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Abstract

We sketch the basic ideas and results on the covariant formulation of quantum
mechanics on a curved spacetime with absolute time equipped with given gravita-
tional and electromagnetic fields.

Moreover, we analyse the classical and quantum symmetries and show their
relations.
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1 Introduction

Our fundamental picture of the physical world is due to the theory of general relativity
and to the quantum field theory, which got great theoretical and experimental success.

The well established historical steps in classical theory have been: non relativistic the-
ory, special relativity, general relativity. Analogously, the well established steps in quan-
tum theory have been: non relativistic quantum mechanics, special relativistic quantum
field theory.

Unfortunately, these theories deal with different objects, use partially incompatible
mathematical methods and fulfill different requirements of covariance. In particular, the
standard formulation of quantum theories is highly based on concepts and methods
strictly related to a flat spacetime and inertial observers, which conflict with general
covariance on a curved spacetime.

So, a consistent formulation of quantum field theories and general relativity is a still
open problem. The problem has at least two faces:

- general relativistic covariant formulation of quantum theories in a curved spacetime,
- quantum theory of gravitational field.

The model of covariant quantum mechanics discussed in this paper is aimed at con-
tributing to the first face of the problem, by means of new ideas and methods [23, 24, 25,
4, 26, 27, 52, 31, 65, 66, 33, 67, 68, 29, 51, 55]. Namely, we study a general relativistic
covariant formulation of quantum mechanics on a classical background constituted by a
curved spacetime fibred over absolute time and equipped with given spacelike Riemannian
metric, and gravitational and electromagnetic fields. Thus, we restrict our investigation
just to fundamental fields of classical and quantum mechanics, because we believe that
this arena could possibly suggest us good ideas for unifying deeper fundamental theories
of physics.

The framework of our model is allowed by the possible general relativistic formulation
of classical physics in a curved spacetime with absolute time. This theory is well estab-
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lished in the literature [60, 61, 7, 8, 9, 10, 11, 12, 13, 19, 37, 38, 39, 40, 41, 42, 44, 45,
47, 56, 62, 63], even if it is much less popular than the Einstein theory of relativity. This
theory is rigorous and self–consistent from a mathematical viewpoint and describes the
phenomena of classical physics by an approximation which is intermediate between the
classical theory and the Einstein theory of relativity.

The standard term “relativistic theory” links the special or general covariance with
the Minkowski or Lorentz metric. This usage is clearly motivated by the historical de-
velopments of the Einstein theory. However, it would be more appropriate to refer the
word “relativistic theory” only to its semantic meaning related to covariance. Indeed, the
standard usage would be highly misleading in our context. In fact, our model is general
relativistic, in the sense of covariance, but it is not Minkowskian or Lorentzian.

Clearly, the Minkowski or Lorentz metric is physically related to the distinguished
constant c. Actually, in our model this constant does not occur. The classical limit of
Einstein general relativity for c→∞ [13] is quite delicate, if we wish to understand the
limit of the geometric structures of the model and not only the limit of some measure-
ments. In a sense, our model could be regarded as the “true” classical limit of Einstein
general relativity.

Our model can be regarded as an intermediate step between the standard non rela-
tivistic quantum mechanics and a possible fully general relativistic quantum theory. This
framework allows us to focus our attention on the general relativistic covariance and
the curved spacetime, detaching them from the difficulties due to the Lorentz metric.
Actually, our choice seems to be quite fruitful.

The main new methods and achievements can be summarised as follows.
First of all, our basic guide is the covariance (even more, the manifest covariance)

of the theory as heuristic requirement. Nowadays, the concept of “covariance” has been
formulated in a rigorous mathematical way through the geometric concept of “naturality”
[35]. According to the covariance of the theory, time is not just a parameter, but a fun-
damental object of the theory; moreover, the main objects of the theory are not assumed
to be split into time and space components. As classical phase space we take the first jet
space of spacetime and not its tangent space; indeed, this minimal choice allows us to skip
anholonomic constraints. Another consequence of our choices is that classical mechanics
is ruled not by a symplectic structure, but by a cosymplectic structure [46]; actually, we
do get a symplectic structure, but this describes only the spacelike aspects of classical
theory and is insufficient to account for classical dynamics. An achievement of our theory
is the Lie algebra of “special quadratic functions” (different from the Poisson algebra),
which allows us to treat energy, momentum and spacetime functions on the same footing.
We emphasize the fact that classical mechanics can be formulated in a covariant way by
a Lagrangian approach, but not by a Hamiltonian approach, because the Hamiltonian
function depends essentially on an observer.

As far as quantum mechanics is concerned, all objects are derived, in a covariant way,
from three minimal objects. Here, we have some novelties. The quantum bundle lives on
spacetime and not on the phase space and the quantum connection is “universal”. These
assumptions allow us to skip all problems of polarisations [70]. In a sense, we obtain
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naturally a covariant polarisation and this is sufficient for our purposes. Indeed, we replace
the problematic search for such inclusions with a method of projectability , which turns out
to be our implementation of covariance in the quantum theory. Another new assumption
concerns the Hermitian metric of the quantum bundle, which takes its values in the space
of spacelike volume forms. This assumption allows us to skip the problems related to half–
densities. The Schroedinger equation is obtained, in a covariant way, through a Lagrangian
approach and not through the standard non covariant Hamiltonian approach. Indeed, we
exhibit an explicit expression of the Schroedinger equation for any quantum system.
The quantum operators arise automatically, in a covariant way, from the classification
of distinguished first and second order differential operators of the quantum framework
and not from a quantisation requirement of a classical system [70]. The seat for the
covariant probabilistic interpretation of quantum mechanics is a Hilbert bundle, naturally
yielded by the quantum bundle, and not just a Hilbert space. Our theory provides explicit
expressions of all objects for any accelerated observer and yields, at the same time, an
interpretation in terms of gravitational field, according to the principle of equivalence.

