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Abstract

We review the recent advances in the generally covariant and geometrically
intrinsic formulation of Galilei relativistic quantum mechanics. The main concepts
used are Galilei-Newton space-time, Newtonian gravity and electromagnetism, space-
time connection and cosymplectic form, quantum line bundle and quantum connec-
tion, Schrödinger equation and Hilbert bundle, quantisable functions and quantum
operators. The paper contains a number of improvements and simplifications with
respect to the already published or announced results [31, 33].
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Introduction

Quantum theory is one of the most successful and at the same time most mysterious
physical theories. As Feynman puts it, “nobody understands quantum theory”. There
are several reasons for these difficulties. One of them being the fundamental statistical
character of the theory which caused several physicists to doubt its completeness. An-
other reason is in the philosophical problems of the quantum measurement theory, whose
repeated terms “observation” or “measurement” are never defined [5, 6]. These problems
are extensively discussed and a solution is proposed in a so called “Event Enhanced Quan-
tum Theory” developed in a series of papers by Ph. Blanchard and one of us (A. J.) (see
[8] and references there). Finally quantum theory seems to contradict relativity and this
fact was discussed by several authors (see e.g. [2, 65]). We feel that it is indeed neces-
sary to formulate quantum theory in an intrinsic geometrical way, as such a formulation
can throw some light on the meaning of the theory in general and of the “quantisation”
procedure in particular. As the Planck constant can be expressed, via the fine structure
constant, in terms of the light speed constant c and electric charge e, there is a hope that
a unified geometrical theory of gravitation and electromagnetism will be able to derive
quantum theory as an effective theory of a complex and chaotic “classical” space-time
structure. Thus the Einstein dream may yet come true.

Time will show whether it will be so or not, but anyhow an intrinsically geometrical
formulation of the quantum theory is a necessary initial step which can show us ways
toward further developments. The present paper discusses the mathematical aspects of
the approach to Galilei general relativistic quantum mechanics developed originally in
[31, 33]. The fact that we restrict our discussion to a Galileian (sometimes called also
Newtonian) general relativity is not an essential restriction of our approach. As it has been
discussed by many authors (cf. [19, 20, 21, 28, 29, 50, 66, 67]), by using Fock-Schwinger
“proper time” formalism, Einstein relativistic quantum mechanics can be represented as
Galilei relativistic one with an extra “proper-time” parameter. On the other hand it is
also possible to apply most of the mathematical ideas presented below directly to the
Einstein relativistic formulation, and this has been done in [36, 37, 38].

The paper is addressed to a mathematically oriented reader. Thus, we concentrate on
mathematical concepts without trying to justify them. The starting concept is that of a
Galileian general relativity, a concept that was studied originally by Trautman [74, 75]
and then analysed by several other authors [12, 13, 14, 15, 16, 17, 18, 26, 44, 45, 46, 47,
49, 52, 53, 57, 64, 70, 76]. We take a somewhat different approach than these authors
as we are able to show that the constraints on the curvature tensor postulated by them
are consequences of the closure of the cosymplectic form. We work consequently with jet
spaces which allow us to develope a fully covariant approach to quantisation without any
need to apply the arbitrary polarisation method of geometrical quantisation (see [72, 79]).
Thus although our method borrows from the Souriau’s idea of pre–quantisation ([73]) we
achieve the goal of getting rid of extra degrees of freedom via the concept of a universal
quantum connection and a projection procedure. Our method produces, in fact, a one-
parameter family of theories out of which exactly one happens to be projectable. It would
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be interesting to investigate a possible physical meaning of the other theories as well. It
would also be interesting to apply the above methods to the deformation-quantisation
scheme of Flato and al. [4]. Although we are considering here only a scalar case (that
is spin zero), our method can be easily generalised to include generally covariant Pauli
equation for spin one-half particle [10].

The reader will be perhaps puzzled by our half-spaces of units of time, length and
mass, as they usually do not appear in the textbooks. This is however the only rigorous
way that we know to include “physical dimensions” in a covariant formulation of the
theory. Their explicit introduction suggests also generalisations. Physicists often dreamed
about some “ultimate theory” in which there will be no dimensional coupling constants.
To work towards a realisation of such a dream we could replace our half-spaces by line
bundles over space-time without an a priori selected connection. We hope to return to
this problem in the future.

In Section 1.1 we introduce the arena for our play that is the Galileian space-time for
one massive particle. It is a fibred manifold over one dimensional affine space of “absolute
time”. Each fibre has to be thought of as “space at a given time” equipped with a Rie-
mannian metric. There are several possible variations of this formalism. Replacing space
with a Cartesian product of n spaces we can describe classical and quantum mechanics of
a system of n particles (as in [33] Chapters I.7 and I.6). On the other hand, thinking of
the base space as a “proper time” and the fibers as four dimensional pseudo Riemannian
manifolds we can describe Einstein relativistic systems along the lines of [19]. Phase space
is defined as the space of 1–jets of sections, and it is odd-dimensional. We discuss space-
time connections, construct a cosymplectic two-form Ω and find necessary and sufficient
conditions for Ω to be closed in terms of the connection. Electromagnetic field acting
on the particle is introduced as usual in symplectic mechanics ([1]), that is by adding
the electromagnetic 2—form to Ω. Then, we show that it can be recovered by adding
a term to the gravitational connection. Autoparallel motions of this connection contain
then the correct electromagnetic force. In Section 1.9 we discuss in some detail classical
particle mechanics and the concepts of Poincare-Cartan form, Lagrangian, momentum
and Hamiltonian.

Section 2 deals with generally covariant quantisation. The quantum bundle is defined
as a Hermitian complex line bundle over space-time. This is then prolonged to a line bun-
dle over the phase space. The quantum connection is defined as a “universal” connection
on the prolonged quantum bundle whose curvature 2–form is proportional to Ω. Theorem
2.5 gives necessary and sufficient conditions for existence of a quantum structure. Section
2.3 deals with quantum dynamics. We show that the Schrödinger equation can be formu-
lated in terms of the quantum connection even if the quantum connection lives on the
prolonged quantum bundle over the phase space. A unique combination of first and sec-
ond order derivatives of the quantum section makes it possible for the velocity variables
to drop out of the equation (Proposition 2.6). In Section 2.4 we introduce the concept of
a quantisable function. Quantisable functions are functions over the classical phase space
(but it should be kept in mind that our phase space is odd dimensional and includes time
as one of its coordinates). By a functorial procedure we associate with each quantisable
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function a differential operator acting on sections of the quantum bundle over spacetime
(Theorem 2.30). Eventually, Section 2.8 introduces the concept of the quantum Hilbert
bundle i.e. a family of Hilbert spaces parametrised by time. Solutions of the Schrödinger
equation can then be thought of as sections of this bundle. Then a covariant quantisation
procedure associates with each “good” classical observable (represented by a quantisable
function) a symmetric operator acting on the fibres of the Hilbert bundle.

We stress that in the flat case, our method recovers the standard Scrödinger equation
and quantum operators associated with position coordinates, momentum and Hamilto-
nian.

We assume the following fundamental unit spaces, which are positive 1–dimensional
semi–vector spaces over IR+ [33] (here we adopt a minor change in the notation T with
respect to the previous literature):

(1) the space T of time intervals ,
(2) the space L of lengths ,
(3) the space M of masses .
A time unit of measurement is defined to be an element of T or its dual T∗

u0 ∈ T , u0 ∈ T∗ .

Moreover, we refer to the Planck constant

~ ∈ T∗ ⊗ L2 ⊗M .

We shall be concerned with smooth manifolds and maps.
Let M be a manifold and F → B , G→ B fibred manifolds.
Then, πM : TM →M denotes the tangent bundle of M and V F ⊂ TF the vertical

subbundle.
Moreover, F(M ,S) denotes the sheaf of local maps f : M → S with values in a set

S; in particular, F(M ) ≡ F(M , IR) is the sheaf of local real valued functions.
Furthermore, S(F ) denotes the sheaf of local sections s : B → F ; in particular,

T (M ) ≡ S(TM) is the sheaf of local vector fields X : M → TM and T ∗(M ) ≡
S(T ∗M) is the sheaf of local forms α : M → T ∗M .

Additionally, M(F ,G) denotes the sheaf of local fibred morphisms f : F → G over
the base space B.
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1 Classical spacetime

First, we present a model of classical curved spacetime fibred over absolute time and
equipped with a vertical metric a gravitational connection and an electromagnetic form,
fulfilling certain relations. This structure is encoded in a cosymplectic form on the phase
space. We analyse the Lagrangian setting of the mechanics of a classical particle as well.

1.1 Spacetime

We start with the fibred and metric structure of spacetime. Later we shall add the
connection structure.

C.1 Assumption. We assume spacetime to be a 4-dimensional oriented fibred man-
ifold

t : E → T (1.1)

over a 1-dimensional oriented affine space T (time), associated with the vector space
T⊗ IR, equipped with a Riemannian metric on the fibres, i.e. with a vertical Riemannian
metric,

g : E → L2 ⊗ (V ∗E ⊗
E
V ∗E) . (1.2)

Thus, for each unit of measurement of lengths l ∈ L, the metric g yields a standard
real valued metric on the fibres.

We choose an orientation of E.

We shall refer to spacetime charts (x0, xi), which are adapted to the fibring, to a time
unit of measurement u0 and to the chosen orientation of E.

The index 0 will refer to the base space, Latin indices i, j, · · · = 1, 2, 3 will refer to the
fibres, while Greek indices λ, µ, · · · = 0, 1, 2, 3 will refer both to the base space and the
fibres.

We shall denote the induced local bases of T (E) and T ∗(E) by (∂λ) and (dλ), respec-
tively. Moreover, the chart induced on TE will be denoted by (xλ, ẋλ).

We can regard u0 ∈ T∗ ⊂ T∗ ⊗ IR as a form u0 : T → T ∗T and, by pullback with
respect to t : E → T , as the form

u0 = d0 : E → T ∗E .

We have the time-form

dt : E → T⊗ T ∗E , (1.3)

with coordinate expression

dt = u0 ⊗ d0 .

From now on, the check ‘ ∨ ’ will denote vertical restriction of forms.
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The coordinate expression of g is

g = gij ď
i ⊗ ďj , gij ∈ F(E,L2 ⊗ IR) .

We denote the contravariant metric by

ḡ : E → L∗2 ⊗ (VE ⊗
E
VE) ;

its coordinate expression is

ḡ = gij∂i ⊗ ∂j , gij ∈ F(E,L∗2 ⊗ IR) .

The metric yields the linear fibred isomorphisms over E

g[ : VE → L2 ⊗ V ∗E , g] : V ∗E → L∗2 ⊗ VE .

Given a mass m ∈M, it is convenient to introduce the “normalised” metric

G ≡ m

~
g : E → T⊗ (V ∗E ⊗

E
V ∗E) , Ḡ ≡ ~

m
ḡ : E → T∗ ⊗ (VE ⊗

E
VE) (1.4)

with coordinate expression

G = Gij u0 ⊗ ďi ⊗ ďj , Gij ≡
m

~
giju

0 ∈ F(E) ,

Ḡ = Gij u0 ⊗ ∂i ⊗ ∂j , Gij ≡ ~
m
giju0 ∈ F(E) .

We stress the fact that the normalised metric and all objects which will be derived
from it incorporate the mass and the Planck constant.

The metric g and the spacetime orientation yield the space-like volume form

η : E → L3 ⊗ Λ3V ∗E , (1.5)

with coordinate expression

η =
√
|g| ď1 ∧ ď2 ∧ ď3 ,

where

|g| ≡ det(gij) .

Let α : E → Λ3V ∗E be a vertical 3–form and α̃ : E → Λ3T ∗E any extension of α.
Then, we observe that the wedge product dt ∧ α̃ : E → T⊗ Λ4T ∗E does not depend on
the choice of the extension. Accordingly, we shall write dt ∧ α ≡ dt ∧ α̃.

Then, we obtain the spacetime volume form

υ := dt ∧ η : E → (T⊗ L3)⊗ Λ4T ∗E , (1.6)
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with coordinate expressions

υ =
√
|g|u0 ⊗ d0 ∧ d1 ∧ d2 ∧ d3 .

