to an adapted chart. Then, we obtain

∇o = −Kλ
i
0 u

0 ⊗ dλ ⊗ ∂i ∈ sec
(
E, T∗ ⊗ (T ∗E ⊗

E
VE)

)
.

Φ[K, o] := Alt
(
ν∗[o]

(
G[(∇o)

))
= −Kλ

0
j 0 d

λ ∧ dj ∈ sec(E, Λ2T ∗E) ,

where Alt is the antisymmetrization operator and Kλ
0
j 0 := G0

ijKλ
i
0.

1.24 Lemma. [60] If o is an observer, then there is a unique metric spacetime con-
nection K[o], such that Φ[K, o] = 0 . Indeed, K[o] is given by

K[o] = oτ + ν∗[oτ ](κ)− Sym
(
G]1

(
ν∗[o](L[o]G)

))
,

where oτ is the tangent prolongation of the observer, ν∗[oτ ](κ) the pullback of κ induced
by the observer, ν∗[o](L[o]G) the pullback of L[o]G induced by the observer and G]1 the
musical morphism applied to the first component of the tensor ν∗[o](L[o]G).

The coordinate expression of K[o], in an adapted chart, is

K0
i
0 = 0 ,

Kh
i
0 = K0

i
h = −1

2
Gij

0 ∂0G
0
jh ,

Kh
i
k = Kk

i
h = −1

2
Gij

0 (∂hG
0
jk + ∂kG

0
jh − ∂jG0

hk) .

SchrPap-2002-06-13.tex; [output 2009-08-28; 9:19]; p.12
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For each 2–form Φ ∈ sec(E, Λ2T ∗E), we set

Φ̂ := G]1(Φ) = Φi
0µ u

0 ⊗ ∂i ⊗ dµ ∈ sec
(
E, T∗ ⊗ (VE ⊗

E
T ∗E)

)
.

1.25 Theorem. Let us consider an observer o and refer to an adapted chart.
1) If K is a metric spacetime connection, then we have

K = K[o] + dt⊗ Φ̂[K, o] + Φ̂[K, o]⊗ dt .

2) If Φ ∈ sec(E, Λ2T ∗E), then we obtain the metric spacetime connection

K[o,Φ] := K[o] + dt⊗ Φ̂ + Φ̂⊗ dt .

The coordinate expression of the above connections K is

K0
i
0 = −Gij

0 2 Φoj ,

K0
i
h = Kh

i
0 = −1

2
Gij

0 (2 Φhj + ∂0G
0
hj) ,

Kk
i
h = Kh

i
k = −1

2
Gij

0 (∂hG
0
jk + ∂kG

0
jh − ∂jG0

hk) .

Thus, an observer yields a local bijection between metric spacetime connections and
spacetime 2–forms.

1.26 Theorem. [46, 60] Let K be a metric spacetime connection and let us refer to
an observer o. Then, K is Galileian if and only if dΦ[K, o] = 0 .

1.27 Definition. If K is a Galileian connection and o an observer, then each local
potential A[K, o] ∈ sec(E, T ∗E) of Φ[K, o] is called a potential of K.

The potential A[K, o] is locally defined up to a gauge of the type df , with f ∈
map(E, IR).

1.28 Corollary. Let us consider an observer o and refer to an adapted chart.
1) If K is a Galileian connection, then we have

K = K[o] + dt⊗ d̂A[K, o] + d̂A[K, o]⊗ dt .

2) If A ∈ sec(E, T ∗E), then we obtain the Galileian connection

K[o, A] := K[o] + dt⊗ d̂A+ d̂A⊗ dt .

The coordinate expression of the above connections K is

K0
i
0 = −Gij

0 (∂0Aj − ∂jA0) ,

K0
i
h = Kh

i
0 = −1

2
Gij

0 (∂hAj − ∂jAh + ∂0G
0
hj) ,

Kk
i
h = Kh

i
k = −1

2
Gij

0 (∂hG
0
jk + ∂kG

0
jh − ∂jG0

hk) ,
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14 Covariant Schrödinger operator

i.e.

Kλ
i
µ = −1

2
Gij

0 (∂λG
0
jµ + ∂µG

0
jλ − ∂jG0

λµ) ,

where we refer to the metric extension G̃
[
A[o], o

]
.

Thus, an observer yields a local bijection between Galileian connections and spacetime
1–forms, modulo differentials of spacetime functions.

1.7 Classical phase space

We sketch briefly the classical phase space and the objects induced on it by a
Galileian connection K.

1.29 Definition. The phase space is defined to be the 1st jet space t10 : J1E → E of
spacetime [46, 49, 55, 88].

We denote the fibred charts of J1E induced by a spacetime chart (xλ) by (xλ, xi0).

We recall that J1E → E is an affine bundle associated with the vector bundle T∗⊗VE.
Hence, the vertical space of J1E with respect to E turns out to be V0J1E = T∗ ⊗ VE .

We recall the natural contact maps

d = u0 ⊗ (∂0 + xi0 ∂i) : J1E → T∗ ⊗ TE ,

θ = (di − xi0 d0)⊗ ∂i : J1E → T ∗E ⊗
E
VE .

1.30 Proposition. The metric G and a spacetime connection K yield in a covariant
way [49, 46, 60] the following objects, which are global, gauge independent and observer
independent:

- the phase connection

Γ = dλ ⊗ ∂λ + (Γλ
i
0

0
0 + Γλ

i
0

0
j x

j
0) dλ ⊗ ∂0

i : J1E → T ∗E ⊗
J1E

TJ1E ,

where Γλ
i
0

0
µ = Kλ

i
µ;

- the phase 2–form

Ω := ν[Γ]∧̄θ = G0
ij

(
di0 − (Γλ

i
0

0
0 + Γλ

i
0

0
j x

j
0) dλ

)
∧ θj : J1E → Λ2T ∗J1E ,

where ν[Γ] is the vertical valued form associated with Γ and ∧̄ is the wedge product
followed by the contraction through G;

- the 2nd order phase connection

γ := d y Γ = u0 ⊗ (∂0 + xi0 ∂i + γ0
i
0 ∂

0
i ) : J1E → T∗ ⊗ TJ1E ,

where γ0
i
0 = Γh

i
0

0
k x

h
0 x

k
0 + 2 Γh

i
0

0
0 x

h
0 + Γ0

i
0

0
0;
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- the phase 2–vector

Λ := Γ̌ ∧̄ ν = Gij
0

(
∂i + (Γi

h
0

0
0 + Γi

h
0

0
k x

k
0) ∂0

h

)
∧ ∂0

j : J1E → Λ2V J1E ,

where Γ̌ is the vertical restriction of Γ.

1.31 Theorem. [46] Let K be a spacetime connection. Then, dΩ = 0 if and only if
K is Galileian.

1.32 Proposition. [49, 57] If K is a Galileian connection, then we obtain

dt ∧ Ω3 6≡ 0 , dΩ = 0 ,

i(γ) Ω = 0 , L(γ) Ω = 0 , L(γ) Λ = 0 , [Λ, Λ] = 0 .