In a few words, we start with really minimal geometric structures representing physical
fields and proceed along a thread naturally imposed by the only requirement of general
covariance. We take the well established results of classical and quantum mechanics as
touchstone of our model. On the other hand, according to the aims of our theory, we
disregard those standard methods for deriving quantum objects, which are incompatible
with general covariance. Indeed, in the flat case, the results of our model reduce to the
results of the standard classical and quantum mechanics.

In this paper, we deal just with a given gravitational and electromagnetic field; this
is sufficient as classical background for our covariant model of quantum mechanics. On
the other hand, our classical model can be completed by adding, in a covariant way, the
equations linking the gravitational and electromagnetic fields to their mass and charge
sources [25]. These equations are a covariant reduced version of the Einstein and Maxwell
equations. In fact, due to the spacelike nature of the metric, there is no way to couple
fully the gravitational and electromagnetic fields with the energy–momentum tensor and
the charge current, respectively. Just this is the main point which makes the Einstein
model physically much more complete than ours. On the other hand, in our quantum
model, the gravitational and electromagnetic fields are “external”, hence the relation of
these fields with their sources does not play an effective role in this context.

The reader might be puzzled by the fact that we do not mention explicitly the rep-
resentations of the (finite dimensional and infinite dimensional) groups involved in our
theory. In fact, our natural geometric constructions provide these representations auto-
matically. This is an outproduct of our manifestly covariant approach.

In our model we never make an essential use of the fact that the dimension of spacetime
is n = 1 + 3. We just need n ≥ 1 + 2. In fact we have applied our machinery to the
quantisation of a rigid body, whose configuration space has dimension n = 1 + 3 + 3 [67].

Even more, in our model we never make an essential use of the fact that the spacelike
metric of spacetime is Riemannian; we just need that it is non degenerate on each fibre.
So, we could, for instance, apply our machinery to a model of dimension 5, with a fibring
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on an extra parameter, whose fibres are four dimensional Lorentzian manifolds. Such
a model would work pretty well mathematically, but we do not know any interesting
physical interpretation.

The scheme developed for covariant quantum mechanics of a scalar particle can be
easily and nicely extended to the case of a spin particle [4].

In spite of the differences of the starting scheme of spacetime, several steps of the
above methodology appeared to be usefully translable to the Einstein case. In particular,
so far, we have been able to apply to the Einstein case the methods concerning the
classical phase space, the algebra of quantisable functions and the algebra of pre–quantum
operators [26, 30, 31, 28, 34, 32].

We hope that the new methods arising in our model could yield fruitful hints for a
possible generally covariant formulation of quantum field theory in an Einstein framework.

Acknowledgements. This paper has been partially supported by Ministry of Ed-
ucation of the Czech Republic under the Project MSM 143100009, Grant of the GA ČR
No. 201/99/0296 (Czech Republic), Department of Applied Mathematics of University
of Florence (Italy), Department of Mathematics of University of Mannheim (Germany),
GNFM of INDAM (Italy), Project of cooperation N. 19/35 “Differential equation and
differential geometry” between Czech Republic and Italy.

Marco Modugno would like to thank the organizers of the meeting for invitation and
warm hospitality.

2 Covariant quantum mechanics

2.1 Classical background

We start by sketching our covariant model of classical curved spacetime fibred
over absolute time, and the related formulation of classical mechanics. We recall
the basic elements of the model and present new results, as well.

Classical spacetime. According to [25, 22], we postulate:
(C.1) a classical spacetime E, which is an oriented four dimensional manifold;
(C.2) the absolute time T , which is an oriented one dimensional affine space, associated

with the vector space T̄;
(C.3) a time fibring t : E → T , which is a surjective map of rank 1;
(C.4) a “scaled” spacelike metric g, which is a “scaled” Riemannian metric of the

fibres of spacetime;
(C.5) a gravitational field K\, which is a linear connection of spacetime, which pre-

serves the time fibring and the spacelike metric and whose curvature fulfills the typical
symmetry of Riemannian connections;

(C.6) a “scaled” electromagnetic field f , which is a “scaled” closed 2–form of spacetime.
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Here, the word “scaled” used for the spacelike metric and the electromagnetic field
means that these objects are tensorialised by a suitable scale factor which accounts for
the appropriate units of measurement.

A time unit of measurement will be denoted by u0 ∈ T̄ and its dual by u0 ∈ T̄∗.
We refer to charts of spacetime (xλ) = (x0, xi) adapted to the time fibring, to the

affine structure of time and to a time unit of measurement u0 ∈ T̄.

With reference to a given particle of mass m and charge q, in order to get rid of
any choice of length and mass units of measurement, it is convenient to “normalise” the
spacelike metric and the electromagnetic field, by considering the Planck constant ~.

Thus, we consider the “re–scaled” spacelike metric G := m
~ g, which takes its values in

T̄. Its coordinate expression is

G = G0
ij u0 ⊗ ďi ⊗ ďj ,

where ďi is the spacelike differential of the coordinate xi.
Analogously, we consider the “re–scaled” electromagnetic field F := q

~ f , which is a
true form.

Accordingly, all objects derived from G and F will be re–scaled and will include the
mass and the charge of the particle, and the Planck constant as well.

As phase space for the classical particle we take the first order jet space J1E of the
spacetime fibring [35]. We recall that J1E can be naturally identified with the affine
subspace of T̄∗⊗TE, whose elements v are normalised according to the condition v00 = 1
(which is independent from the choice of a unit of measurement of time). The chart
naturally induced on the phase space by a spacetime chart is denoted by (x0, xi, xi0).

We have assumed a projection of spacetime over time, but, according to the principle
of general relativity, not a distinguished splitting of spacetime into space and time. In
other words, for each spacetime vector X, we obtain, in a covariant way, its projection
on time X0 u0, but not a timelike and a spacelike component.

On the other hand, an observer is defined to be a section o : E → J1E. The coordinate
expression of an observer o is of the type o = u0 ⊗ (∂0 + oi0 ∂i). An observer o yields a
splitting of each spacetime vector X into its observed timelike and spacelike components
v = v0 (∂0 + oi0 ∂i) + (vi− v0 oi0) ∂i. A spacetime chart is said to be adapted to an observer
if oi0 = 0. Conversely, each spacetime chart determines the observer, whose coordinate
expression is o = u0 ⊗ ∂0.

