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Abstract

We show that the only requirement of general covariance essentially determines
the quantum operators associated with a classical quantisable function and the
Schrödinger operator.

Our framework is the covariant quantum mechanics of a scalar quantum particle
in a curved spacetime, which is fibred over absolute time and equipped with given
spacelike metric, gravitational field and electromagnetic field.

In particular, in the flat case, we recover the standard operators.

1



2 Covariant Schrödinger operator

Introduction

Since the very beginning of quantum mechanics, the quantum operators associated
with classical quantisable functions and the Schrödinger operator have been approached
in several ways; indeed, the related literature is huge.

The most usual approaches to quantum operators are based on Hamiltonian tech-
niques, such as the Dirac’s canonical quantisation and its refinement provided by geomet-
ric quantisation. Analogously, the standard approaches to the Schrödinger operator are
based on the quantisation of the classical Hamiltonian.

On the other hand, there are several theories involved, in some respects, with different
formulations of these operators (see, for instance, [2, 3, 4, 14, 21, 15] and further references
therein).

In this paper, we claim that the quantum operators associated with a classical quan-
tisable function and the Schrödinger operator can be essentially determined by the only
requirement of general covariance, in a reasonable setting with given exterior fundamental
fields and under weak hypotheses of the order of the operators.

These results are obtained in the framework of “covariant quantum mechanics” pro-
posed by A. Jadczyk and M. Modugno [6, 7] and further developed in cooperation with
other authors (see, for instance, [1, 5, 8, 9, 10, 11, 12, 18, 19, 22, 23, 24] and references
therein). Some aspects of this formulation have been discussed in the previous sessions
of the meeting “Lie Theory and Its Applications in Physics” [16, 17]. In a few words, we
consider a classical spacetime, which is fibred over absolute time and is equipped with
given Riemannian spacelike metric, gravitational field and electromagnetic field. Partially
similar settings have been considered by several authors; in particular, we are indebted
to C. Duval and K. Künzle (see, for instance, [3]). The above fundamental fields yield, in
a covariant way, a cosymplectic 2–form. Then, we consider a complex bundle over space-
time equipped with a Hermitian metric and a universal, Hermitian connection, whose
curvature is proportional to the cosymplectic 2–form. These objects, yield, in a covari-
ant way, good candidates for the quantum operators, through an isomorphism between
the Lie algebra of Hermitian quantum vector fields and a distinguished Lie algebra of
classical functions. Moreover, these objects yield, in a covariant way, a good candidate
for the Schrödinger operator, equivalently, via quantum covariant differentials and via a
quantum Lagrangian.

Then, a natural question arises whether we could obtain, in a covariant way, further
candidates for quantum operators and Schrödinger operator. In this paper, we answer this
question showing that there are essentially no further covariant solutions of the problem.
Even more, the covariance determines directly these operators, in a pure geometric way,
independently of any Lagrangian or Hamiltonian approaches!
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1 Covariant quantum mechanics

Let us summarise briefly the setting of our model for covariant quantum mechanics.
Further details can be found in [7, 5, 10, 12, 16, 17].

We assume the following “positive 1-dimensional semi-vector spaces” over IR+ as fun-
damental unit spaces: the space T of time intervals, the space L of lengths and the space
M of masses. Moreover, we assume the Planck constant to be an element ~ ∈ T∗⊗L2⊗M.

Time is an an affine space of dimension 1 associated with the vector space T⊗ IR.
Spacetime is an oriented curved manifold E of dimension 4, which is equipped with:
- a time fibring t : E → T ,
- a scaled Riemannian spacelike metric g : E → L2 ⊗ S2V ∗E,
- a gravitational field , constituted by a linear connection K\, such that ∇\dt = 0 and

∇\g = 0, and whose curvature fulfills the identity R\i
λ
j
µ = R\j

µ
i
λ,

- an electromagnetic field constituted by a closed 2–form f : E → (L⊗M)1/2⊗Λ2T ∗E.
With reference to a particle with massm and charge q, we define the re–scaled spacelike

metric G := m
~ g : E → T⊗ S2V ∗E and electromagnetic field F := q

~ f : E → Λ2T ∗E.

