
Classification of infinitesimal symmetries
in covariant classical mechanics

Marco Modugno1, Dirk Saller2, Jürgen Tolksdorf3

1Department of Applied Mathematics, University of Florence

Via S. Marta, Florence, Italy

email: marco.modugno@unifi.it

2University of Cooperative Education

Coblitzweg 7, D-68169 Mannheim, Germany

email: saller@ba-mannheim.de

3Max Planck Intitute for Mathematics in the Sciences

Inselstrasse 22, D-04103 Leipzig, Germany

email: tolksdor@mis.mpg.de

Extended version: 2006.03.17. - 17.31.
A shortned version appeared in J. Math. Phys. 47, 062903 (2006).

Abstract

In the framework of general relativistic classical mechanics on a spacetime with
absolute time, we classify the infinitesimal symmetries of the classical structure
by means of distinguished Lie subalgebras of the Lie algebra of “special phase
functions”.

These subalgebras are crucial also for the classification of infinitesimal quantum
symmetries, which will be analysed in a forthcoming paper.
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4 Contents

Introduction

This paper is the first part of a sequence of two papers. They are aimed at classifying
systematically the symmetries of classical and quantum mechanics within the geometric
framework of “covariant classical and quantum mechanics”.

This framework is a geometric formulation of classical and quantum mechanics on
a curved spacetime with absolute time and spacelike Riemannian metric, expressed in
a manifestly coordinate free and observer independent way. We assume minimal axioms
describing just the fundamental classical interactions, namely the gravitational and elec-
tromagnetic fields. The goal of this theory is to combine the standard quantum mechanics
with those ideas and methods of Einstein’s general relativity that are not related to the
Lorentz metric and the speed of light, in order to understand quantum mechanics in a
general relativistic observer independent way, as far as possible.

This approach requires non standard methods based on fibred manifolds, jets, connec-
tions and the Lie algebra of special phase functions. On the other hand, in the flat case
the theory yields just the standard Schrödinger equation and the quantum operators for
all usual examples. This approach has some analogies with other well-known geometric
formulations of quantum mechanics, in particular, with geometric quantisation (see, for
instance, [1, 31, 73].) But, it presents several methodological novelties and results as well,
by overcoming several typical difficulties in the theory of geometric quantisation.

This approach was proposed in [35, 36] and further developed by several authors
(see, for instance [40, 38, 65, 66] and references therein). On the other hand, several
authors have been involved with a formulation of classical and quantum mechanics in the
framework of a curved Galileian background (see, for instance, [13, 20, 21, 22, 23, 24, 25,
26, 34, 43, 44, 45, 46, 47, 49, 57, 69, 70, 71]). One of the typical features of covariant
classical mechanics is the role played by a cosymplectic 2–form. This is a concept more
general than that of contact 2–form and appropriate to account for the covariance of the
theory. Actually, the literature on symplectic geometry is much wider and known than
that on cosymplectic geometry; however, several authors have analysed the second one
(see, for instance, [2, 8, 15, 19, 37, 51] and references therein).

In the present paper, we start by introducing the basic objects of the theory, namely
the spacetime fibred over absolute time, the spacelike Riemannian metric, the spacetime
gravitational connection and the electromagnetic field.

Then, we introduce the classical phase space and the main geometric objects induced
by the spacetime structure, namely the contact maps, the phase connection, the 2nd order
phase connection, the phase 2–form and the phase 2–vector. An important role is played
by the phase 2–form, which encodes all other objects and turns out to be cosymplectic.
This set up allows us to introduce in a natural way the distinguished Lie algebra of special
phase functions and their various lifts. The special Lie bracket is linked to the Poisson
bracket and allows us to deal with spacetime functions, momentum and energy on the
same footing. An essential feature of special phase functions is that they admit a lift to
the tangent space of spacetime.
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Eventually, we classify systematically the infinitesimal symmetries of the above classi-
cal objects and show, step by step, that they are generated by distinguished subalgebras
of the Lie algebra of special phase functions.

We observe that the classical Lagrangian formalism, Nöther’s theorem and the mo-
mentum map [1, 12, 16, 17, 29, 30, 32, 48, 61, 62, 64, 68] arise naturally in the present
scheme ruled by a cosymplectic 2–form and by the Lie algebra of special phase functions.
The literature dealing with Lie algebras associated with geometric structures of analyti-
cal mechanics from different perspectives is very wide (see, for instance, [3, 4, 5, 6, 7, 9,
11, 14, 27, 28, 33, 50, 52, 53, 54, 56, 55, 59]). On the other hand, the present paper is
devoted to the specific setting of covariant classical mechanics of a particle effected by
the fundamental classical fields.

This paper extends considerably the results obtained in [66, 40].

The above results will play an essential role in the subsequent paper devoted to in-
finitesimal quantum symmetries, where we achieve analogous results by a similar ap-
proach. In particular, we will prove in this forthcoming paper that the Lie algebra of
special phase functions yields a Lie algebra of quantum currents; the conserved probabil-
ity current is just a particular case of this construction.

Thus, throughout the two papers, a crucial role is played by the Lie algebra of special
phase functions, which turn out to be the generators of the infinitesimal symmetries both
of the classical and quantum theories.

For each manifolds M , N and each fibred manifolds F → B , G → B , we denote
the sheaf of local maps f : M → N by map(M , N ) , the sheaf of local sections s :
B → F by sec(B, F ) and the sheaf of local fibred morphisms f : F → G over B by
fib(F , G) . The capitalised symbols Map(M , N ) , Sec(B, F ) and Fib(F , G) will denote
the corresponding sets of global maps.
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6 1 Covariant classical mechanics

1 Covariant classical mechanics

1.1 Spacetime and its structure

1.1.1 Scale spaces

In the covariant formulation of physical theories the independence from the
choice of coordinates and of units of measurements appear on the same footing.
Thus, a rigorous treatment of units of merasurement is necessary.

We introduce the fundamental scale spaces U as “positive 1-dimensional semi-vector
spaces” over IR+ . A detailed account for this notion can be found in [36, 39]. Roughly
speaking, they have the same algebraic structure as IR+ , but no distinguished generator
over IR+ . We can naturally define the tensor product between scale spaces and ordinary
vector spaces. Moreover, we can naturally define the rational powers Up/q of a scale space
U . Rules analogous to those of real numbers hold for scale spaces; accordingly, we adopt
analogous notation. In particular, we shall write U0 := U , U−1 := U∗ , Up := ⊗pU .

These spaces will appear in the theory tensorialised with spacetime tensors. The scale
spaces appearing in tensor products are not effected by differential operators, hence their
elements can be treated as constants.

We introduce the space T of future oriented time intervals, the space L of lengths and
the space M of masses.

We shall refer to particles of mass m ∈M and charge q ∈ T−1 ⊗ L3/2 ⊗M1/2 .
Moreover, we will consider time units u0 ∈ T , or their duals u0 ∈ T∗ .
In order to unscale some objects of the theory, we will need a scale with scale dimen-

sions of the Planck constant ~ : T−1⊗L2⊗M . Actually, in the classical theory any such
scale would do; on the other hand, in the quantum theory, we have to assume just the
actual value of this scale.

1.1.2 Spacetime

Our basic framework is spacetime with its fibring over absolute time [36, 39].

We assume time to be an affine space T associated with the vector space T̄ := T⊗ IR
and spacetime to be an oriented 4–dimensional manifold E fibred over time by the absolute
time map t : E → T .

We shall refer to spacetime charts (xλ) = (x0, xi) adapted to the time fibring, to the
affine structure of time, to a time unit of measurement u0 ∈ T̄ and to the orientation of
spacetime.

We shall be concerned with the tangent space TE of spacetime and its vertical tangent
subspace  : VE ⊂ TE , consisting of the vectors tangent to the fibres, which are called
spacelike. Moreover, we shall be concerned with the cotangent space T ∗E of spacetime and
its horizontal subspace H∗E := E× T̄∗ ⊂ T ∗E , consisting of forms vanishing on vertical
vectors, which are called timelike. Furthermore, we shall be concerned with the horizontal
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1.1 Spacetime and its structure 7

space HE := E × T̄ and the cotangent vertical space V ∗E . The local coordinate bases
of TE , VE , T ∗E , HE and V ∗E are denoted by

∂λ ∈ sec(E, TE) , ∂i ∈ sec(E, VE) , dλ ∈ sec(E, T ∗E) , d0 ∈ sec(E, H∗E)

u0 ∈ sec(E, HE) , ďi ∈ sec(E, V ∗E) .

We have the distinguished scaled time form dt : E → T ⊗ T ∗E , with coordinate
expression dt = u0 ⊗ d0 . It generates the horizontal subbundle H∗E ⊂ T ∗E . We shall
often make the natural identification u0 ' d0 via pullback.

We have the natural timelike projection and spacelike projection

dt : TE → HE : X 7→ dt(X) and ∗ : T ∗E → V ∗E : α 7→ ∨
α := α ◦  ,

with coordinate expressions dt(X) = X0 u0 and
∨
α = αi ď

i .
In general, the check symbol “

∨
” will denote the vertical restriction of spacetime forms.

We stress that we do not have natural inclusions and projections of the following type

V ∗E ⊂ T ∗E , HE ⊂ TE and TE → VE , T ∗E → H∗E .

This is an important feature of our relativistic model; indeed, we need the choice of an
“observer” in order to achieve such inclusions and projections.

We shall be involved with the Lie subalgebras

proj(E, TE) ⊂ sec(E, TE) and fine(E, TE) ⊂ proj(E, TE)

of spacetime vector fields which are projectable on T and whose time component is
constant, respectively. Their coordinate expressions are of the type

X = X0 ∂0 +X i ∂i ∈ proj(E, TE) , with X0 ∈ map(T , IR) , X i ∈ map(E, IR) ,

X = X0 ∂0 +X i ∂i ∈ fine(E, TE) , with X0 ∈ IR , X i ∈ map(E, IR) .

1.1.3 Observers

Observers are essential tools for performing physical measurements. In the stan-
dard literature, the measurements are usually described by coordinates. But what
is essentially necessary is the observer underlying a system of coordinates.

Our relativistic model does not exhibit any distinguished observer.
The choice of an observer yields the observed inclusions and projections which

are not provided by the time fibring.

An observer is defined to be a (local) section o : E → T∗ ⊗ TE , which projects on
1 ∈ T∗ ⊗ T , i.e. a (local) section o : E → J1E , where J1E denotes the 1st jet space of
spacetime. Thus, an observer is just a connection of the spacetime fibring.
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8 1 Covariant classical mechanics

The coordinate expression of an observer o is of the type o = u0 ⊗ (∂0 + oi0 ∂i) , where
oi0 ∈ map(E, IR) . The charts (xλ) for which oi0 = 0 are said to be adapted to o . Conversely,
each chart (xλ) is adapted to a unique observer, whose coordinate expression turns out
to be o := u0 ⊗ ∂0 .

Each observer o yields the observed spacelike projection ν[o] : TE → VE : X 7→
X − o(dt(X)) and the observed timelike projection o∗ : T ∗E → H∗E : α ◦ o ' o yα ,
whose coordinate expressions are ν[o] = (di − oi0 d0)⊗ ∂i and o∗ = d0 ⊗ (∂0 + oi0 ∂i) .

Moreover, an observer o yields the observed spacelike inclusion ν∗[o] : V ∗E ↪→ T ∗E :
α 7→ α ◦ ν[o] and the observed timelike inclusion o : HE ↪→ TE : X 7→ o(X) , whose
coordinate expressions are ν∗[o](α) = αi (d

i − oi0 d0) and o(X) = X0 (∂0 + oi0 ∂i) .

Thus, an observer o yields the observed splittings of the tangent and cotangent spaces
of spacetime into the direct sum of their timelike and spacelike components

TE = HE⊕VE : X 7→ dt(X)+ν[o](X) , T ∗E = H∗E⊕V ∗E : α 7→ o∗(α)+∗(α) .

1.1.4 Metric field

The fibres of spacetime are equipped with a given Riemannian metric [36, 39].

We assume spacetime to be equipped with a scaled Riemannian metric of the fibres
g : E → L2 ⊗ (V ∗E ⊗ V ∗E) .

With reference to a particle of mass m, it is useful to define the rescaled spacelike
metric G := m

~ g : E → T⊗ (V ∗E ⊗ V ∗E) .

We denote the contravariant spacelike metric and the contravariant rescaled spacelike
metric by ḡ : E → L∗2 ⊗ (VE ⊗ VE) and Ḡ := ~

m
ḡ : E → T∗ ⊗ (VE ⊗ VE) .

The spacelike metric g and the spacetime orientation naturally yield the scaled space-

like volume form η : E → L3⊗Λ3V ∗E , with coordinate expression η =
√
|g| ď1∧ ď2∧ ď3 .

Moreover, the time form and the spacelike volume form yield the scaled spacetime
volume form υ := dt ∧ η : E → (T ⊗ L3) ⊗ Λ4T ∗E , with coordinate expression υ =√
|g|u0 ⊗ d0 ∧ d1 ∧ d2 ∧ d3 .

For each X ∈ sec(E, TE) , the Lie derivative L[X] Ḡ ∈ sec
(
E, T∗ ⊗ (VE ⊗ VE)

)
has the coordinate expression L[X] Ḡ = (Xλ ∂λG

ij
0 −G

hj
0 ∂hX

i −Gih
0 ∂hX

j)u0 ⊗ ∂i ⊗ ∂j .
For each X ∈ proj(E, TE) , the Lie derivative L[X]G ∈ sec

(
E, T⊗ (V ∗E⊗V ∗E)

)
,

has the coordinate expression L[X]G = (Xλ ∂λG
0
ij +G0

hj ∂iX
h +G0

ih ∂jX
h)u0 ⊗ ďi ⊗ ďj .

For each X ∈ sec(E, TE) , the spacetime divergence divυX ∈ map(E, IR) is well
defined by the equality L[X] υ = (divυX) υ .

