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Abstract

We present a new covariant approach to the quantum mechanics of a
charged 1/2-spin particle in given electromagnetic and gravitational fields.
The background space is assumed to be a curved Galileian spacetime, that
is a curved spacetime with absolute time. This setting is intended both as
a suitable approximation for the case of low speeds and feeble gravitational
fields, and as a guide for eventual extension to fully Einstenian space-time.
Moreover, in the flat spacetime case one completely recovers standard non-
relativistic quantum mechanics.

This work is a generalization of [JM93], where the quantum mechanics
of scalar particles was formulated with a similar approach.
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1 Introduction

Recently Jadczyk and Modugno [JM92, JM93] have proposed a new geometric
formulation of the quantum mechanics of a scalar charged particle, with given
gravitational and electromagnetic classical fields, in the framework of a general
relativistic Galileian space-time. In this paper we extend that formulation to
the quantum mechanics of a particle with spin 1/2.

Our work is related to a wide literature on classical and quantum Galileian
theory, starting from E. Cartan (for instance, see [Car86], [Duv85, Duv93,
DBKP85, DK84], [Ehl89], [Hav64], [Kuc80], [Kün74a, Kün74b, Kün76, Kün84,
KD84], [LBLL73, LL71], [Man79], [Mod81], [Pau58], [Pru92, Pru93], [SP77],
[Tra63, Tra66], [Tul85]). Moreover our theory has evident relations, but also
important differences, with geometric quantization (see [Woo92]). Oure touch-
stone is standard quantum mechanics [Sch68].

Our research is intended as a step toward a covariant formulation of quantum
mechanics in an Einstein general relativistic background. In fact, such a full goal
would demand the solutions of too many problems at the same time; so, it is
worth splitting the research into steps by separating different kinds of difficulties.

We found that the Galileian general relativistic spacetime provides a suit-
able background for a start. Thus our current setting stands in between a
non-relativistic and a fully relativistic formulation of quantum mechanics. It
is mathematically self-consistent, while from the physical point of view it is
intended both as a suitable approximation for the case of low speeds and fee-
ble gravitational fields, and as a guide for eventual extension to fully Einstenian
spacetime. Actually, the assumptions of a classical spacetime with absolute time
and a Euclidean spacelike metric allows us to skip (temporarirly) some difficul-
ties related to the Lorentz metric, but we pay a price for that. Namely, we are
forced to consider a weaker version of the Maxwell and Einstein equations. Nev-
ertheless, what we learn in this weakened context seems to preserve its interest
in view of future developments. Moreover, in the flat spacetime case one com-
pletely recovers standard non-relativistic quantum mechanics along with new
understanding of known objects.

The mathematical language of the paper is that of the geometry of fibred
manifolds, jets and non-linear connections. We do not deal explicitly with theo-
retical group representations: rather we directly obtain physical objects from our
starting structures via functorial methods; of course, the resulting objects are
automatically equivariant with respect to the action of the groups of automor-
phisms of the starting structures. The reader who is not completely acquainted
with this language will find, besides intrinsic formulations, a full coordinate
description of all results.

The main points of our theory can be summarized as follows.
First, we sketch the essential features of our background classical spacetime.

Namely, we assume a 4-dimensional spacetime fibred over time and equipped
with a spacelike Euclidean metric, a time preserving linear connection (the gravi-



4 1 INTRODUCTION

tational field) and a 2-form (the electromagnetic field). We can couple the grav-
itational and electromagnetic fields into a unique spacetime connection; this
yields a number of ‘total’ geometric objects, including a cosymplectic 2-form
which will play a key role. We postulate the closure of this form thus obtaining
a link between the above geometrical structures and the first Maxwell equation;
moreover, we postulate a kind of ‘reduced’ Einstein and second Maxwell equa-
tions expressing the interaction of the above fields with their matter sources.
The cosymplectic form yields a distinguished Lie algebra of functions, which are
called ‘quantizable’ in view of their role in the theory of quantum operators.

Then we develop the quantum theory starting from the quantum bundle, de-
fined to be a Hermitian bundle over spacetime; its fibres are either 1-dimensional
(scalar case) or 2-dimensional (spin case). On the scalar quantum bundle we
assume a Hermitian connection which, in a sense, is parametrized by all classical
observers, and has some natural properties (it is ‘universal’ and its curvature is
proportional to the cosymplectic form). In the spin case we postulate a ‘Pauli
map’, which is an isometry between the bundle of spacelike vectors and the
bundle of Hermitian endomorphisms of the quantum spin bundle; this, via a
natural link with the scalar case, yields a Hermitian connection on the quantum
spin bundle. This is our only primitive quantum structure; all other objects
will be derived from it getting free from observers through a ‘principle of pro-
jectability’ which is our implementation of covariance. In particular we obtain
a distinguished Lagrangian, which yields the generalized Pauli equation and
conserved quantities. Quantum operators are obtained in three steps. First,
we exhibit a distinguished algebra of quantum vector fields which preserves the
quantum structures, and study its relation with the algebra of quantizable func-
tions. Then, we show the natural action of quantum vector fields, as ‘almost-
quantum operators’, on ‘quantum histories’ (sections of the quantum bundle).
Eventually we introduce the quantum Hilbert bundle over time and show how
to obtain quantum operators from almost-quantum operators. To this end we
have to eliminate the time derivative; we accomplish this task by a geometric
procedure which uses the quantum Euler-Lagrange operator.