Hence, (J1E, dt,Ω) turns out to be a scaled cosymplectic manifold.

Now, let K be a Galileian connection.

1.33 Theorem. The cosymplectic 2–form Ω admits locally a horizontal potential
Θ ∈ fib(J1E, T

∗E), defined up to a closed spacetime 1–form.

Next, let Θ be a horizontal potential of Ω and o an observer.

1.34 Definition. We define the following classical objects:

- the Lagrangian as the t–horizontal phase 1–form L[Θ] := d y Θ;

- the momentum as the contact phase 1–form P [Θ] := θ y Θ;

- the observed Hamiltonian as the t–horizontal phase 1–form H[Θ, o] := −o y Θ;

- the observed momentum as the E–vertical phase 1–form P [Θ, o] := ν[o] y Θ;

- the observed potential as the phase 1–form A[Θ, o] := o∗Θ.

1.35 Proposition. We obtain

Θ = L[Θ] + P [Θ] = −H[Θ, o] + P [Θ, o] ,

L[Θ] = −H[Θ, o] + d yP [Θ, o] , P [Θ, o] = ν[o] yP [Θ] .

Moreover, we obtain dA[Θ, o] = Φ[K, o] := o∗Ω. Hence, A[Θ, o] turns out to be one of
the potentials A[K, o]; thus, the choice of Θ fixes the gauge of A[K, o].

Furthermore, the Euler–Lagrange equation associated with L[Θ] turns out to be just
the Newton law ∇[γ]j1s = 0.

In a chart adapted to o we have the following coordinate expressions

Θ = −1
2
G0
ij x

i
0 x

j
0 d

0 +G0
ij x

j
0 d

i + Aλ d
λ , A[Θ, o] = Aλ d

λ ,

L[Θ] = (1
2
G0
ij x

i
0 x

j
0 + Ai x

i
0 + A0) d0 , P [Θ] = (G0

ij x
j
0 + Ai) (di − xi0 d0) ,

H[Θ, o] = (1
2
G0
ij x

i
0 x

j
0 − A0) d0 , P [Θ, o] = (G0

ij x
j
0 + Ai) d

i .
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16 Covariant Schrödinger operator

1.8 Gravitational and electromagnetic fields

Now, we introduce the gravitational and electromagnetic fields.

1.36 Definition. The gravitational field and the electromagnetic field are defined to
be, respectively, a Galileian spacetime connection and a scaled closed 2–form of spacetime

K\ : TE → T ∗E ⊗
TE

TTE and f : E → (L1/2 ⊗M1/2)⊗ Λ2T ∗E .

With reference to a charge q, we define the re–scaled electromagnetic field

F =
q

~
f : E → Λ2T ∗E .

C.3 Postulate. We assume a gravitational field K\ and an electromagnetic field F .

Then, it is convenient to introduce the total connection

K := K\ +Ke = K\ + (dt⊗ F̂ + F̂ ⊗ dt) , where F̂ = Gih
0 Fhµ u

0 ⊗ ∂i ⊗ dµ .

1.37 Proposition. The total connection K turns out to be Galileian.

In the following we shall refer to the total connection K.
Clearly, the objects induced on the phase space by the total connection K split into

their gravitational and electromagnetic components.
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2 Quantum structure

We are concerned with quantum mechanics of a spinless charged particle on
a curved spacetime fibred over absolute time and equipped with a given spacelike
metric, gravitational field and electromagnetic field.

This chapter is devoted to our postulates on the quantum theory and to their
first consequences. We just assume a quantum bundle, a quantum metric and a
quantum connection. All further objects are derived from them by a covariant pro-
cedure.

2.1 Quantum bundle

We start with the quantum bundle over spacetime.

Q.1 Postulate. We assume the quantum bundle to be a 1–dimensional complex bun-
dle over spacetime π : Q→ E.

Each section Ψ ∈ sec(E, Q) is called a quantum section.

Let us consider the trivial bundle L(Q) = E×
(
IR+×U(1)

)
over E of complex linear

automorphisms λ : Q→ Q over E.

2.1 Lemma. For each s ≥ r ≥ 0, we obtain the natural fibred action

νs,r : Gs(E) o
E
JrL(Q)→ JrL(Q) :

(
jsφ(e), jrλ(e)

)
7→ jr(λ ◦ φ)(e) .

2.2 Definition. For each s ≥ r ≥ 0, we define the quantum covariance bundle, of
order (s, r), to be the bundle

W(s,r)(Q) := Gs(E) o
E
JrL(Q)→ E .

2.3 Proposition. The bundle W(s,r)(Q) turns out a group bundle through the com-
position fibred morphism over E

µ(s,r) : W(s,r)(Q)×
E

W(s,r)(Q)→W(s,r)(Q) :((
js

1

φ(e), jr
1

λ(e)
)
,
(
js

2

φ(e), jr
2

λ(e)
))
7→
((
js(

1

φ ◦
2

φ)
)
(e) , jr((

2

λ ◦
1

φ) ·
1

λ)
)
(e)
)
.

For s ≥ r ≥ 0 and s− k ≥ r − h ≥ 0, we obtain a natural fibred group epimorphism
W(s,r)(Q)→W(s−k, r−h)(Q) over E.

We denote the fibred chart of W(s,r)(Q) induced by a spacetime chart (xλ) by
(xλ; g0

0,g
i
λ, . . . , giλ1...λs

; c, cλ, cλ1...λr).

SchrPap-2002-06-13.tex; [output 2009-08-28; 9:19]; p.17



18 Covariant Schrödinger operator

For instance, we obtain the following coordinate expressions

(xλ; c, cλ) ◦ ν1,1 = (xλ; c, cµ g
µ
λ)

(xλ; c, cλ, cλµ) ◦ ν2,2 = (xλ; c, cµ g
µ
λ, cρσ g

ρ
λ gσµ + cν gνλµ) .

In view of the quantum connection, we consider also the following bundle.

2.4 Definition. The extended quantum bundle is defined to be the pullback bundle
π↑ : Q↑ := J1E×

E
Q→ J1E of the quantum bundle with respect to the map J1E → E.

Here, the extended base space J1E plays the role of space of observers.

2.2 Quantum metric

Next, we introduce the Hermitian metric on the quantum bundle. In view of
the integration on the fibres of spacetime, this metric has values in the space of
spacelike volume forms.

2.5 Definition. We define a quantum metric to be a fibred Hermitian metric with
values in the complexified space of vertical volume forms h : Q×

E
Q→ C⊗ Λ3V ∗E.

2.6 Proposition. The quantum metrics are the sections of a trivial principal bundle
Met(Q)→ E, whose structure group is IR+.

Moreover, we have a natural fibred action W(1,0)(Q)×
E

Met(Q)→ Met(Q).

Q.2 Postulate. We assume a quantum metric h.