According to the principle of general relativity, we do not assume distinguished ob-
servers.

The above objects C.1, ... , C.6 yield in a covariant way [25, 22]:
- the scaled time form dt : E → T̄⊗ T ∗E of spacetime;
- a spacelike volume form η and a spacetime volume form υ of spacetime;
- a 2–form Ω\ : J1E → Λ2T ∗J1E of the phase space;
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- a dt–vertical 2–vector Λ\ : J1E → Λ2V J1E of the phase space,
- a second order connection γ\ : J1E → T̄∗ ⊗ TJ1E of spacetime,
Here, we have used the symbol \ to label objects derived from the gravitational field.
We obtain the following identities

i(γ\) dt = 1 , i(γ\) Ω\ = 0 , dt ∧ Ω\ ∧ Ω\ ∧ Ω\ 6≡ 0 ,

dΩ\ = 0 , L[γ\] Λ\ = 0 , [Λ\, Λ\] = 0 .

Hence, the pair (dt,Ω\) turns out to be a cosymplectic structure of the phase space
[46].

Moreover, Λ\ and Ω\ yield inverse linear isomorphisms between the vector spaces of
dt–vertical vectors and γ\–horizontal forms of the phase space.

The Lie derivative of the spacelike metric G and of the spacelike volume form η with
respect to a vector field of E is well defined provided that the vector field is projectable
on T .

If X is a vector field of E projectable on T , then we define its spacelike divergence by
means of the equality divηX = L[X] η. We have the coordinate expression

divηX = X0 ∂0
√
|g|√
|g|

+
∂i(X

i
√
|g|)√

|g|
.

It is convenient to add an electromagnetic term to the gravitational field, in a covariant
way [25, 22], according to the formula

K = K\ +Ke :=K\ + 1
2

(dt⊗ F̂ + F̂ ⊗ dt) ,

i.e., in coordinates,

Kh
i
k = K\

h
i
k , K0

i
k = K\

0
i
k + 1

2
Gij

0 Fjk , K0
i
0 = K\

0
i
0 +Gij

0 Fj0 ,

where F̂ :=Gij
0 Fjλ d

0 ⊗ ∂i ⊗ dλ.
Then, the “total” object K turns out to be a connection of spacetime, which fulfills

the same properties postulated in (C.5). Moreover, all main formulas in classical and
quantum mechanics concerning the given particle and involving the gravitational and
electromagnetic fields can be expressed through the “total” K and its derived objects,
without the need of splitting it into its gravitational and electromagnetic components.

Proceeding with the total spacetime connection K as before, we obtain the “total”
second order connection, 2–form and 2–vector

γ = γ\ + γe , Ω = Ω\ + Ωe , Λ = Λ\ + Λe ,

where the electromagnetic terms γe, Ωe and Λe turn out to be, respectively, the (re–scaled)
Lorentz force, 1

2
the (re–scaled) electromagnetic field and 1

2
the (re–scaled) contravariant

spacelike electromagnetic field, i.e. the (re–scaled) magnetic field.
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These total objects fulfill all properties fulfilled by the gravitational objects as above.

The total cosymplectic 2–form Ω encodes the full structure of spacetime (metric, gra-
vitational field and electromagnetic field), hence it plays a central role in the theory.

We obtain the following coordinate expressions

γ0
i
0 = Kh

i
k x

h
0x

k
0 + 2K0

i
k x

k
0 +K0

i
0

Ω = G0
ij

(
di0 − γ0i0 d0 − (Kh

i
0 +Kh

i
k x

k
0) (dh − xh0 d0)

)
∧ (dj − xj0 d0)

Λ = Gij
0

(
∂i + (Ki

h
0 +Ki

h
k x

k
0) ∂0h

)
∧ ∂0j .

Classical mechanics. The classical mechanics can be achieved as follows.
The second order connection γ yields, in a covariant way, the generalised Newton law

∇j1s = 0, for a motion s : T → E. Clearly, this equation splits into its gravitational and
electromagnetic components as ∇\j1s = γe ◦ j1s.

Moreover, the classical dynamics can be derived from Ω, by a Lagrangian formalism,
in the following covariant way [52, 22, 36].

2.1 Proposition. The closed 2–form Ω admits locally horizontal potentials Θ :
J1E → T ∗E, which are defined up to closed 1–forms of spacetime.

The horizontal potentials Θ have coordinate expression of the type

Θ = −(1
2
G0
ij x

i
0 x

j
0 − A0) d

0 + (G0
ij x

j
0 + Aj) d

i , with A ∈ Sec(E, T ∗E) .

A horizontal potential Θ and an observer o yield the classical potential A := o∗Θ :
E → T ∗E, which is defined locally up to a closed form and depends on the observer.

2.2 Proposition. Let us consider a given horizontal potential Θ; if o and ō = o + v
are two observers, then the associated potentials A and Ā are related, in a chart adapted
to o, by the formula

Ā = A− 1
2
G0
ij v

i
0 v

j
0 d

0 +G0
ij v

j
0 d

i .

Therefore, each horizontal potential Θ determines a distinguished observer; in fact,
there is a unique observer o, such that the spacelike component of the associated potential
A vanishes.

An observer o yields the observed 2–form Φ := 2 o∗Ω : E → Λ2T ∗E.

2.3 Proposition. We have Φλµ = ∂λAµ − ∂µAλ.
We obtain also Φ0k := −G0

kjK0
j
0 and Φhk :=G0

hjKk
j
0 −G0

kjKh
j
0.

2.4 Proposition. A horizontal potential Θ yields, in a covariant way, the classical
Lagrangian L : J1E → T ∗T , with coordinate expression

L = (1
2
G0
ij x

i
0 x

j
0 + Ai x

i
0 + A0) d

0 ,

Genoa-2001-04-09.tex; [output 2011-08-19; 17:05]; p.8



Covariant quantum mechanics and quantum symmetries 9

where Aλ are the components of the potential A observed by the observer o associated
with the chart. The Lagrangian is defined locally and up to a gauge, but does not depend
on any observer. The Poincaré–Cartan form associated with the Lagrangian L turns out
to be just Θ.