The original features of the paper can be summarized as follows.
i) Time, both in the classical and quantum theory, is not merely a parameter,
but an essential ingredient which deeply affects all involved structures. Actu-
ally we point out—in contrast with an approach usually implicit in geometric
quantization—that spacelike structures do not carry sufficient physical infor-
mation for a covariant theory. Accordingly, we deal with a cosymplectic rather
than symplectic form, with a spacetime rather than vertical (spacelike) connec-
tion, and so on. Also, jets are required by a manifestly covariant formulation; in
particular, the jet space of spacetime plays the role of phase-space and replaces
the more standard tangent space.
ii) New connections are introduced and studied. These play a fundamental
and unifying role. In particular, the coupling of the electromagnetic and gravi-
tational fields is represented by a spacetime connection which works in classical
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field theory and mechanics as well as in quantum mechanics; on the other hand,
all quantum structures are derived from the quantum connection. With regard
to the latter, we observe that the notion of ‘universality’ of a connection allows
us to skip the problem of polarizations, typical of geometric quantization (we
do not need to know the constants of motion in order to develop the quantum
theory). Furthermore, the quantum Euler-Lagrange operator is interpreted as
a connection on the infinite-dimensional Hilbert bundle (whose definition uses
the notion of smoothness introduced by A. Frölicher).
iii) We obtain a generalized Pauli equation and quantum operators in the
curved case. Actually, a quantization procedure (a way of obtaining quantum
operators from classical observables) was not a primary goal of our approach;
however, as a matter of fact, we get a quantization just as a free consequence of
geometric results arising naturally in our discussion. We obtained natural alge-
bras of quantizable functions and quantum vector fields, which yield quantum
operators in two steps: first by considering sections of the quantum bundle over
spacetime (almost-quantum operators), and then sections of the Hilbert bundle
over time. In particular we are able to skip the problems of ordering, and achieve
the quantum operator corresponding to energy. Note also that, differently from
other geometrical approaches to quantum mechanics, no new quantum example
is required (all non-relativistic examples of standard quantum mechanics hold
automatically in our formulation).
iv) By the way, several results are obtained within the covariant approach to
classical mechanics on a curved Galileian background. In particular, the study
of the first and second order spacetime connections and the cosymplectic form,
and a compact formulation of the link between the (non-relativistic) metric and
spacetime connection. Moreover we draw conclusions which are not common be-
lief: classical mechanics cannot be covariantly formulated through a Lagrangian
or Hamiltonian approach; only an approach based on a non-linear connection is
suitable for that (the Hamiltonian stuff, however, has an important role in the
correspondence principle for quantum mechanics).
v) Finally, we introduce a new mathematically rigorous treatment of physical
quantities, which makes our approach manifestly independent of the choice of
measurement units. By the way, these methods may have also pedagogical
interest.
Remark. Throughout this paper we shall consider smooth manifolds and maps.
For the sake of simplicity we shall always refer to global maps. In some situa-
tions, however, one should more properly refer to sheaves of locak maps. The
reader who is interested in such a refinement will have no difficulty in reformu-
lating our statements accordingly.
Acknowledgements. This research has been supported by Italian MURST
(national and local funds), by GNFM of Consiglio Nazionale delle Ricerche and
by the EEC contract N. ERB CHRXCT 930096. Thanks are due to Andrzej
Trautman for stimulating discussion.
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2 Preliminaries

2.1 Recalls on fibred manifolds

In this section we summarize the main concepts and notations of differential
geometry which we shall use thrioughout the paper.

2.1.1 Tangent space

Let M be a manifold. We denote the R-Lie algebra of functions f : M → R by
FM , the tangent bundle of M by TM → M and the R-Lie algebra of vector
fields X : M → TM by T M . A local chart (xλ) of M induces the local chart
(xλ, ẋλ) of TM , the local basis of vector fields (∂λ) := (∂xλ) and the dual local
basis of forms (dλ) := (dxλ). The tangent prolongation of a map f : M → N is
the map Tf : TM → TN with coordinate expresssion Tf = ∂λf idλ ⊗ (∂i ◦ f).

2.1.2 Fibred manifolds

A manifold F is said to be fibred over the base space B if it is equipped with
a surjective map p : F → B whose rank equals the dimension of B. A fibred
manifold can be covered by local trivializations defined on open subsets F ′ ∈ F .
Thus the concept of a fibred manifold is more general than that of a bundle
(which can be covered by local trivializations defined on open subsets of the
type F ′ = p−1(U), where U ∈ B is an open subset).

A chart (xλ, yi) of F is said to be fibred if the coordinates xλ depend only
on the base space. A fibred chart of F induces the local frame of vector fields
(∂λ, ∂i) and the dual local frame of forms (dλ, di) on F . Hence, we obtain also
the chart (xλ, yi; ẋλ, ẏi) of TF , the local frame of vector fields (∂λ, ∂i; ∂·

λ, ∂·
j)

and the dual local frame of forms (dλ, di, dλ
· ; di

·).
We have a natural projection TF → TB. A vector field X : F → TF is said

to be projectable if it admits a projection X : B → TB on the base space, i.e.
if its coordinate expression is of the type X = Xλ∂λ + Xi∂i, with Xλ ∈ FB.

The vertical subbundle V F ⊂ TF of F is constituted by all vectors tangent
to the fibres and is characterized by the equation (ẋλ = 0). Thus, a vector field
X is vertical iff it is projectable over 0, i.e. iff Xλ = 0. The subset VF ∈ T F
of all vertical vector fields is an ideal.

We have a natural projection T ∗F → V ∗F , yielding the vertical restrictions
of forms which we shall indicate by a check (‘ ˇ ’). Thus, for example, (ďi) is a
local frame of the vector bundle V F → F .