For each X ∈ proj(E, TE) , the spacelike divergence divηX ∈ map(E, IR) and the
timelike divergence divdt X ∈ map(E, IR) are well defined, respectively, by the equalities
L[X] η = (divηX) η and L[X] dt = (divdtX) dt .
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1.1 Spacetime and its structure 9

We have the coordinate expressions

divυX =
∂λ(X

λ
√
|g|)√

|g|
, divηX = X0

∂0

√
|g|√
|g|

+
∂j(X

j
√
|g|)√

|g|
, divdt X = ∂0X

0 .

Hence, for each X ∈ proj(E, TE) , we obtain divυX = divdtX+divηX and, for each
X ∈ fine(E, TE) , we obtain divυX = divηX .

Moreover, for each X ∈ proj(E, TE) , we obtain divηX = 1
2
〈Ḡ , L[X]G〉 .

1.1.5 Gravitational and electromagnetic fields

Spacetime is equipped with given gravitational and electromagnetic fields [36].

We assume spacetime to be equipped with a gravitational field , i.e. with a linear
connection K\ : TE → T ∗E⊗TTE , such that ∇\dt = 0 and ∇\g = 0 , and such that its
curvature tensor R[K\] fulfills the symmetry condition R\

iλjµ = R\
jµiλ .

1.1 Proposition. The coordinate expression of the gravitational field is of the type

K\
λ

0
µ = 0

K\
0
i
0 = −Gij

0 2 Φ0j

K\
0
i
h = K\

h
i
0 = −1

2
Gij

0 (∂0G
0
jh + 2 Φhj)

K\
k
i
h = K\

h
i
k = −1

2
Gij

0 (∂hG
0
jk − ∂jG0

hk + ∂kG
0
jh) ,

where Φ\[o] = Φ\
λµ d

λ ∧ dµ ∈ sec(E, Λ2T ∗E) is a closed 2–form, which depends on the
chosen chart only through the associated observer o .

We shall denote by A\[o] the local potentials of Φ\[o] , according to 2 dA\[o] = Φ\[o] .

We assume spacetime to be equipped with an electromagnetic field , i.e. with a closed
scaled 2-form F : E → (L1/2 ⊗M1/2)⊗ Λ2T ∗E (see also [49]).

Given a particle with mass m ∈M and charge q ∈ T−1⊗L3/2⊗M1/2 , it is convenient
to consider, respectively, the unscaled field and the rescaled field

q
~ F : E → Λ2T ∗E and q

m
F̂ : E → T−1 ⊗ (VE ⊗ T ∗E) ,

where F̂ = g]2(F ) = gih Fλh ∂i ⊗ dλ .

The electromagnetic field F can be “joined”, in a covariant way, to the gravitational
field yielding the “joined” spacetime connection K = K\ − dt⊗ q

2m
F̂ − q

2m
F̂ ⊗ dt .

The joined K still fulfills the properties that we have assumed for K\ . Moreover, all
objects derived from the joined connection split into components related to the gravita-
tional and the electromagnetic fields.

In particular, the observed potential A[o] of the joined connection splits into the
sum of the gravitational and electromagnetic potentials as A[o] = A\[o] + q

~ A
e , where
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10 1 Covariant classical mechanics

Ae ∈ sec
(
E, (L1/2 ⊗ M1/2) ⊗ T ∗E

)
is a local (observer independent) potential of F ,

according to 2 dAe = F .

Thus, from now on, with reference to a particle of mass m and charge q , we shall refer
to the spacetime structure constituted by the 4-plet (E, t, G, K) , whose elements fulfill
the properties mentioned above.

1.1.6 Basic model of spacetime

The present paper deals with a curved spacetime. However, this model includes
flat or partially flat spacetimes, as well [36]. Thus, the standard mechanics can be
recovered as a particular case of our theory.

The simplest model of spacetime is given by the following construction.
We consider an oriented affine space E that is associated with the vector space Ē and

equipped with an affine map t : E → T of rank 1.
Let us consider the vector subspace S := kerDt ⊂ Ē . We can easily see that all fibres

of the fibring t : E → T are affine subspaces of E associated with the same vector space
S . Hence, the spacetime fibred space turns out to be an abelian principal bundle with
structural group S .

We assume as spacelike metric a constant Euclidean metric on S .
Moreover, we assume as gravitational connection the connection induced by the affine

structure of spacetime. Eventually, we assume a vanishing electromagnetic field.
Clearly, the above objects fulfill our axioms. We call such a spacetime a special New-

tonian spacetime. In this model we can easily define the standard inertial motions and
inertial observers.

We could consider also a little more complex model, which assumes the previous
structure for background and adds a gravitational connection which is Ricci flat. This
model accounts for the standard notions of classical mechanics, including Newton’s law
of gravitation.

The rigid body provides a further non trivial example of our model [63].

1.2 Phase space and the induced structure

1.2.1 Classical phase space

We assume as phase space of a classical particle the 1st jet space of sections of
spacetime [36, 39].

The 1st jet space ([42, 67]) J1E of t : E → T is a fibred manifold t1 : J1E → T over T
and an affine bundle t10 : J1E → E over E , associated with the vector bundle T∗ ⊗ VE .
Hence, the vertical space of J1E with respect to E turns out to be V0J1E = T∗ ⊗ VE .

We denote the fibred charts of the phase space by (x0, xi, xi0) .
The above affine structure yields the natural tensor ν : J1E → T⊗ (V ∗E ⊗ V J1E) ,

with ν = u0 ⊗ ďi ⊗ ∂0
i .
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1.2 Phase space and the induced structure 11

We recall the natural contact maps d : J1E → T∗ ⊗ TE and θ : J1E → T ∗E ⊗ VE ,
with d = u0 ⊗ (∂0 + xi0 ∂i) and θ = ∂i ⊗ (di − xi0 d0) . From now on, J1E is considered as
a subspace of T∗ ⊗ TE , according to the natural embedding d .

We shall be involved with the Lie subalgebras

proj(J1E, TJ1E) ⊂ sec(J1E, TJ1E) and fine(J1E, TJ1E) ⊂ proj(J1E, TJ1E)

of vector fields of J1E , which are projectable on E and T , and additionally whose time
components are constant, respectively.

1.2.2 Holonomic prolongation of spacetime vector fields

We have a natural prolongation of spacetime vector fields to phase vector fields.

1.2 Proposition. [39, 58] There is a natural fibred morphism r1 : J1TE → TJ1E
over J1E ×

T
J1TT , with (x0, xi, xi0; ẋ0, ẋi, ẋi0) ◦ r1 = (x0, xi, xi0; ẋ0, ẋi, ẋi0 − xi0 ẋ0

0) .

Then, for each X ∈ sec(E, TE) , we obtain the vector field, called 1st holonomic pro-
longation of X , X(1) := r1◦J1X ∈ sec(J1E, TJ1E) , which projects on X . Its coordinate

expression is X(1) = X0 ∂0 +X i ∂i + (∂0X
i + ∂jX

i xj0 − ∂0X
0 xi0 − ∂jX0 xj0 x

i
0) ∂0

i .
The map r1 ◦ J1 : sec(E, TE) → sec(J1E, TJ1E) : X 7→ X(1) turns out to be an

injective IR–linear morphism of Lie algebras.

In the particular case when the vector field X is projectable on T , we recover the
standard holonomic prolongation obtained through the 1st jet prolongation of the fibred
flow of X . In fact, the above map restricts to the injective IR–linear map

proj(E, TE)→ proj(J1E, TJ1E) : X 7→ X(1) ,

with coordinate expression X(1) = X0 ∂0 +X i ∂i + (∂0X
i + ∂jX

i xj0 − ∂0X
0 xi0) ∂0

i .
Later, we shall use the following technical results.

1.3 Lemma. [39] For each X ∈ sec(E, TE) , we have the equalities

L[X(1)] θ =
(
d.
(
dt(X)

))
θ and L[X(1)] d = −

(
d.
(
dt(X)

))
d ,

with coordinate expressions

L[X(1)] θ = (∂0X
0 + ∂jX

0 xj0) (di − xi0 d0)⊗ ∂0
i

L[X(1)] d = −(∂0X
0 + xj0 ∂jX

0) (∂0 + xi0 ∂i) .

For each X↑ ∈ proj(J1E, TJ1E) , which projects on X ∈ proj(E, TE) , the spacelike
divergence divηX

↑ ∈ map(J1E, IR) is well defined by the equality L[X↑] η = (divηX
↑) η

and we obtain divηX
↑ = divηX .
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12 1 Covariant classical mechanics

1.2.3 Distinguished phase fields

The spacetime connection and the rescaled metric yield in a covariant way
further objects on the phase space [36, 39].

The spacetime connection K yields a torsion free affine connection of the affine bundle
J1E → E , called phase connection, Γ[K] : J1E → T ∗E ⊗ TJ1E , with coordinate
expression Γλ

i
0 := Γλ

i
0

0
j x

j
0 + Γλ

i
0

0
0 , where Γλ

i
0

0
µ = Kλ

i
µ . Conversely, Γ characterises K .

The phase connection Γ splits into the gravitational and electromagnetic components
as Γ = Γ\ + Γe , where Γe = − q

2m
(F̂ + d y F̂ ) ∈ sec

(
J1E, T∗ ⊗ (T ∗E ⊗ VE)

)
.

We have Γi0
j
0−Γj0

i
0 = −Gih

0 G
jk
0

(
(∂hG

0
kl−∂kG0

hl)x
l
0+∂hAk−∂kAh

)
, with Γh0

k
0 := Ghl

0 Γl
k
0 .

Then, Γ yields the 2nd order connection γ[Γ] := d y Γ : J1E → J2E ⊂ T∗ ⊗ TJ1E ,
with γ = u0 ⊗ (∂0 + xi0 ∂i + γ0

i
0 ∂

0
i ) , where

γ0
i
0 = Kh

i
k x

h
0 x

k
0 + 2Kh

i
0 x

h
0 +K0

i
0 =

= −Gij
0

(
(∂hG

0
jk − 1

2
∂jG

0
hk)x

h
0 x

k
0 + (∂0G

0
hj + ∂hAj − ∂jAh)xh0 + ∂0Aj − ∂jA0

)
.

Conversely, γ characterises Γ .

The 2nd order connection γ splits into the gravitational and electromagnetic compo-
nents as γ\ + γe , where γe = − q

m
d y F̂ : J1E → (T∗ ⊗ T∗) ⊗ VE equals the Lorentz

force.

Then, Γ and G yield the phase 2–form Ω[G,Γ] := G y(ν[Γ]∧θ) : J1E → Λ2J1TE , with
Ω = G0

ij (di0 − γ0
i
0d

0 − Γh
i
0 θ

h) ∧ θj , and where ν[Γ] is the vertical valued form associated
with Γ . Conversely, Ω characterises Γ and G [66].

The 2–form Ω splits into the gravitational and electromagnetic components as Ω =
Ω\ + Ωe , where Ωe = q

2~ F .

Then, Γ and G yield the 2–vector Λ[G,Γ] := Ḡ y(Γ̌ ∧ ν) : J1E → Λ2V J1E , with
Λ = Gij

0 (∂i + Γi
h
0 ∂

0
h)∧ ∂0

j , where Γ̌ : J1E → V ∗E⊗V J1E is the vertical restriction of Γ .

The 2–vector Λ splits into the gravitational and electromagnetic components as Λ =
Λ\ + Λe , where Λe = q

2~ G
](F ) : J1E → Λ2V J1E .

We have the identities i(γ) dt = 1 , i(γ) Ω = 0 , L[γ] Λ = 0 , [Λ,Λ] = 0 .

Therefore, (J1E, dt,Ω) turns out to be a scaled cosymplectic manifold, where γ is the
associated scaled Reeb vector field and Λ is the associated 2–vector.

We have the following results which will be used later.

1.4 Proposition. [66] For each X ∈ proj(E, TE) , the following implications holds

L[X(1)] Ω = 0 ⇔ L[X(1)] Γ = 0 , L[X]G = 0 ,

L[X(1)] Ω = 0 ⇒ divηX = 0 .
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1.3 Classical mechanics 13

1.3 Classical mechanics

The spacetime structure and the joined connection allow us to formulate the
dynamics of a classical particle under the action of the gravitational and electro-
magnetic fields [36, 39].

1.3.1 Classical kinematics

A motion is defined to be a section s ∈ sec(T ,E) and its absolute velocity is defined
to be the 1st jet prolongation j1s ∈ sec(T , J1E) .

An observer o yields the following objects:

- the affine fibred morphism ∇[o] := id−(o ◦ t10) ∈ fib(J1E, T∗ ⊗ VE) over E ,

- the observed kinetic momentum Q[o] := G[ ◦ ∇[o] : J1E → V ∗E and the observed
kinetic energy K[o] := 1

2
G y(∇[o]⊗∇[o]) : J1E → T∗ ⊗ IR ,

- for each motion s , the observed velocity ∇[o]s := j1s− o ◦ s ∈ sec(T , T∗ ⊗ VE) ,

Their expressions, in adapted coordinates, are

∇[o] = xi0 u
0 ⊗ ∂i , Q[o] = G0

ij x
j
0ď
i , K[o] = 1

2
G0
ij x

i
0 x

j
0 u

0 , ∇[o]s = ∂0s
i u0 ⊗ ∂i .

In the special Newtonian spacetime, we can also define the usual observed angular
momentum M[o, c] := r[c]×Q[o] with respect to an inertial motion c as reference center.

For each motion s , the absolute gravitational acceleration is defined to be the section
∇[γ\]j1s := j2s− (γ\ ◦ j1s) ∈ sec(T , T∗⊗T∗⊗ VE) and the absolute joined acceleration
is defined to be the section ∇[γ]j1s := j2s− (γ ◦ j1s) ∈ sec(T , T∗ ⊗ T∗ ⊗ VE) . Clearly,
we have ∇[γ]j1s = ∇[γ\]j1s− γe ◦ j1s . We have the coordinate expression

∇[γ]j1s =
(
∂00s

i − (Kh
i
k ◦ s) ∂0s

h ∂0s
k − 2 (K0

i
h ◦ s) ∂0s

h − (K0
i
0 ◦ s)

)
u0 ⊗ u0 ⊗ ∂i .