The Euler–Lagrange equation associated with L turns out to coincide with the gen-
eralised Newton law.

2.5 Proposition. A horizontal potential Θ and an observer o yield the classical
Hamiltonian H : J1E → T ∗T and the classical momentum P : J1E → T ∗E, defined as
the negative of the o–horizontal component and the o–vertical components of Θ, respec-
tively. Thus, we can write

Θ = −H + P .

In an adapted chart, we have the coordinate expressions

H = (1
2
G0
ij x

i
0 x

j
0 − A0) d

0 , P = (G0
ij x

j
0 + Ai) d

i .

They are defined locally and up to a gauge, and depend on the choice of the observer.

The Newton law can be achieved also through H and P , by means of a Hamiltonian
formalism; but this procedure is non covariant, as it depends on the choice of an observer.

Classical Lie algebras. Additionally, our structures yield further results on Lie
algebras of functions and lifts of functions.

First of all, we obtain the Poisson Lie bracket {f, g} := Λ](df ∧ dg) for the functions
of phase space.

A function f of phase space is conserved along the solutions of the Newton law if and
only if γ.f = 0. We denote the space of conserved functions by Con(J1E, IR). This space
turns out to be a subalgebra of the Poisson algebra.

The time fibring and the spacelike metric yield, in a covariant way, a distinguished
subset of the set of functions of phase space [25]. Namely, we define a special quadratic
function to be a function of phase space, whose second fibre derivative (with respect to
the affine fibres of phase space over spacetime) is proportional to the spacelike metric. In
other words, in coordinates, the special quadratic functions are the functions of the type

f = 1
2
f 0G0

ij x
i
0 x

j
0 + f iG0

ij x
j
0 +

o

f , with f 0, f i,
o

f ∈ Map(E, IR) .

The time component of a special quadratic function f as above is defined to be the
(coordinate independent) map f ′′ := f 0 u0 : E → T̄.

2.6 Proposition. The space of special quadratic functions Spec(J1E, IR) turns out
to be a Lie algebra through the special Lie bracket

[[ f, g ]] := {f, g}+ γ(f ′′).g − γ(g′′).f ,
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10 J. Janyška, M. Modugno, D. Saller

with coordinate expression

[[ f, g ]] 0 = f 0∂0g
0 − g0∂0f 0 − fh∂hg0 + gh∂hf

0

[[ f, g ]] i = f 0∂0g
i − g0∂0f i − fh∂hgi + gh∂hf

i

o

[[ f, g ]] = f 0∂0
o
g − g0∂0

o

f − fh∂h
o
g + gh∂h

o

f − (f 0 gk − g0 fk) Φ0k + fhgk Φhk .

2.7 Corollary. We have the following distinguished subalgebras of the special Lie
algebra:

- the subalgebra Quan(J1E, IR) ⊂ Spec(J1E, IR) of quantisable functions f , whose
time components f ′′ depend only on time;

- the subalgebra Time(J1E, IR) ⊂ Quan(J1E, IR) of time functions f , whose time
components f ′′ are constant;

- the subalgebra Aff(J1E, IR) ⊂ Time(J1E, IR) of affine functions f , whose time
components f ′′ vanish;

- the subalgebra Map(E, IR) ⊂ Aff(J1E, IR) of spacetime functions .

2.8 Example. We obtain

L0,H0 ∈ Time(J1E, IR) , Pi ∈ Aff(J1E, IR) , xλ ∈ Map(E, IR) .

Clearly, the special bracket and the Poisson bracket coincide on Aff(J1E, IR).

We have distinguished lifts of special quadratic functions to vector fields of spacetime
and of phase space. Let us denote by Pro(E, TE) ⊂ Sec(E, TE) the subalgebra of vector
fields of E which are projectable on T .

2.9 Proposition. The time fibring and the spacelike metric yield, in a covariant way,
for each f ∈ Spec(J1E, IR), the tangent lift X[f ] : E → TE, whose coordinate expression
is

X[f ] = f 0 ∂0 − f i ∂i .

The lift Spec(J1E, IR) → Sec(E, TE) : f 7→ X[f ] turns out to be a Lie algebra
morphism (with respect to the special bracket and the standard Lie bracket, respectively);
its kernel is Map(E, IR).

2.10 Example. We obtain

X[L0] = ∂0 − Ai0 ∂i , X[H0] = ∂0 , X[Pi] = −∂i , X[xλ] = 0 ,

where Ai0 :=Gij
0 Aj.

We observe that X[L] :=u0⊗X[L0] turns out to be the unique observer for which the
spacelike component of the observed potential A vanishes.

Moreover, X[H] :=u0 ⊗ X[H0] turns out to be just the observer by which we have
defined the Hamiltonian.
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2.11 Proposition. For each vector field X of E projectable on T , the spacetime
fibring yields, in a covariant way [35], the holonomic prolongation

X↑hol :=X(1) : J1E → TJ1E ,

whose coordinate expression is

X↑hol = Xλ ∂λ + (∂0X
i + ∂jX

i xj0 − ∂0X0 xi0) ∂
0
i .

This prolongation turns out to be an injective Lie algebra morphism.

2.12 Corollary. For each f ∈ Quan(J1E, IR), the time fibring yields, in a covariant
way, the holonomic lift

X↑hol[f ] :=
(
X[f ]

)
(1)

: J1E → TJ1E ,

whose coordinate expression is

X↑hol[f ] = f 0 ∂0 − f i ∂i − (∂0f
i + ∂jf

i xj0 + ∂0f
0 xi0) ∂

0
i .

The lift Quan(J1E, IR) → Sec(J1E, TJ1E) : f 7→ X↑hol[f ] turns out to be a Lie
algebra morphism (with respect to the special bracket and the standard Lie bracket,
respectively); its kernel is Map(E, IR).