2.1.3 Jet space

The jet space at x ∈ B of F → B is defined to be the set J1xF of all equivalence
classes of sections s : B → F which have the same value of s(x) and the same
derivatives ∂λsi(x). The jet space J1F is the union of all J1xF for x ∈ B.
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We have the natural fibred charts (xλ, yi, yi
λ) of J1F , and the jet prolongation

j1s : B → J1F characterized by the coordinate expression (yi, yi
λ) ◦ j1s =

(si, ∂λsi). We can identify j1s with Ts : TB → TF , which projects over 1B.
Accordingly, we can regard J1F as the subbundle of T ∗B ⊗F TF whose elments
are projectable over 1B. This inclusion is a map1

d : J1F → T ∗B ⊗F TF ,

with coordinate expression d = dλ ⊗dλ = dλ ⊗ (∂λ + yj
λ∂j). We also have

the complementary map ϑ : JF → T ∗F ⊗F V F , with coordinate expression
ϑ = ϑj ⊗ ∂j = (dj − yj

λdλ)⊗ ∂j .
The vertical bundle of J1F over the base space F turns out to be

VF J1F = J1F ×
F

(T ∗B ⊗
F

V F ) .

2.1.4 Connections

Connections will play an essential role in our approach. There are several
equivalent ways to define the concept of a (possibly non-linear) connection
(see[Gar72, Kol84, MM83a, Mod91]).

In general, we present a connection on a fibred manifold F → B as a section
c : F → J1F which, via the natural inclusion d, can be seen as a horizontal
prolongation c : F → T ∗B ⊗F TF , whose coordinate expression is of the type
c = dλ ⊗ (∂λ + c j

λ ∂j), with c j
λ ∈ FF . The associated vertical projection is

νc : F → T ∗F ⊗F V F , with coordinate expression νc = (dj − c j
λ dλ)⊗ ∂j .

The covariant differential of a section s : B → F is defined to be the section
∇[c]s := j1s − c ◦ s = Ts � νc : B → T ∗B ⊗F TF , with coordinate expression
∇λsi = ∂λsi − c j

λ
◦ s.

The curvature tensor of the connection c is defined to be the tensor field R[c] :
F → ∧2(T ∗B)⊗F V F characterized by R[c](u, v) := 1

2 ([u � c , v � c]− [u, v] � c)
for any two vector fields u, v : B → F . Namely the curvature tensor ‘measures’
how much the horizontal prolongation c differs from being a morphism of Lie
algebras. Its coordinate expression is R[c] = Rλµ

jdλ∧dµ ⊗ ∂j , where Rλµ
j =

∂[λc j
µ] − c h

[λ∂hc j
µ].

2.1.5 Vertical space of a vector bundle

If p : F → B is a vector bundle, then one has the natural identification V F ≡
F ×B F . This fact yields some important consequences. First, any section
s : B → F can be regarded as the basic vertical vector field F → V F : ϕ �→
(ϕ, s(p(ϕ)). Hence, if v : F → TF is a linear vector field, projectable over
v : B → TB, then the Lie bracket [v, s] is a basic vertical vector field, i.e.
it determines the section v.s : B → F with coordinate expression (v.s)j =

1‘d’ is the cyrillic character corresponding to latin ‘d’.
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vλ∂λsj − vj
ksk. Moreover, any linear map f : F → F fibred over B can be

regarded as the vertical vector field F → V F : ϕ �→ (ϕ, f(ϕ)). In particolar the
Liouville vector field2 is defined to be the vertical vector field i : F → V F :
ϕ �→ (ϕ, ϕ) associated with 1F .

2.2 Units of measurement

Our theory is to be manifestly invariant with respect to any choice of measure-
ment units; this is just an aspect of the general covariance. In order to treat
measurement units in a rigorous way, we need a few technical concepts.

We observe that homogeneous units can be added and multiplied by real
numbers; however, in some cases, no zero unit exists and only multiplication
by positive real numbers is allowed. These facts lead us to define algebraically
a semi-vector space as a semi-field U associated with the semi-ring R+ (the
axioms are analogous to those of vector spaces, with the only difference that
U and R+ are additive semi-groups and not groups). Moreover, a semi-vector
space is said to be positive if the multiplication by numbers can be extended
neither to R+ ∪ {0} nor to R. Each vector space is also a semi-vector space;
moreover, a vector space and a basis yield a positive semi-vector space. Thus, a
semi-vector space is a vector space, or a positive semi-vector space, or a positive
semi-vector space extended by the zero element.

Several concepts and results of standard linear and multi-linear algebra re-
lated to vector spaces can be easily repeated for semi-vector spaces and positive
semi-vector spaces (including linear and multi-linear maps, bases, dimension,
tensor products and duality, with respect to R+). The main caution to be
taken is to avoid formulations which involve the zero element.

In particular, we can define the tensor product (over R+) of semi-vector
spaces; the tensor product (over R+) of a semi-vector space and a vector space
becomes naturally also a vector space. Consider an oriented 1-dimensional vec-
tor space U and the associated positive sub semi-space U+; if V is a further
vector space, then U+ ⊗V = U⊗V and, in particular, U+ ⊗R = U⊗R. More-
over, we can define the R+-dual U∗ of a semi-vector space U; if U is a posi-
tive 1-dimensional semi-vector space, then we obtain the natural identification
U⊗U∗ ∼= R+. Furthermore, if U is a positive 1-dimensional semi-vector space,
then we can easily define the ‘root’ (positive 1-dimensional semi-vector) space
U1/r of U, for any positive integer r.