1.3.2 Classical dynamics

We assume the generalised Newton’s law as equation of motion for classical dynamics
∇[γ]j1s := j2s− γ ◦ j1s = 0 .

A function f ∈ map(J1E, IR) such that γ.f = 0 is said to be conserved . We denote
the subsheaf of conserved functions by cons(J1E, IR) ⊂ map(J1E, IR) .

We can also obtain the classical dynamics by a Lagrangian formalism according to a
cohomological procedure in the following way.

The phase 2-form Ω admits locally horizontal potentials A↑ ∈ sec(J1E, T
∗E) , which

are defined up to a closed spacetime form α ∈ sec(E, T ∗E) . Each horizontal potential
A↑ splits, in a covariant way, as A↑ = L[A↑] + P [A↑] , through the horizontal component
L[A↑] := d yA↑ , called Lagrangian, and the d–vertical component P [A↑] := θ yA↑ , called
momentum. Moreover, we obtain DL[A↑] = P̌ [A↑] . Hence, each horizontal potential A↑

turns out to be just the Poincaré–Cartan form Θ of the associated Lagrangian L[A↑] .
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14 1 Covariant classical mechanics

Moreover, the horizontal component of Ω turns out to be the fibred morphism E =
G[(∇[γ]) : J2E → T∗⊗V ∗E . Indeed, E turns out to be just the Euler-Lagrange operator
associated with the Lagrangian L(A↑) , for each horizontal potential A↑ .

Next, let us choose a horizontal potential A↑ and an observer o .
Then, we define the observed potential to be the spacetime 1-form A[o] := o∗A↑ ∈

sec(E, T ∗E) . This form turns out to be just an observed potential of the joined connection
K . Moreover, we define the observed Hamiltonian to be the function H[o] := −o yA↑ and
the observed momentum to be the form P [o] := ν[o] yA↑ .

We have the following expressions, in adapted coordinates,

A↑ = −1
2
G0
ij x

i
0 x

j
0 d

0 +G0
ij x

j
0 d

i + Aλ d
λ ,

L = L0 d
0 = (1

2
G0
ij x

i
0 x

j
0 + Ai x

i
0 + A0) d0 , P = (G0

ij x
j
0 + Ai) (di − xi0 d0)

A[o] = Aλ d
λ , H[o] = H0 d

0 = (1
2
G0
ij x

i
0 x

j
0 − A0) d0 , P [o] = (G0

ij x
j
0 + Ai) d

i .

1.4 Hamiltonian methods

We devote this section to the basic recalls concerning the splitting of the tangent
space of the phase space, the Hamiltonian lift of phase functions and the Poisson
bracket of phase functions [36, 39].

1.4.1 Hamiltonian splitting

The time fibring and the 2nd order connection yield in a covariant way a splitting
of the tangent and cotangent spaces of the phase space.

We have the natural dual splittings over J1E

TJ1E = HγJ1E ⊕ V J1E and T ∗J1E = H∗J1E ⊕ V ∗γ J1E ,

given by X↑ = dt(X↑) γ +
(
X↑ − dt(X↑) γ

)
and φ↑ = φ↑(γ) dt+

(
φ↑ − φ↑(γ) dt

)
, where

- V J1E ⊂ TJ1E is the vertical subbundle with respect to dt ,
- H∗J1E ⊂ T ∗J1E is the horizontal subbundle generated by dt ,
- HγJ1E ⊂ TJ1E is the horizontal subbundle generated by γ ,
- V ∗γ J1E ⊂ T ∗J1E is the vertical subbundle of forms which annihilate γ .

We define the musical morphisms to be the linear maps

Ω[ : sec(J1E, TJ1E)→ sec(J1E, V
∗
γ J1E) : X↑ 7→ i(X↑) Ω ,

Λ] : sec(J1E, T
∗J1E)→ sec(J1E, V J1E) : φ↑ 7→ i(φ↑) Λ .

The musical morphisms restrict to the mutually inverse linear maps

Ω[
0 : sec(J1E, V J1E)→ sec(J1E, V

∗
γ J1E)

Λ]
0 : sec(J1E, V

∗
γ J1E)→ sec(J1E, V J1E) .
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1.4 Hamiltonian methods 15

For each X↑ ∈ sec(J1E, TJ1E) and φ↑ ∈ sec(J1E, T
∗J1E) , we obtain the equalities

(Λ] ◦ Ω[)(X↑) = X↑ − dt(X↑) γ , Ω[(X↑) = (Λ]
0)−1

(
X↑ − dt(X↑) γ

)
,

(Ω[ ◦ Λ])(φ↑) = φ↑ − φ↑(γ) dt , Λ](φ↑) = (Ω[
0)−1

(
φ↑ − φ↑(γ) dt

)
.

Hence, we can write X↑ = dt(X↑) γ+(Λ] ◦Ω[) (X↑) and φ↑ = φ↑(γ) dt+(Ω[ ◦Λ]) (φ↑) .
Given a time scale τ ∈ map(J1E, T̄) , we define the τ–horizontal subbundle HτJ1E ⊂

TJ1E consisting of vectors whose time components are given by τ . Then, we obtain the
mutually inverse affine maps

Ω[
τ : sec(J1E, HτJ1E)→ sec(J1E, V

∗
γ J1E) : X↑ 7→ i(X↑) Ω ,

Λ]
τ : sec(J1E, V

∗
γ J1E)→ sec(J1E, HτJ1E) : φ↑ 7→ γ(τ) + i(φ↑) Λ .

For each X↑, X̄↑ ∈ sec(J1E, TJ1E) and φ↑, φ̄↑ ∈ sec(J1E, T
∗J1E) , we have the

following equivalences:

X↑ = X̄↑ ⇔ dt(X↑) = dt(X̄↑) , Ω[(X↑) = Ω[(X̄↑)

φ↑ = φ̄↑ ⇔ φ↑(γ) = φ↑(γ̄) , Λ](φ↑) = Λ](φ̄↑) .

1.4.2 Poisson bracket

We introduce the Poisson bracket in our cosymplectic framework by an approach
which is rather analogous to that of symplectic manifolds [36, 39].

We define the Poisson bracket on map(J1E, IR) by {f, g} := i(df ∧ dg) Λ , which has
the coordinate expression {f, g} = Gij

0 (∂if ∂
0
j g − ∂ig ∂0

j f)− (Γi0
j
0 − Γj0

i
0) ∂0

i f ∂
0
i g .

For each f, g ∈ map(J1E, IR) , we have [39] γ.{f, g} = {γ.f, g}+ {f, γ.g} . Hence, the
subsheaf cons(J1E, IR) ⊂ (J1E, IR) is closed with respect to the Poisson bracket.

1.4.3 Hamiltonian lift of phase functions

In our cosymplectic framework we can introduce the vertical Hamiltonian lift,
which partially resembles the usual Hamiltonian lift of symplectic manifolds. More-
over, we can introduce a further affine Hamiltonian lift which depends on an arbi-
trary choice of a time scale. Furthermore, we obtain a distinguished affine Hamil-
tonian lift through the distinguished time scale exhibited by each phase function
[36, 39].

For each f ∈ map(J1E, IR) , we define its vertical Hamiltonian lift to be the vertical
vector field Λ](df) = (Ω[

0)−1(df − γ.f) ∈ sec(J1E, V J1E) , with coordinate expression

Λ](df) = −Gij
0 ∂

0
j f ∂i +

(
Gij

0 ∂jf + (Γi0
j
0 − Γj0

i
0) ∂0

j f
)
∂0
i .

For each f, g ∈ map(J1E, IR) , we have [Λ](df), Λ](dg)] = Λ]
(
d{f, g}

)
. Hence, the

map map(J1E, IR) → sec(J1E, TJ1E) : f 7→ Λ](df) turns out to be a morphism of Lie
algebras.
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16 1 Covariant classical mechanics

For each f ∈ map(J1E, IR) , we define its Hamiltonian lift , with respect to the
time scale τ ∈ map(J1E, T̄) , to be the vector field X↑ham [τ, f ] := γ(τ) + Λ](df) ∈
sec(J1E, TJ1E) , with coordinate expression

H↑ham [τ, f ] = τ 0 ∂0 + (τ 0 xi0 −G
ij
0 ∂

0
j f) ∂i +

(
τ 0 γ0

i
0 +Gij

0 ∂jf + (Γi0
j
0 − Γj0

i
0) ∂0

j f
)
∂0
i .

We stress that we need the choice of the time scale τ because γ is a scaled vector field.
This fact is not a minor point of our theory; instead, it plays an essential role throughout
the classical and quantum theories.

Actually, each f ∈ map(J1E, IR) yields the time scale f ′′ := 1
3
〈Ḡ , D2f〉 , where

D2f ∈ fib
(
J1E, T2 ⊗ (V ∗E ⊗ V ∗E)

)
is the 2nd fibre derivative of f with respect

to the affine fibre of the bundle J1E → E . Thus, we have the coordinate expression
f ′′ = f 0 u0 = 1

3
Gij

0 ∂
0
i ∂

0
j f u0 . The map f ′′ is called the time component of f .

We define the Hamiltonian lift of each f ∈ map(J1E, IR) to be the vector field

X↑ham [f ] := X↑ham [f ′′, f ] = γ(f ′′) + Λ](df) ∈ sec(J1E, TJ1E) .

1.5 Special phase functions

In this section we collect some basic facts on special phase functions, their Lie
bracket and their tangent, Hamiltonian and holonomic lifts [36, 39].

1.5.1 The sheaf of special phase functions

A special phase function is defined to be a function f ∈ map(J1E, IR) , such that
D2f = τ ⊗ G , with τ ∈ map(E, T̄) . Clearly, if f ∈ map(J1E, IR) is a special phase
function, then we obtain τ = f ′′ , hence D2f = f ′′ ⊗G , with f ′′ ∈ map(E, T̄) .

The coordinate expression of a special phase function is of the type

f = f 0 1
2
G0
ij x

i
0 x

j
0 + f iG0

ij x
j
0 + f̆ , with f 0, f i, f̆ ∈ map(E, IR) .

Given an observer o , a special phase function f can be written as

f = f ′′ yK[o] + f ′[o] yQ[o] + f [o] ,

where, in adapted coordinates,

f ′′ = 1
3
〈Ḡ , D2f〉 = f 0 u0 ∈ map(E, T̄) ,

f ′[o] = G](Df) ◦ o = f i ∂j ∈ sec(E,T∗ ⊗ VE)

f [o] = f ◦ o = f̆ ∈ map(E, IR) .

Given a horizontal potential A↑ and an observer o , a special phase function f can be
written as f = f ′′ yH[A↑, o] + f ′[o] yP [A↑, o] + (f [o] + f 0A0 − f iAi) .

The subsheaf of special phase functions is denoted by spec(J1E, IR) ⊂ map(J1E, IR) .
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1.5 Special phase functions 17

Moreover, we shall be involved with the distinguished subsheaves related to the affine
structure of the bundle J1E → E . Thus, we define the following subsheaves:

- the sheaf proj(J1E, IR) ⊂ spec(J1E, IR) consisting of functions, called projectable,
whose time component f ′′ ∈ map(T , T̄) depends only on T ;

- the sheaf fine(J1E, IR) ⊂ proj(J1E, IR) consisting of projectable functions, called
fine, whose time component f ′′ ∈ T̄ is constant;

- the sheaf aff(J1E, IR) ⊂ fine(J1E, IR) consisting of projectable functions, called
affine, whose time component f ′′ = 0 vanishes, i.e. the subsheaf of affine functions with
respect to the affine fibres of the bundle J1E → E ;

- the sheaf map(E, IR) ⊂ aff(J1E, IR) consisting of affine functions such that Df =
0 , i.e. the subsheaf of affine functions which depend only on E .

1.5.2 Lifts of special phase functions

Let us analyse three distinguished lifts of special phase functions into vector
fields: the Hamiltonian lift, the tangent lift and the holonomic lift.

Let us start with the Hamiltonian lift. The special phase functions are characterised
by the following property.

1.5 Theorem. Let τ ∈ map(J1E, T̄) and f ∈ map(J1E, IR) . Then, the following
conditions are equivalent:

1) X↑ham [τ, f ] ∈ sec(J1E, TJ1E) is projectable on a vector field X[τ, f ] ∈ sec(E, TE) ,
2) f ∈ spec(J1E, IR) and τ = f ′′ .
If either of the above conditions is fulfilled, then we obtain

X↑ham [τ, f ] = X↑ham [f ] := γ(f ′′) + Λ](df) .

The Hamiltonian lift of special phase functions turns out to be the map(T , IR)–linear
map X↑ham : spec(J1E, IR) → sec(J1E, TJ1E) : f 7→ X↑ham [f ] = X↑ham [f ′′, f ] , with
coordinate expression X↑ham [f ] = f 0 ∂0 − f i ∂i +X i

0 ∂
0
i , where

X i
0 = Gij

0

(
1
2
∂jf

0G0
hk x

h
0 x

k
0 + (∂jf

0
h + fk (∂kG

0
jh − ∂jG0

kh)− f 0 ∂0G
0
jh)x

h
0

+ ∂j f̆ + fh (∂hAj − ∂jAh)− f 0 (∂0Aj − ∂jA0)
)
.

Hence, the kernel of X↑ham is the subsheaf map(T , IR) ⊂ spec(J1E, IR) .

Then, let us analyse the tangent lift. We obtain the tangent lift of special phase
functions defined as the map X : spec(J1E, IR) → sec(E, TE) : f 7→ X[f ] := X[f ′′, f ] ,
with coordinate expresssion X[f ] = f 0 ∂0 − f i ∂i . As a consequence, X is surjective
and its kernel is the subsheaf map(E, IR) ⊂ spec(J1E, IR) . We obtain also the map
spec(J1E, IR)/map(E, IR) → sec(E, TE) : [f ] 7→ X[f ] , whose inverse has coordinate
expression X0 ∂0 +X i ∂i 7→ [X0 1

2
G0
ij x

i
0 x

j
0 −G0

ij X
j xi0] .