Clearly, h′ := h/η : Q×
E

Q→ L∗3 ⊗ C is a standard scaled Hermitian metric.

2.7 Definition. We define a quantum basis , to be a section b ∈ sec(E, L3/2 ⊗ Q)
such that h(b,b) = η.

If b is a quantum basis, then an associated quantum chart is defined to be a complex
linear fibred chart (xλ, z), where (xλ) is a spacetime chart and z ∈ map(Q, C⊗ L∗3/2) is
the complex dual of b.

We shall refer to quantum bases and quantum charts.

Each quantum basis b yields the real quantum basis (b1, b2) := (b, i b) and the real

quantum chart (w1, w2) =
(

1
2

(z + z̄), 1
2

(z̄ − z)
)
.

If Ψ ∈ sec(E, Q), then we write Ψ = ψb and obtain h(Φ, Ψ) = φ̄ ψ η.

Let us consider two quantum bases b and b́ and the associated fibre coordinates z
and ź. Then, we obtain b́ = eiϑ b and ź = e−iϑ z, with ϑ ∈ map(E, IR).
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J. Janyška, M. Modugno 19

Hence, the quantum bundle turns out to be a bundle associated with a principal
bundle, whose structure group is U(1).

The quantum metric h yields, by pullback, the extended quantum metric

h↑ : Q↑ ×
J1E

Q↑ → C⊗ Λ3V ∗E .

2.3 Quantum connection

Eventually, we complete the quantum framework by introducing the quantum
connection. We introduce this notion by three steps.

In our formulation we use some notions (for instance, universal connections)
which are non standard, hence deserve a clear analysis. Other notions are essentially
standard, but our setting involves some delicate aspects which need an explicit
mention.

2.3.1 Connections of the quantum bundle

First, we analyse the Hermitian connections of the quantum bundle.

2.8 Proposition. Let us refer to a quantum basis b and to an adapted quantum
chart (xλ, z). The complex linear connections Q of Q are of the type [46]

Q = χ[b] + q[b]⊗ I = dλ ⊗ ∂λ + qλ z dλ ⊗ b ,

where χ[b] is the flat connection induced by b, I = z ⊗ b is the Liouville vector field of
Q and q[b] ≡ qλ dλ ∈ sec(E, C⊗ T ∗E) is a complex spacetime form.

2.9 Corollary. The complex linear connections of Q are the sections of a bun-
dle Con(Q) → E. Moreover, each quantum basis b yields a local fibred isomorphism
Con(Q)→ C⊗ T ∗E over E.

2.10 Definition. A complex linear connection Q of Q is said to be Hermitian if
∇h = 0, where ∇ is the covariant differential induced by Q and K.

Indeed, we are involved also with K because h has values in C⊗ Λ3V ∗E.

2.11 Proposition. Let us refer to a quantum basis b and to an adapted quantum
chart (xλ, z). The Hermitian connections Q of Q are of the type [46]

Q = χ[b] + iA[b]⊗ I = dλ ⊗ ∂λ + iAλ d
λ ⊗ I ,

where A[b] ≡ Aλ d
λ ∈ sec(E, T ∗E) is a spacetime form, called the potential of Q.
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20 Covariant Schrödinger operator

2.12 Corollary. Let us consider a Hermitian connection Q of Q. Then, with reference
to two quantum bases b and b́ = exp(iϑ) b, we obtain the transition mapA[b́] = A[b]−dϑ.

Hence, with reference to adapted quantum charts (xλ, z) and (x́λ, ź), we obtain the
transition maps Ái = (Aj − ∂jϑ)σji and Á0 = (A0 − ∂0ϑ)σ0

0 + (Aj − ∂jϑ)σj0.

2.13 Corollary. The Hermitian connections of Q are the sections of a bundle
Her (Q) → E. Moreover, each quantum basis b yields locally a fibred isomorphism
Her (Q)→ T ∗E over E.

Analogous notions and constructions hold for the connections of the extended quantum
bundle.

2.3.2 Universal connections of the extended quantum bundle

Next, we introduce the notion of universal connection [41, 46].

2.14 Proposition. Let {
o

Q} ≡ {Q[o]} be a “system” of complex linear connections
of the quantum bundle parametrised by the observers o ∈ sec(E, J1E).

Then, there is a unique complex linear connection Q↑ of the extended quantum bundle,
called universal , such that Q[o] = o∗Q↑, for each o.

Now, let us consider a quantum basis b and denote by q[b, o] ∈ sec(E, C ⊗ T ∗E)
the complex form associated with the connection Q[o]. Then, there is a unique horizontal
complex phase form q↑[b] = q↑λ dλ ∈ fib(J1E, C⊗ T ∗E), such that q[b, o] = q↑[b] ◦ o.

Hence, the expression of Q↑ is

Q↑ = χ↑[b] + q↑[b]⊗ I↑ = dλ ⊗ ∂λ + di0 ⊗ ∂0
i + q↑λ dλ ⊗ I↑ ,

where χ↑[b] is the flat Hermitian connection induced by b and I↑ = z⊗ b is the Liouville
vector field of Q↑.

Conversely, each complex linear connection Q↑ of Q↑ of the above type yields a system
of complex linear connections of Q, whose universal connection is Q↑.

2.15 Proposition. If {Q[o]} is a system of complex linear connections of the quan-

tum bundle, then we obtain R
[
Q[o]

]
= o∗R[Q↑], for each observer o.

2.16 Corollary. The universal connections of Q↑ are the sections of a bundle
Uni(Q↑) → J1E. Moreover, each quantum basis b yields a local fibred isomorphism
Uni(Q↑)→ C⊗ (J1E ×

E
T ∗E) over J1E.

2.17 Definition. A complex linear connection Q↑ of Q↑ is said to be Hermitian if
∇h↑ = 0, where ∇ is the covariant differential induced by Q↑ and K.
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2.18 Corollary. The Hermitian connections of Q↑ are the sections of a bundle
Her (Q↑) → J1E. Moreover, each quantum basis b yields a local fibred isomorphism
Her (Q↑)→ T ∗J1E over J1E.

2.19 Proposition. Let {Q[o]} be a system of complex linear connections of Q and
Q↑ its universal connection. Then, the connections {Q[o]} are Hermitian if and only if
Q↑ is Hermitian.

2.20 Corollary. Let us refer to a quantum basis b and to an adapted quantum chart
(xλ, z). Then, the Hermitian universal connections Q↑ of Q↑ are of the type [46]

Q↑ = χ↑[b] + iA↑[b]⊗ I↑ = dλ ⊗ ∂λ + di0 ⊗ ∂0
i + iA↑λ d

λ ⊗ I↑ ,

where A↑[b] ≡ A↑λ d
λ ∈ sec(J1E, T

∗E) is a horizontal phase form.