2.13 Example. We obtain

X↑hol[L0] = ∂0 − Ai0 ∂i − (∂0A
i
0 + ∂jA

i
0 x

j
0) ∂

0
i ,

X↑hol[H0] = ∂0 , X↑hol[Pi] = −∂i , X↑hol[x
λ] = 0 .

For each function f of phase space, we obtain, in a covariant way, the dt–vertical
Hamiltonian lift Λ](df) : J1E → V J1E.

More generally, for each function f of phase space and for each time scale τ : J1E → T̄,
we obtain the τ–Hamiltonian lift γ(τ) + Λ](df) : J1E → TJ1E.

In particular, we obtain the following result.

2.14 Proposition. For each f ∈ Spec(J1E, IR), the cosymplectic structure yields,
in a covariant way, the Hamiltonian lift

X↑Ham[f ] := γ(f ′′) + Λ](df) : J1E → TJ1E ,

whose coordinate expression is

X↑Ham[f ] = f 0 ∂0 − f i ∂i +X i
0 ∂

0
i ,
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12 J. Janyška, M. Modugno, D. Saller

where

X i
0 = Gij

0

(
1
2
∂jf

0G0
hkx

h
0x

k
0 + (−f 0∂0G

0
jh + fk ∂kG

0
jh +G0

hk ∂jf
k)xh0

+ ∂j
o

f + Φhjf
h + f 0Φj0

)
.

The lift Quan(J1E, IR) → Sec(J1E, TJ1E) : f 7→ X↑Ham[f ] turns out to be a Lie
algebra morphism (with respect to the special bracket and the standard Lie bracket,
respectively); its kernel is Map(T , IR).

2.15 Example. We obtain

X↑Ham[H0] = ∂0 −Gij
0 ∂0Pj ∂0i ,

X↑Ham[Pi] = −∂i +Ghj
0 ∂iPh ∂0j , X↑Ham[x0] = 0 , X↑Ham[xi] = Gij

0 ∂
0
j .

The interest of the above Hamiltonian lift is due to the following result concerning
the projectability, which will play an important role in quantum mechanics.

2.16 Proposition. [25] The τ -Hamiltonian lift of a function f of phase space is
projectable on a vector field of spacetime if and only if f ∈ Spec(J1E, IR) and τ = f ′′.

Moreover, if these conditions are fulfilled, then the τ -Hamiltonian lift projects on the
tangent lift of f .

2.2 Covariant quantum mechanics

We proceed by sketching our covariant model of quantum mechanics on a curved
spacetime fibred over absolute time. We recall the basic elements of the model and
present new results, as well.

Quantum structure. According to [25, 22], for quantum mechanics of a charged
spinless particle in the above classical background (including the given gravitational and
electromagnetic external fields), we postulate:

(Q.1) a quantum bundle Q → E, which is a one dimensional complex vector bundle
over spacetime;

(Q.2) a Hermitian metric h : E → C⊗(Q∗⊗EQ∗)⊗E Λ3V ∗E of the quantum bundle,
with values in the complexified space of spacelike volume forms of spacetime.

Locally, we shall refer to a scaled complex quantum basis (b) normalised by the condi-
tion h(b,b) = η. The associated scaled complex chart is denoted by (z). Then, we obtain
the scaled real basis (b1 ,b2) := (b, ib) and the associated scaled real chart (w1, w2).

If Ψ ∈ Sec(E, Q), then we write Ψ = Ψ1 b1 + Ψ2 b2 = ψ b, where Ψ1,Ψ2 and ψ are,
respectively, the scaled real and complex components of Ψ.

Moreover, we consider the extended quantum bundle, Q↑ → J1E, obtained by ex-
tending the base space of the quantum bundle to the classical phase space, which here
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Covariant quantum mechanics and quantum symmetries 13

plays the role of space of classical observers.

Each system of connections {
o

Q} of the quantum bundle parametrised by the classical
observers induces, in a covariant way, a connection Q of the extended quantum bundle,
which is said to be universal [17, 22]. The universal connections are characterised in
coordinates by the condition Q0

i = 0.

Then, we postulate:
(Q.3) a quantum connection Q of the extended quantum bundle, which is Hermitian,

universal and whose curvature is R[Q] = iΩ ⊗ I, where I = (w1 ∂w1 + w2 ∂w2) denotes
the identity vertical vector field of the quantum bundle.

We recall that Ω incorporates the mass m of the particle and the Planck constant ~.

2.17 Proposition. The coordinate expression of the quantum connection, with re-
spect to a quantum basis and a spacetime chart, turns out to be locally of the type

Q0 = −iH0 , Qi = iPi , Q0
i = 0 .

The above classical Hamiltonian H and momentum P are referred to the observer o
associated with the spacetime chart (xλ) and to a classical horizontal potential Θ of Ω,
which is locally determined by the quantum connection Q and the quantum basis b.

Then, the gauge of the classical potential A := o∗Θ is determined by the quantum con-
nection and the quantum basis. Moreover, we recall that A includes both the gravitational
and the electromagnetic potential.

These minimal geometric objects Q.1, ... , Q.3 constitute the only source, in a covariant
way, of all further objects of quantum mechanics.

Actually, the quantum connection lives on the extended quantum bundle, whose base
space is the phase space; on the other hand, the covariance of the theory requires that the
significant physical objects be independent from observers. This fact suggests a method of
projectability, in order to get rid of the observers encoded in the phase space. Actually, we
have already used this method in the classical theory, just in view of these developments
of quantum mechanics. Indeed, this method turns out to be fruitful.

Quantum dynamics. The quantum dynamics can be obtained in the following way.
The method of projectability yields, in a covariant way, a distinguished quantum

Lagrangian (hence, the generalised Schroedinger equation, the quantum momentum and
the probability current) [25, 22].

Even more, the covariance implies the essential uniqueness of the above Lagrangian
and of the Schroedinger equation [27, 29].