Definition 2.1 A unit space is a 1-dimensional semi-vector space. �

In order to write formulas which resemble the standard ones used by physicists,
we adopt a ‘number-wise’ notation for unit spaces. Namely, if U and V are
semi-vector spaces and u ∈ U, v ∈ V, then we write uv ≡ u⊗ v; accordingly,
we set U2 := U⊗U and the like. Moreover, if U is a unit space which does not

2‘i’ is the cyrillic character corresponding to latin ‘i’.
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contain 0, then we write U−1 = U∗ and denote by 1/u ∈ U−1 the dual element
of u ∈ U.

In our theory we shall assume the following fundamental unit spaces: the
oriented vector space T of time units, the positive space L of lengths and the
positive space L of masses. A time unit of measurement is denoted by u0 ∈ T+

or u0 ∈ T+∗. We also set u00 := u0 ⊗u0 and the like. For any v ∈ T, w ∈ T∗,
according to our conventions, we shall often write u0v, u0w ∈ R.

Throughout this paper we shall be often concerned with scaled tensor fields,
i.e. with sections of tensor bundles originated by spacetime and tensorialized
with unit spaces. It is physically relevant the fact that fundamental tensor
fields such as the metric, the electromagnetic field and others are scaled.

We shall attach to each particle a mass m, a charge q and a magnetic constant
µ, where

m ∈ M , q ∈ Q := T∗⊗L3/2⊗M1/2 , µ ∈ T∗⊗L3/2⊗M−1/2 .

Moreover, we shall postulate two universal coupling constants, namely the New-
ton gravitational constant and the Planck constant

κ ∈ T∗2⊗L3⊗M∗ , � ∈ (T+)∗⊗L2⊗M .

As it is well known, in the Galileian framework we miss the speed of light c,
which cannot be interpreted in this context. Of course, this is a weak feature of
the Galileian theory.
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3 Quantum mechanics of a scalar particle

This section is a summary of the main ideas involved in the scalar case, espe-
cially those that are needed for the subsequent generalizazion to the quantum
mechanics of a particle with spin. We shall skip certain details concerning re-
sults which, later, will be stated in the more general spin case. For further
details and complete proofs the reader should refer to [JM93].

3.1 Classical spacetime

We introduce classical spacetime and the related fundamental structures that
are needed as a background for the quantum theory; further details can be found
in [JM93].
Postulate C1 Classical spacetime is assumed to be a 4-dimensional oriented
fibred manifold t : E → T , where the base space T (time) is a 1-dimensional
oriented affine space associated with the vector space T. ♣

We shall not assume any distinguished splitting of spacetime into space
and time, that is no distinguished observer. Actually our theory is observer-
independent, namely it fulfills the general relativity principle in a ‘Galileian’
sense (with absolute time).

We shall use fibred spacetime charts, denoted by (xλ) := (x0, yi), where the
coordinate x0 is defined through the time unit u0∈T (see §2.2) and a time origin
τ0∈T by x0(e) := u0(t(e)−τ0).

We have the scaled time form dt : E → T⊗T ∗E, with coordinate expression
dt = u0 ⊗ dx0.

Each fibre Eτ of E represents the ‘space at a given time’ τ ∈ T ; by analogy
with Einstein relativity we say that the vertical space V E is constituted by all
‘spacelike’ vectors on E (while we are not allowed to use the term ‘timelike’ in
the present context).
Postulate C2 The fibres of E are assumed to be scaled Riemannian manifolds,
i.e. spacetime is assumed to be equipped with a scaled vertical Riemannian
metric g : E → L2 ⊗ (V ∗E ⊗E V ∗E). ♣

The coordinate expression of the metric is g = ghj ďyh ⊗ ďyj (we indicate by
a check (‘ ˇ ’) vertical (i.e. spacelike) restrictions). We stress that, differently
form the Einstein case, we do not have a full spacetime metric: this is a weak
feature of the Galileian theory. The metric yields vertical ‘index-lowering’ and
‘index-raising’ isomorphisms, g� : V E → L2 ⊗V ∗E and g# : L2 ⊗V ∗E → V E,
but no similar isomorphisms between TE and T ∗E.

The metric and the time-form, along with the chosen orientation, yield the
scaled spacetime and spacelike volume forms

υ : E → (T⊗L3)⊗ ∧4 T ∗E , η : E → L3 ⊗ ∧3 V ∗E ,

with coordinate expressions
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υ =
√

|g|u0 ⊗ d0 ∧ d1 ∧ d2 ∧ d3 :=
√
|g|u0 ⊗ω ,

η =
√
|g| ď1 ∧ ď2 ∧ ď3 :=

√
|g| ω̌0 ,

where for brevity we set

dλ := dxλ , ω := d0 ∧ d1 ∧ d2 ∧ d3 , ω0 := ∂0 � ω = d1 ∧ d2 ∧ d3 .

The phase space of our theory is the jet bundle J1E → E, whose in-
duced fibred coordinates are denoted by (x0, yj , yj

0). From the general theory
of jet spaces (§2.1.3) we recall that J1E can be regarded as a subbundle of
T∗ ⊗TE over E, via the natural map d which has the coordinate expression
d = u0 ⊗ (∂0+yj

0∂j). Then J1E is constituted by all tensors v whose time com-
ponent is v 0

0 = 1. In other words, chosen a time unit u0, the phase space J1E
can be identified with the affine subbundle of TE constituted by vectors v whose
time component is v0 = 1. We stress that the tangent space is insufficient to
represent the phase space of a theory which is explicitly independent of the units
of measurement.

A classical particle motion is defined to be a section s : T → E; its (observer-
independent) velocity is the jet prolongation j1s : T → J1E ⊂ T∗ ⊗TE, with
coordinate expression:

j1s = u0 ⊗
(
(∂0 ◦ s) + ∂0s

j(∂j ◦ s)
)

.