2.21 Corollary. Let us consider a universal Hermitian connection Q↑ of Q↑. Then,
two quantum bases b and b́ = exp(iϑ) b yield the transition map A↑[b́] = A↑[b] −
dϑ. Hence, with reference to adapted quantum charts (xλ, z) and (x́λ, ź), we obtain the
transition maps Á↑i = (A↑j − ∂jϑ)σji and Á↑0 = (A↑0 − ∂0ϑ)σ0

0 + (A↑j − ∂jϑ)σj0.

2.22 Corollary. The universal Hermitian connections of Q↑ are the sections of the
bundle Uni(Q↑)∩Her (Q↑)→ J1E. Moreover, each quantum basis b yields a local fibred
isomorphism Uni(Q↑) ∩ Her (Q↑)→ J1E ×

E
T ∗E over J1E.

2.3.3 Quantum connections

Eventually, we introduce the notion of quantum connection.

Now, we take into account the vertical metric G the total connection K and the
induced cosymplectic 2–form Ω.

2.23 Definition. We define [46, 49] a quantum connection to be a connection Q↑ of
the extended quantum bundle which is universal, Hermitian and whose curvature is

R[Q↑] = −2 i Ω⊗ I↑ .

We recall that Ω includes m/~ through the re–scaled metric G and that it includes
both the gravitational and electromagnetic fields through the total connection K.

2.24 Proposition. Let {Q[o]} be a system of Hermitian connections and Q↑ its
universal connection. Then, the following conditions are equivalent:

a) R[Q↑] = −2 i Ω⊗ I↑;
b) R

[
Q[o]

]
= −2 i o∗Ω⊗ I, for each observer o.

SchrPap-2002-06-13.tex; [output 2009-08-28; 9:19]; p.21



22 Covariant Schrödinger operator

2.25 Proposition. A quantum connection Q↑ exists locally. Indeed, with reference
to a quantum basis b, its local expression is of the type

Q↑ = χ↑[b] + iA↑[b]⊗ I↑ = dλ ⊗ ∂λ + di0 ⊗ ∂0
i + iA↑λ d

λ ⊗ I↑ , with dA↑[b] = Ω .

Hence, for each observer o, if we set A[b, o] := o∗A↑[b] = Aλ d
λ, then we obtain

A↑[b] ≡ A↑λ d
λ = −(1

2
G0
ij x

i
0 x

j
0 − A0) d0 + (G0

ij x
j
0 + Ai) d

i , with dA[b, o] = Φ[o] .

2.26 Corollary. If Q↑ is a quantum connection, then, for each quantum basis b, A↑[b]
turns out to be a horizontal potential of Ω, whose gauge is determined by b. Moreover,
for each observer o, A[b, o] turns out to be a potential of K.

2.27 Corollary. Let us consider a quantum connection Q↑, two quantum bases b,
b́ = exp(iϑ) b and two observers o, ó = o+ v. Then, we obtain the transition map

A[b́, ó] = A[b, o]− 1
2
G(v, v) + ν[o] yG[(v)− dθ .

Thus, each connection of the system determines all others by the above formula.

2.28 Corollary. The transition maps of Corollary 2.27 well define a fibred group
action T(E)×

E

(
J1E ×

E
Met(E)×

E
Her (Q)

)
→ J1E ×

E
Met(E)×

E
Her (Q) over E.

2.29 Corollary. The quantum connections are the sections of a bundle Con(Q↑) over
spacetime. We have a natural fibred group action W(1,1)(Q)×

E
Con(Q↑)→ Con(Q↑).

2.30 Note. The condition R[Q↑] = −2 i Ω ⊗ I↑ has reduced the base space of the
bundle of universal Hermitian connections from the phase space to spacetime.

2.31 Corollary. For each quantum basis b and observer o, we have the fibred iso-
morphism Con(Q↑)→ T ∗E : Q↑ 7→ A[b, o].

Thus, given a quantum connection, the choice of a quantum basis b turns out to be
another way to control the gauge of classical potentials.

2.32 Proposition. Let Q↑ be a quantum connection and b a quantum basis. Then,

there is a unique observer o[b], such that the vertical restriction
∨
A
[
b, o[b]

]
vanishes.

Indeed, if o is any observer, then we obtain o[b] = o−G](A[b, o]).

2.33 Corollary. Let Q↑ be a quantum connection and Ψ a quantum section. Then,
in the domain where Ψ 6= 0, we obtain the distinguished observer o[Ψ] := o[b], where

b := Ψ/
√

h′(Ψ,Ψ).
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2.34 Theorem. [99] A quantum connection Q↑ exists globally if and only if the co-
homology class of Ω is integer.

Q.3 Postulate. We suppose that the quantum bundle admits quantum connections
and assume a quantum connection Q↑.

2.35 Note. The equality dΩ = 0, which is a consequence of our assumption that K be
Galileian, turns out to be an integrability condition for the equation R[Q↑] = −2 i Ω⊗ I↑,
in virtue of the Bianchi identity for R[Q↑].

On the other hand, if we would have just assumed that K be a metric spacetime con-
nection, then the assumption of a quantum connection would imply that K be Galileian.

2.3.4 Quantum differentials

The quantum connection Q↑, the Galileian connection K and the spacelike
metric G yield distinguished differential operators.

2.36 Proposition. Given Ψ ∈ sec(E, Q) and o ∈ sec(E, J1E), we obtain the fol-
lowing objects:

- the quantum differential related to Q↑

∇Ψ = (∇λψ) dλ ⊗ b , with ∇λψ := (∂λ − i A↑λ)ψ ;

- the observed quantum differential related to Q↑ and o

o

∇Ψ = (
o

∇λψ) dλ ⊗ b , with
o

∇λψ := (∂λ − i Aλ)ψ ;

- the time–like quantum differential related to Q↑

∇̂Ψ := d y∇Ψ =
(
∂0 + xj0 ∂j − iL0

[
A↑[b]

])
ψ u0 ⊗ b ;

- the space–like quantum differential related to Q↑

∨
∇Ψ =

(
∂j − iPj

[
A↑[b]

])
ψ ďj ⊗ b ;

- the observed 2nd quantum differential related to Q↑, K and o

o

∇
o

∇Ψ =
o

∇λµ ψ d
λ ⊗ dµ ⊗ b , with

o

∇λµψ = (
o

∇λ

o

∇µ +Kλ
j
µ

o

∇j)ψ ;

- the observed quantum Laplacian related to G, Q↑, K and o

o

∆Ψ := 〈Ḡ,
o

∇
o

∇Ψ〉 = (
o

∆0 ψ)u0 ⊗ b , with
o

∆0ψ = Ghk
0 (

o

∇h

o

∇k + κh
j
k

o

∇j)ψ ,

where we refer to a quantum basis b, to an observer o and to an adapted chart (xλ, z).
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24 Covariant Schrödinger operator

Analogously, we obtain the quantum differentials and quantum Laplacians of sections
of the real dual quantum bundle Q∗ → E.

For each Ψ ∈ sec(E, Q), we have (re h)[(
o

∆Ψ) =
o

∆
(
(re h)[Ψ

)
.

Later, we shall be involved with the following technical result.