Eventually, let us introduce the holonomic lift [65].
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18 1 Covariant classical mechanics

We define the holonomic lift of special phase functions to be the IR–linear map
X↑hol : spec(J1E, IR) → sec(J1E, TJ1E) : f 7→ X↑hol [f ] := (X[f ])(1) , with coordinate

expression X↑hol [f ] = f 0 ∂0 − f i ∂i − (∂0f
i + ∂jf

i xj0 + ∂0f
0 xi0) ∂0

i .
The kernel of X↑hol is the subsheaf map(E, IR) ⊂ spec(J1E, IR) .

1.5.3 Special Lie bracket

The special phase functions are not closed under the Poisson bracket. Also for
this reason, one introduces a non standard Lie bracket [36, 39].

We define the special bracket on spec(J1E, IR) by [[ f, g ]] := {f, g}+γ(f ′′).g−γ(g′′).f ,
with coordinate expression

[[ f, g ]] λ = f 0 ∂0g
λ − g0 ∂0f

λ − fh ∂hgλ + gh ∂hf
λ

˘[[ f, g ]] = f 0 ∂0ğ − g0 ∂0f̆ − fh ∂hğ + gh ∂hf̆ − (f 0 gh − g0 fh) Φ0h + fh gk Φhk .

The sheaf spec(J1E, IR) is an IR–Lie algebra with respect to the special bracket.
The subsheaves

aff(J1E, IR) ⊂ fine(J1E, IR) ⊂ proj(J1E, IR) ⊂ spec(J1E, IR) ⊂ map(J1E, IR)

are subsheaves of IR–Lie subalgebras with respect to the special bracket. Moreover, the
subsheaf map(E, IR) ⊂ aff(J1E, IR) is a subsheaf of ideals.

At a first insight, the special bracket resambles the Jacobi bracket [51]. However, these
brackets have essential differences.

In fact, in our context, the Jacobi bracket would be [f, g] := {f, g} + f γ.g − g γ.f
and not [[ f, g ]] := {f, g}+ γ(f ′′).g− γ(g′′).f . Indeed, the special phase functions are not
closed with respect to the Jacobi bracket; moreover, in our context, the Jacobi bracket
is not well defined with respect to scale dimensions, as it is not invariant with respect
to time scales. Except for this trouble, the Jacobi bracket could be defined for all phase
functions, while the special bracket can be defined only for special phase functions, as it
involves their “time components”. We stress that the Jacobi bracket depends on the first
jets of the functions, while the special bracket depends on the second jet, because the
time component of the special phase functions depends on the second jet.

Furthermore, we observe that in our context we have [Λ,Λ] = 0 and not [Λ,Λ] =
2 γ ∧ Λ , but, still, the special bracket fulfills the Jacobi property of Lie brackets. These
facts do not conflict with the Lichnerowicz theorem concerning the classification of Lie
algebras of functions (see, for instance, [51], p. 336), because the special phase functions
are not closed with respect to the real multiplication.

1.5.4 Morphisms of Lie algebras

Let us analyse the relation between the special bracket of special phase functions
and the Lie bracket of their prolongations.
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1.5 Special phase functions 19

The map X↑ham : spec(J1E, IR)→ sec(J1E, TJ1E) is not a morphism of Lie algebras,
with respect to the special bracket and the Lie bracket, respectively. On the other hand,
we have the following result.

1.6 Proposition. [39] For each f, g ∈ proj(J1E, IR) , we have

X↑ham [ [[ f, g ]] ] = [X↑ham [f ], X↑ham [g]] .

Thus, the sheaf of Hamiltonian lifts of projectable special phase functions is closed
with respect to the Lie bracket and the map X↑ham : proj(J1E, IR) → sec(J1E, TJ1E)
is a morphism of Lie algebras.

1.7 Proposition. [36] For each f, g ∈ spec(J1E, IR) , we have

X
[

[[ f, g ]]
]

=
[
X[f ], X[g]

]
.

Thus, the map X : spec(J1E, IR)→ sec(E, TE) is a morphism of Lie algebras.

1.8 Proposition. For each f, g ∈ spec(J1E, IR) , we have

X↑hol

[
[[ f, g ]]

]
=
[
X↑hol [f ], X↑hol [g]

]
.

Hence, the map spec(J1E, IR) → sec(J1E, TJ1E) : f 7→ X↑hol [f ] is a morphism of
Lie algebras. Its kernel equals map(E, IR) .

Proof. If f, g ∈ spec(J1E, IR) , then, in virtue of Proposition 1.7 and Proposition 1.2, we obtain

X↑hol

[
[[ f, g ]]

]
:=
(
X
[

[[ f, g ]]
])

(1)
=
[
X[f ], X[g]

]
(1)

=

=
[
(X[f ])(1), (X[g])(1)

]
:=
[
X↑hol [f ], X↑hol [g]

]
.QED
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2 Classical symmetries

This section deals with the main aim of the paper. It is devoted to the analysis
of the distinguished subalgebras of the algebra of special phase functions and to the
classification of classical infinitesimal symmetries.

2.1 Subalgebras of special phase functions

We have distinguished subsheaves of the sheaf of special phase functions, which
are closed with respect to the special bracket. These subalgebras will play an im-
portant role with respect to the infinitesimal symmetries of the classical structure.

2.1.1 Subalgebra of conserved special phase functions

We define the following sheaves

cons spec(J1E, IR) := cons(J1E, IR) ∩ spec(J1E, IR)

cons proj(J1E, IR) := cons(J1E, IR) ∩ proj(J1E, IR)

cons fine(J1E, IR) := cons(J1E, IR) ∩ fine(J1E, IR)

cons aff(J1E, IR) := cons(J1E, IR) ∩ aff(J1E, IR)

cons map(E, IR) := cons(J1E, IR) ∩map(E, IR) .

We stress that the special bracket reduces to the Poisson bracket on the sheaf
cons(J1E, IR) , hence also on the above subsheaves.

2.1 Proposition. The sheaf cons spec(J1E, IR) is closed with respect to the special
bracket.

Proof. If f, g ∈ cons spec(J1E, IR) , then γ. [[ f, g ]] = γ.{f, g} = {γ.f, g}+ {f, γ.g} = 0 .QED

2.2 Lemma. For each spec(J1E, IR) , we have the coordinate expression

γ0.f ≡ γ(u0).f = 1
6

(∂if
0G0

hk + ∂kf
0G0

ih + ∂hf
0G0

ki)x
i
0 x

h
0 x

k
0

+ 1
2

(
∂0f

0G0
hk − f 0 ∂0G

0
hk + f i ∂iG

0
hk + ∂hf

iG0
ik + ∂kf

iG0
ih

)
xh0 x

k
0

−
(
f 0 (∂0Ah − ∂hA0) + f i (∂hAi − ∂iAh)− ∂0f

iG0
ih − ∂hf̆

)
xh0

+ ∂0f̆ − f i (∂0Ai − ∂iA0) .

Proof. By taking into account the coordinate expressions

γ0
i
0 = −Gij0

(
(∂hG0

jk − 1
2 ∂jG

0
hk)xh0 x

k
0 +

(
∂0G

0
hj + (∂hAj − ∂jAh)

)
xh0 + ∂0Aj − ∂jA0

)
f = f0 1

2 G
0
hk x

h
0 x

k
0 + fhG0

hk x
k
0 + f̆ ,
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2.1 Subalgebras of special phase functions 21

we obtain

γ0.f = ∂0f
0 1

2 G
0
hk x

h
0 x

k
0 + f0 1

2∂0G
0
hk x

h
0 x

k
0 + ∂0f

hG0
hk x

k
0 + fh ∂0G

0
hk x

k
0 + ∂0f̆

+ (∂if0 1
2 G

0
hk x

h
0 x

k
0 + f0 1

2∂iG
0
hk x

h
0 x

k
0 + ∂if

hG0
hk x

k
0 + fh ∂iG

0
hk x

k
0 + ∂if̆)xi0

−Gij0 (f0G0
ir x

r
0 + fr G0

ir) (∂hG0
jk − 1

2 ∂jG
0
hk)xh0 x

k
0

−Gij0 (f0G0
ir x

r
0 + fr G0

ir)
((
∂0G

0
hj + (∂hAj − ∂jAh)

)
xh0 + ∂0Aj − ∂jA0

)
.

Hence,

γ0.f = ∂0f
0 1

2 G
0
hk x

h
0 x

k
0 + f0 1

2∂0G
0
hk x

h
0 x

k
0 + ∂0f

hG0
hk x

k
0 + fh ∂0G

0
hk x

k
0 + ∂0f̆

+ (∂if0 1
2 G

0
hk x

h
0 x

k
0 + f0 1

2∂iG
0
hk x

h
0 x

k
0 + ∂if

hG0
hk x

k
0 + fh ∂iG

0
hk x

k
0 + ∂if̆)xi0

− (f0 xj0 + f j) (∂hG0
jk − 1

2 ∂jG
0
hk)xh0 x

k
0

− (f0 xj0 + f j)
((
∂0G

0
hj + (∂hAj − ∂jAh)

)
xh0 + ∂0Aj − ∂jA0

)
and thus

γ0.f = 1
2 ∂if

0G0
hk x

i
0 x

h
0 x

k
0

+ ( 1
2 ∂0f

0G0
hk − 1

2 f
0 ∂0G

0
hk + 1

2 f
i ∂iG

0
hk + ∂hf

iG0
ik)xh0 x

k
0

−
(
f0 (∂0Ah − ∂hA0) + f i (∂hAi − ∂iAh)− ∂0f

iG0
ih − ∂hf̆

)
xh0

+ ∂0f̆ − f i (∂0Ai − ∂iA0) .QED

2.3 Proposition. The sheaf cons spec(J1E, IR) is constituted by the special phase
functions f such that

∂if
0G0

hk + ∂kf
0G0

ih + ∂hf
0G0

ki = 0

∂0f
0G0

hk − f 0 ∂0G
0
hk + f i ∂iG

0
hk + ∂hf

iG0
ik + ∂kf

iG0
ih = 0

f 0 (∂0Ah − ∂hA0) + f i (∂hAi − ∂iAh)− ∂0f
iG0

ih − ∂hf̆ = 0

∂0f̆ − f i (∂0Ai − ∂iA0) = 0 .

A general analysis of the above system is beyond the scope of the present paper. Here,
we just discuss some equivalences and simple examples in the basic model of spacetime.
A similar remark holds for the systems of differential equations, which will appear in the
forthcoming sections.

2.4 Proposition. We have the useful identities γ0.H0 = −∂0L0 and γ0.Pi = ∂iL0 .
Moreover, we have the following equivalences:

γ.xi0 = 0 ⇔ Kλ
r
µ = 0

γ.K0 = 0 ⇔ ∂0G
0
hk = 0 , ∂0Ah − ∂hA0 = 0

γ.H0 = 0 ⇔ ∂0G
0
hk = 0 , ∂0Aλ = 0

γ.Qi = 0 ⇔ ∂iG
0
hk = 0 , ∂iAλ − ∂λAi = 0

γ.Pi = 0 ⇔ ∂iG
0
hk = 0 , ∂iAλ = 0
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22 2 Classical symmetries

γ.L0 = 0 ⇔ ∇hAk +∇kAh = ∂0G
0
hk , ∇hA0 = 0 , Ai0 (∂0Ai − ∂iA0) = ∂0A0 .

2.5 Example. In the special Newtonian spacetime, the sheaf cons spec(J1E, IR) is
constituted by the special phase functions f such that

∂if
0 = 0

∂0f
0 = −2 ∂1f

1 = −2 ∂2f
2 = −2 ∂3f

3

∂1f
2 = −∂2f

1 , ∂1f
3 = −∂3f

1 , ∂2f
3 = −∂3f

2

∂0f
i = −∂if̆

∂0f̆ = 0 .

A solution of this system is given by

f 0 = −a0 (x0)2 + d0 , f i = (a0 x
i + bi0)x0 , f̆ = −(1

2
a0

∑
i

(xi)2 +
∑
i

bi0 x
i + c) ,

where a0, b
i
0, c, d

0 ∈ IR . In particular, we obtain cons spec(J1E, IR) ⊂ proj(J1E, IR) .
For instance, the components of the kinetic energy, of the momentum and of the

angular momentum with respect to an inertial observer are conserved special phase func-
tions.

2.1.2 Subalgebra of holonomic functions

We can compare the holonomic and Hamiltonian lifts of a special phase func-
tion. The special phase functions whose holonomic and Hamiltonian lifts coincide
constitute a subalgebra with respect to the special bracket.

We call f ∈ spec(J1E, IR) holonomic if X↑hol [f ] = X↑ham [f ] .
We denote the subsheaf of holonomic functions by hol (J1E, IR) ⊂ spec(J1E, IR) .
Accordingly, we set

hol fine(J1E, IR) := hol (J1E, IR) ∩ fine(J1E, IR)

hol aff(J1E, IR) := hol (J1E, IR) ∩ aff(J1E, IR)

hol map(E, IR) := hol (J1E, IR) ∩map(E, IR) .

2.6 Proposition. The sheaf hol (J1E, IR) is constituted by the special phase func-
tions f such that

∂if
0 = 0

∂0f
0G0

ij − f 0 ∂0G
0
ij + fh ∂hG

0
ij + ∂jf

hG0
ih + ∂if

hG0
jh = 0

f 0 (∂iA0 − ∂0Ai) + ∂0f
hG0

ih + fh (∂hAi − ∂iAh) + ∂if̆ = 0 .

As a consequence, we obtain hol (J1E, IR) ⊂ proj(J1E, IR) .
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2.1 Subalgebras of special phase functions 23

Proof. By the coordinate expressions of the holonomic and Hamiltonian lifts of projectable special
phase functions

X↑hol [f ] = f0 ∂0 − f i ∂i − (∂0f
i + ∂jf

i xj0 + ∂0f
0 xi0 + ∂jf

0 xj0 x
i
0) ∂0

i

X↑ham [f ] = f0 ∂0 − f i ∂i +Gij0

(
∂j f̆ + ∂jf

0 1
2 G

0
hk x

h
0 x

k
0 + ∂jf

hG0
hk x

k
0

− f0
(
∂0G

0
hj x

h
0 + (∂0Aj − ∂jA0)

)
+ fh

(
∂hG

0
jk x

h
0 − (∂jAh − ∂hAj)

)
∂0
i ,

we obtain the following coordinate expression of the condition X↑hol [f ] = X↑ham [f ]

− (∂0f
i + ∂jf

i xj0 + ∂0f
0 xi0 + ∂jf

0 xj0 x
i
0)

= Gij0

(
∂j f̆ + ∂jf

0 1
2 G

0
hk x

h
0 x

k
0 + ∂jf

hG0
hk x

k
0

− f0
(
∂0G

0
hj x

h
0 + (∂0Aj − ∂jA0)

)
+ fh

(
∂hG

0
jk x

h
0 − (∂jAh − ∂hAj)

)
.