Thus the jet space J1E can be seen as the space of all particle 4-velocities. We
stress that a 4-velocity v has no norm ‖v‖, and that its physical dimension is
given just by T∗ and not by T∗⊗L.

An observer is defined to be a section o : E → J1E, i.e. just a field of
particle velocities. By the way, note that an observer can be regarded as a
(possibly non-linear) connection on E → T (§2.1.4).

Differently from the Einstein case, the metric g does not characterize a
unique spacetime connection; in order to fully appreciate the question we need
to examine spacetime connections in some detail. We first remark that there is
a natural bijection between dt-preserving torsion-free linear connections on the
tangent bundle TE → E and torsion-free affine connections on the jet bundle
J1E → E, i.e. respectively:

K : TE → T ∗E ⊗
TE

TTE , Γ : J1E → T ∗E ⊗
J1E

TJ1E .

The coordinate expressions of such connections are

K = dλ ⊗
(
∂λ + (K j

λ hẏh + K j
λ 0ẋ

0)∂·
j

)
; Γ = dλ ⊗

(
∂λ + (Γ j

λ hyh
0 + Γ j

λ 0)∂
0
j

)
,

with
K j

λ µ = K j
µ λ = Γ j

λ µ = Γ j
µ λ .
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Then a spacetime connection is defined to be any of such equivalent connections.
One deals preferably with K in classical field theory, and with Γ in classical and
quantum particle mechanics.

A spacetime connection yields, by vertical restriction, a linear connection

K ′ : V E → T ∗E ⊗
V E

TV E

on the bundle V E → E, with coordinate expression K ′ = ďλ ⊗ (∂λ+K j
λ hẏh∂j˙).

This connection will play a central role in the classical and quantum theory of
spin. A further vertical restriction gives the vertical connection

Ǩ : V E → V ∗E ⊗
V E

VEV E

(which, more properly, is a family of connections: for each τ ∈ T , Ǩτ is a
connection on the manifold Eτ := t−1(τ) ). Its coordinate expression is Ǩ =
ďh ⊗ (∂h + K j

h kẏk∂j˙).
A spacetime connection is said to be metrical if it preserves the vertical

metric, i.e. if ∇[K ′]g = 0. If K is metrical, then Ǩ is exactly the Riemannian
connection on the spacetime fibres; however, if Ǩ is the Riemannian connection
then K is not necessarily metrical, since ∇[K ′]g involves the covariant deriva-
tives of g also along non-spacelike directions.

By recalling (§2.1.3) that

VEJ1E = J1E ×
E

(T∗ ⊗V E) ,

the vertical-valued 1-form associated with a spacetime connection Γ can be seen
as a map

νΓ : J1E → T∗ ⊗ (T ∗J1E ⊗
J1E

V E)

with coordinate expression νΓ =
(
dj
0 − (Γ j

λ hyh
0 + Γ j

λ 0)d
λ
)
⊗ ∂j .

A spacetime connection yields the following two important objects: the (non-
linear) connection

γ := d � Γ : J1E → T∗ ⊗TJ1E

on the fibred manifold J1E → T and the scaled 2-form3

Ω := νΓ∧̄ϑ : J1E → (T∗ ⊗L2)⊗ ∧2 T ∗J1E

on the manifold J1E (here ∧̄ indicates exterior product followed by a metric con-
traction and ϑ : J1E → T ∗E ⊗E V E is the complementary map of d introduced
in §2.1.3). These are called the second order connection and the cosymplectic
form associated with Γ. Their coordinate expressions are

γ = u0 ⊗
(
∂0 + yj

0∂j + γj∂0
j

)
, Ω = gjku0 ⊗ (dj

0 − γjd0 − Γ j
h ϑh) ∧ ϑk ,

3Janǐska has proved that this form is essentially the unique natural object of this kind in
the present framework.
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where

γj := Γ j
h kyh

0 yk
0 + 2Γ j

h 0y
h
0 + Γ j

0 0 ,

Γ j
h := (Γ j

λ hyh
0 + Γ j

λ 0)d
λ .

These objects fulfill the equality γ � Ω = 0, and it can be seen that they char-
acterize Γ itself.

For any motion s the map

∇[γ]j1s := j2s − γ ◦ j1s : T → (T∗ ⊗T∗)⊗V E

is called the (observer-independent) acceleration of s. Moreover

dt ∧ Ω ∧ Ω ∧ Ω : J1E → (T−2 ⊗L6)⊗ ∧7 T ∗J1E

is a scaled volume form on J1E. Also, if o : E → J1E is any observer, we have
the observed scaled 2-form

Φ := 2o∗Ω : E → (T∗ ⊗L2)⊗ ∧2 T ∗E

which, in a coordinate system adapted to o (i.e. yj
0
◦ o = 0), has the expression

Φ = −2u0 ⊗ (Γ0j0d
0 ∧ dj + Γhj0d

h ∧ dj).
From coordinate expressions it can be proved that, given an observer, a

spacetime connection is characterized by ∇[K ′]g and Φ. Namely these objects
can be seen, in a sense, as the symmetric and antisymmetric parts of Γ with
respect to a splitting determined by o. This is the keypoint for understanding
how to characterize distinguished spacetime connections. In fact, a complex
theorem proved in [JM93] states that the condition that Ω is closed, i.e.

dΩ = 0 ,(1)

is equivalent to the couple of conditions that K is metrical and, for every ob-
server, Φ is closed; a connection that satisfies this equation is then determined
by g and a local potential of Φ, that is a 1-form

a : E → (T∗ ⊗L2)⊗T ∗E

such that Φ = 2da. Then a distinguished spacetime connection obeying eq.(1) is
determined, similarly to the Einstein case, by ten scalar potentials: here, these
are the six components of g and the four components of a.
Postulate C3 We assume that the gravitational and electromagnetic fields are
represented, respectively, by a spacetime connection Γ� and by a scaled 2-form

F : E → (L⊗M)1/2 ⊗ ∧2 T ∗E .