2.37 Lemma. Given two observers o and ó = o+ v, we obtain

ó

∇ =
o

∇+ i 1
2
G (v, v)− i ν∗[o] (G[(v))

ó y
ó

∇ = o y
o

∇− i 1
2
G(v, v) + v y

o

∇
ó

∆ =
o

∆− 2 i v y
o

∇− i (C1
1 ∇v)−G(v, v) .
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3 Quantum dynamics

This chapter is devoted to the derivation of the Schrödinger operator and the
related stuff from the quantum metric and the quantum connection.

We follow two approaches via covariant differentials and covariant Lagrangian.
In both cases, we use a projectability criterion as heuristic method. Namely, we

start from objets living on the classical phase space, because this is the seat of the
quantum connection; then, we look for the combinations of the above objects which
project on spacetime. This procedure means that we get rid of observers. Indeed,
this turns out to be an implementation of the principle of general relativity.

3.1 Differential approach

The quantum connection and the method of projectability yield good candidates
for the quantum momentum, the Schrödinger operator and the probability current.

3.1 Proposition. For each Ψ ∈ sec(E, Q), we have the two distinguished maps
leaving on the classical phase space:

d⊗Ψ = ψ u0 ⊗ (∂0 + xi0 ∂i)⊗ b (1)

G](∇Ψ) =
(
Gij

0 ∂j − i (xi0 + Ai0)
)
ψ u0 ⊗ ∂i ⊗ b . (2)

Then, we obtain the section on spacetime

P[Ψ] := d⊗Ψ− iG](∇Ψ) = u0 ⊗
(
ψ ∂0 − iGij

0 (∂j − iAj)ψ ∂i
)
⊗ b .

Thus, we obtain, in a covariant way, a global, gauge independent and observer inde-
pendent 1st order operator P : J1Q→ T∗ ⊗ (TE ⊗

E
Q), called quantum momentum.

3.2 Note. If Ψ 6= 0, then we obtain the section

W[Ψ] :=
P[Ψ]

Ψ
=

h(Ψ, P[Ψ])

h(Ψ, Ψ)
= o[Ψ] +

G](

∨
o

∇Ψ)

Ψ
= u0 ⊗ (∂0 − Ai0 ∂i)− i

Gij
0 ∂jψ

ψ
∂i .

The real component re W[Ψ] = u0 ⊗ (∂0 −Ai0 ∂i) + i 1
2
Gij

0
ψ ∂j ψ̄−ψ̄ ∂jψ

ψ̄ ψ
u0 ⊗ ∂i turns out

to be a distinguished observer associated with Ψ (see also Corollary 2.33).

3.3 Proposition. For each quantum section Ψ, we have the two distinguished maps
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26 Covariant Schrödinger operator

leaving on the classical phase space:

d y∇Ψ = (∂0ψ + xh0 ∂hψ − iL0

[
A↑[b]

]
)ψ u0 ⊗ b (1)

δP[Ψ] =
(
∂0 − 2 iA0 +

∂0

√
|g|√
|g|
− i

o

∆− xh0 ∂h + iL0

[
A↑[b]

])
ψ ⊗ u0 ⊗ b , (2)

where δ denotes the quantum codifferential. Then, we obtain the section on spacetime

S[Ψ] := 1
2

(d y∇Ψ + δP[Ψ]) =
(
o

∇0 + 1
2

(divη o)0 − i 1
2

o

∆0

)
ψ u0 ⊗ b ,

where divη o =
∂0
√
|g|√
|g|

u0.

Thus, we obtain, in a covariant way, a global, gauge independent and observer inde-
pendent 2nd order operator S : J2Q→ T∗ ⊗Q, called Schrödinger operator .

3.4 Note. We can write S[Ψ] = (re h)]
(
o

δ− 1
2
i
o

∆
)

(re h)[(Ψ), where
o

δ denotes the Lie

derivative with respect to the quantum prolongation of the observer o. Clearly,
o

δ and
o

∆
depend on o, but the above combination turns out to be observer independent.

3.5 Note. Given any observer o, the Schrödinger operator can be written as

S[Ψ] = 1
2

(d y∇Ψ + δP[Ψ]) ◦ o ,

where (d y∇Ψ) ◦ o = o y
o

∇Ψ and (δP[Ψ]) ◦ o = −i
o

∆Ψ + o y
o

∇Ψ + C1
1 (∇o) Ψ.

Clearly, (d y∇Ψ) ◦ o and (δP[Ψ]) ◦ o depend on o, but the above combination turns
out to be observer independent.

We recall that the observed quantum Laplacian includes m/~ through the re–scaled
metric G. Moreover, we recall that the quantum potential A[b, o] includes both the grav-
itational and electromagnetic potentials.

Clearly, in the flat case, S reduces to the standard Schrödinger operator.

3.6 Proposition. The scalar curvature of G yields, in a covariant way, the time scale
r : E → T̄∗. Hence, for each k ∈ IR, we obtain the extended map

S(k)[Ψ] := S[Ψ]− i 1
2
k r ⊗Ψ .

Thus, we obtain, in a covariant way, a global, gauge independent and observer inde-
pendent 2nd order operator S(k) : J2Q→ T∗⊗Q, called extended Schrödinger operator .

3.7 Note. We have considered an imaginary coefficient −i 1
2
k in order to obtain later

a Hermitian connection on the quantum Hilbert bundle from the extended Schrödinger
operator. There is no way to determine k by means of covariance arguments.
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We stress that S involves only the 1st derivatives of the metric, while S(k) involves
the 2nd derivatives of the metric. The above additional term arises also in the Feynmann
integral approach to the Schrödinger operator. It seems that in this context the coefficient
k could be determined. However, there is no definite agreement on its value. On the other
hand, if the scalar curvature is constant, then the additional term produces an overall
shift in the energy spectrum, which can be hardly detected.

Clearly, in the flat case the additional term −i 1
2
k r ⊗Ψ vanishes.

3.8 Proposition. For each quantum section Ψ, we obtain the scaled vector field

j[Ψ] := 1
2

(
h′
(
Ψ,P[Ψ]

)
+ h′

(
P[Ψ],Ψ

))
= (ψ̄ ψ)u0 ⊗ ∂0 +Ghk

0

(
i 1

2
(ψ ∂hψ̄ − ψ̄ ∂hψ)− Ah ψ̄ ψ)

)
u0 ⊗ ∂k .

Thus, we obtain, in a covariant way, a global, gauge independent and observer inde-
pendent 1st order operator j : J1Q→ (T∗ ⊗ L∗3)⊗ TE, called probability current .

3.9 Proposition. For each quantum section Ψ and for each k ∈ IR, we obtain δj[Ψ] =

h′
(
Ψ,S(k)[Ψ]

)
+ h′

(
S(k)[Ψ],Ψ

)
, where δ denotes the codifferential of j[Ψ].

Hence, the quantum probability current is conserved along the solutions of the ex-
tended Schrödinger equation.