This is equivalent to the system

−∂hf0 δik = ∂jf
0 1

2 G
ij
0 G

0
hk

−(∂hf i + ∂0f
0 δih) = Gij0

(
∂jf

kG0
hk − f0 ∂0G

0
hj + fh ∂hG

0
jk

)
−∂0f

i = Gij0
(
∂j f̆ − f0 (∂0Aj − ∂jA0) + fh (∂hAj − ∂jAh)

)
.

By contracting the 1st equality with Ghk0 G0
ir and the 2nd and 3rd equalities with G0

ir , we get

∂rf
0 = 0

−(∂hf iG0
ir + ∂0f

0G0
hr) = ∂rf

kG0
hk − f0 ∂0G

0
hr + fk ∂hG

0
rk

−∂0f
iG0

ir = ∂rf̆ − f0 (∂0Ar − ∂rA0) + fh (∂hAr − ∂rAh)

and thus

∂rf
0 = 0

−(∂ifhG0
hj + ∂0f

0G0
ij) = ∂jf

hG0
ih − f0 ∂0G

0
ij + fh ∂iG

0
jh

−∂0f
hG0

hi = ∂if̆ − f0 (∂0Ai − ∂iA0) + fh (∂hAi − ∂iAh) .QED

2.7 Proposition. The sheaf hol (J1E, IR) is closed with respect to the special bracket.

Proof. If f, g ∈ hol (J1E, IR) , then, we obtain

X↑ham

[
[[ f, g ]]

]
=
[
X↑ham [f ], X↑ham [g]

]
=
[
X↑hol [f ], X↑hol [g]

]
= X↑hol

[
[[ f, g ]]

]
.QED

2.8 Example. In the special Newtonian spacetime, the sheaf hol (J1E, IR) is consti-
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24 2 Classical symmetries

tuted by the special phase functions f such that

∂if
0 = 0

∂0f
0 = −2 ∂1f

1 = −2 ∂2f
2 = −2 ∂3f

3

∂1f
2 = −∂2f

1 , ∂1f
3 = −∂3f

1 , ∂2f
3 = −∂3f

2

∂0f
i = −∂if̆ .

A solution of this system is given by

f 0 = −2
∫
a d0 , f i = a xi + bi , f̆ = −(1

2
∂0a

∑
i

(xi)2 +
∑
i

∂0b
i xi + c) ,

where a, bi c ∈ map(T , IR) .

2.1.3 Subalgebra of self–holonomic functions

Here, we consider special phase functions such that their holonomic prolongation
is related to their differential through the cosymplectic 2–form. These special phase
functions turn out to be conserved and holonomic.

We call f ∈ spec(J1E, IR) self–holonomic if i
(
X↑hol [f ]

)
Ω = df .

We denote the subsheaf of self–holonomic functions by self(J1E, IR) ⊂ spec(J1E, IR) .
Accordingly, we set

self fine(J1E, IR) := self(J1E, IR) ∩ fine(J1E, IR)

self aff(J1E, IR) := self(J1E, IR) ∩ aff(J1E, IR)

self map(E, IR) := self(J1E, IR) ∩map(E, IR) .

2.9 Lemma. If f ∈ self(J1E, IR) , then γ.f = 0 , hence

self(J1E, IR) ⊂ cons(J1E, IR) .

Proof. We have γ.f = i(γ) df = i(γ) i(X↑hol [f ]) Ω = −i(X↑hol [f ]) i(γ) Ω = 0 .QED

2.10 Lemma. If f ∈ self(J1E, IR) , then X↑hol [f ] = X↑ham [f ] , hence

self(J1E, IR) ⊂ hol (J1E, IR) .

Proof. The equality i
(
X↑hol [f ]

)
Ω = df yields

X↑ham [f ] := γ(f ′′) + Λ](df) = γ(f ′′) + Λ](Ω[(X↑hol [f ])) .

Therefore, we have

X↑ham [f ] = γ(f ′′) +X↑hol [f ]− γ(X↑hol [f ]) = γ(f ′′) +X↑hol [f ]− γ(X[f ])

= γ(f ′′) +X↑hol [f ]− γ(f ′′) = X↑hol [f ] .QED
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2.11 Proposition. For each f, g ∈ self(J1E, IR) , we obtain

Ω[
(
X↑hol

[
[[ f, g ]]

])
= d [[ f, g ]] .

Hence, the subsheaf self(J1E, IR) ⊂ spec(J1E, IR) is closed with respect to the special
bracket.

Proof. It sufficies to prove that

Λ]
(

Ω[
(
X↑hol

[
[[ f, g ]]

]))
= Λ]

(
d [[ f, g ]]

)
i(γ)

(
Ω[
(
X↑hol

[
[[ f, g ]]

]))
= i(γ)

(
d [[ f, g ]]

)
.

In fact, we have

Λ]
(

Ω[
(
X↑hol

[
[[ f, g ]]

]))
= X↑hol

[
[[ f, g ]]

]
− γ
(
X↑hol

[
[[ f, g ]]

])
= X↑hol

[
[[ f, g ]]

]
− γ
(
X
[

[[ f, g ]]
])

= X↑hol

[
[[ f, g ]]

]
− γ
(

[[ f, g ]] ′′
)
.

By Lemma 2.10 we have

Λ]
(

Ω[
(
X↑hol

[
[[ f, g ]]

]))
= X↑ham

[
[[ f, g ]]

]
− γ
(

[[ f, g ]] ′′
)

= Λ]
(
d [[ f, g ]]

)
.

On the other hand, the identity i(γ)Ω = 0 yields i(γ) Ω[(X↑hol [ [[ f, g ]] ]) = 0 and the definition of
the special bracket and Lemma 2.9 yield

i(γ) d [[ f, g ]] = i(γ) d
(
{f, g}+ γ(f ′′).g − γ(g′′).f

)
= {γ.f, g}+ {f, γ.g}+ i(γ) d

(
γ(f ′′).g − γ(g′′).f

)
= 0 .

Hence, Ω[(X↑hol

[
[[ f, g ]] ]

)
= d [[ f, g ]] .

Now, we state the conditions aimed at classifying the self–holonomic functions.

2.12 Lemma. For each f ∈ proj(J1E, IR) , we obtain

i
(
X↑hol [f ]

)
Ω = G0

ij (f 0 xj0 + f j) di0

+
(
f 0
(
(∂0Aj − ∂jA0) + ∂0G

0
jh x

h
0 + 1

2
∂jG

0
hk x

h
0 x

k
0

)
− f i

(
(∂iAj − ∂jAi) + (∂iG

0
jh − ∂jG0

ih)x
h
0

)
−G0

ij (∂0f
i + ∂hf

i xh0 + ∂0f
0 xi0)

)
dj

+
(
f j
(
(∂0Aj − ∂jA0) + ∂0G

0
jh x

h
0 + 1

2
∂jG

0
hk x

h
0 x

k
0

)
+ (∂0f

i + ∂jf
i xj0 + ∂0f

0 xi0)G0
ij x

j
0

)
d0 .
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Proof. The coordinate expressions

X↑hol [f ] = f0 ∂0 − f i ∂i − (∂0f
i + ∂jf

i xj0 + ∂0f
0 xi0) ∂0

i

Ω = G0
ij d

i
0 ∧ (dj − xj0 d0) +

(
(∂0Aj − ∂jA0) + ∂0G

0
jh x

h
0 + 1

2 ∂jG
0
hk x

h
0 x

k
0

)
d0 ∧ dj

+ 1
2

(
(∂iAj − ∂jAi) + (∂iG0

jh − ∂jG0
ih)xh0

)
di ∧ dj

yield

i
(
X↑hol [f ]

)
Ω = f0G0

ij x
j
0 d

i
0 + f0

(
(∂0Aj − ∂jA0) + ∂0G

0
jh x

h
0 + 1

2 ∂jG
0
hk x

h
0 x

k
0

)
dj

+ f j G0
ij d

i
0 + f j

(
(∂0Aj − ∂jA0) + ∂0G

0
jh x

h
0 + 1

2 ∂jG
0
hk x

h
0 x

k
0

)
d0

− f i
(
(∂iAj − ∂jAi) + (∂iG0

jh − ∂jG0
ih)xh0

)
dj

− (∂0f
i + ∂hf

i xh0 + ∂0f
0 xi0)G0

ij d
j

+ (∂0f
i + ∂jf

i xj0 + ∂0f
0 xi0)G0

ij x
j
0 d

0 .

Therefore, we have

i
(
X↑hol [f ]

)
Ω = G0

ij (f0 xj0 + f j) di0

+
(
f0
(
(∂0Aj − ∂jA0) + ∂0G

0
jh x

h
0 + 1

2 ∂jG
0
hk x

h
0 x

k
0

)
− f i

(
(∂iAj − ∂jAi) + (∂iG0

jh − ∂jG0
ih)xh0

)
−G0

ij (∂0f
i + ∂jf

i xj0 + ∂0f
0 xi0)

)
dj

+
(
f j
(
(∂0Aj − ∂jA0) + ∂0G

0
jh x

h
0 + 1

2 ∂jG
0
hk x

h
0 x

k
0

)
+ (∂0f

i + ∂hf
i xh0 + ∂0f

0 xi0)G0
ij x

j
0

)
d0 .QED

2.13 Lemma. For each f ∈ proj(J1E, IR) , we obtain

df = (∂0f
0 1

2
G0
hk x

h
0 x

k
0 + ∂0f

hG0
hk x

k
0 + ∂0f̆ + f 0 1

2
∂0G

0
hk x

h
0 x

k
0 + fh ∂0G

0
hk x

k
0) d0

+ (∂jf
hG0

hk x
k
0 + ∂j f̆ + f 0 1

2
∂jG

0
hk x

h
0 x

k
0 + fh ∂jG

0
hk x

k
0) dj

+ (f 0G0
ih x

h
0 + fhG0

ih) d
i
0 .

2.14 Proposition. The sheaf self(J1E, IR) is constituted by the special phase func-
tions f such that

∂if
0 = 0

f 0 ∂0G
0
ij − ∂0f

0G0
ij − fh ∂hG0

ij − ∂jfhG0
ih − ∂ifhG0

jh = 0

f 0 (∂0Aj − ∂jA0)− f i (∂iAj − ∂jAi)−G0
ij ∂0f

i − ∂j f̆ = 0

f i (∂iA0 − ∂0Ai) + ∂0f̆ = 0 .

Proof. In virtue of Lemmas 2.12 and 2.13, for each f ∈ proj(J1E, IR) , we have i
(
X↑hol [f ]

)
Ω = df
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if and only if

f j
(
(∂0Aj − ∂jA0) + ∂0G

0
jh x

h
0 + 1

2 ∂jG
0
hk x

h
0 x

k
0

)
+ (∂0f

i + ∂hf
i xh0 + ∂0f

0 xi0)G0
ik x

k
0 =

= ∂0f
0 1

2 G
0
hk x

h
0 x

k
0 + ∂0f

hG0
hk x

k
0 + ∂0f̆ + f0 1

2∂0G
0
hk x

h
0 x

k
0 + fh ∂0G

0
hk x

k
0

f0
(
(∂0Aj − ∂jA0) + ∂0G

0
jh x

h
0 + 1

2 ∂jG
0
hk x

h
0 x

k
0

)
− f i

(
(∂iAj − ∂jAi) + (∂iG0

jh − ∂jG0
ih)xh0

)
−G0

ij (∂0f
i + ∂hf

i xh0 + ∂0f
0 xi0) =

= ∂jf
hG0

hk x
k
0 + ∂j f̆ + f0 1

2∂jG
0
hk x

h
0 x

k
0 + fh ∂jG

0
hk x

k
0 .

By comparing the coefficients of the two above polynomial equalities, we obtain the following equiv-
alent system

f j (∂0Aj − ∂jA0)− ∂0f̆ = 0

f0 (∂0Aj − ∂jA0)− f i (∂iAj − ∂jAi)−G0
ij ∂0f

i − ∂j f̆ = 0

f0 ∂0G
0
jh − ∂0f

0G0
hj − f i ∂iG0

jh − ∂hf iG0
ij − ∂jf iG0

ih = 0 .QED

The system of the previous Proposition can be re–expressed in terms of an observer
and the tangent lift of the projectable special phase function.

2.15 Proposition. Let us consider an observer o . Then, the sheaf self(J1E, IR) is
constituted by the projectable special phase functions f such that

L
[
X[f ]

]
G = df ′′ yG

X[f ] y Φ[o] + ν∗[o]
(
G[
(
L[o]X[f ]

))
= d(f [o]) .

Proof. We can write the system which characterises self–holonomic functions (Proposition 2.14) as

∂µG
0
hkX[f ]µ +G0

ih ∂k(X[f ]i) +G0
ik ∂h(X[f ]i) = ∂0f

0G0
hk

X[f ]µ (∂µAj − ∂jAµ) +G0
ij ∂0(X[f ]i)− ∂j f̆ = 0

X[f ]i (∂iA0 − ∂0Ai)− ∂0f̆ = 0 .

On the other hand, we have the coordinate expressions

L
[
X[f ]

]
G =

(
∂µG

0
hkX[f ]µ +G0

ih ∂k(X[f ]i) +G0
ik ∂h(X[f ]i)

)
u0 ⊗ ďh ⊗ ďk

df ′′ yG = ∂0f
0G0

hk u0 ⊗ ďh ⊗ ďk

X[f ] y Φ[o] + ν∗[o]
(
G[
(
L[o]X[f ]

))
= X[f ]µ Φµν dν +G0

ij ∂0(X[f ]i) dj

d(f [o]) = ∂µf̆ .QED

We have the following further intrinsic characterisations of self-holonomic special phase
functions, which will play an important role in the classification of classical symmetries.