♣
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These two objects can be coupled in a natural way through any constant
c ∈ T∗ ⊗L3/2 ⊗M−1/2. Namely, consider the total cosymplectic form

Ωc := Ω� + 1
2cF ,

where Ω� is the cosymplectic form of Γ�. Then one sees that Ωc characterizes,
in a natural way, a spacetime connection; namely there is a unique spacetime
connection Γc such that Ωc = νΓc

∧̄ϑ (that is, Ωc is exactly the cosymplectic
form associated with Γc). Actually, we can write Γc = Γ� + Γe

c, where

Γe
c : J1E → T∗ ⊗T ∗E ⊗

E
V E .

We have the coordinate expression

(Γc)
j
h k = Γ� j

h k , (Γc)
j
0 k = Γ� j

0 k + 1
2u0cF

j
k , (Γc)

j
0 0 = Γ� j

0 0 + u0cF
j
0 .

Furthermore, the second order connection γc := d�Γc associated with Γc fulfills
the condition γc � Ωc = 0 and splits as γ = γ� + γe

c , where

γe
c : J1E → T∗ ⊗T∗ ⊗V E

has the coordinate expression γe
c = c(F j

0 + F j
hy0

h)u0 ⊗ ∂0
j .

Postulate C4 We assume that the total connection Γc obeys the first field
equation dΩc = 0 for all c. ♣

The closure of Ωc implies that it is locally exact, but we cannot exhibit any
distinguished potential. Clearly, this postulate is equivalent to the couple of
conditions dΩ� = 0 and dF = 0 (first Maxwell equation). Also the observed
cosymplectic form splits as Φ = Φ� + cF . Hence, a local potential a of Φ
contributes both to the gravitational and electromagnetic fields, and it reduces
to the usual electromagnetic potential in the flat spacetime case.

In [JM93] two possible natural choices for the coupling constant c have been
taken into account (in the spin theory we shall consider a third possibility). The
first choice, which yields the classical mechanics of a given charged particle,4

is c = q/m, where q ∈ Q := T∗ ⊗L3/2 ⊗M1/2 and m ∈ M are the charge and
the mass of the particle. We obtain the (classical) equation of motion of the
particle, which can be expressed as ∇[γc]j1s = 0 with c = q/m. Then γe

c turns
out to be just the Lorentz force.

The second choice is c =
√

κ, where κ is Newton’s gravitational constant.
This choice allows us to couple Γc with matter sources. Namely:
Postulate C5 We postulate the second field equations:

r� = T , div� F = ρ dt ,

4The same choice for a coupling constant yields the fundamental object of the quantum
theory, the quantum connection (see §3.2).



3.2 Scalar quantum mechanics 15

where r� is the Ricci tensor of K�; T is the timelike energy tensor, which in-
volves κ and contains matter and electromagnetic terms; div� is the spacelike
divergence operator; ρ is the charge density of matter. ♣

These equations yield the following synthetic formula

r√
κ

= T√
κ

where r√
κ

is the Ricci tensor of K√
κ

, and T√
κ

:= T +
√

κ ρ dt⊗ dt.
We remark that these equations are weaker than the usual Maxwell-Einstein

equations. In fact, because the metric is only spacelike, r� and div� F carry less
information than the corresponding objects do in the Einstein case. Thus they
can be covariantly coupled only with the timelike components of the energy
tensor and of the current.

Note also that the second field equations do not enter directly the quantum
mechanics of one particle, which is formulated with given background fields.
One deals with them only when considering specific examples of spacetime.

3.2 Scalar quantum mechanics

In the framework of the above described spacetime geometry we can now for-
mulate the quantum mechanics of a particle with given mass m and charge
q, subjected to given gravitational and electromagnetic fields. We shall deal
with the total objects Γq/m , Ωq/m , γq/m . . . induced by the coupling constant
c := q/m (§3.1). For the sake of simplicity, these will be usually denoted simply
by Γ, Ω, γ . . . .

First we introduce the bundle which ‘carries quantum kinematics’. We stress
that, differently from standard geometric quantization, this bundle is over space-
time.
Postulate Q1 The scalar quantum bundle is assumed to be a (complex) line-
bundle πQ : Q → E over spacetime, endowed with a Hermitian metric hQ. ♣

We shall denote by b an hQ-normalized frame of Q, and by z the correspond-
ing chart on the fibres of Q. The induced frame of V Q → Q will be denoted by
∂z. Quantum histories are described by quantum sections Ψ : E → Q, written
locally as Ψ = ψb with ψ := z ◦ Ψ. In view of Hilbert scalar product, it is also
useful to regard a quantum section as a quantum density :

Ψη := Ψ⊗√
η : E → Qη := L3/2 ⊗Q⊗

E

√
∧3V ∗E .

The Planck constant (§2.2) is defined to be an element

� ∈ (T+)∗ ⊗L2 ⊗M .

Next we introduce the quantum connection, which is the main object of
the quantum theory. A general Hermitian linear connection Q on the pullback
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bundle Q↑ := J1E ×E Q → J1E can be seen as a section5

Q : Q↑ → T ∗J1E ⊗
J1E

TQ

with coordinate expression

Q = dλ ⊗ (∂λ + iQλ z ∂z) + dj
0 ⊗ (∂0

j + iQ0
j z ∂z) ,

where Qλ,Q0
j : J1E → R.