An (observer independent) motion is defined to be a section

s : T → E . (1.7)

1.2 Phase space

Now, we introduce the phase space as the first jet space of spacetime. The choice of
such a phase space, instead of the tangent or cotangent space of spacetime, is an important
feature of our model aimed at fulfilling the covariance of the theory.

The space of jets is equipped with the contact structure, which will play an important
role throughout the paper.

In the framework of jets we can easily introduce the notion of observer, which provides
a splitting of the tangent space of spacetime.

1.1 Definition. The phase space is defined to be the first jet space of sections T → E

π1
0 : JE ≡ J1E → E . (1.8)

We can naturally identify JE with the subbundle over E

JE ⊂ T∗ ⊗ TE ,

which projects on 1 ∈ T∗⊗T. It follows that JE → E is an affine bundle associated with
the vector bundle T∗ ⊗ VE.

We have the natural fibred isomorphism over JE

VEJE ' JE ×
E

(T∗ ⊗ VE) .

A spacetime chart (xλ) induces on JE the chart (x0, xi, xi0).

We shall be involved with the natural complementary contact maps

d : JE × T→ TE , θ : JE ×
E
TE → VE , (1.9)

with coordinate expressions

d = u0 ⊗ d0 = u0 ⊗ (∂0 + xi0 ∂i) , θ = θi ⊗ ∂i = (di − xi0 d0)⊗ ∂i .

The (observer independent) velocity of a motion s is defined to be the jet prolongation

js ≡ j1s : T → JE . (1.10)
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1.2 Definition. An observer is defined to be a section

o : E → JE ⊂ T∗ ⊗ TE . (1.11)

The coordinate expression of o is of the type

o = u0 ⊗ (∂0 + oi0 ∂i) , oi0 ∈ F(E) .

A spacetime chart is said to be adapted to an observer o if oi0 = 0. There are many
spacetime charts adapted to an observer; conversely, each spacetime chart yields the
observer

o = u0 ⊗ ∂0 ,

which is the only one such that oi0 = 0.
An observer o can be regarded as a (non linear) connection on the fibred manifold

E → T , which can be expressed, equivalently, by the tangent valued form, or by the
vertical valued form on E

o : E → T∗ ⊗ TE , ν[o] : E → T ∗E ⊗
E
VE , (1.12)

respectively, with coordinate expressions

o = u0 ⊗ (∂0 + oi0 ∂i) , ν[o] = (di − oi0 d0)⊗ ∂i .

Hence, the observer o yields the linear splitting over E

TE ' (E × T⊗ IR)⊕
E
VE ,

given by
X =

〈
o, dt(X)

〉
+
(
X −

〈
o, dt(X)

〉)
i.e., in coordinates, by

X = X0 (∂0 + oi0 ∂i) + (X i − oi0X0) ∂i .

Then, the covariant differential operator associated with o can be regarded as the
affine fibred morphism over E

∇[o] : JE → T∗ ⊗ VE : j 7→ j − o(π1
0(j)) , (1.13)

with coordinate expression
∇[o] = u0 ⊗ (xi0 − oi0) ∂i .

So, if s is a motion, then the covariant differential of s with respect to o turns out to
be the section

∇[o]s :=∇[o] ◦ js : T → T∗ ⊗ VE ,
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with coordinate expression

∇[o]s = (∂0s
i − oi0 ◦ s)u0 ⊗ (∂i ◦ s) ,

which will be interpreted as the velocity of s observed by o.

We define the kinetic momentum and the kinetic energy associated with o to be maps

Q̌[o] ≡ G[ ◦ ∇[o] : JE → V ∗E , (1.14)

K[o] ≡ 1
2
G ◦ (∇[o], ∇[o]) : JE → T∗ ⊗ IR . (1.15)

We observe that the kinetic momentum is the vertical restriction of the 1–form on E

Q[o] ≡ θ y Q̌ : JE → T ∗E ;

moreover, by pullback with respect to t : E → T , the kinetic energy can be regarded as
a 1–form on E

K[o] : JE → T ∗E .

In a chart adapted to o we have the following coordinate expressions

Q̌[o] = G0
ij x

j
0 ď

i , Q[o] = G0
ij x

j
0 (di − xi0 d0) ,

K[o] = 1
2
G0
ij x

i
0 x

j
0 u

0 ≡ K0 u
0 ' K0 d

0 .

If o, o′ are two observers, then we can write

o′ = o+ V ,

where the section V : E → T∗ ⊗ VE can interpreted as the velocity of o′ observed by o.

1.3 Distinguished connections

Next, we consider the vertical Riemannian metric generated by the vertical metric.
Moreover, we analyse certain distinguished connections that can be defined on spacetime
and on the phase space and discuss their mutual relations. Later we shall make some
assumptions on them.

First of all, we observe that the vertical Riemannian metric g yields the vertical
Riemannian connection, i.e. the Riemannian connection on the fibres of E → T , which
can be expressed, equivalently, by a tangent valued form, or by a vertical valued form on
TE

κ : VE → V ∗E ⊗
VE

TVE , ν[κ] : VE → V ∗VE ⊗
VE

VE , (1.16)

respectively, with coordinate expressions

κ = ďi ⊗ (∂i + κijh ẋh ∂̇j) , ν[κ] = ( ˙̌di − κj ih ẋh ďj)⊗ ∂i ,
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where
κhik = −1

2
gij (∂hgjk + ∂kgjh − ∂jghk) ∈ F(E) ,

and (∂i, ∂̇i) and (ďi, ˙̌di) are the induced local bases of T (VE) and T ∗(VE), respectively.

Next, we analyse some distinguished types of connections on spacetime.
A torsion free linear connection K on the bundle TE → E can be expressed, equiva-

lently, by a tangent valued form, or by a vertical valued form on TE

K : TE → T ∗E ⊗
TE

TTE , ν[K] : TE → T ∗TE ⊗
TE

TE , (1.17)

respectively, with coordinate expressions

K = dλ ⊗ (∂λ +Kλ
µ
ν ẋ

ν ∂̇µ) , ν[K] = (ḋµ −Kλ
µ
ν ẋ

ν dλ)⊗ ∂µ ,

where
Kµ

λ
ν = Kν

λ
µ ∈ F(E)

and (∂λ, ∂̇λ) and (dλ, ḋλ) are the induced local bases of T (TE) and T ∗(TE), respectively.
A torsion free linear connection K is said to be time–preserving if

∇[K](dt) = 0 ; (1.18)

in coordinates it reads
Kµ

0
ν = 0 .

1.3 Definition. A spacetime connection is defined to be a time–preserving torsion
free linear connection K on the bundle TE → E.

We observe that a spacetime connection K yields, by restriction, a linear connection
on the bundle VE → E

K ′ : VE → T ∗E ⊗
VE

TVE , (1.19)

whose coordinate expression is

K ′ = dλ ⊗ (∂λ +Kλ
i
j ẋ

j ∂̇i) .

Moreover, a spacetime connection K yields, by further restriction, a linear connection
on the fibres of E → T

Ǩ : VE → V ∗E ⊗
VE

V VE , (1.20)

whose coordinate expression is

Ǩ = dh ⊗ (∂h +Kh
i
j ẋ

j ∂̇i) .

A spacetime connection is said to be metric if

∇[K ′]G = 0 . (1.21)
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This condition reads in coordinates as

Kh
i
k = −1

2
Gij(∂hGjk + ∂kGjh − ∂jGhk) , K0ij +K0ji = − ∂0Gij .

Thus, in particular, for a metric spacetime connection K, we obtain

Ǩ = κ . (1.22)

Then, let us discuss a distinguished type of connections on the phase space and their
relation with spacetime connections.

A torsion free affine connection Γ on the affine bundle JE → E can be expressed,
equivalently, by a tangent valued form, or by a vertical valued form

Γ : JE → T ∗E ⊗
JE

TJE , ν[Γ] : JE → T∗ ⊗ (T ∗JE ⊗
JE

VE) , (1.23)

respectively, with coordinate expressions

Γ = dλ ⊗ (∂λ + (Γλ
i
00 + Γλ

i
0j x

j
0) ∂

0
i ) ,

ν[Γ] = u0 ⊗ (di0 − (Γλ
i
00 + Γλ

i
0j x

j
0) d

λ)⊗ ∂i ,

where
Γλ

i
0µ = Γµ

i
0ν ∈ F(JE) .

We remark that the torsion of a connection on the phase space can be defined via the
contact form θ and the Frölicher–Nijenhuis bracket [33, 61].

1.4 Definition. A phase connection is defined to be a torsion free affine connection
Γ of the bundle JE → E.

In view of the correspondence between spacetime and phase connections, we observe
that a linear connection ν[K] on TE → E induces a linear connection ν[K̃] : T (T∗ ⊗
TE)→ T∗ ⊗ TE on the vector bundle T∗ ⊗ TE → E, with coordinate expression

ν[K̃] = u0 ⊗ (ḋµ0 −Kλ
µ
ν ẋ

ν
0 d

λ)⊗ ∂µ ,

where (xλ, ẋλ0) denotes the induced chart on T∗ ⊗ TE.

1.5 Theorem. Given a spacetime connection K, we obtain ([33, 37, 39]) a phase
connection Γ[K] characterised by

ν[Γ[K]] = θ ◦ ν[K̃] ◦ Td ,

whose coordinate expression is
Γ[K]λ

i
0µ = Kλ

i
µ .

Thus, the map
K 7→ Γ[K] (1.24)
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is a bijection between spacetime and phase connections.

If Γ is a phase connection and o an observer, then we obtain the covariant differential

∇[Γ]o : E → T∗ ⊗ (T ∗E ⊗
E
VE) , (1.25)

with coordinate expression in adapted coordinates

∇[Γ]o = −Γλ
i
00 u

0 ⊗ dλ ⊗ ∂i .

Moreover, the metric G and the inclusion ν[o]∗ : V ∗E ⊂ T ∗E yield the tensor

G[(∇̃[Γ]o) : E → T ∗E ⊗
E
T ∗E ,

whose expression in adapted coordinates is

G[(∇̃[Γ]o) = −Gjh Γλ
h
00 d

λ ⊗ dj .

We can split G[(∇̃[Γ]o) into its symmetric and antisymmetric components

G[(∇̃[Γ]o) = 1
2

(Σ[Γ, o] + Φ[Γ, o]) ,

where
Σ[Γ, o] : E → S2T ∗E , Φ[Γ, o] : E → Λ2T ∗E , (1.26)

have coordinate expressions

Σ[Γ, o] = 2 Σ0j d
0 ∨ dj + Σij d

i ∨ dj , Φ[Γ, o] = 2 Φ0j d
0 ∧ dj + Φij d

i ∧ dj ,

with

Σij = −(GjhΓi
h
00 +GihΓj

h
00) ,

Σ0j = −GjhΓ0
h
00 = Φ0j ,

Φij = −(GjhΓi
h
00 −GihΓj

h
00) .

Furthermore, we are involved with the vertical restriction of Σ[Γ, o]

Σ̌[Γ, o] : E → S2V ∗E ,

with coordinate expression
Σ̌[Γ, o] = Σij ď

i ∨ ďj .

1.6 Remark. Let us consider a spacetime connection K. Then, the maps

K 7→ (Ǩ, ∇[Γ]o) 7→ (Ǩ, Σ̌[Γ[K], o], Φ[Γ[K], o]) (1.27)
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are bijections.

In other words, Ǩ and ∇[Γ[K]]o carry independent information on K and characterise
K itself. Moreover, Σ̌[Γ[K], o] and Φ[Γ[K], o] carry independent information on ∇[Γ]o and
characterise ∇[Γ]o itself.

1.7 Proposition. Given a spacetime connection K and an observer o, the connection
K is metric if and only if

Ǩ = κ , Σ̌[Γ[K], o] = G[LoḠ , (1.28)

where LoḠ denotes the Lie derivative of the contravariant metric Ḡ, with respect to the
scaled vector field o : E → T∗ ⊗ TE.

Eventually, we analyse the second order connections of spacetime and discuss their
relation with the phase connections.

1.8 Definition. A second order connection on E is defined as a section

γ : JE → J2E , (1.29)

where J2E is the space of second order jets of sections of E → T .