2.16 Theorem. Let f ∈ proj(J1E, IR) . Then, the following conditions are equiva-
lent:

1) i
[
X↑hol [f ]

]
Ω = df ,
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2) L
[
X↑hol [f ]

]
Ω = 0 , with f ∈ cons(J1E, IR) ,

3) X↑hol [f ] = X↑ham [f ] , with f ∈ cons(J1E, IR) .

Proof. 1) ⇒ 2). Let i
(
X↑hol [f ]

)
Ω = df . Then L

(
X↑hol [f ]

)
Ω := di

(
X↑hol [f ]

)
Ω = ddf = 0 .

On the other hand, the identity i(γ) Ω = 0 yields i(γ) df = 0 , i.e. f ∈ cons(J1E, IR) .

2) ⇒ 3). Let L
[
X↑hol [f ]

]
Ω = 0 , i.e. di

(
X↑hol [f ]

)
Ω = 0 .

Then, we have locally the equality i
(
X↑hol [f ]

)
Ω = dg , with g ∈ map(J1E, IR) .

On the other hand, the identity i(γ) Ω = 0 yields i(γ) dg = 0 , i.e. g ∈ cons(J1E, IR) .
As a consequence we obtain (Λ] ◦ Ω[)

(
X↑hol [f ]

)
= Λ](dg) and from this we can deduce that

X↑hol [f ]−γ
(
X↑hol [f ]

)
= X↑hol [f ]−γ(f ′′) = Λ](dg) . Hence X↑hol [f ] = γ(f ′′)+Λ](dg) := X↑ham [f ′′, g] .

On the other hand, since X↑hol [f ] is projectable on E , Theorem 1.5 implies g ∈ spec(J1E, IR) and
g′′ = f ′′ .

Hence, we obtain X↑hol [f ] = X↑ham [g] , which yields X[f ] = X[g] , hence f = g + h , with h ∈
map(E, IR) .

On the other hand, f, g ∈ cons(J1E, IR) implies h ∈ cons map(E, IR) = IR .
Therefore, we obtain X↑hol [f ] = X↑ham [f ] in the domain of definition of g , But, if the above equality

holds locally, then it holds in the domain of definition of f .

3)⇒ 1). Let f ∈ cons(J1E, IR) . Then, the identities concerning the linear musical isomorphisms and
the identity i(γ) Ω = 0 yield i

(
X↑ham [f ]

)
Ω := i

(
γ(f ′′) + Λ](df)

)
Ω = (Ω[ ◦ Λ])(df) = df − i(γ) df = df .

Hence, X↑hol [f ] = X↑ham [f ] implies i
(
X↑hol [f ]

)
Ω = df .QED

2.17 Corollary. We have self(J1E, IR) = cons(J1E, IR) ∩ hol (J1E, IR) .

Indeed, an even stronger result holds.

2.18 Theorem. We have self(J1E, IR) = cons proj(J1E, IR) .

Proof. The classifying systems of Proposition 2.14 and of Proposition 2.3 coincide.
Hence, self(J1E, IR) = cons proj(J1E, IR) .QED

2.1.4 Subalgebra of unimodular functions

Next, we consider the subalgebras of the algebra of projectable special phase
functions related to the divergence of the tangent lift.

A vector field X ∈ proj(E, TE) is called conformal unimodular , or unimodular , if we
have, respectively, d(divηX) = 0 , or divηX = 0 .

For each X, X̄ ∈ proj(E, TE) , we have divη([X, X̄]) = X. divη X̄−X̄. divηX . Hence,
the sheaves of conformal unimodular and unimodular vector fields of TE are closed with
respect to the Lie bracket.

A function f ∈ spec(J1E, IR) is said to be unimodular , or conformal unimodular if,
respectively, divηX[f ] = 0 , or d(divηX[f ]) = 0 . The subsheaves of unimodular and
conformal unimodular projectable special phase functions are denoted, respectively, by
unim(J1E, IR) ⊂ proj(J1E, IR) and c-unim(J1E, IR) ⊂ proj(J1E, IR) .

In the above definition, we need to consider projectable special phase functions, be-
cause divηX is defined only for a projectable spacetime vector field X , due to the fact
that η is a vertical form.
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2.1 Subalgebras of special phase functions 29

A vector field X↑ ∈ proj(J1E, TJ1E) is called conformal unimodular , or unimodular ,
if we have, respectively, d(divηX

↑) = 0 , or divηX
↑ = 0 .

The sheaves of conformal unimodular and unimodular vector fields of J1E are closed
with respect to the Lie bracket.

2.19 Proposition. The sheaves of conformal unimodular and unimodular special
phase functions are closed with respect to the special bracket.

Proof. If f, g ∈ proj(J1E, IR) , then we obtain

divη(X
[

[[ f, g ]]
]
) = divη

[
X[f ], X[g]

]
= X[g].divη(X[f ])−X[f ].divη(X[g]) .QED

2.20 Proposition. If f ∈ self fine(J1E, IR) , then divη(X[f ]) = 0 , hence

self fine(J1E, IR) = cons fine(J1E, IR) ⊂ unim(J1E, IR) .

Proof. The equality i
(
X↑hol [f ]

)
Ω = df yields L

[
X↑hol [f ]

]
Ω = 0 , hence, in virtue of Proposition

1.4, divη(X[f ]) = 0 .QED

2.1.5 Subalgebra of classic generators

Eventually, we consider the subalgebra of the algebra of special phase functions,
which generates the infinitesimal symmetries of the full classical structure.

Each f ∈ cons fine(J1E, IR) is called a classical generator . We denote the sheaf of
classical generators by clas(J1E, IR) := cons fine(J1E, IR) .

2.21 Theorem. We have clas(J1E, IR) = self fine(J1E, IR) ⊂ hol (J1E, IR) and
clas(J1E, IR) ⊂ unim(J1E, IR) .

Proof. It follows immediately from Theorem 2.18, Lemma 2.10 and Proposition 2.20. QED

By reformulating a previous result, we have the following characterisation of the clas-
sical generators.

2.22 Corollary. The sheaf clas(J1E, IR) is constituted by the special phase functions
f such that

∂λf
0 = 0

f 0 ∂0G
0
ij − fh ∂hG0

ij − ∂jfhG0
ih − ∂ifhG0

jh = 0

f 0 (∂0Aj − ∂jA0)− f i (∂iAj − ∂jAi)−G0
ij ∂0f

i − ∂j f̆ = 0

f i (∂iA0 − ∂0Ai) + ∂0f̆ = 0 .
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30 2 Classical symmetries

2.23 Example. In the special Newtonian spacetime, the sheaf clas(J1E, IR) is con-
stituted by the special phase functions f such that

∂λf
0 = 0

∂1f
1 = ∂2f

2 = ∂3f
3 = 0

∂1f
2 = −∂2f

1 , ∂1f
3 = −∂3f

1 , ∂2f
3 = −∂3f

2

∂0f
i = −∂if̆

∂0f̆ = 0 .

For instance, a solution of this system is given by

f 0 = a0

f i = bij x
j + ci0 x

0 + di

f̆ = −
∑

1≤i≤3

ci0 x
i + e ,

where a0, bij, c
i
0, d

i, e ∈ IR and bij = −bji .

2.2 Classical infinitesimal symmetries

We classify the vector fields of the phase space which are infinitesimal symme-
tries of spacetime and its structures.

2.2.1 Infinitesimal symmetries of geometric structures

We start by defining the infinitesimal symmetries of some typical geometric
structures. All concepts below are defined in such a way that the corresponding
local group of diffeomeorphisms act on the geometric structure and preserve it.

We introduce the following general concepts.
1. We define an infinitesimal symmetry of a fibred manifold p : F → B to be a

projectable vector field X of F .
2. We define an infinitesimal symmetry of a bundle q : G →M , which is a natural

prolongation of a manifold M , to be the projectable vector field Y obtained by the
corresponding natural lift of a vector field X of M .

3. We define an infinitesimal symmetry of a bundle q : G → F , which is a natural
prolongation of a fibred manifold p : F → B to be the projectable vector field Y obtained
by the corresponding natural lift of a vector field X of F .

4. We define an infinitesimal symmetry of a tensor σ of a manifold M to be a vector
field X of M such that L[X]σ = 0 .

5. We define an infinitesimal symmetry of a covariant vertical tensor σ of a fibred
manifold p : F → B to be a projectable vector field X of F such that L[X]σ = 0 .

6. We define an infinitesimal symmetry of an affine space A to be a constant vector
field of A .
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2.2 Classical infinitesimal symmetries 31

2.2.2 Infinitesimal symmetries of spacetime and phase space

According to the above guideline, we introduce the infinitesimal symmetries of
time, of spacetime and of the phase space as the vector fields which preserve the
affine structure of time, the time fibring of spacetime and the natural 1st jet functor.

An infinitesimal symmetry of time is defined to be an infinitesimal symmetry of the
affine structure of T , which can be regarded just as an element X

¯
∈ T̄ (i.e. a constant

vector field of T .)

An infinitesimal symmetry of spacetime is defined to be an infinitesimal symmetry of
the time fibring t yielding also an infinitesimal symmetry of the affine structure of T , i.e.
a vector field X ∈ fine(E, TE) .

An infinitesimal symmetry of the phase space is defined to be the infinitesimal sym-
metry of the 1st jet prolongation of spacetime yielding also an infinitesimal symmetry of
the time fibring t and an infinitesimal symmetry of the affine structure of T , i.e. the holo-
nomic prolongation of an infinitesimal symmetry of spacetime X(1) ∈ sec(J1E, TJ1E) ,
with X ∈ fine(E, TE) .

We define, respectiverly, a spacetime infinitesimal symmetry of dt and a phase in-
finitesimal symmetry of dt to be vector fieldsX ∈ sec(E, TE) andX↑ ∈ sec(J1E, TJ1E) ,
such that L[X] dt = 0 and L[X↑] dt = 0 .

2.24 Proposition. The infinitesimal symmetries of dt are the vector fields of the
type X ∈ fine(E, TE) and X↑ ∈ fine(J1E, TJ1E) .

Proof. In fact, we have L[X] dt = d i(X) dt and L[X↑] dt = d i(X↑) dt .QED

2.25 Corollary. A vector field X ∈ sec(E, TE) is an infinitesimal symmetry of
spacetime if and only if it is an infinitesimal symmetry of dt .

2.2.3 Infinitesimal symmetries of the cosymplectic 2–form

We define an infinitesimal symmetry of Ω to be a vector field X↑ ∈ sec(J1E, TJ1E) ,
such that L[X↑] Ω = 0 .

2.26 Theorem. The infinitesimal symmetries X↑ ∈ sec(J1E, TJ1E) of Ω are of the
local type X↑ = X↑ham [τ, f ] , with τ ∈ map(J1E, T̄) and f ∈ cons(J1E, IR) , where f is
determined up to a constant.

Proof. Let us consider any X↑ ∈ sec(J1E, TJ1E) and set τ := dt(X↑) ∈ map(J1E, T̄) .
Then, X↑ can be uniquely written as X↑ = γ(τ) + X̄↑ , with X̄↑ ∈ sec(J1E, V J1E) .
Moreover, by recalling the identity i(γ) Ω = 0 , we obtain L[γ(τ)] Ω = 0 .
Furthermore, by recalling the identity dΩ = 0 , we have L[X̄↑] Ω = 0 if and only if di(X̄↑) Ω = 0 , i.e.

if and only if locally i(X̄↑) Ω = df , with γ.f = 0 , i.e., in virtue of the results of Section 1.4.1, if and only
if locally X̄↑ = Λ](df) , with γ.f = 0 .QED
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32 2 Classical symmetries

2.27 Corollary. The infinitesimal symmetries X↑ ∈ sec(J1E, TJ1E) of dt and Ω
are of the local type X↑ = X↑ham [τ, f ] , with τ ∈ T̄ and f ∈ cons(J1E, IR) , where f is
defined up to a constant.

2.2.4 Infinitesimal symmetries of the classical structure

Next, we classify the infinitesimal symmetries of dt and Ω , which are projectable
on E . Indeed, the projectability condition yields an important consequence: namely,
it implies that the vector field is generated by a special phase function.

2.28 Corollary. The infinitesimal symmetries X↑ ∈ sec(J1E, TJ1E) of Ω , which are
projectable on E , are of the local type X↑ = X↑ham [f ] , with f ∈ cons spec(J1E, IR) ,
where f is defined up to a constant.

Proof. It follows from Theorem 2.26 and Theorem 1.5. QED

2.29 Corollary. The infinitesimal symmetries X↑ ∈ sec(J1E, TJ1E) of dt and Ω ,
which are projectable on E , are of the type X↑ = X↑ham [f ] , with f ∈ cons fine(J1E, IR) ,
where f is determined up to a constant.

Proof. It follows from the above Corollary 2.28 and Proposition 2.24. QED

2.30 Corollary. Let us consider a vector field X ∈ sec(E, TE) .
If its holonomic prolongation X(1) ∈ sec(J1E, TJ1E) is an infinitesimal symmetry of

dt and Ω , then we obtain locally X(1) = X↑hol [f ] = X↑ham [f ] , with f ∈ cons fine(J1E, IR)
and X = X[f ] .

Proof. In virtue of Corollary 2.29, we obtain X(1) = X↑ham [f ] , with f ∈ cons fine(J1E, IR) .
On the other hand, in virtue of Proposition 1.2, X(1) projects on X and, in virtue of Theorem 1.5,

X↑ham [f ] projects on X[f ] . Hence, we obtain X = X[f ] and X(1) = X↑hol [f ] .QED

We can reformulate the above result in a slightly stronger way.
An infinitesimal symmetry of the classical structure is defined to be a vector field

X↑ ∈ sec(J1E, TJ1E) , which is an infinitesimal symmetry of dt and Ω and which is
projectable on E .