The coordinate condition Q0
j = 0 for Q can be formulated in a geometric

way in the framework of systems of connections, by sayng that Q is a ‘univer-
sal’ connection. Very briefly, one proves the following fact (see [JM93, Gar72,
MM83a] for details): if {ξ[o]} is a system of connections of the bundle Q → E,
parametrized by the family of observers {o}, then there exists a unique connec-
tion Q of the bundle Q↑ → J1E, such that, for each observer o, the pullback
o∗Q equals ξ[o]. This connection Q is said to be universal, and is characterized
in coordinates by the condition Qλ = ξλ, Q0

j = 0. Conversely, a connection
Q of the bundle Q↑ → J1E such that Q0

j = 0 is the universal connection of a
system of connections {ξ[o]} on the bundle Q → E.

Postulate Q2 We assume that the quantum connection Q is a Hermitian
linear universal connection whose curvature is proportional to the classical total
cosymplectic form, according to the formula

R[Q] = i
m

�
Ωq/m ⊗1Q : Q↑ → ∧2T ∗J1E ⊗

E
Q ,

where 1Q = z b is the identity of Q. ♣

Then the quantum connection satisfies Q0
j = 0. Because of the curvature

requirement, the expression of the other components of Q turns out to be of
the type

Q0 = −u0
H

�
, Qj =

pj

�
,

where

H = u00( 1
2mgjkyj

0y
k
0 − ma0) : J1E → (T∗)2 ⊗L2 ⊗M ,

p = pj ď
j = u0(mgjkyk

0 + maj)ďj : J1E → T∗ ⊗L2 ⊗M⊗V ∗E ,

are the classical Hamiltonian and momentum associated with the frame of ref-
erence attached to the chosen chart, given a suitable gauge of the total potential
a of Φ.

We stress that the two simple assumptions, of the quantum bundle to be over
spacetime and of the quantum connection to be universal, enable us to avoid

5‘Q’ is the cyrillic character which is usually transliterated as ‘Ch’.
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the intricated problems related to polarizations, which are typical of geometric
quantization.

If Ψ is a quantum section, then we have the quantum covariant differential :

∇[Q]Ψ : J1E → T ∗E ⊗
E

Q ,

with coordinate expression:

∇Ψ =
(
(∂0ψ +

i

�
u0Hψ)d0 + (∂jψ − i

�
pjψ)dj

)
⊗ b .

Essentially, the quantum connection is the only structure assumed for the
quantum mechanics of a scalar particle; all other quantum objects, including
the quantum Lagrangian and quantum operators, can be derived from it. But
note that the quantum connection ‘lives’ on the pull-back bundle Q↑ → J1E.
This fact can be expressed by saying that Q is ‘parametrized’ by all observers
(given an observer, one obtains by pull-back an object living on Q). However,
physically significant objects should live on Q, i.e. the quantum theory should
be observer-independent. This problem can be solved by means of a principle
of projectability. Namely, each time we are looking for a physical object on Q,
we happen to meet two analogous distinguished objects on Q↑, and we are able
to show that there is a unique linear combination of them which projects on
Q. Then we assume that this combination is the searched physical object. This
procedure works pretty well in all cases and yields an effective heuristic method.
Thus it can be regarded as a new way of implementing the principle of general
relativity in the framework of quantum mechanics.

The principle of projectability enables us to exhibit a distinguished quantum
Lagrangian:6

L : J1Q → L3 ⊗ ∧4 T ∗E ,

with coordinate expression:

L[Ψ] =
1
2
(
i(ψ̄∂0ψ − ψ∂0ψ̄) − u0

�

m
gjk∂jψ∂kψ̄

+ igjkaj(ψ∂kψ̄ − ψ̄∂kψ) + u0 m

�
ψψ̄(2a0 − ajaj)

)√
|g|ω .

The quantum Lagrangian yields the quantum 4-momentum

p : J1Q → T∗ ⊗TE ⊗
E

Q ,

with coordinate expression

p[Ψ] = u0
(
ψ∂0 − ghj(iu0

�

m
∂jψ + ajψ)∂h

)
⊗ b .

6Here we do not write down the procedure explicity, since it will be repeated later in the
more general case of a particle with spin.
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The Euler-Lagrange equation associated with the quantum Lagrangian turns
out to be the generalized Schrödinger equation:

iu0∂0ψ + iu0
∂0

√
|g|

2
√
|g|

ψ +
m

�
a0ψ +

�

2m
gjk(u0∂j − i

m

�
aj)(u0∂k − i

m

�
ak)ψ = 0

which can also be obtained, in a coordinate-free way, from the quantum covari-
ant differentials of Ψ and p via the principle of projectability.

The invariance of the quantum Lagrangian with respect to the group U(1)
yields a conserved probability 4-current j : J1Q → L3 ⊗ ∧3T ∗E, with coordinate
expression:

j[Ψ] =
√
|g|

(
ψ̄ψ ω0 − (u0

i�

2m
ghk(ψ̄∂kψ − ψ∂kψ̄) − ahψ̄ψ) ωh

)
,

where ωλ := ∂λ � ω.

3.3 Phase quantum operators

In this section we describe the correspondence between classical functions and
quantum operators. This is achieved by a new approach which is only roughly
comparable to the usual one based on symplectic geometry. Actually, our phase
space J1E is odd-dimensional, thus there is no symplectic structure on it. In-
stead, we have the cosymplectic form Ω, which yields the linear morphism over
J1E:

Ω� : TJ1E → T ∗J1E : v �→ m

�
Ω(v) .