Therefore, by considering the inclusion J2E ⊂ T∗⊗TJE, each second order connection
γ can be characterised as a (first order) connection on the fibred manifold JE → T , which
projects on the contact map d (see [58]). In other words, each second order connection γ
can be regarded as a vector field

γ : JE → T∗ ⊗ TJE ,

such that

(idT∗ ⊗Tπ1
0) ◦ γ = d .

The coordinate expression of a second order connection γ is of the type

γ = u0 (∂0 + xi0 ∂i + γ0
i
0 ∂

0
i ) , γ0

i
0 ∈ F(JE) .

Given a second order connection γ and a motion s, the section

∇[γ]js := j2s− γ ◦ js : T → T∗2 ⊗ VE , (1.30)

with coordinate expression

∇[γ]js = (∂00s
i − γ0i0 ◦ js)u0 ⊗ u0 ⊗ (∂i ◦ s)
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will be called the (observer–independent) acceleration of s.

Now, for each phase connection Γ, the section [33],

γ[Γ] :=d yΓ : JE → T∗ ⊗ TJE (1.31)

turns out to be a second order connection.
The coordinate expression of γ[Γ] is

γ[Γ] = u0 ⊗ (∂0 + xi0 ∂i + γ0
i
0 ∂

0
i ) , γ0

i
0 = Γh

i
0k x

h
0x

k
0 + 2 Γh

i
00 x

h
0 + Γ0

i
00 .

By considering the algebraic structure of the bundle J2E → E, we can define the
homogeneous second order connections; in coordinates, they are characterised by the fact
that the coefficients γ0

i
0 are second order polynomials in the coordinates xi0.

Now, given a phase connection Γ, the second order connection γ[Γ] turns out to be
homogeneous.

Even more, we have the following result.

1.9 Remark. The map
Γ 7→ γ[Γ] ≡ d yΓ (1.32)

turns out to be a bijection between phase connection and homogeneous second order
connections.

1.4 Phase 2–form

Now we analyse a distinguished 2–form that is induced on the phase space by a phase
connection and the metric. Such a form encodes all structures of spacetime and plays a
fundamental role throughout the paper.

Later we shall make assumptions on this form.

A phase connection Γ on JE and the vertical metric G yield the 2–form on JE [33],

Ω[G,Γ] := ν[Γ] ∧̄ θ : JE → Λ2T ∗JE , (1.33)

with coordinate expression

Ω[G,Γ] = Gij (di0 − (Γλ
i
00 + Γλ

i
0j x

j
0) d

λ) ∧ θj , (1.34)

where the contracted wedge product is taken with respect to G.

1.10 Definition. A phase 2–form is defined to be a 2–form of the phase space of the
type Ω[G,Γ], where Γ is a phase connection.

A phase form will play a fundamental role throughout the paper; so, it is interesting
to observe that the above form is the only natural 2–form which can be obtained from Γ
and G, [34].
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The form Ω[G,Γ] is non–degenerate, in fact

dt ∧ Ω[G,Γ] ∧ Ω[G,Γ] ∧ Ω[G,Γ] : JE → T⊗ Λ7T ∗JE (1.35)

is a volume form on JE.

Given a phase connection Γ and an observer o, we obtain

Φ[Γ, o] = 2 o∗Ω[G,Γ] : E → Λ2T ∗E , (1.36)

in fact, in adapted coordinates, we have

Φ[Γ, o] = Gij (di0 − Γλ
i
00 d

λ) ∧ dj .

Later we shall be involved with a closed phase 2–form, thus with a cosymplectic form
[54]. So, it is important to analyse such a closure.

Let us consider the curvature tensor of a spacetime connection K

R[K] : E → Λ2T ∗E ⊗
E
VE ⊗

E
T ∗E ,

with coordinate expression

R[K] = (∂λKµ
i
ν +Kλ

j
ν Kµ

i
j) d

λ ∧ dµ ⊗ ∂i ⊗ dν .

1.11 Theorem. Given a spacetime connection K and an observer o, the following
conditions are equivalent:

dΩ[G,Γ[K]] = 0 , (1.37)

∇[K ′]g = 0 , R[K]iλ
j
µ = R[K]jµ

i
λ , (1.38)

∇[K ′]g = 0 , dΦ[Γ[K], o] = 0. (1.39)

Thus, in a coordinate chart adapted to the observer, the phase 2–form Ω[G,Γ[K]] is
closed if and only if

Kihj = −1
2

(∂iGhj + ∂jGhi − ∂hGij) , Kij0 +Kji0 = −∂0Gij ,

∂νΦλµ + ∂µΦνλ + ∂λΦµν = 0 ,

where the indices of K have been lowered by means of G[.

1.12 Proposition. Given a phase connection Γ, the second order connection γ[Γ]
fulfills

γ[Γ] yΩ[G,Γ] = 0 .

A phase 2–form encodes a full information of the spacetime structure; in fact, it
determines the second order connection, the phase connection, the spacetime connection
and the metric.
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1.13 Theorem. Let Ω[G,Γ] be the phase 2–form generated by the metric G and the
phase connection Γ.

Then, there is a unique second order connection γ′ such that γ′ yΩ[G,Γ] = 0; namely,
γ′ = γ[Γ].

Moreover, there is a unique phase connection Γ′ and a unique vertical metric G′ such
that ν[Γ′] ∧̄ θ = Ω[G,Γ], where the contracted wedge product is taken with respect to G′;
namely, Γ′ = Γ and G′ = G.

1.5 Gravitational objects

Now we specify the gravitational connection and the derived objects.

C.2 Assumption. Spacetime is assumed to be equipped with a spacetime connection

K\ : E → T ∗E ⊗
TE

TTE , (1.40)

which will be called gravitational .

We denote the induced phase connection, second order connection and phase 2–form
by

Γ\ ≡ Γ[K\] : JE → T ∗E ⊗
JE

TJE , (1.41)

γ\ ≡ γ[Γ\] : JE → T∗ ⊗ TJE , (1.42)

Ω\ ≡ Ω[G,Γ\] : JE → Λ2T ∗JE . (1.43)

Analogously, given an observer o, we set

Σ\[o] ≡ Σ[Γ\, o] : E → S2T ∗E ,

Φ\[o] ≡ Φ[Γ\, o] : E → Λ2T ∗E .

Moreover, we postulate the following condition as a field equation for g and K\.

C.3 Assumption. We assume the phase 2–form to be closed

dΩ\ = 0 . (1.44)

Thus, under assumptions C.1, C.2 and C.3, the form Ω\ turns out to be “cosymplectic”
(see [54]). This form, on one hand, encodes the main information arising from the classical
spacetime background and, on the other hand, will be the source of the quantisation
procedure.

Summarising, the gravitational objects on the phase space JE fulfill the following
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mutual relations

γ\ = d yΓ\ , Ω\ = ν[Γ\]∧̄θ , γ\ yΩ\ = 0 , dΩ\ = 0 . (1.45)

We denote the local potential of Φ\[o] (defined up to a gauge) as

A\[o] : E → T ∗E , (1.46)

according to Φ\[o] = 2 dA\[o].

1.6 Electromagnetic field

So far, we have assumed on space-time the structure associated with the vertical
Riemannian metric g and the gravitational connection K\. Next, we introduce the elec-
tromagnetic field.

C.4 Assumption. We assume the electromagnetic field to be a closed 2–form on E

f : E → (L1/2 ⊗M1/2)⊗ Λ2T ∗E .

Given a charge q ∈ T∗ ⊗ L3/2 ⊗M1/2, it is convenient to introduce the “normalised”
electromagnetic field

F ≡ q

~
f : E → Λ2T ∗E , (1.47)

with coordinate expression

F = 2F0j d
0 ∧ dj + Fij d

i ∧ dj .

We stress the fact that the normalised electromagnetic field and all objects which will
be derived from it incorporate the charge and the Planck constant.

We define the “universal” electric and “universal” magnetic fields to be the forms on
JE

E := − d yF : JE → T∗ ⊗ T ∗E , (1.48)

B :=F + 2 dt ∧ E : JE → Λ2T ∗E , (1.49)

with coordinate expression

E = −u0 ⊗
(
− F0jx

j
0 d

0 + (Fijx
i
0 + F0j) d

j
)
,

B = −2Fijx
i
0 d

0 ∧ dj + Fij d
i ∧ dj .

Thus, we can write

F = − 2 dt ∧ E +B . (1.50)
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We call the above objects “universal” because the standard electric field E[o] and
magnetic field B[o] observed by an observer o turn out to be the forms on E obtained by
pullback with respect to o

E[o] = o∗E : E → T∗ ⊗ T ∗E , B[o] = o∗B : E → Λ2T ∗E , (1.51)

whose expressions in adapted coordinates are

E[o] = −F0j d
0 ∧ dj , B[o] = Fij d

i ∧ dj .

We stress that the universal electric field carries the full information of the electro-
magnetic field; in other words, if we know the electric field observed by every observer o,
then, we know the electromagnetic field.

We denote the local potential of F (defined up to a gauge) as

Ae : E → T ∗E , (1.52)

according to F = 2 dAe.

1.7 Total objects

Next, we show that the electromagnetic field can be naturally incorporated into the
gravitational structures. Namely, we are looking for total objects obtained correcting the
gravitational objects by an electromagnetic term, in such a way to preserve the mutual
relations (1.45).

We start from the standard coupling of the electromagnetic field F with the gravita-
tional phase 2–form Ω\ on JE [1].

Accordingly, we define the total phase 2–form to be

Ω ≡ Ω\ + Ωe : JE → Λ2T ∗JE , (1.53)

where we have set

Ωe ≡ 1
2
F .

Here, the factor 1/2 is chosen in such a way to recover the standard formulas.
Of course, we obtain

dΩ = 0 . (1.54)

Moreover, we have

dt ∧ Ω ∧ Ω ∧ Ω = dt ∧ Ω\ ∧ Ω\ ∧ Ω\ ;

therefore, the electromagnetic field does not contribute to the total volume form on the
phase space and the total phase 2–form is cosymplectic.
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Furthermore, given an observer o, we obtain the closed total 2–form of E

Φ[o] ≡ Φ\[o] + Φe := 2 o∗Ω , (1.55)

where we have set
Φe := 2 o∗Ωe = 2 Ωe = F .

Then, the local potential of Φ[o] (defined up to a gauge) turns out to be

A[o] = A\[o] + Ae : E → T ∗E , (1.56)

according to Φ[o] = 2 d(A\ + Ae).

Next, the total phase 2–form Ω yields a total phase connection [33, 34, 37] (see theorem
1.13).

1.14 Proposition. There is a unique phase connection Γ of the type

Γ = Γ\ + Γe , (1.57)

where
Γe : JE → T ∗E ⊗

E
(T∗ ⊗ VE)

is a section, such that
Ω = ν[Γ] ∧̄ θ .

Namely, Γe is the electromagnetic soldering form

Γe = − 1
2
G]2 ◦ (F − 2 dt ∧ E) , (1.58)

with coordinate expression

Γe = Gij
(
(Fj0 + 1

2
Fjh x

h
0) d0 + 1

2
Fjh d

h
)
⊗ ∂0i ,

where G]2 : T ∗E ⊗E T ∗E → T ∗E ⊗E VE is the metric isomorphism on the second
component after vertical restriction.

Moreover, we have
−Γe ∧̄ θ = Ωe .

Analogously, the total phase 2–form Ω yields a total second order connection [33, 37]
(see theorem 1.13).

1.15 Proposition. There is a unique second order connection γ of the type

γ = γ\ + γe , (1.59)

where
γe : JE → T∗2 ⊗ VE
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is a section, such that
γ yΩ = 0 .

Namely, γe turns out to be the Lorentz force

γe = G] ◦ Ě : JE → T∗2 ⊗ VE , (1.60)

with coordinate expression

γe = Gij (Fjhx
h
0 + Fj0)u

0 ⊗ ∂0i .

Actually, we obtain
γ = d yΓ .

Moreover, we have
γe = d yΓe .

Eventually, the total phase 2–form Ω yields a total spacetime connection [33, 37] (see
theorem 1.5).