2.31 Corollary. The infinitesimal symmetries X↑ ∈ sec(J1E, TJ1E) of the classical
structure are of the local type X↑ = X↑hol [f ] = X↑ham [f ] , with f ∈ cons fine(J1E, IR) .

Proof. In virtue of Corollary 2.29, we obtain X↑ = X↑ham [f ] , with f ∈ cons fine(J1E, IR) .
On the other hand, in virtue of Theorem 2.21, we have cons fine(J1E, IR) = self fine(J1E, IR) , hence

X↑hol [f ] = X↑ham [f ] .QED

2.32 Proposition. The subsheaf of infinitesimal symmetries of the classical structure
is a sheaf of Lie subalgebras.

Proof. It follows from the fact that the holonomic lift of special phase functions is a morphisms
of Lie algebras and that the holonomic lift of projectable special phase functions is a morphisms of Lie
algebras. QED
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2.3 Classical currents 33

Of course, we can analogously prove that also the other subsheaves of infinitesimal
symmetries considered above are subalgebras.

2.3 Classical currents

We devote this last section to the analysis of distinguished functions that are
generated by symmetries of our structure.

2.3.1 Functions generated by a horizontal potential

Each pair consisting of a spacetime vector field X and a horizontal potential A↑

of Ω yield a special phase function. This construction turns out to be an important
source of special phase functions in our classical and quantum theories. Indeed, the
above simple definition encodes deep aspects relating the horizontal potentials of Ω
and the classical and quantum symmetries.

Let us consider a spacetime vector field X ∈ sec(E, TE) and a horizontal potential
A↑ ∈ fib(J1E, T

∗E) of Ω .
We define the function generated by X and A↑ as −X yA↑ ∈ map(J1E, IR) .

2.33 Proposition. The function −X yA↑ is a special phase function.
Its coordinate expression is −X yA↑ = X0 1

2
G0
ij x

i
0 x

j
0 −X iG0

ij x
j
0 −XλAλ and, with

reference to an observer o , we have −X yA↑ = X yK[o]− ν[o](X) yQ[o]−X yA[o] .

Proof. It follows from the coordinate expression of A↑ .QED

Now, as a particular case, let us consider an f ∈ spec(J1E, IR) and its tangent pro-
longation X[f ] ∈ sec(E, TE) .

2.34 Corollary. We obtain the special phase function −X[f ] yA↑ ∈ spec(J1E, IR) ,
with observed expression −X[f ] yA↑ = f − f ◦ o−X[f ] yA[o] . In an adapted chart, we
get

−X[f ] yA↑ = f 0 (1
2
G0
ij x

i
0 x

j
0 − A0) + f i (G0

ij x
j
0 + Ai) = f − (f̆ + f 0A0 − f iAi) .

Indeed, we obtain X
[
−X[f ] yA↑

]
= X[f ] .

2.35 Corollary. For each observer o , the function

f̄ := f ◦ o+X[f ] yA[o] = f +X[f ] yA↑ ∈ map(E, IR) ,

does not depend on the choice of the observer o . Therefore, the coordinate expression
f̄ = f̆ + f 0A0 − f iAi does not depend on the adapted chart.

Proof. In fact, f and X[f ] yA↑ do not depend on the choice of any observer. QED

For instance, we have −X[L0] yA↑ = L0− 2A0 +Gij
0 AiAj , −X[H0] yA↑ = H0 and

−X[Pi] yA↑ = Pi .
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2.3.2 Nöther’s theorem

The previous results on infinitesimal symmetries can be applied to the La-
grangian formalism. Here, we call in mind some of results already presented in
[66] and add new results as well.

Let us consider a horizontal potential A↑ ∈ fib(J1E, T
∗E) of Ω and the associated

Lagrangian L ∈ sec(J1E, H
∗J1E) and momentum P ∈ sec(J1E, T

∗J1E) .
We define an infinitesimal symmetry of A↑ to be a vector field X↑ ∈ sec(J1E, TJ1E) ,

such that L[X↑]A↑ = 0 .

2.36 Lemma. Each infinitesimal symmetry of A↑ is an infinitesimal symmetry of
Ω .

We can formulate the following (Nöther) theorem which relates holonomic infinitesimal
symmetries of A↑ to conserved functions. For this, let us consider an X ∈ sec(E, TE) .

We say that X is a holonomic infinitesimal symmetry of a tensor φ of the phase space
if its holonomic prolongation X(1) ∈ sec(J1E, TJ1E) is an infinitesimal symmetry of φ ,
i.e. if L[X(1)]φ = 0 .

2.37 Theorem. If L[X(1)]A
↑ = 0 , then the 1–form i(X(1)) Ω ∈ sec(J1E, T

∗J1E)
is exact and the function f := −X yA↑ ∈ map(J1E, IR) turns out to be a potential of
i(X(1)) Ω . Moreover, we obtain f ∈ cons self(J1E, IR) and X(1) = X↑hol [f ] = X↑ham [f ] .

Proof. We have i(X(1)) Ω = i(X(1)) dA↑ = L[X(1)]A↑ − di(X(1))A↑ = 0− di(X)A↑ = df .
Hence, f is a potential of i(X(1)) Ω . Moreover, in virtue of Lemma 2.36 and Corollary 2.28, we obtain

f ∈ cons self(J1E, IR) and X(1) = X↑hol [f ] = X↑ham [f ] in the whole domain of A↑ .QED

2.38 Corollary. If X is an infinitesimal symmetry of dt and a holonomic infinitesimal
symmetry of A↑ , then the potential f := −X yA↑ = −(X yP + X

¯
yL) of i(X(1)) Ω is a

classical generator.

Proof. It follows from the above Theorem 2.37, Corollary 2.30, the definition of classical generators
and Proposition 2.24. QED

2.39 Corollary. If an observer o ∈ sec(E, T∗ ⊗ TE) is a (scaled) infinitesimal sym-
metry of A↑ , then the associated (scaled) potential of i(o(1)) Ω is just the associated
Hamiltonian H[A↑, o] := −o yA↑ ∈ map(J1E, T∗ ⊗ IR) . In particular, H[A↑, o] turns out
to be a conserved (scaled) function.

Next, we prove that the holonomic infinitesimal symmetries of dt and of the horizontal
potential are just the holonomic infinitesimal symmetries of dt and of the Lagrangian.

2.40 Lemma. For each X ∈ fine(E, TE) , we have the coordinate expressions

L[X(1)]L = (Xµ ∂µL0 + ∂0X
j ∂0

jL0 + ∂hX
j xh0 ∂

0
jL0) d0 ,

L[X(1)]P = ∂0
i (X

µ ∂µL0 + ∂0X
j ∂0

jL0 + ∂hX
j xh0 ∂

0
jL0) di
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− ∂0
i (X

µ ∂µL0 + ∂0X
j ∂0

jL0 + ∂hX
j xh0 ∂

0
jL0)xi0 d

0 .

Proof. We have

L[X(1)]P = (Xµ ∂µ∂
0
i L0 + ∂0X

j ∂0
j ∂

0
i L0 + ∂hX

j xh0 ∂
0
j ∂

0
i L0 + ∂iX

j ∂0
jL0) di

−
(
(Xµ ∂µ∂

0
i L0 + ∂0X

j ∂0
j ∂

0
i L0 + ∂hX

j xh0 ∂
0
j ∂

0
i L0)xi0

+ ∂0X
i ∂0
i L0 + ∂hX

i xh0 ∂
0
i L0 − ∂0X

j ∂0
jL0)

)
d0

= (Xµ ∂µ∂
0
i L0 + ∂0X

j ∂0
j ∂

0
i L0 + ∂hX

j xh0 ∂
0
j ∂

0
i L0 + ∂iX

j ∂0
jL0) di

−
(
(Xµ ∂µ∂

0
i L0 + ∂0X

j ∂0
j ∂

0
i L0 + ∂hX

j xh0 ∂
0
j ∂

0
i L0)xi0 + ∂hX

i xh0 ∂
0
i L0)

)
d0

= ∂0
i (Xµ ∂µL0 + ∂0X

j ∂0
jL0 + ∂hX

j xh0 ∂
0
jL0 − ∂iXj ∂0

jL0 + ∂iX
j ∂0

jL0) di

−
(
∂0
i (Xµ ∂µL0 + ∂0X

j ∂0
jL0 + ∂hX

j xh0 ∂
0
jL0)xi0 − ∂iXj xi0 ∂

0
jL0 + ∂hX

i xh0 ∂
0
i L0)

)
d0

= ∂0
i (Xµ ∂µL0 + ∂0X

j ∂0
jL0 + ∂hX

j xh0 ∂
0
jL0) di

− ∂0
i (Xµ ∂µL0 + ∂0X

j ∂0
jL0 + ∂hX

j xh0 ∂
0
jL0)xi0 d

0 .QED

2.41 Proposition. For each X ∈ fine(E, TE) , we have the following implication

L[X(1)]L = 0 ⇒ L[X(1)]P = 0 .

2.42 Theorem. [66] For each X ∈ fine(E, TE) , the following equivalence holds

L[X(1)]A
↑ = 0 ⇔ L[X(1)]L = 0 .

Proof. If L[X(1)]A↑ = 0 , then, in virtue of Lemma 1.3, we have

L[X(1)]L := L[X(1)] i(d)A↑ = −i(d)L[X(1)]A↑ + i
(
[X(1),d]

)
A↑ = 0 + 0 .

If L[X(1)]L = 0 , then, in virtue of Section 1.3.2 and Proposition 2.41

L[X(1)]A↑ = L[X(1)]
(
L+ P

)
= 0 + 0 .QED

2.3.3 Group of symmetries and momentum map

We define a momentum map for classical symmetries in our framework, by
analogy with the standard symplectic and cosymplectic literature (see, for instance,
[2, 18, 59, 61] and references therein).

Let us consider a Lie group G↑ and its Lie algebra g↑ := Te↑G
↑ , where e↑ ∈ G denotes

the unit element of G↑ . We refer to a chart (ζI) of G , defined in an open neighbouroud
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36 2 Classical symmetries

of e↑ , and to the induced basis (b↑I) :=
(
∂I(e

↑)
)

of g .

Let us make the following assumptions, by postulating, step by step, subsequent ad-
ditional hypotheses.

0) Let us start by assuming that G↑ be a group of symmetries of the phase space. It
means that G↑ acts on the phase space through a map α↑ : G↑ × J1E → J1E .

By taking the partial tangent map of α↑ , with respect to G↑ , at e↑ ∈ G↑ , we obtain the
fibred morphism ∂α↑ : g↑ × J1E → TJ1E over J1E . Hence, for each ξ↑ ∈ g↑ , we obtain
the vector field X↑ := ∂α↑(ξ↑) := (∂α↑)|ξ↑ : J1E → TJ1E , with coordinate expression
∂α↑(ξ↑) = ξI (∂Iα

0 ∂0 + ∂Iα
i ∂i + ∂Iα

i
0 ∂

0
i ) . We can regard ∂α↑ as a homomorphism of

IR–Lie algebras ∂α↑ : g↑ → Sec(J1E, TJ1E) .

We define the time component of ∂α↑ as ∂α
¯
↑ := dt ◦ ∂α↑ : g↑ → Map(J1E, T̄) .

If α↑ is a free action, then ∂α↑ : g↑ → Sec(J1E, TJ1E) turns out to be injective.

1) Let us suppose additionally that α↑ be a group of symmetries of the phase space
fibred over time. It means that

i) we have a Lie group G
¯
, which acts on T through a map α

¯
: G

¯
× T → T ,

ii) we have a Lie group epimorphism π
¯
↑ : G↑ → G

¯
,

iii) the following diagram commutes

G↑ × J1E
α↑−−−→ J1E

π
¯
↑×t1

y yt1
G
¯
× T

α
¯−−−→ T

Let g
¯

be the Lie algebra of the the Lie group G
¯
.

2) Let us suppose additionally that G↑ be a group of symmetries of dt . It means that,
for each g↑ ∈ G↑ , we have (α↑|g↑)

∗(dt) = dt . This hypothesis means also that G↑ is a
group of symmetries of the affine struture of T .

The Lie algebra g↑ is a Lie algebra of infinitesimal symmetries of dt , i.e., for each
ξ↑ ∈ g↑ , we have L

[
∂α↑(ξ↑)

]
dt = 0 . Moreover, for each ξ↑ ∈ g↑ , the vector field ∂α↑(ξ↑) ∈

Sec(J1E, TJ1E) has constant time component. Hence, ∂α↑ : g↑ → Fine(J1E, TJ1E) .

Moreover, we obtain the equality ∂α
¯
↑ = ∂α

¯
: g↑ → T̄ , according to the following

commutative diagram

g↑
∂α↑−−−→ Fine(J1E, TJ1E)

Tπ
¯|e

y y
g
¯

∂α
¯−−−→ T̄ .

3) Let us suppose additionally that G↑ be a group of symmetries of Ω . It means that,
for each g↑ ∈ G↑ , we have (α↑|g↑)

∗(Ω) = Ω .
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The Lie algebra g↑ is a Lie algebra of infinitesimal symmetries of Ω , i.e., for each
ξ↑ ∈ g↑ , we have L

[
∂α↑(ξ↑)

]
Ω = 0 .

Corollary 2.27 suggests the following definition.

We define a momentum map to be a map J↑ : g↑ → cons(J1E, IR) : ξ↑ 7→ f , where

f ∈ cons(J1E, IR) is a local potential of the 1–form i
(
∂α↑(ξ)

)
Ω .

In general, a momentum map is not unique. In fact, if i
(
∂α↑(ξ↑)

)
Ω is not exact, then

its potential is determined only locally and up to a real additive constant.

4) Let us suppose additionally that we have chosen a momentum map

J↑ : g↑ → cons(J1E, IR) .

2.43 Proposition. For each ξ↑ ∈ g↑ , we have

∂α↑(ξ↑) = X↑ham

[
J↑(ξ↑)

]
:= X↑ham

[
∂α

¯
↑(ξ↑), J↑(ξ↑)

]
.

Proof. The definition of momentum map yields the equality

d
(
J↑(ξ↑)

)
= i
(
∂α↑(ξ↑)

)
Ω .