3.2 Lagrangian approach

The quantum connection and the method of projectability yield good candi-
dates for the quantum Lagrangian, hence for the derived quantum momentum,
Schrödinger operator and probability current.

3.10 Proposition. For each Ψ ∈ sec(E, Q), we have the two distinguished maps
leaving on the classical phase space:

L̂[Ψ] := dt ∧
(
h(∇̂Ψ,Ψ)− h(Ψ, ∇̂Ψ)

)
= (1)

=
(
(ψ ∂0ψ̄ − ψ̄ ∂0ψ) + 2 iA0 ψ̄ ψ − xi0 (ψ̄ ∂iψ − ψ ∂iψ̄) + 2 i (1

2
G0
ij x

i
0 x

j
0 + xi0Ai) ψ̄ ψ

)
υ0 ,

∨
L[Ψ] := i dt ∧

(
(Ḡ⊗ h)(

∨
∇Ψ,

∨
∇Ψ)

)
= (2)

=
(
iGij

0 (∂iψ̄ ∂jψ + AiAj ψ̄ ψ)− Ai0 (ψ̄ ∂iψ − ψ ∂iψ̄)

−xi0 (ψ̄ ∂iψ − ψ ∂iψ̄) + i (G0
ij x

i
0 x

j
0 + 2xi0Ai) ψ̄ ψ

)
υ0 .

Then, we obtain the section on spacetime

L[Ψ] := 1
4
dt ∧

(
h(Ψ, ∇̂Ψ)− h(∇̂Ψ,Ψ)− i (Ḡ⊗ h)(

∨
∇Ψ,

∨
∇Ψ)

)
= 1

4

(
(ψ ∂0ψ̄ − ψ̄ ∂0ψ) + 2 iA0 ψ̄ ψ − iGij

0 (∂iψ̄ ∂jψ + AiAj ψ̄ ψ) + Ai0 (ψ̄ ∂iψ − ψ ∂iψ̄)
)
υ0 .
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28 Covariant Schrödinger operator

Thus, we obtain, in a covariant way, a global, gauge independent and observer inde-
pendent 1st order imaginary operator L : J1Q→ i Λ4TE, called quantum Lagrangian.

The normalising coefficient 1
4

has been chosen in view of next developments.

3.11 Proposition. The scalar curvature of G yields, in a covariant way, the time
scale r : E → T̄∗. Hence, for each k ∈ IR we obtain the extended map

L(k)[Ψ] := L[Ψ] + i k r ∧ h(Ψ,Ψ) .

Thus, we obtain, in a covariant way, a global, gauge independent and observer indepen-
dent 1st order operator, called extended quantum Lagrangian, L(k) : J1Q→ i Λ4T ∗E.

3.12 Corollary. For each k ∈ IR, the momentum associated with the extended quan-
tum Lagrangian turns out to be given by (re h)](V0L) = (re h)](V0L(k)) = 1

2
P.

3.13 Corollary. The Euler–Lagrange operator associated with the extended quan-
tum Lagrangian turns out to be given by S(k) = (re h)]

(
E[L(k)]

)
.

3.14 Corollary. The Poincaré–Cartan form associated with the extended quantum
Lagrangian turns out to be the map

Θ[L(k)] := L(k) + θ∗(V0L(k))

=
(

1
8
Ghk

0 (zh zk − z̄h z̄k) + (A0 − 1
2
Ah0 Ah + 1

2
k r0) z z̄

)
∧ υ0

+1
2

(z dz̄ − z̄ dz) ∧ υ0
0 − 1

2
Ghk

0

(
i (zh dz̄ + z̄h dz) + Ah (z dz̄ − z̄ dz)

)
∧ υ0

k .

3.15 Proposition. The extended quantum Lagrangian is equivariant with respect to
the action of the group U(1). Hence, the vertical vector field i I = i z b is an infinitesimal
symmetry of the extended quantum Lagrangian.

3.16 Corollary. For each k ∈ IR, the current

i(i I)Θ[L(k)] = i(i I)Θ[L] = (z z̄) v0
0 +Ghk

0

(
i 1

2
(z z̄h − z̄ zh)− Ah z z̄

)
υ0
k

is conserved along the solutions of the extended Schrödinger equation. Actually, we obtain
i(i I)Θ[L] = i(j) υ.

3.3 Uniqueness by covariance

We have found a Schrödinger operator and a quantum Lagrangian by a covari-
ant geometric procedure and we have shown that the Schrödinger operator can be
derived from the quantum Lagrangian. Then, the following natural questions arise:

- are there other possible covariant Schrödinger operators?
- are there other possible covariant quantum Lagrangians?
- are all covariant Schrödinger operators derived from a quantum Lagrangian?
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We answer these questions by proving that, under reasonable weak conditions
concerning the order of derivatives, our Schrödinger operator and our quantum
Lagrangian are essentially unique, provided they are covariant with respect to the
quantum covariance group and to the change of time scale.

3.3.1 Covariant operators

First of all, we recall the notion of covariance and formulate our general problem.

Let us consider two fibred manifolds p : F → B and p′ : F ′ → B equipped with
fibred actions G×

B
F → F and G×

B
F ′ → F ′ of a group bundle q : G→ B.

Moreover, let us consider a subsheaf s̃ec(B, F ) ⊂ sec(B, F ), which is invariant with
respect to the action of G.

3.17 Definition. We define an r–order covariant fibred morphism to be a fibred
morphism φ : JrF → F ′, which is equivariant with respect to the fibred action of the
group bundle G → B. Moreover, we define an r–order covariant operator to be a sheaf
morphism O : s̃ec(B, F ) → sec(B, F ′), which factorises as O = φ ◦ jk, where φ is an
r–order covariant fibred morphism.

In the previous sections, we have assumed a spacelike metric, a gravitational field,
an electromagnetic field, a quantum metric and a quantum connection. Now, in order to
prove the above uniqueness theorems, we need to consider the above objects as variables.

So, here we assume the spacetime fibred manifold t : E → T and the quantum bundle
π : Q→ E and consider:

- the bundle Met(E) of re–scaled spacelike metrics G,

- the bundle Con(E) of spacetime connections K,

- the bundle Met(Q) of quantum metrics h,

- the bundle Uni(Q↑) of universal connections Q↑.

We could define the covariant operators dealing directly with the universal connection
Q↑, but we would meet cumbersome constructions, because this connection lives on the
classical phase space. Then, it is more convenient to deal with the system of connections

{
o

Q} and their transitions maps, as they live on spacetime.

Therefore, we introduce the following preliminary notions.

3.18 Definition. We define the sheaf of observed fundamental fields to be the sheaf
o

fields(Q) ⊂ sec
(
E, J1E×

E
Met(E)×

E
Con(E)×

E
Met(Q)×

E
Con(Q)

)
, which is constituted

by all (o , G , K , h , Q) fulfilling the fundamental identities

∇[K]G = 0 , dΩ[G,K] = 0 , ∇[Q] h = 0 , R[Q] = −2 i o∗Ω[G,K]⊗ I .