2.18 Proposition. The coordinate expression of the quantum Lagrangian is

L[Ψ] = 1
2

(
i (ψ̄ ∂0ψ − ψ ∂0ψ̄) + 2A0 ψ̄ ψ

−Gij
0 (∂iψ̄ ∂jψ + AiAj ψ̄ ψ)− iGij

0 Aj (ψ̄ ∂iψ − ψ ∂iψ̄) + k ρ0 ψ̄ ψ
)
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14 J. Janyška, M. Modugno, D. Saller

√
|g| d0 ∧ d1 ∧ d2 ∧ d3 ,

where ρ is the scalar curvature of the fibres of spacetime determined by the spacelike
metric and k ∈ IR is a real constant (which is not determined by the covariance).

2.19 Corollary. The coordinate expression of the generalised Schroedinger equation
turns out to be (

∂0 − iA0 + 1
2

∂0
√
|g|√
|g|
− 1

2
i (

o

∆0 + k ρ0)
)
ψ = 0 ,

where
o

∆0 :=Ghk
0 (∂h − iAh) (∂k − iAk) +

∂h(G
hk
0

√
|g|)√

|g|
(∂k − iAk)

is the spacelike quantum Laplacian.

2.20 Corollary. We obtain the conserved probability current with coordinate expres-
sion

Ψ∗j = (ψ̄ ψ) υ00 −Ghk
0

(
i 1
2

(ψ̄ ∂hψ − ψ ∂hψ̄) + Ah ψ̄ ψ
)
υ0k ,

where υ0λ := i(∂λ)
√
|g| d0 ∧ d1 ∧ d2 ∧ d3 .

Quantum operators. We obtain distinguished operators acting on the sections of
the quantum bundle in the following covariant way.

First of all, we have a distinguished family of second order pre–quantum operators .

2.21 Proposition. The Schroedinger operator yields, for each time scale τ : E → T̄,
the second order linear operator S(τ) : J2Q → Q, which acts on the sections Ψ of the
quantum bundle, according to the coordinate expression

S(τ)[Ψ] = i τ 0
(
∂0 − iA0 + 1

2

∂0
√
|g|√
|g|
− 1

2
i (

o

∆0 + k ρ0)
)
ψ b .

In particular, each f ∈ Spec(J1E, IR) yields, in a covariant way, the second order
pre–quantum operator S[f ] :=S(f ′′).

Then, we obtain a distinguished family of first order operators, by classifying the
vector fields of the quantum bundle which preserve the Hermitian metric.

A vector field Y of Q is said to be Hermitian if it is projectable on E and on T , is
real linear over its projection on E, and fulfills L[Y ]h = 0.

We denote the space of Hermitian vector fields of Q by Her(Q, TQ).

2.22 Proposition. A vector field Y of Q is Hermitian if and only if its coordinate
expression is of the type

Y ≡ Y [f ] = f 0 ∂0 − f i ∂i +
(
i (

o

f + A0 f
0 − Ai f i)− 1

2
divηX[f ]

)
I ,
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Covariant quantum mechanics and quantum symmetries 15

where f ∈ Quan(J1E, IR). The above expression of Y [f ] turns out to be independent of
the choice of coordinates.

The space of Hermitian vector fields Her(E, TQ) is closed with respect to the Lie
bracket. Moreover, the map

Quan(J1E, IR)→ Her(Q, TQ) : f 7→ Y [f ]

is an isomorphism of Lie algebras (with respect to the special bracket and the standard
Lie bracket, respectively).

Furthermore, the map Her(Q, TQ) → Pro(E, TE) : Y [f ] 7→ X[f ] turns out to be a
central extension of Lie algebras by Map(E, i IR)⊗ I.

For each f ∈ Quan(J1E, IR), the vector field Y [f ] : Q → TQ is said to be the
quantum lift of f .

2.23 Example. We obtain

Y [L0] = ∂0 − Ai0 ∂i −
(
iAiA

i
0 + 1

2
(
∂0
√
|g|√
|g|
−
∂i(A

i
0

√
|g|)√

|g|
)
)
I ,

Y [H0] = ∂0 − 1
2

∂0
√
|g|√
|g|

I , Y [Pi] = −∂i + 1
2

∂i
√
|g|√
|g|

I , Y [xλ] = ixλ I .

2.24 Corollary. Each quantisable function f yields, in a covariant way, the first order
operator acting on the sections of the quantum bundle

Z[f ] := iL
[
Y [f ]

]
,

whose coordinate expression is, for each Ψ ∈ Sec(E, Q),

Z[f ].Ψ = i
(
f 0 ∂0ψ − f i ∂iψ −

(
i (

o

f + A0 f
0 − Ai f i)− 1

2
divηX[f ]

)
ψ
)
b .

For each quantisable function f , we say Z[f ] to be the associated first order pre–
quantum operator . We denote the space of the first order pre–quantum operators by
Oper1(Q).

2.25 Proposition. The space Oper1(Q) turns out to be a Lie algebra through the
bracket [

Z[f ], Z[g]
]

:= − i
(
Z[f ] ◦ Z[g]− Z[g] ◦ Z[f ]

)
.

Moreover, the map Quan(J1E, IR) → Oper1(Q) : f 7→ Z[f ] turns out to be an
isomorphism of Lie algebras (with respect to the special bracket and the above Lie bracket,
respectively).
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16 J. Janyška, M. Modugno, D. Saller

2.26 Example. We obtain

Z[H0].Ψ = i
(
∂0ψ + 1

2

∂0
√
|g|√
|g|

ψ
)
b

Z[Pi].Ψ = −i
(
∂iψ + 1

2

∂i
√
|g|√
|g|

ψ
)
b

Z[xλ].Ψ = xλ ψ b .

The above results appear to be a covariant “correspondence principle” yielding pre–
quantum operators associated with quantisable functions.

However, we still need to introduce the Hilbert stuff carrying the standard probabilistic
interpretation of quantum mechanics. It can be done in the following covariant way [25,
22].

Let us restrict our postulate C.3, by requiring that the fibring of spacetime over time
makes spacetime a bundle. Thus, we postulate that the fibres of spacetime are each other
isomorphic.