1.16 Proposition. The spacetime connection K related to Γ, according to theorem
1.5 is given by

K = K\ +Ke , (1.61)

where
Ke = G]2 ◦ S13 ◦ (dt⊗ F ) : E → T ∗E ⊗

E
VE ⊗

E
T ∗E , (1.62)

with coordinate expression

Ke = Gij (Fj0 d
0 ⊗ ∂i ⊗ d0 + 1

2
Fih d

0 ⊗ ∂i ⊗ dh + 1
2
Fih d

h ⊗ ∂i ⊗ d0) ,

where G]2 : T ∗E ⊗E T ∗E → T ∗E ⊗E VE is the metric isomorphism on the second
component after vertical restriction and S13 denotes the symmetrisation of the first and
third indices.

By summarising, the gravitational and electromagnetic fields induce the total metric
spacetime connection K, the total phase connection Γ, the total second order connection
γ and the total phase 2–form Ω.

1.8 Field equations

We can postulate [33] the interaction between the gravitational and electromagnetic
objects and their mass and charge sources by means of a suitable version of the Einstein
and Maxwell equations.

Actually, in our context, we can define the gravitational Ricci tensor and the divergence
of the electromagnetic field. We can also define the contravariant energy momentum
tensor and current associated with a charged moving continuum and write the continuity
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equations. However, because of the degeneracy of the four metric, we are unable to couple
the above objects as in the Einstein’s and Maxwell’s general relativistic theories; we can
only couple the gravitational and electromagnetic fields with the time components of
the energy momentum tensor and current. So, we obtain equations which are general
relativistically correct from a mathematical viewpoint, but which carry a weaker physical
information with respect to the true Einstein’s and Maxwell’s theories. Thus, the present
theory can be regarded as a rigorous mathematical model whose physical value stands in
between the standard non relativistic theory and the true general relativistic theory. For
further details see [33].

On the other hand the interaction between the gravitational and electromagnetic
fields with their sources might be important for developing concrete models but does not
play any direct role in our model for quantum mechanics, where we assume the classical
gravitational and electromagnetic background as given.

1.9 Classical particle mechanics

We can formulate the mechanics of a classical charged particle in the given gravita-
tional and electromagnetic fields Γ\ and F in terms of the second order total connection
γ [33].

C.5 Assumption. The law of motion for a classical particle of mass m and charge q
is assumed to be the generalised Newton’s equation (see (1.30))

∇[γ]js = 0 (1.63)

in the unknown motion s : T → E.

We can also write the above equation as (see Proposition 1.15))

∇[γ\]js = γe ◦ js ,

i.e., in coordinates, as (see (1.3))

∂00s
i − (Γ\h

i
k ◦ s) ∂0sh∂0sk − 2(Γ\h

i
0 ◦ s) ∂0sh − Γ\0

i
0 ◦ s = F i

0 ◦ s+ (F i
h ◦ s) ∂0sh .

Thus, the solutions of the generalised Newton’s equation are the motions whose ve-
locity is autoparallel with respect to the total second order connection γ, or, equivalently,
the motions whose acceleration with respect to the gravitational connection γ\ equals the
Lorentz force along the motion.

The above equation can be interpreted in the framework of a Lagrangian bicomplex
[42, 63].

We can prove [42, 63] that the pure differential structure of the fibred manifold t :
E → T yields a commutative diagram which involves the de Rham sequence of forms on
the manifold JE, a certain de Rham “contact” subsequence and their quotient sequence.
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Here, for short, we are just concerned with the square commutative subdiagram

S(T ∗JE)
d−−−→ S(Λ2T ∗JE)

h

y yk
F(J2E,T∗ ⊗ IR)

e−−−→ M(J4E,T∗ ⊗ V ∗E)

(1.64)

where d is the exterior differential, h and k are certain natural maps and ε is the standard
Euler–Lagrange operator (for second order Lagrangians). Actually, we will be involved
only with first order Lagrangians, but, in order to exhibit a commutative diagram we
have been forced to introduce sheaves larger than the ones we really meet in our specific
framework.

According to the standard scheme, a first order Lagrangian theory would start with
a given Lagrangian L ∈ F(JE,T∗ ⊗ IR) and derive from it the Poincaré–Cartan form
Θ ∈ S(T ∗JE), the 2–form Ω ≡ dΘ ∈ S(Λ2T ∗JE) and the Euler–Lagrange operator
E ≡ ε(L) = k(Ω) ∈ M(J2E,T∗ ⊗ V ∗E). On the other hand, in our scheme it is natural
to start from the total phase 2–form Ω because this is a global object exhibited by the
spacetime structure. So, our approach will reverse some aspects of the standard scheme.

Thus, we start with the global total phase 2–form yielded by the spacetime structure

Ω : JE → Λ2T ∗JE ,

whose coordinate expression is

Ω = Gij(d
i
0 − (Γλ

i
00 + Γλ

i
0j x

j
0) d

λ) ∧ θj .

We can prove that E ≡ k(Ω) turns out to be the global fibred morphism

E = G[(∇[γ]) : J2E → T∗ ⊗ V ∗E , (1.65)

with coordinate expression

E = (Gij x
i
00 − Γhjk x

h
0x

k
0 − 2Γhj0 x

h
0 − Γ0j0)u

0 ⊗ ďj ,

where (xλ, xi0, x
i
00) is the induced chart of J2E and the indices of Γ have been lowered by

G[.
Hence, the Euler–Lagrange type morphism G](E) derived from Ω is just the covariant

differential ∇[γ] associated with the total second order connection γ which expresses the
Newton’s law of motion. We recall that, according to proposition 1.13, γ is the unique
second order connection such that γ yΩ = 0.

Moreover, the phase 2–form Ω is closed, hence it can be locally derived from a potential
Θ ∈ S(T ∗JE). On the other hand, we can see that Ω admits local potentials of the type

Θ : JE → T ∗E ; (1.66)
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the coordinate expressions of such special potentials Θ are of the type

Θ = −(
1

2
Gij x

i
0x

j
0 − A0) d

0 + (Gijx
j
0 + Ai) d

i , Aλ ∈ F(E) .

Each special local potential of the above type Θ ∈ M(JE, T ∗E) will be called a
Poincaré–Cartan form associated with Ω. A Poincaré–Cartan form Θ is defined up to a
closed local form of E

α : E → T ∗E .

The restriction of h to M(JE, T ∗E) turns out to be

h = d y :M(JE, T ∗E)→ F(JE,T∗ ⊗ IR) .

We define the Lagrangian associated with a Poincaré–Cartan form Θ to be the local
map

L :=d yΘ : JE → T∗ ⊗ IR , (1.67)

with coordinate expression

L = (1
2
G0
ij x

i
0 x

j
0 + Ai x

i
0 + A0)u

0 .

By considering the gauge of Poincaré–Cartan forms, a Lagrangian L turns out to be
defined up to a map of the type

d yα : JE → T∗ ⊗ IR ,

where α ∈ S(T ∗E) is a closed form.
We observe that, by pullback with respect to t : E → T , a Lagrangian L can be also

regarded as a fibred morphism
L : JE → T ∗E ;

accordingly, we shall write
L ≡ L0 u

0 ' L0 d
0 .

Eventually, the Euler–Lagrange morphism associated with a Lagrangian L is just

ε(L) = G](∇[γ]) : J2E → T∗ ⊗ V ∗E . (1.68)

Of course, all Lagrangians L yield the same Euler–Lagrange operator G](∇[γ]).

Thus, the commutative diagram (1.64) yields, in our specific case, the diagram

Θ
d−−−→ Ω

d y

y yk
L e−−−→ G[(∇[γ])

(1.69)
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where the second column consists of global objects, while the first column consists of local
objects defined up to a gauge determined by the closed forms α of E.

We can say more about the relation between Lagrangians and Poincaré–Cartan forms.

We define, in the standard way, the momentum associated with a Lagrangian L as
the map

P̌ :=VEL : JE → V ∗E ; (1.70)

the momentum turns out to be the vertical restriction of the 1–form on E

P ≡ θ y P̌ : JE → T ∗E .

The coordinate expression of the momentum P is given by

P̌ = (G0
ij x

j
0 + Ai) ď

i , P = −(Gij x
i
0 x

j
0 + Ai x

i
0) d

0 + (G0
ij x

j
0 + Ai) d

i .

Then, we can prove that each Poincaré–Cartan form Θ can be written as [63]

Θ = L+ P : JE → T ∗E , (1.71)

where L ≡ d yΘ and P ≡ VEL.

Next we describe the above objects in terms of observers.

So, let us consider an observer o, the closed 2–form Φ[o] ≡ 2 o∗Ω : E → Λ2T ∗E and
its local potential A[o] : E → T ∗E (defined up to a closed form of E) (see section 1.7).

We define the Hamiltonian associated with a Poincaré–Cartan form Θ and the observer
o to be the local map

H[o] := − o yΘ : JE → T∗ ⊗ IR ; (1.72)

its coordinate expression in adapted coordinates is

H[o] = (1
2
G0
ij x

i
0 x

j
0 − A0)u

0 .

We can express the Hamiltonian as

H[o] = K[o]− o yA[o] . (1.73)

We observe that, by pullback with respect to t : E → T , a Hamiltonian H[o] can be
also regarded as a fibred morphism

H[o] : JE → T ∗E ;

accordingly, we shall write

H[o] ≡ H0 u
0 ' H0 d

0 .
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Moreover, we define the observed momentum associated with the Lagrangian L and
the observer o to be the fibred morphism

P [o] := ν[o]∗ ◦ P̌ : JE → T ∗E , (1.74)

whose coordinate expression in adapted coordinates is

P [o] = (Gijx
j
0 + Ai) d

i .

Hence, we obtain the following expressions (see also (1.14))

P̌ = Q̌[o] + Ǎ[o] ,

L = K[o] + d yA[o] ,

L = −H[o] + d yP [o] ,

Θ = −H[o] + P [o] .

Hence, we have the coordinate expressions

Θ = −H0 d
0 + Pi di ,L0 = (−H0 + Pi xi0) d0 , (1.75)

where H0 and Pi are the components of the Hamiltonian H[o] and of the observed mo-
mentum P [o] associated with the observer o attached to the chosen chart.

We stress that our definitions of a Poincaré–Cartan form, a Lagrangian and a mo-
mentum (defined locally up to a gauge) do not involve observers. On the other hand,
each Poincaré–Cartan form, each Lagrangian and each momentum can be expressed as a
combination of two terms related to an observer.

We recall that all above formulas incorporate the Planck constant because ~ has been
used in the definition of the normalised metric G and electromagnetic field F , hence in
the definition of Ω.



General relativistic quantum mechanics 27

2 Quantum mechanics

Next, we formulate a covariant scheme for the quantum mechanics of a scalar particle
with given mass m and charge q in the framework of classical curved spacetime E with
absolute time, equipped with a given vertical metric and gravitational and electromagnetic
fields. As for the classical background we shall mainly refer to the total cosymplectic phase
2–form, which encodes fully the classical spacetime structure.

2.1 Quantum structure

We start by introducing the quantum framework constituted by the quantum bundle
equipped with a quantum connection. These are our only assumptions for the quantum
structure.

Q.1 Assumption. We assume the quantum bundle to be a one–dimensional complex
bundle over spacetime

π : Q→ E (2.1)

equipped with the Hermitian product with values in the bundle of space–like 3–forms
Λ3V ∗E

h : Q×
E
Q→ C⊗ Λ3V ∗E . (2.2)

A local section
b ∈ S(L3/2 ⊗Q) ,

such that
h(b, b) = η ,

is a base said to be normal . We denote the complex dual base by

z ∈ F(Q,L∗3/2 ⊗ C) .

Henceforth, we shall refer to a normal base b and a related fibred chart (xλ, z). The
induced local base of T (Q) will be denoted (by abuse of notation) by (∂λ, ∂z).

We obtain the associated real base (b1, b2) and dual real base w1, w2, where

b1 ≡ b , b2 ≡ i b , b1, b2 ∈ S(L3/2 ⊗Q) ,

z = w1 + iw2 , w1, w2 ∈ F(Q,L∗3/2 ⊗ IR) .