SchrPap-2002-06-13.tex; [output 2009-08-28; 9:19]; p.29



30 Covariant Schrödinger operator

Moreover, for each integer 0 ≤ r, we set

o

fieldsr(Q) :=
{

(jr−1o , jrG , jr−1K , jrh , jr−1Q) | (o , G , K , h , Q) ∈
o

fields(Q)
}

and denote the corresponding jet prolongation by jr :
o

fields(Q)→
o

fieldsr(Q).

Now, let us consider a fibred manifold F → E, with a fibred action of the group bundle

W(1,0)(Q) and G(T), and a sheaf morphism O :
o

fields(Q)× sec(E, Q)→ sec(E, F ).

3.19 Definition. We say that O is:
- of order r , if it factorises as O = Or ◦ jr through the r–jet prolongation of sections;
- covariant if it is invariant with respect to the fibred action of the transition group

bundle T(E) and, for each observer o, the induced sheaf morphism
o

O := O (o , · ) is
covariant with respect to the fibred action of the group bundles W(s,r)(Q) and G(T).

Hence, if O is covariant and (G , K , h , Q↑) are the postulated fundamental fields,

then the sheaf morphism O := O (o ,G , K , h ,
o

Q , ·) : sec(E, Q)→ sec(E, F ) does not
depend on the choice of the observer o.

3.3.2 Schrödinger operator

We prove that all 2nd order Schrödinger operators are a complex linear combi-
nation of the Schrödinger operators exhibited in Propositions 3.3 and 3.6.

3.20 Definition. We define a Schrödinger operator to be a sheaf morphism

O :
o

fields(Q)× sec(E, Q)→ sec(E, T∗ ⊗Q) .

3.21 Theorem. All 2nd order covariant Schrödinger operators

O : sec(E, Q)→ sec(E, T∗ ⊗Q)

are of the type O(Ψ) = α S[Ψ] + β rΨ, with α, β ∈ C.

Proof. Let O :
o

fields(Q) × sec(E, Q) → sec(E, T∗ ⊗ Q) be a 2nd order covariant Schrödinger
operator.

1) In virtue of the “orbit reduction theorem” [63], implemented by considering the fibred group epi-
morphism W(3,2)(Q)→W(1,0)(Q), we can express O, through the covariant differentials and curvatures,

as O
(
o , G , K , h ,

o

Q , Ψ
)

= O′
(
∇(1) o , ∇(2)G , R[K] ,

o

∇(2) h , R[
o

Q] ,
o

∇(2) Ψ
)
, where the covariant

differentials are performed with respect to K and
o

Q, as appropriate, we have set

∇(1)o := (o, ∇o) , ∇(2)G := (G, ∇G, ∇∇G) , . . . ,
o

∇(2)Ψ := (Ψ,
o

∇Ψ,
o

∇
o

∇Ψ) ,
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the sheaf morphism O′ is invariant with respect to the fibred action of the group bundle T(E) and, for

each observer o, the induced sheaf morphism
o

O′ is covariant with respect to the fibred actions of the
group bundles W(1,0)(Q) and G(T).

2) By considering the fundamental identities, we can express O, as

O
(
o , G , K , h ,

o

Q , Ψ
)

= O′′
(
∇(1)o , G , R[K] , h , o∗Ω[G,K] ,

o

∇(2) Ψ
)
,

where, for each observer o, the induced sheaf morphism
o

O′′ is covariant with respect to the fibred actions
of the group bundles W(1,0)(Q) and G(T).

3) Let us consider the Hermitian metric h̃ := h/η[G], where η[G] : E → T3/2 ⊗Λ3V ∗E is the scaled
volume form associated with G.

In virtue of the “homogeneous function theorem” [63], implemented by considering the subbundle
E× IR+ ⊂W(1,0)(Q) of real homotheties of Q, the sheaf O can be expressed as a polynomial of the type

O
(
o , G , K , h ,

o

Q , Ψ
)

=
∑

0≤i,j≤2
0≤h

0≤k≤2

Ahkij
(
∇(1)o , G , R[K] , o∗Ω[G,K]

) (
h̃ (

o

∇iΨ,
o

∇jΨ)
)h o

∇kΨ ,

where the coefficients Ahkij are T∗(1−3h/2)–valued tensors of E, which are covariant with respect to G1(E).

4) In virtue of the “homogeneous function theorem” and the “metric covariant function” [63], imple-
mented by considering the covariance of O with respect to the fibred action of the group bundle G(T),
the covariance of Ahkij with respect to the fibred action of the group bundle G1(E), and by counting the
contravariant and covariant indices of the objects we are dealing with, we can express O as

O
(
o , G , K , h ,

o

Q , Ψ
)

= a (C1
1∇o) Ψ + b o y

o

∇Ψ + c Ḡ (
o

∇
o

∇Ψ) + d r[G] Ψ , a, b, c, d ∈ C .

5) In virtue of Lemma 2.37, the invariance of
o

O with respect to the fibred action of the group bundle
T(E) yields a = i c and b = 2 i c. Hence

O
(
o , G , K , h ,

o

Q , Ψ
)

= c
(
(iC1

1 ∇o) Ψ + 2 i o y
o

∇Ψ + Ḡ (
o

∇
o

∇Ψ)
)

+ d r[G] Ψ
= 2 i cS[Ψ] + d r[G] Ψ , c, d ∈ C ,

and putting α = 2 i c , β = d we get the Theorem, by observing that C1
1 ∇o = divη o. QED

3.22 Remark. If our quantum system would be involved with a “fundamental” dis-
tinguished time scale, then we could not require the covariance of the Schrödinger operator
with respect to the change of time scale. In such a case, the step 4) of the above proof
would be weaker and we would obtain many more solutions of our problem.

For instance, by postulating a distinguished fundamental time scale τ ∈ T∗, any
additional term of the type f◦

(
τ ∗3/2⊗h̃(Ψ,Ψ)

)
τ⊗Ψ ∈ sec(E, T∗⊗Q), where f : C→ C is

any function, would still yield a covariant Schrödinger operator, according to the weakened
definition of covariance.

Equivalent considerations hold for a possible distinguished length scale, as time scales
and length scales can be related by the fundamental constant ~/m ∈ T∗ ⊗ L2.
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32 Covariant Schrödinger operator

3.3.3 Quantum Lagrangian

We prove that all 2nd order quantum Lagrangians are essentially 1st order
operators and are proportional to the Lagrangian exhibited in Proposition 3.11.

3.23 Definition. We define a quantum Lagrangian to be a sheaf morphism

O :
o

fields(Q)× sec(E, Q)→ sec(E, i Λ4T ∗E) .

3.24 Theorem. All 2nd order covariant quantum Lagrangians

O : sec(E, Q)→ sec(E, i Λ4T ∗E)

are of the type

O(Ψ) = aL(k)[Ψ]

+ 1
4
b dt ∧

(
h(Ψ,S[Ψ])− h(S[Ψ],Ψ)

)
+ 1

4
c i dt ∧

(
h(S[Ψ],Ψ) + h(Ψ,S[Ψ])

)
,

with a, b, c, k ∈ IR.