Then, we consider the infinite dimensional functional quantum bundle Hc → T , whose
fibres are constituted by the compact support smooth sections, at fixed time, of the
quantum bundle (“regular sections”). The Hermitian metric h equips this bundle with
a pre–Hilbert metric 〈 , 〉. Then, a true Hilbert bundle H → T can be obtained by a
completion procedure. This bundle has no distinguished splittings into time and type
Hilbert fibre; such a splitting can be obtained by choosing a classical observer.

Each regular section Ψ of the quantum bundle can be regarded as a section Ψ̂ of the
functional quantum bundle. Accordingly, each “regular” operator O acting on sections
of the quantum bundle can be regarded as an operator Ô acting on the sections of the
functional quantum bundle.

Our previous results yield, for each quantisable function f , two distinguished operators

acting on the sections of the functional quantum bundle, namely Ẑ[f ] and Ŝ[f ]. Actually,
in general, both operators do not act on the fibres of the functional bundle (at fixed time),
because they involve the partial derivative ∂0.

On the other hand, we have the following results [25, 22, 51].

2.27 Proposition. Let f ∈ Quan(J1E, IR). Then, the combination

f̂ := Ẑ[f ]− Ŝ[f ]

acts on the fibres of the functional bundle. We have the following coordinate expression

f̂(Ψ̂) =
(
− 1

2
f 0 (

o

∆0 + k ρ0)− i f j (∂j − iAj) +
o

f − i 1
2

∂j(f
j
√
|g|)√

|g|
)
ψ b̂ .

Moreover, f̂ is symmetric with respect to the Hermitian metric 〈 , 〉.
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Covariant quantum mechanics and quantum symmetries 17

For the self–adjointness of f̂ further global conditions on f are needed.

For each f ∈ Quan(J1E, IR), we say f̂ to be the quantum operator associated with f .

2.28 Example. We obtain the following distinguished quantum operators

Ĥ0(Ψ̂) = −(1
2

o

∆0 + 1
2
k ρ0 − A0)ψ b̂ ,

P̂j(Ψ̂) = −i
(
∂j + 1

2

∂j
√
|g|√
|g|

)
ψ b̂ ,

x̂λ(Ψ̂) = xλ ψ b̂ .

The space of the fibre preserving maps of the functional quantum bundle into itself
becomes a Lie algebra through the bracket [h, k] := − i (h ◦ k − k ◦ h).

2.29 Proposition. For each f, g ∈ Quan(J1E, IR), we obtain

[f̂ , ĝ] = [̂[ f, g ]] − i
[
Ŝ[f ], Ẑ[g]

]
+ i
[
Ŝ[g], Ẑ[f ]

]
.

In particular, for each f, g ∈ Aff(J1E, IR), we obtain

[f̂ , ĝ] = [̂[ f, g ]] = {̂f, g} .

Thus, the above results suggest our covariant “equivalence principle”.

The Feynmann path integral approach can be nicely formulated in our framework [25].
In fact, the quantum connection Q yields, in a covariant way, a non linear connection of
the extended quantum bundle over time; moreover, this connection allows us to interpret
the Feynmann amplitudes through the parallel transport of this connection. However,
unfortunately, our theory does not contribute so far to the hard problem of the measure
arising in the Feynmann theory.

The case of a spin particle (generalised Pauli equation) can be approached in an
analogous way, by considering a further quantum bundle of dimension two, with the only
additional postulate of a suitable soldering form [4].

3 Symmetries

Next, we classify the infinitesimal symmetries of the classical and quantum
structures. We show that these symmetries are controlled by the Lie algebra of
quantisable functions and its distinguished subalgebras. Moreover, we discuss the
strict relations between classical and quantum symmetries.

Genoa-2001-04-09.tex; [output 2011-08-19; 17:05]; p.17



18 J. Janyška, M. Modugno, D. Saller

3.1 Classical symmetries

We start by discussing the main results concerning symmetries of the classical
structure.

Subalgebras. First we analyse further distinguished subalgebras of the Lie algebra
of quantisable functions.

3.1 Proposition. We have the following distinguished subalgebras of the algebra of
quantisable functions:

– the subalgebra Hol(J1E, IR) ⊂ Quan(J1E, IR), which is constituted by the functions
f such that X↑hol[f ] = X↑Ham[f ];

– the subalgebra Unim(J1E, IR) ⊂ Quan(J1E, IR), which is constituted by the func-
tions f such that divηX[f ] = 0;

– the subalgebra Self(J1E, IR) ⊂ Quan(J1E, IR), which is constituted by the func-
tions f such that i(X↑hol[f ]) Ω = df .

If f ∈ Hol(J1E, IR), then we set

X↑[f ] :=X↑Ham[f ] = X↑hol[f ] .

3.2 Proposition. We have

Time(J1E, IR) ∩ Con(J1E, IR) = Time(J1E, IR) ∩ Self(J1E, IR) .

Then, we set

Clas(J1E, IR) := Time(J1E, IR) ∩ Con(J1E, IR)

= Time(J1E, IR) ∩ Self(J1E, IR)

and denote the space of the tangent lifts of elements of Clas(J1E, IR) by

Clas(E, TE) ⊂ Pro(E, TE) .

3.3 Proposition. We have

Time(J1E, IR) ∩ Con(J1E, IR) ⊂ Hol(J1E, IR)

Time(J1E, IR) ∩ Con(J1E, IR) ⊂ Unim(J1E, IR) .

3.4 Proposition. The special and the Poisson brackets coincide in Clas(J1E, IR).
Hence, this space turns out to be a subalgebra of the Poisson and of the special algebras.

Moreover, Clas(E, TE) turns out to be closed with respect to the standard Lie
bracket.

We call the elements of Clas(J1E, IR) classical generators . This name will be justified
by Proposition 3.5, Corollary 3.6 and Corollary 3.7.
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Covariant quantum mechanics and quantum symmetries 19

Symmetries. A vector field X↑ ∈ Sec(J1E, TJ1E) is said to be a symmetry of the
classical structure if it is projectable on E and T and fulfills

L[X↑] dt = 0 , L[X↑] Ω = 0 .