If Ψ : E → Q is a section, then we write

Ψ = ψ b , ψ ≡ z ◦Ψ ∈ F(E,L∗3/2 ⊗ C) .

Hence, the coordinate expression of h is

h(Ψ, Ψ′) = ψ̄ ψ′η , ∀Ψ,Ψ′ ∈ S(Q) .
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We obtain the real linear fibred isomorphism over E

h] : Q∗ → L3 ⊗Q ,

induced by the real component of h, with coordinate expression

h] = b1 ⊗ w1 + b2 ⊗ w2 .

The Liouville vector field

1 : Q→ VQ ' Q×
E
Q : q 7→ (q, q)

will be identified with
1 = idQ : E → Q∗ ⊗

E
Q ;

thus, we shall write
1 = z ∂z ' z b .

A connection on the bundle Q→ E can be regarded as a section

χ : Q→ T ∗E ⊗
Q
TQ ,

which projects on 1E ∈ T ∗E ⊗E TE. Thus a connection χ can be also regarded as a
section

χ : Q→ J1Q ,

where J1Q→ Q is the first jet bundle of sections of Q→ E.
Hence, the coordinate expression of a connection χ is of the type

χ = dλ ⊗ (∂λ + χλ ∂z) , χλ ∈ F(Q,C) .

The curvature of a connection χ is a Q–valued 2–form [33]

R[χ] : Q→ Λ2T ∗E ⊗
E
Q ,

whose coordinate expression is

R[χ] = (∂λχµ + χλ
∂χµ
∂z

) dλ ∧ dµ ⊗ b .

A connection χ is said to be Hermitian if

∇[K ′]
(
h(Ψ, Ψ′)

)
= h(∇[χ]Ψ, Ψ′) + h(Ψ, ∇[χ]Ψ′) , ∀Ψ,Ψ′ ∈ S(Q) . (2.3)

The coordinate expression of a Hermitian connection is of the type

χ = dλ ⊗ (∂λ + i χλ z ∂z) , χλ ∈ F(E, IR) .
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Next, in view of the quantum connection, we briefly recall the notion of system of
connections.

We consider the pullback bundle of the quantum bundle Q → E with respect to
JE → E

π↑ : Q↑ := JE ×
E
Q→ JE . (2.4)

The previous definitions and results concerning connections of the bundle Q→ E can
be immediately extended to connections of the bundle Q↑ → JE.

2.1 Remark. A system of connections of the bundle Q→ E parametrised by JE is
defined to be a fibred morphism over E (see [33])

ξ : JE ×
E
Q→ JQ .

Hence, ξ associates with each observer o a connection

ξ ◦ o↑ : Q→ JQ ,

where o↑ : Q→ JE ×E Q is the pullback of o.
There is a distinguished inclusion

ι : JE ×
E
JQ→ J(Q↑) ,

where J(Q↑) is the first jet bundle of sections of the bundle JQ↑ → JE.
Hence, we obtain the section, i.e. a connection of the bundle J(Q↑)→ JE,

q := ι ◦ ξ↑ : Q↑ → J(Q↑) ,

where ξ↑ : JE ×E Q→ JE ×E JQ is the pullback of ξ.
The connection q is said to be universal , because every connection of the system ξ ◦o↑

can be obtained from q by pullback as

ξ ◦ o↑ = o∗q .

The universal connection fulfills the following property: for every vertical vector field
X : E → V JE

X yq = X .

Conversely, if q is a connection on the bundle J(Q↑) → JE, which fulfills the above
property, then there is a unique system of connections parametrised by JE, whose uni-
versal connection is q.

Also the curvature of the universal connection fulfills the universal property

R[o∗q] = o∗R[q] .
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Now we are in the position to make our main assumption of the quantum theory.

Q.2 Assumption. We assume a connection

q : Q↑ → T ∗JE ⊗
JE

TQ↑ (2.5)

called quantum connection, such that

(1) q is Hermitian,

(2) q is universal,

(3) the curvature of q is given by

R[q] = i Ω⊗ 1 : Q↑ → Λ2T ∗JE ⊗
JE

Q↑ . (2.6)

The closure of the phase 2–form Ω turns out here to be a necessary integrability
condition because of the Bianchi identity of R[q].

2.2 Theorem. Given a local base b, a quantum connection q turns out to be locally
of the type

q = q‖ + i Θ⊗ 1 , (2.7)

where q‖ is the flat connection associated with b and Θ is a classical Poincaré–Cartan
form (see section 1.9).

Moreover, given a local base b and an observer o, a quantum connection q turns out
to be locally of the type

q = q‖ + i (−H[o] + P [o])⊗ 1 (2.8)

= q‖ + i (−K[o] +Q[o] + A[o])⊗ 1 , (2.9)

where q‖ is the flat connection associated with b and H[o],P [o] are the Hamiltonian and
the observed momentum associated with a classical Poincaré–Cartan form and the ob-
server o, and K[o],Q[o] are the kinetic energy and momentum associated with o and A[o]
is a potential of Φ[o].

In other words, the coordinate expression of a quantum connection q turns out to be
locally of the type

q = dλ ⊗ ∂λ + di0 ⊗ ∂0i + i qλ dλ ⊗ (z ∂z)

= dλ ⊗ ∂λ + di0 ⊗ ∂0i + i
(
− (1

2
G0
ij x

i
0 x

j
0 − A0) d

0 + (G0
ij x

j
0 + Ai) d

i
)
⊗ (z ∂z)

= dλ ⊗ ∂λ + di0 ⊗ ∂0i + i (−H0 d
0 + Pi di)⊗ (z ∂z) ,

where A[o] is a local potential and H[o],P [o] are the corresponding Hamiltonian and ob-
served momentum associated with the observer o attached to the chosen chart.
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We stress that classically Poincaré–Cartan form, the potential, the Hamiltonian and
the momentum are locally determined up to a gauge (see 1.9), but here q determines this
local gauge.

Given a quantum connection q, let us analyse the transition maps for the local po-
tential A[o] occurring in the above formula, with respect to a change of the base b and of
the observer o.

2.3 Proposition. If b, b′ are local bases and b′ = exp(iθ), with θ ∈ F(E), and o is
an observer, then we obtain (with reference to formula (2.9))

A′[o] = A[o]− dθ . (2.10)

2.4 Proposition. If b is a local base, o, o′ are observers, with o′ = o + V , with
V : E → T∗ ⊗ VE, then we obtain (with reference to (2.9))

A[o′] = A[o]− 1
2
G(V, V ) + ν[o]∗ yG[(V ) . (2.11)

In other words, if (xλ) and (x′λ) are spacetime charts adapted to o and o′, respectively,
and we set

A[o′] = A′λd
′λ , A[o] = Aλd

λ , V = V iu0 ⊗ ∂i ,

then we obtain

A′0 = A0 + (−1
2
Vi + Ai)V

i , A′i =
∂xj

∂x′i
(Aj + Vj) .

A pair (Q,q) is said to be a quantum structure.
In [63] a topological necessary and sufficient condition for the existence of a quantum

structure has been found.

2.5 Theorem. The following conditions are equivalent:

(1) there exists a quantum structure (Q,q);

(2) the closed form Ω determines a cohomology class in the subgroup

[Ω] ∈ ι(H2(E,Z)) ⊂ H2(E, IR) ,

where ι : (H2(E,Z))→ H2(E, IR) is the canonical group morphism.

The two simple assumptions of a quantum bundle over spacetime and of a universal
quantum connection enable us to avoid the intricate problems related to polarisations,
which are typical in geometric quantisation.

The quantum structure is the source of all further developments, including the quan-
tum Lagrangian, the Schrödinger equation, the quantum momentum, the probability
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current, the quantum operators and the quantum Hilbert bundle. Now, the condition on
the quantum connection to be linked with the cosymplectic form Ω has forced us to start
with the enlarged quantum bundle Q↑, but we expect that most physically significant
objects live on Q; actually, a projection method will yield these objects on Q.

2.2 Covariant differential

Now, we analyse the covariant differential and related operators acting on quantum
sections.

In order to perform the covariant differential of a quantum section Ψ : E → Q, we
need to take its pullback

Ψ↑ : JE → Q↑ : je 7→
(
je, Ψ(e)

)
.

On the other hand, the covariant differential turns out to be valued just in T ∗E ⊗E Q
because of the universality of q.

Thus, for each Ψ ∈ S(Q), we obtain the covariant differential

∇Ψ ≡ ∇[q]Ψ : JE → T ∗E ⊗
E
Q , (2.12)

with coordinate expression

∇Ψ = ∇λψ d
λ ⊗ b ,

where

∇λψ d
λ ≡ (∂λψ − i qλ ψ) dλ = (∂0ψ + i H0 ψ) d0 + (∂jψ − i Pj ψ) dj .

Moreover, we define the time-like and space-like differentials of a Ψ ∈ S(Q) to be the
maps

∇̄Ψ :=d y∇Ψ : JE → T∗ ⊗Q ,
∨
∇Ψ : JE → V ∗E ⊗

E
Q (2.13)

with coordinate expressions

∇̄Ψ = (∂0ψ + ẋj0 ∂jψ − i L0 ψ) d0 ⊗ b ,
∨
∇Ψ = (∂jψ − i Pj ψ) ďj ⊗ b .

Furthermore, we define the quantum Laplacian of a Ψ ∈ S(Q) to be the section

∆Ψ ≡ ∆[q]Ψ ≡ 〈Ḡ, ∇[K,q]∇[q]Ψ〉 : JE → T∗ ⊗Q , (2.14)

with coordinate expression

∆Ψ = Ghk
(
(∂h − i qh)(∂k − i qk) +Kh

l
k (∂l − i ql)

)
ψ u0 ⊗ b .
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Eventually, let us consider an observer o.
According to the discussion on systems of connections (see 2.1) we obtain the observed

quantum connection
o∗q : Q→ T ∗E ⊗

E
Q , (2.15)

with coordinate expression in adapted coordinates

o∗q = dλ ⊗ ∂λ + iAλ z d
λ ⊗ ∂z ,

where Aλd
λ = A[o] is the potential determined locally by q.

Accordingly, we obtain the observed covariant differential of a Ψ ∈ S(Q)

(∇[q]Ψ) ◦ o = ∇[o∗q]Ψ : E → T ∗E ⊗
E
Q , (2.16)

with coordinate expression in adapted coordinates

∇[o∗q]Ψ ≡ ∇[o∗q]λψ d
λ ⊗ b ,

where
∇[o∗q]λψ ≡ (∂λψ − i Aλ ψ) .

Analogously, we obtain the observed Laplacian of a Ψ ∈ S(Q)

∆[o∗q]Ψ ≡ 〈Ḡ, ∇[K, o∗q]∇[o∗q]Ψ〉 : E → T∗ ⊗Q , (2.17)

with coordinate expression in adapted coordinates

∆[o∗q]Ψ = Ghk
(
(∂h − i Ah)(∂k − i Ak) +Kh

l
k (∂l − i Al)

)
ψ u0 ⊗ b .

2.3 Quantum dynamics

Now, we look for a distinguished Lagrangian on the quantum bundle as source of the
quantum dynamics. Actually, we find such a Lagrangian and derive from it the quantum
momentum, the generalised Schrödinger equation and the conserved probability current.
We are also able to express all above objects by a direct geometrical way beyond the
Lagrangian formalism.

For each Ψ ∈ S(Q), we have the two distinguished maps

1
2
dt ∧

(
h(Ψ, i ∇̄Ψ) + h(i ∇̄Ψ,Ψ)

)
: JE → Λ4T ∗E ,

1
2
dt ∧

(
(Ḡ⊗ h)(

∨
∇Ψ,

∨
∇Ψ)

)
: JE → Λ4T ∗E ,

which live on JE. But we are looking for a map living on E. The following theorem yields
such a distinguished map.