Proof. 1) By a procedure analogous to that of Theorem 3.21, we can prove that all 2nd order
covariant Lagrangians can be expressed as a polynomial of the type

O
(
o , G , K , h ,

o

Q , Ψ
)

= i
∑

0≤i,j≤2
0≤h

Ahij0
(
∇(1)o , G , R[K] , o∗Ω[G,K]

) (
h̃ (

o

∇iΨ,
o

∇jΨ)
)h
υ0 ,

where υ[G] : E → T5/2 ⊗ Λ4T ∗E is the scaled volume form induced by G, and where the coefficients
Ahij0 are T∗q–valued tensors of E, with an appropriate rational number q, and are covariant with respect
to G1(E).

2) In virtue of the “homogeneous function theorem” and the “metric covariant function” [63], imple-
mented by considering the covariance of O with respect to the fibred action of the group bundle G(T),
the covariance of Ahij0 with respect to the fibred action of the group bundle G(E), and by counting the
contravariant and covariant indices of the objects we are dealing with, we can express O as

O
(
o , G , K , h ,

o

Q , Ψ
)

=

= iα (C1
1∇o) dt ∧ h (Ψ,Ψ) + i γ dt ∧ Ḡ (

o

∇Ψ,
o

∇Ψ) + i ε r[G] dt ∧ h (Ψ, Ψ)

+ β
(
dt ∧ h (o y

o

∇Ψ, Ψ)− dt ∧ h (Ψ, o y
o

∇Ψ)
)

+ iβ′
(
dt ∧ h (o y

o

∇Ψ, Ψ) + dt ∧ h (Ψ, o y
o

∇Ψ)
)

+ δ
(
dt ∧ h (

o

∆Ψ, Ψ)− dt ∧ h (Ψ,
o

∆Ψ)
)

+ i δ′
(
dt ∧ h (

o

∆Ψ, Ψ) + dt ∧ h (Ψ,
o

∆Ψ)
)
,

α, β, β′, γ, δ, δ′, ε ∈ IR .

3) In virtue of Lemma 2.37, the invariance of
o

O with respect to the fibred action of the group bundle
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T(E) yields the following identities α = −2 δ, β = 2 δ′ − γ and β′ = −2 δ. Hence

O
(
o , G , K , h ,

o

Q , Ψ
)

= −4 γ L[Ψ]− i ε r[G]⊗ dt ∧ h (Ψ, Ψ)

+ 2 i δ dt ∧
(
h (S[Ψ], Ψ) + h (Ψ, S[Ψ])

)
+ 2 δ′ dt ∧

(
h (S[Ψ], Ψ)− h (Ψ, S[Ψ])

)
γ, δ, δ′, ε ∈ IR .

Then, putting a = −4 γ , ε = −k a , b = −8 δ′ , c = 8 δ, we get the Theorem. QED

3.25 Note. The Euler–Lagrange operator associated with the 2nd order covariant
quantum Lagrangian exhibited in the above Theorem is E[L] = (a+ b) S(k).

Hence, the 2nd order terms in the above Lagrangian are not physically relevant.

3.3.4 Schrödinger operator on the functional quantum bundle

We introduce briefly the functional quantum bundle and prove that all covariant
Schrödinger operators which induce Hermitian operators on the functional quantum
bundle coincide with our distinguished Schroedinger operator.

3.26 Definition. We define the (infinite dimensional) functional quantum bundle
H → T to be the fibred set over T , whose fibres are constituted by the compact support
smooth sections, at fixed time, of the quantum bundle (“regular sections”).

This bundle has no distinguished splittings into time and type fibre; such a splitting
can be obtained by choosing a classical observer.

The quantum metric h equips the functional quantum bundle with a pre–Hilbert
metric 〈 | 〉. Then, a true Hilbert bundle can be obtained by a completion procedure.

The functional quantum bundle is naturally endowed with a “smooth” structure in
the sense of A. Frölicher [40], which allows us to introduce standard geometric notions
such as tangent space, connections and so on [46].

Each regular section Ψ of Q can be regarded as a section Ψ̂ of H . Accordingly, each
“regular” operator O : sec(E, Q) → sec(E, Q) can be regarded as a fibred morphism
Ô : H →H over T .

In particular, the operator Ô associated with a Schrödinger operator can be regarded
as the covariant differential of a linear connection of the functional quantum bundle.

3.27 Definition. A fibred morphism Ô : H →H over T is said to be Hermitian, if
for each Φ̂, Ψ̂ ∈ sec(T , H), we have d 〈Φ̂ | Ψ̂〉 = 〈Ô (Φ̂) | Ψ̂〉+ 〈Φ̂ | Ô (Ψ̂)〉.

3.28 Theorem. All 2nd order covariant Schrödinger operators O, such that Ô is
Hermitian, are of the type O(Ψ) = S(k)[Ψ], with k ∈ IR.

Proof. Let Φ̂, Ψ̂ ∈ Sec(T , H).
By considering the trivialisation of H → T induced by any global observer o, we obtain

d 〈Φ |Ψ〉 =
∫
Lo
(
h(Φ, Ψ)

)
=
∫
∂0(φ̄ ψ) η +

∫
φ̄ ψ Lo η .
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Moreover, we have 〈
ô

∇ (Φ̂) | Ψ̂〉 = 〈Φ̂ |
ô

∇ (Ψ̂)〉.
According to Theorem 3.21, let us consider the most general 2nd order covariant Schrödinger operator

O (Ψ) = α
( o
∇0 + 1

2 (divη o)0 − i 1
2

o

∆0

)
ψ u0 ⊗ b + β rΨ, with α, β ∈ C. Then, we obtain

〈Ô (Φ̂) | Ψ̂〉+ 〈Φ̂ | Ô (Ψ̂)〉 = re (α)
∫ (

∂0(φ̄ ψ) + φ̄ ψ (divη o)0
)
η + re (β)

∫
φ̄ ψ r η

+ im (α)
∫ (

2A0 φ̄ ψ + 1
2 (

o

∆0 φ̄)ψ + 1
2 φ̄ (

o

∆0 ψ)
)
η

= re (α) d 〈Φ |Ψ〉+ re (β)
∫
φ̄ ψ r η

+ im (α)
∫ (

2A0 φ̄ ψ + 1
2 (

o

∆0 φ̄)ψ + 1
2 φ̄ (

o

∆0 ψ)
)
η .

Hence, Ô is Hermitian if and only if re (α) = 1, im (α) = 0 and re (β) = 0. QED
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[46] A. Jadczyk, J. Janyška, M. Modugno: Galilei general relativistic quantum mechanics revisited ,
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[64] D. Krupka, J. Janyška: Lectures on Differential Invariants, Folia Fac. Sci. Nat. Univ. Purkyni-
anae Brunensis, Brno, 1990.
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