We denote the space of symmetries of the classical structure by Clas(J1E, TJ1E).

3.5 Proposition. [55] A vector field X↑ of J1E projectable on E fulfills L[X↑] dt = 0
and L[X↑] Ω = 0 if and only if, locally,

X↑ = X↑[f ] , with f ∈ Clas(J1E, IR) ,

where f is defined up to a constant.

3.6 Corollary. If f ∈ Clas(J1E, IR), then we obtain

L
[
X[f ]

]
G = 0 , L

[
X[f ]

]
η = 0 , L

[
X↑[f ]

]
γ = 0 , L

[
X↑[f ]

]
K = 0 .

3.7 Corollary. If X is a vector field of E projectable on T , such that L[X↑hol]L = 0,
then we obtain locally

X = X[f ] , X↑hol = X↑[f ] , with f ∈ Clas(J1E, IR) ,

where f is defined up to a constant.

3.2 Quantum symmetries

Eventually, we classify the vector fields of the extended quantum bundle which
preserve the full quantum structure: all fibrings (on quantum bundle, on phase
space, on spacetime, on time), the Hermitian metric, the quantum connection. More-
over, we compare the symmetries of the quantum structure with the symmetries of
the quantum Lagrangian.

Symmetries of the quantum structure. A vector field Y ↑ of Q↑ is said to be a
symmetry of the quantum structure if it is projectable on Q, J1E, E, T , is real linear
over J1E and fulfills

L[Y ↑] dt = 0 , L[Y ↑]h = 0 , L[Y ↑]Q = 0 .

We denote the space of symmetries of the quantum structure by Quan(Q↑, TQ↑).

For each f ∈ Hol(J1E, IR), we define its extended quantum lift to be the vector field
of the extended quantum bundle

Y ↑[f ] :=Q
(
X↑[f ]

)
+
(
i f − 1

2
divηX[f ]

)
I .
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20 J. Janyška, M. Modugno, D. Saller

3.8 Proposition. A vector field Y ↑ of Q↑ is a symmetry of the quantum structure if
and only if it is of the type

Y ↑ = Y ↑[f ] , with f ∈ Clas(J1E, IR) .

The space Quan(Q↑, TQ↑) is closed with respect to the Lie bracket. Moreover, the
map Clas(J1E, IR) → Quan(Q↑, TQ↑) : f 7→ Y ↑[f ] is an isomorphism of Lie algebras
(with respect to the special bracket and the standard Lie bracket, respectively).

Furthermore, the map Quan(Q↑, TQ↑)→ Clas(E, TE) : Y ↑[f ] 7→ X[f ] turns out to
be a central extension of Lie algebras by i IR⊗ I.

Symmetries of the quantum dynamics. Next, we compare the symmetries of
the quantum connection and the symmetries of the quantum Lagrangian.

3.9 Proposition. For each f ∈ Quan(J1E, IR), we obtain, in a covariant way, the
holonomic quantum lift of f , defined as the holonomic prolongation [35]

Yhol[f ] :=
(
Y [f ]

)
(1)

: J1Q→ TJ1Q

of the quantum lift Y [f ], whose coordinate expression is

Yhol[f ] = f 0 ∂0 − f i ∂i
− 1

2
divηX[f ] (w1 ∂1 + w2 ∂2 − w1

λ ∂
λ
1 − w2

λ ∂
λ
2 )− 1

2
∂λ divηX[f ] (w1 ∂λ1 + w2 ∂λ2 )

+ (f 0A0 − f iAi +
o

f) (w1 ∂2 − w2 ∂1 + w1
λ ∂

λ
2 − w2

λ ∂
λ
1 )

+ ∂λ(f
0A0 − f iAi +

o

f) (w1 ∂λ2 − w2 ∂λ1 )

− ∂0f 0 (w1
0 ∂

0
1 + w2

0 ∂
0
2) + ∂λf

i (w1
i ∂

λ
1 + w2

i ∂
λ
2 ) .

3.10 Proposition. Let f ∈ Time(J1E, IR). Then, the following conditions are equiv-
alent:

1)L
[
Y ↑hol[f ]

]
Q = 0 , 2)L

[
Yhol[f ]

]
L = 0 ,

3) i(X↑hol[f ]) Ω = df , 4) γ.f = 0 , 5) f ∈ Clas(J1E, IR) .

Eventually, we consider the conserved currents associated with symmetries of the quan-
tum Lagrangian, according to the standard Noether theorem. Additionally, our results
allow us to associate such currents with classical quantisable functions.

For each f ∈ Quan(J1E, IR), we define the associated quantum current to be the
3–form

J[f ] := − i
(
Y [f ]

)
Π : J1Q→ Λ3T ∗Q ,

where Π is the Poincaré–Cartan form [52] associated with the quantum Lagrangian.
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3.11 Corollary. For each f ∈ Clas(J1E, IR), the current J[f ] is conserved along the
solutions Ψ : E → Q of the Schroedinger equation.

3.12 Example. The current associated with the constant function 1 ∈ Clas(J1E, IR)
is just the conserved probability current.

Moreover, for each affine function and quantum section, we obtain, in a covariant way,
a spacelike 3–form (which can be integrated on the fibres of spacetime), according to the
following result.

3.13 Proposition. Let f ∈ Aff(J1E, IR). Then, for each Ψ ∈ Sec(E, Q) we obtain(
Ψ∗(J[f ])

)∨
= 1

2

(
h(Z[f ].Ψ, Ψ)− h(Ψ, Z[f ].Ψ)

)
where ∨ denotes the vertical restriction. We have the coordinate expression(

Ψ∗(J[f ])
)∨

=
(
f i (Ψ1 ∂iΨ

2 −Ψ2 ∂iΨ
1) +

o

f (Ψ1 Ψ1 + Ψ2 Ψ2)
)√
|g| ď1 ∧ ď2 ∧ ď3 .
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[16] M. Fernández, R. Ibañez, M. de Leon: Poisson cohomology and canonical cohomology of
Poisson manifolds, Archivium Mathematicum (Brno) 32 (1996), 29–56.
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