Then, G, K\ and F yield the total connection K := K\ + (dt ⊗ F̂ + F̂ ⊗ dt) of E
(where F̂ := G](F )), which fulfills the same properties of K\.

Moreover, g yields a spacelike volume form η and a spacetime volume form υ = dt∧η.
Then, we obtain the spacetime divergence divυX, for each spacetime vector field X, and
the spacelike divergence divηX, for each projectable spacetime vector field X.

We denote by (xλ) = (x0, xi) the spacetime charts , adapted to the time fibring the
affine structure of time and a time unit of measurement u0 ∈ T.

We assume the first jet space J1E as classical phase space. We denote by (xλ, xi0) the
phase charts induced by a spacetime chart. We obtain, in a covariant way, the contact
map d = u0 ⊗ (∂0 + xi0 ∂i).

Then, G and K yield, in a covariant way, a cosymplectic 2–form Ω : J1E → Λ2T ∗E.
The Reeb 2nd order connection γ associated with Ω yields the generalised Newton law

for classical motions effected by the given gravitational and electromagnetic fields.
The closed 2–form Ω admits locally a horizontal potential Θ, defined up to a closed

spacetime 1–form. The horizontal phase 1–form L[Θ] := d y Θ is the classical Lagrangian;
moreover, for each observer o, the horizontal phase 1–form H[Θ, o] := −o y Θ is the ob-
served classical Hamiltonian, the vertical phase 1–form P [Θ, o] := ν[o] y Θ is the observed
classical momentum, and the spacetime 1–form A[Θ, o] := o∗Θ is the observed classical
potential . The Euler–Lagrange equation associated with L[Θ] turns out to be just the
Newton law.

A function of the type f = 1
2
f 0G0

ij x
i
0 x

j
0+f iG0

ij x
j
0+

o

f , where f 0, f i,
o

f ∈ map(E, IR) is
called special quadratic and f ′′ := f 0 u0 ∈ map(E, T⊗IR) is called the “time component”
of f .

The sheaf of special quadratic functions spec(J1E, IR) is a Lie algebra through the
bracket [[ f, g ]] := {f, g}+ γ(f ′′).g − γ(g′′).f .



4 Covariant Schrödinger operator

The conditions ∂if
0 = 0, or ∂λf

0 = 0, or f 0 = 0, or fλ = 0, yield, respectively,
the Lie subalgebras of projectable, fine, affine and spacetime functions spec(J1E, IR) ⊃
proj(J1E, IR) ⊃ fine(J1E, IR) ⊃ aff(J1E, IR) ⊃ map(E, IR).

In particular, the spacetime coordinates, the momentum and the Hamiltonian are
special quadratic functions.

The map spec(J1E, IR) → sec(E, TE) : f 7→ X[f ] = f 0 ∂0 − f i ∂i is a covariant
morphism of Lie algebras.

The quantum bundle is a 1–dimensional complex bundle Q → E, which is equipped
with:

- a quantum metric, which is a Hermitian metric valued in the space of spacelike
volume forms h : Q→ C⊗ Λ3V ∗E,

- a quantum connection, which is a “universal”, Hermitian connection of the extended
quantum bundle Q↑ := J1E ×

E
Q → J1E, whose curvature is R[Q↑] = −2 Ω ⊗ I↑, where

I↑ is the Liouville vector field of Q↑.
We recall that the Planck constant ~ has been incorporated into Ω through G.
We shall refer to fibred quantum charts (xλ, z), where (xλ) is a spacetime chart and

z ∈ lin (Q, L∗3/2 ⊗ IR) is the complex fibre coordinate induced by a quantum basis b ∈
sec(E, L3/2 ⊗Q) normalised as h(b,b) = η. For each Ψ ∈ sec(E, Q), we set Ψ = ψ b,
with ψ ∈ map(E, L∗3/2 ⊗ IR).

The coordinate expression of the quantum connection is Q↑0 = −iH0, Q↑i = −iPi
and Q↑0i = 0, where the gauge of the classical functions H0 and Pi is locally determined
by the chosen quantum basis.

For each f ∈ spec(J1E, IR), we obtain the quantum vector field defined by the co-

variant formula Y [f ] = f 0 ∂0 − f i ∂i + i (
o

f + A0 f
0 − Ai f i) I, where Aλ d

λ is the classical
potential determined by the quantum connection and the chosen quantum chart. The
map f 7→ Y [f ] is a Lie algebra isomorphism.