34 J. Jadczyk, J. Janyška, M. Modugno

2.6 Theorem. There is a unique linear combination (up to a multiplicative factor)
of the above maps which projects on E, namely the form

L[Ψ] = 1
2
dt∧

(
(h(Ψ, i∇̄Ψ)+h(i ∇̄Ψ,Ψ)−(Ḡ⊗h)(

∨
∇Ψ,

∨
∇Ψ)

)
: E → Λ4T ∗E , (2.18)

with coordinate expression

L[Ψ] = 1
2

(
i (ψ̄ ∂0ψ − ψ ∂0ψ̄)−Ghk ∂hψ̄ ∂kψ

+ i GhkAh (ψ ∂kψ̄ − ψ̄ ∂kψ) + ψ̄ ψ (2A0 −GrsArAs)
)
υ0 ,

where we have set

υ0 ≡ υ(u0) =
√
|g|d0 ∧ d1 ∧ d2 ∧ d3 .

In [35] all natural quantum Lagrangians have been classified by methods of gauge-
natural bundles and natural operators, [41, 43]. It has been proved that all natural
quantum Lagrangians are multiples of the canonical volume form υ, where multiplica-
tive factors are invariant functions. A base of these invariant functions is constituted by
three functions and the unique non trivial function in the base is just given by the above
formula.

Q.3 Assumption. We assume the 4–form L as the quantum Lagrangian for the
quantum dynamics.

2.7 Proposition. The quantum Lagrangian yields, according to the standard proce-
dure, the quantum momentum, which, for each Ψ ∈ S(Q), is the map

P[Ψ] := ih] ◦ (VQL)[Ψ] : E → L3 ⊗ (TE ⊗
E
Q⊗

E
Λ4T ∗E) ,

with coordinate expression

P[Ψ] =
(
ψ ∂0 − i Ghk(∂hψ − i Ah ψ) ∂k

)
b⊗ υ0 .

Moreover, by considering the linear fibred isomorphism over E

TE ⊗
E

Λ4T ∗E ' Λ3T ∗E ,

we can regard, for each Ψ ∈ S(Q), the quantum momentum as a section

P[Ψ] : E → L3 ⊗ (Q⊗
E

Λ3T ∗E) . (2.19)

For each Ψ ∈ S(Q), we have the two distinguished maps (by applying the above
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isomorphism)

d⊗Ψ : JE → T∗ ⊗ (TE ⊗
E
Q) ,

G](
∨
∇Ψ) : JE → T∗ ⊗ (TE ⊗

E
Q) ,

which live on JE. But we are looking for a map living on E. The following theorem yields
such a distinguished map.

2.8 Proposition. There is a unique linear combination (up to a multiplicative factor)
of the above maps which projects on E, namely the section

P[Ψ] =
(
d⊗Ψ− i G](

∨
∇Ψ)

)
⊗ υ : E → L3 ⊗ (Q⊗

E
Λ3T ∗E) . (2.20)

2.9 Proposition. The quantum Lagrangian yields, according to the standard proce-
dure, the quantum Euler-Lagrange operator , which, for each Ψ ∈ S(Q), is the map

h](E[Ψ]) : E → L3 ⊗ (Q⊗
E

Λ4T ∗E) , (2.21)

with coordinate expression

h](E[Ψ]) = 2
(
i (∂0 − iA0 + 1

2

∂0
√
|g|√
|g|

)ψ + 1
2
Ghk (∂h − iAh) (∂k − iAk)ψ

+ 1
2

∂h(G
hk
0

√
|g|)√

|g|
(∂k − iAk)ψ

)
b⊗ υ0 .

In order to obtain a more concise expression of the above formula, let us make a
general observation.

2.10 Lemma. Let F → B be a vector bundle, s : B → F a section and Y : F → TF
a vector field, which is projectable on the base space and linear over its projection. Then, s
can be naturally regarded as a vertical vector field on F ; hence the Lie bracket between Y
and this vertical vector field yield a vertical vector field, which can be naturally regarded
as a section

Y.s : B → F .

If (xλ, yi) is a linear fibred chart of F and (bi) the associated local base, then we obtain
the coordinate expressions

Y = Y λ ∂λ + Y i
j y

j∂i , Y.s = (Y λ ∂λs
i − Y i

j s
j) bi , Y λ, Y i

j ∈ F(B) .

Now, let us consider an observer o.
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Then, we obtain the vector field

X[o] := o y (o∗q) : Q→ T∗ ⊗ TQ ,

with coordinate expression in adapted coordinates

X[o] = u0 ⊗ (∂0 + i A0 z ∂z) .

Hence, for each Ψ ∈ S(Q), we obtain the Lie derivative

L[o,q]Ψ :=L(X[o])(Ψ
√
υ) /
√
υ : E → T∗ ⊗Q ,

with coordinate expression

L[o,q]Ψ = (∂0 − iA0 +
∂0
√
|g|√
|g|

)ψ u0 ⊗ b .

2.11 Proposition. Given an observer o, the Euler-Lagrange operator is expressed,
for each S(Q), by

h](E[Ψ]) = 2
(
i L[o,q]Ψ + 1

2
∆[o∗q]Ψ

)
⊗ υ . (2.22)

For each Ψ ∈ S(Q), we have the two distinguished maps

∇̄Ψ⊗ υ : JE → L3 ⊗ (Q⊗
E

Λ4T ∗E) ,

d[q]P[Ψ] : JE → L3 ⊗ (Q⊗
E

Λ4T ∗E) ,

which live on JE. But we are looking for a map living on E. The following theorem yields
such a distinguished map.

2.12 Proposition. There is a unique linear combination (up to a multiplicative fac-
tor) of the above maps, which projects on E, namely the section

h](E[Ψ]) = ∇̄Ψ⊗ υ + dP[Ψ] : E → L3 ⊗ (Q⊗
E

Λ4T ∗E) . (2.23)

Thus, the quantum dynamical equation in the unknown Ψ ∈ S(Q) is assumed to be
the generalised Schrödinger equation

h](E[Ψ]) = 0 .

2.13 Proposition. By considering the invariance of the quantum Lagrangian under
the action of the group U(1), the Nöther theorem yields the conserved probability current ,
which, for each Ψ ∈ S(Q) solution of the Schrödinger equation, is the closed 3–form

j[Ψ] = 1
2

(
h(Ψ ,P[Ψ])− h(P[Ψ] ,Ψ)

)
/, η : E → Λ3T ∗E , (2.24)
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with coordinate expression

j[Ψ] = ψ̄ψ υ00 −Ghk
(
i 1

2
(ψ̄ ∂kψ − ∂kψ̄ ψ) + Ak ψ̄ψ

)
υ0h ,

where υ0α ≡ i∂αυ
0.

2.4 Quantisable functions

In view of quantum operators, we present a Lie algebra of functions which depends
only on the classical spacetime structure. The bracket of this algebra is not the Poisson
bracket. Moreover, these functions are characterised by the fact that their Hamiltonian
lift is projectable over spacetime; so we get a tangent lift for these functions.

Let us consider a time scale τ ∈ T⊗ IR and the vector subbundles over JE

TτJE ⊂ TJE and T ∗γ JE ⊂ T ∗JE ,

which project on τ and vanish on γ, respectively.
The cosymplectic form Ω yields a linear fibred isomorphism over JE

Ω[
τ : TτJE → T ∗γ JE ,

whose inverse will be denoted by Ω]
τ .

Now, for any function f ∈ F(JE), we obtain the 1–form

dγf := df − γ y df : JE → T ∗γ JE , (2.25)

and, given a time scale τ , the vector field

Hτ [f ] ≡ Ω]
τ (dγf) : JE → TτJE , (2.26)

with coordinate expression

Hτ [f ] = τ 0 (∂0 + xh0 ∂h + γ0
h
0 ∂

0
h)+

+Ghk
(
−∂0kf ∂h +

(
∂kf + (Γk

l
0 −GkrG

ls Γs
r
0) ∂

0
l f
)
∂0h
)
,

which is said to be the τ–Hamiltonian lift of f .
The sheaf F(JE) turns out to be a sheaf of IR–Lie algebras with respect to the

generalised Poisson bracket

{f1, f2} := i(Hτ [f2]) i(Hτ [f1]) Ω . (2.27)

The Hamiltonian lifts are not yet sufficient for our purposes (in view of next develop-
ments) because they live on JE, while we are looking for vector fields on E. Moreover, the
construction of these vector fields depends on an arbitrary time scale, while we would like
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to get a natural construction. Both problems can be solved by means of a projectability
method, according to the following result [31, 33].

2.14 Theorem. Let τ ∈ T ⊗ IR and f ∈ F(JE). Then, the vector field Hτ [f ] is
projectable on E if and only if f is, with respect to the fibres of JE → E, a polynomial
of degree 2, whose second derivative is of the type

D2f = f ′′ ⊗G : E → T2 ⊗ (V ∗E ⊗
E
V ∗E) , with f ′′ ∈ T⊗ IR ,

and

τ = f ′′ .

2.15 Definition. Functions of the above kind are said to be quantisable.

2.16 Remark. A function f ∈ F(JE) is quantisable if and only if its coordinate
expression is of the type

f = 1
2
f 0Ghk x

h
0x

k
0 + fj x

j
0 + f0 , fj, f0 ∈ F(E) , f 0 ∈ IR . (2.28)

For a quantisable function f as above we obtain

f ′′ = f 0 u0 .

Let us consider an observer o. A function f ∈ F(JE) is quantisable if and only if it
is of the type

f = f ′′K[o] + f ′ ◦ ∇[o] + fo ,

where f ′′ ∈ T ⊗ IR, f ′ ∈ F(T ⊗ V ∗E) is a function linear with respect to the fibres and
fo ∈ F(E). For a quantisable function f as above we obtain

fo = f ◦ o.

We stress that in the coordinate expression of a quantisable function f there is no
relation at all between the coefficients f 0 and f0.

The sheaf of quantisable functions is denoted by

Q(JE) ⊂ F(JE) .

2.17 Theorem. The sheaf Q(JE) turns out to be a sheaf of IR–Lie algebras with
respect to the bracket

[f1, f2] := {f1, f2}+ γ(f1
′′).f2 − γ(f2

′′).f1 , (2.29)
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with coordinate expression

[f1, f2]
0 = 0

[f1, f2]i = Gij (f1
0 ∂0f2

j − f20 ∂0f1j − f1h ∂hf2j + f2
h ∂hf1

j)

[f1, f2]0 = f1
0 ∂0f2 0 − f20 ∂0f1 0 − (f1

h ∂hf2 0 − f2h ∂hf1 0)
− (f1

0 f2
j − f20 f1j) Φ0j + f1

i f2
j Φij ,

where

f1
i ≡ Gij f1 j , f2

i ≡ Gij f2 j .

2.18 Remark. Let Qa(JE) ⊂ Q(JE) be the subsheaf of affine quantisable functions
(i.e. quantisable functions f with f ′′ = 0). We can easily see that Qa(JE) is closed with
respect to the Lie bracket.

Thus, for any quantisable function f ∈ Q(JE), the vector field

X↑[f ] :=Hf ′′ [f ]

projects on a vector field, which will be denoted by

X[f ] : E → TE ,

and said to be the tangent lift of f .

2.19 Remark. Let us consider a quantisable function f .

Then, its tangent lift is expressed, in coordinates, by

X[f ] = f 0 ∂0 − f i ∂i . (2.30)

and, with respect to an observer o, by

X[f ] = o(f ′′)−G](f ′ ◦ ∇[o]) .

2.20 Remark. Let us consider a quantisable function f .

Then, the time component of X[f ] is just f ′′.

Moreover, if the time scale f ′′ ≡ ±u0 ∈ T⊗ IR is non vanishing, then we obtain the
map

±u0 ⊗X[f ] : E → T∗ ⊗ TE

which is projectable on 1 ∈ T∗ ⊗ T, hence can be regarded as an observer.

2.21 Theorem. The map

Q(JE)→ T (E) : f 7→ X[f ]
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turns out to be an epimorphism of sheaves of IR–Lie algebras; hence, we have

X
[
[f1, f2]

]
=
[
X[f1], X[f2]

]
. (2.31)

2.22 Example. Let us consider an observer o and a time scale u0 and let us refer
to a chart adapted to the observer and to the time scale. Then, the functions x0, xi, xi0,
Pi, K0, H0, L0 turn out to be quantisable. Moreover, we obtain the following coordinate
expressions

X[xα] = 0 , X[xi0] = −Gij ∂j , X[Pi] = −∂i , (2.32)

X[K0] = X[H0] = ∂0 , X[L0] = ∂0 − Ai ∂i . (2.33)

We notice that the observer associated with K0 turns out to be o itself. On the other
hand, the observer associated with L0 moves with respect to o with velocity

−G](Ǎ) : E → T∗ ⊗ VE .