Hence, the results of Section 1.4.1 yield Λ]
(
d
(
J↑(ξ↑)

))
= Λ]

(
Ω[
(
∂α↑(ξ↑)

))
= ∂α↑(ξ↑)−γ

(
∂α↑(ξ↑)

)
,

i.e. ∂α↑(ξ) = γ
(
∂α

¯
↑(ξ↑)

)
+ Λ]

(
d
(
J↑(ξ↑)

))
:= X↑ham

[
∂α

¯
↑(ξ↑), J↑(ξ↑)

]
.QED

The above result suggests the following definition. We define the extended momentum

map to be the map J̃↑ : g↑ → T̄× cons(J1E, IR) : ξ↑ 7→
(
∂α

¯
↑(ξ↑), J↑(ξ↑)

)
.

We define the time scale bracket of map(J1E, T̄) by [τ, σ] := γ(τ).σ−γ(σ).τ . It turns

out to be a
(

cons(J1E, IR)
)
–Lie bracket.

Then, we define the extended Poisson bracket of map(J1E, T̄ × IR) by{
(τ, f), (σ, g)

}
:=

(
[τ, σ], {f, g}

)
. It turns out to be an IR–Lie bracket. Moreover, the

subsheaf T̄× cons(J1E, IR) ⊂ map(J1E, T̄× IR)×map(J1E, T̄× IR) turns out to be an
IR–Lie subalgebra.

Next, we analyse the behaviour of the extended momentum map with respects to the
Lie bracket of g and of the extended Poisson bracket.

Proposition 2.43 can be reformulated by saying that the following diagram commutes
locally

g↑
J̃↑

- T̄× cons(J1E, IR)

Fine(J1E, TJ1E)
�

X
↑ ham

∂α ↑
-
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38 2 Classical symmetries

2.44 Proposition. For each ξ↑, ξ′↑ ∈ g↑ , we have

J̃↑
(
[ξ↑, ξ′↑]

)
=
[
J̃↑(ξ↑), J̃↑(ξ′↑)

]
+ (0, k) , where k ∈ IR .

Proof. We have ∂α↑(ξ↑), ∂α↑(ξ′↑) ∈ Fine(J1E, J1TE) , hence ∂α
¯
↑([ξ↑, ξ′↑]) = 0 .

Then, in virtue of Proposition 2.43, we obtain

∂α↑
(
[ξ↑, ξ′↑]

)
= X↑ham

[
∂α

¯
↑([ξ↑, ξ′↑]), J↑([ξ↑, ξ′↑])]

= X↑ham

[
0, J↑

(
[ξ↑, ξ′↑]

)]
.

On the other hand, in virtue of Proposition 2.43, we obtain

∂α↑
(
[ξ↑, ξ′↑]

)
=
[
∂α↑(ξ↑), ∂α↑(ξ′↑)

]
=
[
X↑ham

[
∂α

¯
↑(ξ↑), J↑(ξ↑)

]
, X↑ham

[
∂α

¯
↑(ξ′↑), J↑(ξ′↑)

]]
= X↑ham

[[
(∂α

¯
↑(ξ↑), J↑(ξ↑)), (∂α

¯
↑(ξ′↑), J(ξ′↑))

]]
= X↑ham

[
0,
{
J↑(ξ↑), J↑(ξ′↑)

}]
.

Therefore, by comparing the above equalities, we obtain

X↑ham

[
0, J↑

(
[ξ↑, ξ′↑]

)]
= X↑ham

[
0,
{
J↑(ξ↑), J↑(ξ′↑)

}]
,

which, in virtue of Section 1.4.3, yields J̃↑
(
[ξ↑, ξ′↑]

)
=
[
J̃↑(ξ↑), J̃↑(ξ′↑)

]
+ (0, k) , where k ∈ IR .QED

5) Let us suppose additionally that G↑ be a group of holonomic symmetries of space-
time. It means that

i) the Lie group G ≡ G↑ acts on E through a map α : G×E → E ,
ii) the following diagram commutes

G×E
α−−−→ E

π
¯
×t

y yt
G
¯
× T

α
¯−−−→ T

where π
¯
≡ π

¯
↑ : G→ G

¯
,

iii) for each g ∈ G , we have (α↑|g)
∗(dt) = dt ,

iv) the action α↑ is the 1–jet prolongation of α with respect to J1E

α↑ = J1α : G× J1E → J1E ,

according to the following commutative diagram

G× J1E
J1α−−−→ J1E

id×t1
y yt1

G×E
α−−−→ E
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2.3 Classical currents 39

2.45 Note. By taking the partial tangent map of α , with respect to G , at e ∈ G ,
we obtain the fibred morphism ∂α : g×E → TE over E .

We obtain ∂α
¯

:= dt ◦ ∂α = ∂α
¯
◦ Tπ

¯
: g→ T̄ , according to the commutative diagram

g
∂α−−−→ Fine(E, TE)

Tπ|e

y y
g
¯

∂α
¯−−−→ T̄

Hence, for each ξ ∈ g , we obtain the vector field X := ∂α(ξ) := (∂α)|ξ : E → TE ,
with constant time component. Its coordinate expression is ∂α(ξ) = ξI (∂Iα

0 ∂0 +∂Iα
i ∂i) ,

with ∂Iα
i ∈ IR .

Thus, we can regard ∂α as a homorphism of IR–Lie algebras ∂α : g→ Fine(E, TE) .

2.46 Note. The map ∂α↑ : g× J1E → TJ1E turns out to be the holonomic prolon-
gation of ∂α : g×E → TE , i.e., for each ξ ∈ g , we have ∂α↑(ξ) =

(
∂α↑(ξ)

)
(1)
.

2.47 Proposition. For each ξ↑ ∈ g↑ , the following facts hold.

i) The time components of ∂α↑(ξ↑) and J↑(ξ↑) coincide, i.e. ∂α
¯
↑(ξ↑) =

(
J↑(ξ↑)

)′′
∈ T̄ .

ii) The conserved phase function J↑(ξ↑) turns out to be a special phase function; more
precisely, J↑(ξ↑) ∈ clas(J1E, IR) = cons fine(J1E, IR) = self fine(J1E, IR) .

iii) We have ∂α↑(ξ↑) = X↑ham

[
J↑(ξ↑)

]
= X↑hol

[
J↑(ξ↑)

]
.

iv) The spacetime vector field X := ∂α(ξ) associated with ξ := π(ξ↑) is the tangent

lift of J↑(ξ↑) , i.e. ∂α(ξ) = X
[
J↑(ξ↑)

]
.

Proof. It follows from Note 2.45, Proposition 2.43, Theorem 1.5 and Theorem 2.21. QED

Thus, in the case of spacetime symmetries, the function J↑ characterises J̃↑ .

6) Let us consider a horizontal potential A↑ of Ω and suppose additionally that α↑

preserves A↑ . It means that G↑ is a group of symmetries of A↑ , i.e. that, for each g↑ ∈ G↑ ,
(α↑|g↑)

∗(A↑) = A↑ .

2.48 Note. The Lie algebra g↑ is a Lie algebra of infinitesimal symmetries of A↑ ,
i.e., for each ξ↑ ∈ g↑ , we have L

[
∂α↑(ξ↑)

]
A↑ = 0 .

2.49 Proposition. The following implication holds

L
[
∂α↑(ξ↑)

]
A↑ = 0 ⇒ L

[
∂α↑(ξ↑)

]
Ω = 0 .

Proof. We have L
[
∂α↑(ξ↑)

]
Ω = L

[
∂α↑(ξ↑)

]
dA↑ = dL

[
∂α↑(ξ↑)

]
A↑ = 0 .QED

In this case, we obbtain a distinguished momentum map.
Let L and P be the Lagrangian and momentum associated with A↑ , and H[o] and

P [o] be the observed Hamiltonian and momentum associated with A↑ and an observer o .
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2.50 Proposition. The map J↑ : g↑ → map(J1E, IR) : ξ↑ 7→ −
(
∂α↑(ξ↑)

)
yA↑ turns

out to be a momentum map whose target is defined in the domain of A↑ .

Hence, for each ξ↑ ∈ g↑ , we have the equalities

J↑(ξ↑) = −∂α↑(ξ↑) yL − ∂α↑(ξ↑) yP
= ∂α↑(ξ↑) yH[o]− ∂α↑(ξ↑) yP [o] .

For each ξ↑ = ξI b↑I , we have the coordinate expressions

J↑(ξ↑) = −ξI
(
(∂Iα

i − xi0 ∂Iα0) ∂0
i L0 + ∂Iα

0 L0

)
.

Proof. We have i
(
∂α↑(ξ↑)

)
Ω = i

(
∂α↑(ξ↑)

)
dA↑ = L

[
∂α↑(ξ↑)

]
A↑ − di

(
∂α↑(ξ↑)

)
A↑ =

= −di
(
∂α↑(ξ↑)

)
A↑ , hence −

(
∂α↑(ξ↑)

)
yA↑ is a potential of i

(
∂α↑(ξ↑)

)
Ω . Then, the expression of the

above momentum map follows from the equalities A↑ = L+ P and A↑ = −H[o] + P[o] .QED

We can exhibit a close relation between the momentum map J and the momentum P
in the following way.

7) Let us suppose additionally that G↑ be a group of vertical holonomic symmetries
of A↑ . It means that the group G

¯
is the identity group of T .

2.51 Note. We have i
(
∂α↑(ξ↑)

)
dt = 0 .

2.52 Corollary. The momentum map of the above Proposition 2.50 becomes

J↑ : g↑ → map(J1E, IR) : ξ↑ 7→ −
(
∂α↑(ξ↑)

)
yP .

Proof. It follows immediately from the above Proposition 2.50 and Note 2.51. QED

Now, we apply the above results to a few examples.

2.53 Example. Let us consider a special Newtonian spacetime, the abelian group of
vertical translations G = S and the group action α : S ×E → E : (v, e) 7→ (e+ v) .

Of course, the Lie algebra of G = S is g = S . A horizontal potential A↑ of Ω exists
globally and S turns out to be a group of holonomic symmetries of A↑ , through the 1–jet
prolongation α↑ := J1α : S× J1E → J1E of the action α . The distinguished momentum
map J↑ associated with α↑ is the map J↑ : S → Aff Clas(J1E, IR) : v 7→ −P(v) , with
coordinate expression J↑(v) = −viG0

ij x
j
0 .

2.54 Example. Let us consider a special Newtonian spacetime and a complete global
observer o . Hence, the observer yields the fibred isomorphism s[o] : E → T × P over
T . Let us consider the abelian group of time translations G = T̄ and the group action
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2.3 Classical currents 41

α : T̄×E → E given by the following commutative diagram

T̄×E
α−−−→ E

id×s[o]

y xs[o]−1

T̄× (T × P ) −−−→ T × P

where we have considered the map T̄× (T × P )→ T × P :
(
v, (τ, p)

)
7→ (v + τ, p) .

Of course, the Lie algebra of G = T̄ is g = T̄ . A horizontal potential A↑ of Ω exists
globally and T̄ turns out to be a group of holonomic symmetries of A↑ , through the
1–jet prolongation α↑ := J1α : T̄ × J1E → J1E . The distinguished momentum map J↑

associated with α↑ is the map J↑ : T̄→ Clas(J1E, IR) : λ 7→ −(o yA↑)(λ) = H(λ) .

Another interesting example could be obtained by considering the angular momentum
of a rigid body.
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[11] P. Dazord: Integration d’algébres de Lie locale et groupoides de contact , C. R. Acad. Sci., Ser. I,
Math. 320 (1995), 959–964.

[12] M. Crampin: Jet bundle techniques in analytical mechanics, Quaderni del C.N.R., G.N.F.M., N.
47, Firenze, 1995.

[13] G. Dautcourt: On the Newtonian limit of general relativity , Acta Phys. Pol. B 21, 10, (1990),
755–765.

[14] M. de Leon, J. C. Marrero, E. Padron: Lichnerowicz–Jacobi cohomology of Jacobi manifolds,
C. R. Acad. Sci. Paris I 324 (1997), 71–76.

[15] M. de Leon, J.C. Marrero, E. Padrón: On the geometric quantization of Jacobi manifolds, J.
Phys. A: Math. Gen. 26 (1993), 5033-5043. J. Math. Phys. 38 (12) (1997), 6185-6213.

[16] M. de Leon, P. R. Rodrigues: Generalized classical mechanics and field theory , North–Holland,
Amsterdam, 1985.

[17] M. de Leon, P. R. Rodrigues: Methods of differential geometry in analytical mechanics, North–
Holland, Amsterdam, 1989.

[18] M. de Leon, M. Sarlegui: Cosymplectic reduction for singular momentum maps, J. Phys. A:
Math. Gen. 26 (1993), 5033-5043.

[19] M. de Leon, G.M. Tuynman: A universal model for cosymplectic manifolds, Journal of Geometry
and Physics 20 (1996), 77-86.

ClasSymExt-2005-07-09.tex; [output 2010-06-13; 11:42]; p.42



References 43

[20] B. S. DeWitt: Dynamical Theory in Curved Spaces. I. A Review of the Classical and Quantum
Action Principles, Rev. Modern Phys., 29, 3 (1957), 377–397.

[21] H. D. Dombrowski, K. Horneffer: Die Differentialgeometrie des Galileischen Relativitäts-
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[43] K. Kuchař: Gravitation, geometry and nonrelativistic quantum theory , Phys. Rev. D, 22, 6 (1980),
1285–1299.

[44] H. P. Künzle: Galilei and Lorentz structures on space-time: comparison of the corresponding ge-
ometry and physics, Ann. Inst. H. Poinc. 17, 4 (1972), 337–362.

[45] H. P. Künzle: Galilei and Lorentz invariance of classical particle interaction, Symposia Mathe-
matica 14 (1974), 53–84.

[46] H. P. Künzle: Covariant Newtonian limit of Lorentz space–times, G.R.G. 7, 5 (1976), 445–457.

[47] H. P. Künzle: General covariance and minimal gravitational coupling in Newtonian space-time, in
“Geometrodynamics”, A. Prastaro Ed., Tecnoprint, Bologna 1984, 37–48.
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