The Hermitian quantum vector fields are classified by the projectable functions through
the covariant formula H[f ] = Y [f ]− 1

2
divηX[f ] I.

These vector fields act as Lie derivatives on quantum sections.
A criterion of projectability yields in a covariant way the quantum Lagrangian

L(k) = 1
4

(
(z z̄0− z̄ z0) + i 2A0 z̄ z− iGij

0 (zi z̄j +AiAj z̄ z) +Ai0 (z̄ zi− z z̄i) + 4 k i r0 z̄ z
)
υ0 ,

where r is the scalar spacelike curvature induced by G and k ∈ IR.
The Euler–Lagrange operator associated with L(k) yields, in a covariant way, the

Schrödinger operator S(k) =
( o
∇0 + 1

2
(divη o)0 − 1

2
i (

o

∆0 + k r0)
)
u0, where

o

∇ is the the

observed quantum covariant differential, divη o is the divergence of the observer,
o

∆ is
the observed quantum Laplacian; indeed the above combination turns out to be observer
independent.

Then, we define the (infinite dimensional) functional quantum bundle H → T to be
the fibred set over T , whose fibres are constituted by the compact support smooth sec-
tions, at fixed time, of the quantum bundle. The quantum metric h equips the functional
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quantum bundle with a fibred pre–Hilbert metric 〈 | 〉. Then, a true Hilbert bundle can be
obtained by a completion procedure.

The Hermitian quantum vector fields Y [f ] (via Lie derivatives) and the Schrödinger
operator S(k) yield, in a covariant way, symmetric operators on the fibres of the functional
quantum bundle. Moreover, the Schrödinger operator can be regarded as a Hermitian op-
erator of the functional quantum bundle (actually, as the covariant differential associated
with a Hermitian connection).

2 Uniqueness results by covariance

Let us consider the complex linear fibred automorphisms Φ : Q → Q projectable
on fibred automorphisms φ : E → E. The tangent prolongations of the Φ,s and φ,s, at
fixed points of E, yield the group bundles G(Q) and G(E) over E. The fibred surjection
G(Q)→ G(E) is a fibred central extension. Moreover, we have fibred actions of G(E) on
E → T and of G(Q) on Q → E and on all other bundles that we have derived from
them.

Moreover, we consider the trivial group bundle G(T) := E × IR+ of changes of time
scales. We have a fibred action of G(T) on time scaled bundles such as T∗ ⊗ TE and
T∗ ⊗Q.

First, let us classify the covariant operators of Schrödinger type.

2.1 Theorem. All 2nd order operators O(Ψ) : E → T∗⊗Q, which depend on dt, G,
K, h, Q↑ and are covariant with respect to G(Q) and G(T), are of the type

O(Ψ) = α S(0)(Ψ) + β rΨ , with α, β ∈ C .

Moreover, if we add the condition that the operators O(Ψ) yield Hermitian operators
on the functional quantum bundle, then they are of the type

O(Ψ) = S(k)(Ψ) .

Next, let us classify the covariant operators of quantum Lagrangian type.

2.2 Theorem. All 2nd order operators L(Ψ) : E → i Λ4T ∗E, which depend on dt,
G, K, h, Q↑ and are covariant with respect to G(Q) and G(T), are of the type

L[Ψ] = aL(k)(Ψ) + b 1
2
dt ∧

(
h(Ψ,S(0)[Ψ])− h(S(0)[Ψ],Ψ)

)
+ c i 1

2
dt ∧

(
h(Ψ,S(0)[Ψ]) + h(S(0)[Ψ],Ψ)

)
, a, b, c ∈ IR .

The Euler–Lagrange operators associated with the above Lagrangians are just the
above Schrödinger operators. Moreover, we observe that the 2nd order terms in the above
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Lagrangians are not relevant because they yield again the Schrödinger operator.

Eventually, let us classify the covariant operators associated with special quadratic
functions.