Moreover, for each f ∈ Q(JE), we obtain

[x0, f ] = f 0 , [xi, f ] = f i

[xi,Pj] = δij , [Pi,Pj] = 0 , [H0,Pj] = Φ0j .

We observe that all constructions of this section could be extended by considering
variable time scales of the type τ : JE → T⊗ IR (see [33]).

2.5 Quantum vector fields

Next, we classify the vector fields on the pullback quantum bundle, which are com-
patible with the quantum structure, and show that their projections on the quantum
bundle constitute a Lie algebra of vectors fields, which is isomorphic to the Lie algebra
of quantisable functions. These projected vector fields will yield pre–quantum operators
later.

2.23 Lemma. Let us consider a vector field Y : E → TE whose time component is
constant and a vertical form α : E → ΛrV ∗E. Then, we can easily see that the vertical
restriction of the Lie derivative L[Y ]α̃, where α̃ : E → ΛrT ∗E is an extension of α, does
not depend on the choice of the extension α̃. Hence, the above procedure well defines a
vertical form

L[Y ]α : E → ΛrV ∗E .

Let Y : Q → TQ be a vector field which projects on vector fields X : E → TE,
X
¯

: T → TT and which is (real) linear over X. Then, we say that Y is Hermitian if

L[Y ]
(
h(Ψ,Ψ′)

)
= h(L[Y ]Ψ, Ψ′) + h(Ψ, L[Y ]Ψ′) , ∀Ψ,Ψ′ ∈ S(Q) .
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A vector field Y is Hermitian if and only if its coordinate expression is of the type

Y = Xλ ∂λ + (i f − 1
2

divX) z ∂z , X0 ∈ F(T ) , f,X i ∈ F(E) . (2.34)

Let Y ↑ : Q↑ → TQ↑ be a vector field which projects on vector fields X↑ : JE → TJE,
X↑ : T → TT and which is (real) linear over X↑. Then, we say that Y ↑ is Hermitian if

L[Y ↑]
(
h(Ψ,Ψ′)

)
= h(L[Y ↑]Ψ, Ψ′) + h(Ψ, L[Y ↑]Ψ′) , ∀Ψ,Ψ′ ∈ S(Q) .

A vector field Y ↑ is Hermitian if and only if it is of the type

Y ↑ = q(X↑) + (i f − 1
2

divX↑) 1 , (2.35)

where f ∈ F(JE) and X↑ ∈ T (JE) is projectable on X ∈ T (T ).
The Hermitian vector fields of Q and of Q↑ constitute Lie algebras.

Now, let us consider the sheaf Q(Q↑) of Hermitian vector fields

Y ↑ : Q↑ → TQ↑ ,

which project on vector fields Y ∈ T (Q) and whose time component is constant.
Then, modifying some results of [31, 33], we obtain the following theorem.

2.24 Theorem. We have the natural IR–linear sheaf isomorphism

Q(JE)→ Q(Q↑) : f 7→ Y ↑[f ] ,

given by

Y ↑[f ] = q(X↑[f ]) + (i f − 1
2

divX[f ]) 1 . (2.36)

We have been forced to consider vector fields on the pullback quantum bundle Q↑

because we wanted to relate them to the quantum connection q and this lives on the
bundle Q↑. However, the above vector fields are not yet good candidates as operators on
quantum sections because they would transform sections of Q into sections of Q↑, but
their projections on Q are suitable for our purpose.

Thus, for each quantisable function f ∈ Q(JE), the vector field Y ↑[f ] projects on a
(local) vector field, which will be denoted by

Y [f ] : Q→ TQ ,

said to be the quantum lift of f and called a quantum vector field . We denote the sheaf
of quantum vector fields by

Q(Q) ⊂ T (Q) .

2.25 Remark. If f ∈ Q(JE), then Y [f ] turns out to be projectable on X[f ].
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2.26 Proposition. Let us consider a quantisable function f , then its quantum lift is
expressed, in coordinates, by

Y [f ] = f 0 ∂0 − f j ∂j +
(
i (f 0A0 − fhAh + f0)− 1

2
divX[f ]

)
z ∂z , (2.37)

where

divX[f ] =
∂0(f

0
√
|g|)√

|g|
−
∂j(f

j
√
|g|)√

|g|
,

and, with respect to any observer o, by

Y [f ] = (o∗q)(X[f ]) +
(
i (f ◦ o)− 1

2
divX[f ]

)
1 .

2.27 Theorem. The sheaf Q(Q) is closed with respect to the Lie bracket. Moreover,
the map

Q(JE)→ Q(Q) : f 7→ Y [f ]

turns out to be an isomorphism of sheaves of IR–Lie algebras; hence, we have

Y
[
[f1, f2]

]
=
[
Y [f1], Y [f2]

]
. (2.38)

2.6 Pre–quantum operators

Next, we let the above vector fields associated with quantisable functions act on the
quantum sections as Lie derivatives.

Let us recall Lemma 2.10 and state the following additional result.

2.28 Lemma. Let F → B be a vector bundle equipped with a linear connection
c : F → T ∗B ⊗B TF , a vector field X : B → TB and its horizontal prolongation
Y ≡ X y c : F → TF . Then, for each section s : B → F , we obtain

Y.s = ∇[c]Xs .

2.29 Definition. Let f be a quantisable function. Then, we define the pre–quantum
operator associated with f to be the sheaf morphism

Z[f ] : S(Q)→ S(Q)

given by

Z[f ](Ψ) := i Y [f ].Ψ . (2.39)

Here, the imaginary coefficient i has been inserted just to obtain symmetric quantum
operators, later.
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2.30 Proposition. Let f be a quantisable function. Then, the pre–quantum operator
is expressed, in coordinates, by

Z[f ](Ψ) = i
(
f 0∇[o∗q]0ψ − f j∇[o∗q]jψ − i f0 ψ (2.40)

+ 1
2

(
∂0(f

0
√
|g|)√

|g|
−
∂j(f

j
√
|g|)√

|g|
)ψ
)
⊗ b .

and, for each observer o, by

Z[f ](Ψ) = i
(
X[f ] y∇[o∗q]Ψ

)
+
(
f ◦ o+ i 1

2
divX[f ]

)
Ψ .

We denote the sheaf of pre–quantum operators by

O(Q) := {Z[f ] | f ∈ Q(JE)} .

The sheaf O(Q) becomes a sheaf of IR–Lie algebras with respect to the bracket

[Z[f1], Z[f2]] := − i (Z[f1] ◦ Z[f2]− Z[f2] ◦ Z[f1]) .

2.31 Theorem. The map

Q(JE)→ O(Q) : f 7→ Z[f ]

is an isomorphism of sheaves of IR–Lie algebras; hence, we have

Z
[
[f1, f2]

]
=
[
Z[f1], Z[f2]

]
. (2.41)

2.32 Example. Let us consider an observer o and a time scale u0 and let us refer to
a chart adapted to the observer and to the time scale. Then, the pre–quantum operators
associated with the quantisable functions xα, xi0,Pi,H0 are given, for each Ψ ∈ S(Q), by

Z[xα](Ψ) = xα Ψ , (2.42)

Z[xj0](Ψ) = − i (∂j − i Aj)ψ b , Z[Pj](Ψ) = − i
(
∂j + 1

2

∂j
√
|g|√
|g|

)
ψ b , (2.43)

Z[H0](Ψ) = i
(
∂0 + 1

2

∂0
√
|g|√
|g|

)
ψ b . (2.44)

2.7 F–smooth systems of sections

In view of the quantum Hilbert bundle and the quantum operators, we introduce the
concept of system of sections of a double fibred manifold by using the non standard con-
cept of F–smoothness due to Frölicher. This setting enables us to make several geometrical
constructions on an infinite dimensional bundle whose elements are smooth sections of a
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finite dimensional bundle, skipping hard topological methods. In particular, we analyse
the connections on this infinite dimensional bundle.

First of all, we recall the notion of smooth space originally introduced by A. Frölicher
[22] and then studied by other authors along lines which are useful for our purposes
([9, 33]).

An F–smooth space is defined to be a set S, along with a set C ≡ {c : Ic → S}
of curves (where Ic ⊂ IR is an open interval which depends on c), which will be called
F–smooth, and which fulfill the following conditions:

- each constant curve c : Ic → S belongs to C;

- if c : Ic → S is F–smooth and γ : Iγ → Ic is a smooth map, then c ◦ γ : Iγ → S is
F–smooth.

If S and S′ are F–smooth spaces, then a map f : S → S′ is said to be F–smooth if,
for each F–smooth curve c : Ic → S, the curve c′ ≡ f ◦ c : Ic → S′ is F–smooth.

In particular, each smooth manifold M turns out to be F–smooth by assuming as
F-smooth curves just the smooth curves. Moreover, a map between smooth manifolds is
smooth if and only if it is F–smooth.

If S and S′ are F-smooth spaces, then S×nS ′ turns out to be F–smooth in a natural
way.

Now, let us consider a double smooth fibred manifold

G
q→ F

p→ B .

A typical fibred chart of the double fibred manifold will be denoted by (xλ, yi, za).

2.33 Definition. We define a system associated with G→ F → B to be a pair

(σ, ε) ≡
(
σ : S → B, ε : S ×

B
F → G

)
,

where S is an F-smooth set, σ is a surjective map, ε is a fibred morphism over F , which
is injective with respect to S, and the F-smooth structure of S is given by the F-smooth
curves ĉ : I ĉ → S, such that the induced maps

c ≡ σ ◦ ĉ : I ĉ → B : λ 7→ σ(ĉ(λ))

c∗(ε) : c∗(F )→ G : fλ 7→ ε
(
ĉ(λ), fλ

)
are smooth.

So, σ and ε turn out to be F–smooth.

2.34 Remark. Let (σ, ε) be a system and Ŝ the sheaf of local F–smooth sections
ŝ : B → S.
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Then, we obtain a sheaf isomorphism

ε̃ : Ŝ → S : ŝ 7→ s ≡ ε ◦ ŝ↑ ,

where ŝ↑ : F → S ×
B

F is the pullback of ŝ, onto a sheaf S of local smooth sections

s : F → G, which are defined on tube–like open subsets of F (i.e., on preimages of open
subsets of B).

We stress that, in the above remark and from now on, the notion of sheaf of local
smooth sections s : F → G, which are defined on tube–like open subsets of F is referred
to the tube–like topology of F .

Conversely, let us consider a subsheaf

S ⊂ {s : F → G}

of the sheaf of local smooth sections s : F → G, which are defined on tube–like open
subsets of F .

2.35 Proposition. The sheaf S defines a system as follows:

i) S is the set

S ≡
⋃
b∈B

Sb ,

where, for each b ∈ B,

Sb ≡ {sb : F b → Gb | s ∈ S}

is the set consisting of the restrictions to F b of the sections belonging to S;

ii) σ is the surjective map

σ : S → B : sb 7→ b ;

iii) ε is the evaluation fibred morphism over F

ε : S ×
B
F → G : (sb, f) 7→ sb(f) .

2.36 Remark. The correspondence

(σ, ε) 7→ S

between systems and sheaves is bijective.

Moreover, we have the mutually inverse sheaf isomorphisms

ε̃ : Ŝ → S : ŝ 7→ s ≡ ε ◦ s↑ , ε̃−1 : S → Ŝ : s 7→ ŝ ,

where s↑ : S ×
B
F → G is the pullback of s and ŝ : b 7→ sb ≡ s|F b.
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So, now we consider a system (σ, ε) and make some geometrical constructions related
to it.

Let us make a preliminarly remark. If b ∈ B, u ∈ TbB, f ∈ F b, s ∈ S, then (TfF )u and
(Ts(f)G)u are affine spaces associated with the vector spaces VfF and Vs(f)G, respectively.