2.3 Theorem. All 2nd order operators O[f ](Ψ) : E → Q, which depend on dt, G,
K, h, Q↑, depend linearly on a special quadratic function f and are covariant with respect
to G(Q) and G(T), are of the type

O[f ](Ψ) =

=
(
α1 f

′′ y S + α2 LY [f ] + α3 LY [d.f ′′] + α4 divυX[f ] + α5 divηX[d.f ′′] + α6 f
′′ y r

)
(Ψ) ,

where α1, . . . , α6 ∈ C.

Moreover, if we add the condition O[1](Ψ) = Ψ, then we obtain a2 = i .

Furthermore, if we add the condition that the operators O[f ](Ψ) yield operators Ô[f ]
acting on the fibres of the functional quantum bundle, then we obtain a1 = −i .

Eventually, if we add the condition that the induced operators Ô[f ] are symmetric,
then the special functions must be projectable and, for such functions, the corresponding
operators are of the type

O[f ](Ψ) =
(
i (LH[f ] − f ′′ y S(k)) + a divυX[f ] + b iLY [d.f ′′] + c divηX[d.f ′′]

)
(Ψ) ,

where a, b, c, k ∈ IR.

In order to fix the undetermined coefficients a, b, c, k ∈ IR we need further require-
ments.

2.4 Corollary. All operators as above associated, respectively, with f ∈ fine(E),
f ∈ aff(E), f ∈ map(E, IR), are of the type

O[f ](Ψ) =
(
i (LY [f ] − f ′′ y S(k)) + a divυX[f ]

)
(Ψ) , for f ∈ fine(J1E, IR) ,

O[f ](Ψ) =
(
iLY [f ] + a divηX[f ]

)
(Ψ) , for f ∈ aff(J1E, IR) ,

O[f ](Ψ) = f Ψ , for f ∈ map(E, IR) .

2.5 Example. All operators as above associated with the classical Hamiltonian H0 =
1
2
gij x

i
0 x

j
0−A0 and the classical momentum Pi = gij x

j
0 +Ai are, respectively, of the type

O[H0] = −(1
2

o

∆0 + 1
2
k r0 − A0) + a

∂0

√
|g|√
|g|

,

O[Pj] = −i
(
∂j + 1

2

∂j
√
|g|√
|g|

)
− a

∂i
√
|g|√
|g|

.
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Let us sketch briefly the proofs of the above Theorems.

Proof. The proofs can be achieved by the following steps:
- in virtue of the “orbit reduction theorem” [13] and by taking into account the

covariance with respect to G(Q), we can express the operators through the curvatures of
the connections and the covariant derivatives of the sections up to 2nd order;

- the “fundamental identities” postulated for the fields dt,G,K,h,Q↑ make some of
the above objects vanishing, or express some of them through the others;

- in virtue of the “homogeneous function theorem” [13] and by taking into account
the covariance with respect to the subbundle of G(Q) constituted by homotheties, we can
express the operators in terms of polynomials;

- in virtue of the “metric covariant function” [13], by taking into account the covariance
with respect to G(T) and counting the covariant and contravariant indices occurring in
the previous expression of the operators, we can compute the only contractions allowed
and get the result. QED

We have assumed no distinguished time scale. But, if we suppose that the quantum
system be involved with a distinguished τ ∈ T, then we could not require the covariance
with respect to G(T) and we would obtain several additional solutions of our classification
problems. For instance, for the Schrödinger operator we would obtain the additional
covariant non–linear term

O′(Ψ) = τ 1/2 (~/m)3/2 h

η
(Ψ,Ψ) Ψ .

Analogous considerations hold for length scales. In fact, distinguished time scales
τ ∈ T and distinguished length scales l ∈ L can be related by the equality τ = m/~⊗ l2.
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[5] A. Jadczyk, J. Janyška, M. Modugno: Galilei general relativistic quantum mechan-
ics revisited , in “Geometria, F́ısica-Matemática e outros Ensaios”, Homenagem a António
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[10] J. Janyška, M. Modugno, D. Saller: Covariant quantum mechanics and quantum
symmetries, to appear on Proc. “Recent Developments in General Relativity”, Genova,
September 2000, World Scientific, Singapore.
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[13] I. Kolář, P. Michor, J. Slovák: Natural operators in differential geometry , Springer-
Verlag, Berlin, 1993.
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