2.37 Remark. We define the tangent space of the F–smooth set S as the set [33]

TS :=
⋃
ŝb∈S

TŝbS ,

where, for each ŝb ∈ Sb ⊂ S,
TŝbS ≡ {ζu}

is the set consisting of smooth sections

ζu : (TF )u → (TG)u , with u ∈ TbB , b ≡ σ(ŝb) ∈ B ,

such that, for each f ∈ F b, the restriction of ζu to (TfF )u is an affine map

ζ(u,f) : (TfF )u → (Ts(f)G)u ,

whose derivative is
D(ζ(u,f)) = Vfs : VfF → Vs(f)G .

In other words, ζu is a map which fulfills the equality

ζ(u,f)(v + w) 7→ ζ(u,f)(v) + Vfs(w) , ∀v ∈ (TfF )u , ∀w ∈ (VfF )b ,∀f ∈ F b ;

i.e., ζu is a map whose coordinate expression is of the type

(xλ, yi, za; ẋλ, ẏi, ża) ◦ ζu = (xλ, yi, sa;uλ, ẏi, ζa + ∂is
a ẏi) , with ζa ∈ F(F ) .

We obtain the surjective maps

πS : TS → S : ζu 7→ ŝb , Tσ : TS → TB : ζu 7→ u ,

and the evaluation fibred morphism over TF

Tε : TS ×
TB

TF → TG : (ζu, v) 7→ ζu(v) ,

which is injective with respect to TS.
The fibres of πS : TS → S are naturally equipped with a vector structure; moreover,

Tσ turns out to be a linear fibred morphism over σ.
The space TS has a natural F–smooth structure, which makes the maps Tσ, T ε, πS

and the vector structure of the fibres F–smooth.
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Thus, (Tσ : TS → TB, T ε) is a system of the double fibred manifold TG→ TF →
TB. Hence, we can apply to this system results analogous to those obtained for the
original system. We denote by T Ŝ and TS the sheaves associated with TS and TF ,
respectively.

2.38 Remark. Let ŝ ∈ Ŝ be an F–smooth section. Then we can easily see that
Ts ≡ T (ε̃(s)) ∈ TS. Then, we define the tangent prolongation of ŝ to be the F–smooth
section

T̂ s ≡ (̃Tε)
−1

(Ts) : TB → TS .

An F-smooth connection on the fibred set S → B is defined to be an F–smooth
section

χ : S ×
B
TB → TS ,

which is linear over S and projectable over idTB : TB → TB.

A connection can be regarded as an operator on sections of the double fibred manifold
in the following way.

2.39 Remark. Let χ be a connection.
Then, χ yields a first sheaf morphism

χ̂. : Ŝ → T Ŝ : ŝ 7→ χ̂.ŝ ,

where the section χ̂.ŝ : TF → TG is given by the composition

TB
ŝ↑−−−→ S ×

B
TB

χ−−−→ TS ,

where ŝ↑ is the pullback of ŝ given by

ŝ↑ : TB → S ×
B
TB : ub 7→

(
s(b), ub

)
.

Moreover, χ yields a second sheaf morphism

χ. : S → TS : s 7→ χ.s ,

given by the composition

TF
ŝ↑−−−→ S ×

B
TF

χ↑−−−→ TS ×
TB

TF
T ε̃−−−→ TG ,

where ŝ↑ and χ↑ are the pullbacks of ŝ and χ given by

ŝ↑ : TF → S ×
B
TF : fb 7→

(
s(b), fb

)
,

χ↑ : S ×
B
TF → TS ×

TB
TF : (ab, vu) 7→

(
χ(ab, u), vu

)
.
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Actually, for each s ∈ S, we have

χ̂.s = χ̂.ŝ .

The coordinate expression of χ.s is of the type

(xλ, yi, za; ẋλ, ẏi, ża) ◦ (χ.s) = (xλ, yi, sa; ẋλ, ẏi, χaµ(s) ẋµ + ∂js
a ẏj) ,

where χaµ(s) ∈ F(F ).

A connection induces the covariant differential in the standard way.

2.40 Proposition. Let χ be a connection and ŝ ∈ Ŝ.
Then, the map

∇̂[χ]ŝ :=T ŝ− χ̂.ŝ = ̂Ts− χ.s : TB → TS

takes its values in V S, is projectable over ŝ and is a linear fibred morphism over ŝ.
Moreover, the map

∇[χ]s :=Ts− χ.s : TF → TG

takes its values in VG and is a smooth linear local linear morphism over s, which factorises
through a smooth linear local morphism over s

F ×
B
TB → VG .

We have

∇̂[χ]ŝ = ∇̂[χ]s .

We have the coordinate expression

∇[χ]s =
(
∂λs

a − χaλ(s)
)
dλ ⊗ (∂a ◦ s) .

We call ∇̂[χ]ŝ, or, equivalently, ∇[χ]s the covariant differential of s with respect to
χ.

A connection χ is said to be of order k if, for each s ∈ S, the map χ(s) depends on s
through its vertical k–jet.

Next, let us consider the case when G → F is a vector bundle, hence S → B and
TS → TB are F–smooth vector bundles.

A connection χ is said to be linear if it is a linear fibred morphism over B, i.e. if the
sheaf morphism χ. is linear.

2.41 Proposition. Let χ be a linear connection of order k.
Then, the coordinate expression of χ.s is of the type

χaλ(s) = χaλb s
b + χaλb

j ∂js
b + · · ·+ χaλb

j1...jr ∂j1...jrs
b ,
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where χaλb , χ
a
λb
j , . . . , χaλb

j1...jr ∈ F(E).

Hence, the coordinate expression of ∇[χ]s is

∇[χ]s = (∂λs
a − χaλb sb − χaλbj ∂jsb − · · · − χaλbj1...jr ∂j1...jrsb)dλ∂a .

Thus, the operator ∇[χ] turns out to be a linear differential operator of order 1 in the
base derivatives and of order k in the fibre derivatives of of s.

2.8 Quantum Hilbert bundle

Eventually, we apply the geometrical constructions of the above sections to the quan-
tum bundle and obtain an F–smooth infinite dimensional bundle of time, equipped with a
pre–Hilbert structure. Moreover, we interpret the Schrödinger operator as a connection on
this infinite dimensional bundle. Furthermore, we show how the pre–quantum operators
and the above connection yield symmetric quantum operators.

The true Hilbert bundle could be obtained by a standard completion procedure and the
above quantum operators would turn out to be self–adjoint if the concrete spacetime and
the potential involved in the quantum connection are sufficiently good from a topological
viewpoint.

So, we consider the double fibred manifold

Q→ E → T

and the sheaf S of sections Ψ : E → Q, which are defined on tube-like open subsets of
E and have compact support on the fibres of E → T .

Then, according to the previous section (see definition 2.33 and proposition 2.35), we
obtain the quantum system (

σ : S → T , ε : S ×
T
E → Q

)
.

The F–smooth complex vector bundle σ : S → T inherits the Hermitian structure on
its fibres

ĥ : S ×
T
S → C : (Ψτ , Ψ′τ ) 7→ 〈Ψτ |Ψ′τ 〉 ≡

∫
Eτ

h(Ψτ , Ψ′τ ) , ∀τ ∈ T , (2.45)

which makes it a pre-Hilbert bundle.

2.42 Definition. We call σ : S → T the quantum pre–Hilbert bundle.

We define the Schrödinger operator to be the sheaf morphism

S : S(Q)→ S(T∗ ⊗Q) : Ψ 7→ − i 1
2
E[Ψ]/υ , (2.46)
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with coordinate expression

S.Ψ = (
o

∇0 + 1
2

∂0
√
|g|√
|g|
− i 1

2

o

∆0)ψ b⊗ u0 .

2.43 Theorem. There is a unique linear F–smooth connection χ on the F–smooth
bundle S → T , such that, for each Ψ ∈ S(Q),

∇[χ] = S .

The coordinate expression of χ is given by

χ0(Ψ) =

=
(
− 1

2

∂0
√
|g|√
|g|

+ i 1
2
Ghk

(
(∂h − i Ah)(∂k − iAk) +Kh

l
k (∂l − i Al)

)
+ iA0

)
ψ b .

The connection χ turns out to be Hermitian with respect to ĥ.

2.44 Remark. A fibred morphism over T

ξ̂ : S → S

can be regarded as a sheaf morphism

ξ̂. : Ŝ → Ŝ : Ψ̂ 7→ ξ̂.Ψ̂ ≡ ξ̂ ◦ Ψ̂ .

Moreover, ξ̂ yields the sheaf morphism

ξ : S → S

characterised by

ξ̂(Ψ) = ξ̂.Ψ̂ .

The map

ξ̂ 7→ ξ

is bijective.

Henceforth, Q(JE) will denote the sheaf of quantisable functions, which are defined
on tube–like open subsets of E.

Now we are in the position to exhibit the quantum operator on the pre–Hilbert bundle
associated with every quantisable function, as the final result of a fully geometrical an
covariant procedure.
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Let f ∈ Q(JE). By considering the results of section 2.6 and theorem 2.43, we obtain
two distinguished sheaf morphisms

Z[f ] : Ŝ → Ŝ ,
f ′′ y∇[χ̂] : Ŝ → Ŝ ,

which do not act pointwisely on the bundle S → T as they involve the time derivative
of sections. But we are looking for a fibred endomorphism of the bundle S → T . The
following theorem yields such a distinguished map.

2.45 Theorem. Let f ∈ Q(JE). Then, there is a unique linear combination (up to
a multiplicative factor) of the above maps which acts pointwisely on the section of S,
namely the sheaf morphism

f̂ :=Z[f ]− i (f ′′ y∇[χ̂]) : Ŝ → Ŝ (2.47)

which can hence be regarded as a local fibred morphism

f̂ : S → S . (2.48)

We have the coordinate expression

f̂(Ψ) =
(
(f0 − i fh(∂h − iAh)− i 1

2

∂h(f
h
√
|g|)√

|g|
− 1

2
f 0Ghk

(
(∂h − iAh)(∂k − i Ak) +Kh

l
k (∂l − iAl)

))
ψ b . (2.49)

2.46 Definition. For each quantisable function f , we say that

f̂ : S → S (2.50)

is the associated quantum operator .

2.47 Theorem. For each f ∈ Q(JE), the operator f̂ is symmetric with respect to
the Hermitian metric ĥ.

We denote the sheaf of quantum operators by

Q(S) := {f̂ | f ∈ Q(JE)}

and the subsheaf of quantum operators associated with affine quantisable functions by

Qa(S) := {f̂ | f ∈ Qa(JE)} .

If f1, f2 ∈ Q(JE), then we define the bracket of the associated quantum operators as

[f̂1, f̂2] := − i (f̂1 ◦ f̂2 − f̂2 ◦ f̂1) .
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2.48 Theorem. The sheaf Qa(S) turns out to be an IR–Lie algebra.
Moreover, the map

Qa(JE)→ Qa(S)

is an IR–Lie algebra homomorphism.

2.49 Example. Let us consider an observer o and a time scale u0 and let us refer
to a chart adapted to the observer and to the time scale. Then, the quantum operators
associated with the quantisable functions xα, xi0,Pi,H0 are given, for each Ψ ∈ S(Q), by

x̂α(Ψ) = xα Ψ , (2.51)

x̂j0(Ψ) = − i (∂j − i Aj)ψ b , P̂j(Ψ) = − i ( ∂jψ + 1
2

∂j
√
|g|√
|g|

ψ) b , (2.52)

Ĥ0(Ψ) = −
(
1
2
Ghk

(
(∂h − i Ah)(∂k − i Ak) +Kh

l
k (∂l − i Al)

)
+ A0

)
ψ b . (2.53)
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prinzips, Math. Z. 86 (1964), 291–.

[13] C. Duval: The Dirac & Levy-Leblond equations and geometric quantization, in Diff. geom. meth. in
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Elba 9-13 giugno 1989, 95-106.

[19] A. B. Evans: Four-space formulation of Dirac’s equation, Found. Phys. 20 (1990), 309-335.

[20] J. R. Fanchi: Review of invariant time formulations of relativistic quantum theories, Found. Phys.
23 (1993), 487-548.



54 J. Jadczyk, J. Janyška, M. Modugno
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[43] D. Krupka, J. Janyška: Lectures on Differential Invariants, Folia Fac. Sci. Nat. Univ. Purkynianae
Brunensis, Brno, 1990.
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