This is not an isomorphism. In fact, from γ � Ω = 0 it follows that Ω� vanishes
on any v ∈ TJ1E which is in the image of γ : E → T∗ ⊗TJ1E. However,
consider the vector subbundle over J1E:

T ∗
γ J1E := {φ ∈ T ∗J1E : γ � φ = 0} ;

let τ : J1E → T be any smooth map (called a time scale), and TτJ1E the
subbundle of TJ1E whose elements have time component equal to τ , namely

TτJ1E := {v ∈ TJ1E : v0 = τ(π(v))} ,

where π : TJ1E → J1E is the natural tangent bundle projection. Then one
sees easily that Ω� is an isomorphism TτJ1E → T ∗

γ J1E.
Now, with any function f : J1E → R we can associate the 1-form

dγf := df − γ � df : J1E → T ∗
γ J1E ,

and, for any time scale τ : J1E → T, the vector field

f#
τ := Ω#

τ (dγf) : J1E → TτJ1E ,
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where Ω#
τ := (Ω�)−1. In particular, by taking τ = 0 we can define the general-

ized Poisson bracket

{f1 , f2} :=
m

�
Ω

(
(f1)

#
0 , (f2)

#
0

)
,

which has the property

{f1 , f2}#
0 = [(f1)

#
0 , (f2)

#
0 ] .

In the quantum theory we shall be involved with projectable Hamiltonian
lifts. Now, one can prove that the vector field f#

τ is projectable over a vector field
E → TE iff f is, with respect to the fibres of J1E → E, a polynomial of degree
2, whose second derivative equals τ m

�
g. Namely, the coordinate expression of f

must be of the type

f = u00f ′′ m

2�
gjkyj

0y
k
0 + fjy

j
0 + f◦

with fj , f◦ : E → R, f ′′ : E → T, and τ must be equal to f ′′. Functions of
this kind will be called quantizable phase functions. The classical time, position,
momentum, Hamiltonian and Lagrangian functions turn out to be of this kind.

If for any quantizable phase function we choose τ = f ′′, we obtain the vector
field

f# := Ω#
f ′′ : J1E → Tf ′′J1E .

Its projection
X[f ] : E → TE ,

with coordinate expression

X[f ] = u0f ′′∂0 − u0
�

m
gjkfk∂j ,

is called the tangent lift of f .
Let now f1 and f2 be quantizable phase functions, and set

[f1 , f2] := {f1 , f2} + (f ′′
1 γ).f2 − (f ′′

2 γ).f1 .

Then, after long computations, one proves that the previous formula defines
a Lie bracket. This coincides with the usual Poisson bracket in the particular
case when the involved quantizable functions are affine (f ′′

1 = f ′′
2 = 0). We shall

indicate by AP the Lie algebra of phase quantizable functions, and by T E the
Lie algebra of all tangents vector fields on E. Moreover, we indicate by FE the
algebra of all (smooth) functions E → R. Then from the previous results we
easily obtain:

Proposition 3.1 The tangent lift

AP → T E : f �→ X[f ]
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is an FE-linear epimorphism, with kernel FE ⊂ AP, and an R-Lie algebra
morphism. Namely, we have

X[[f1 , f2]] =
[
X[f1] , X[f2]

]
.



Next, in view of quantum operators we start by looking for distinguished vector
fields on Q↑. Consider any vector field Y ↑ : Q↑ → TQ↑ which is projectable
over X↑ : J1E → TJ1E, Hermitian linear and such that the vertical restriction
of L(Y ↑)Q vanishes. Then it can be proved that Y ↑ is of the type

Y ↑
τ [f ] := f#

τ � Q + ifi : Q↑ → TQ↑ ,

where i : Q↑ → V Q↑ is the Liouville vector field (§2.1.5), f : J1E → R is a
function and τ a time scale. Moreover Y ↑

τ [f ] turns out to be projectable over a
vector field Y [f ] : Q → TQ iff f is quantizable and τ = f ′′. Then Y [f ] is called
the quantum phase vector field corresponding to f , or the quantum lift of f . It
has the coordinate expression

Y [f ] = u0f ′′∂0 − u0
�

m
f j∂j + i

(
u00f ′′m

�
a0 − f jaj + f◦

)
z ∂z .

From this formula one sees that the space of all quantum phase vector fields
on Q is just the Lie algebra Q of all Hermitian linear projectable vector fields
Q → TQ. A long calculation shows that the map AP → Q : f �→ Y [f ] is an
isomorphism of R-Lie algebras, namely we have

Y [[f1 , f2]] =
[
Y [f1] , Y [f2]

]
.

Recalling §2.1.5 we see that there is a natural way of defining Y.Ψ : E → Q
for any linear vector field Y : Q → TQ projectable over X : E → TE. If
Y = Xλ∂λ + iY z∂z we obtain the coordinate expression

Y.Ψ = (Xλ∂λψ − iY zψ)b .

The almost-quantum operator Y[f ] corresponding to f , acting on quantum den-
sities Ψη := Ψ⊗√

η,7 is defined by

Y[f ](Ψ⊗√
η) := i

(
Y [f ].(Ψ⊗

√
υ)

)
⊗ 1√

υ
⊗√

η .

Then, since Y.
√

υ = 1
2 (div X)

√
υ with respect to the volume form υ, we obtain:

Y[f ](Ψ⊗√
η) = i

(
Y.Ψ + 1

2 (div X)Ψ
)
⊗√

η .

7This extension to quantum densities is necessary in order to have symmetric operators
(see §7.5).
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We then obtain a natural R-Lie algebra isomorphism between the Lie algebras
of quantizable phase functions and almost-quantum operators, if the bracket of
two almost-quantum operators Y[f1] and Y[f2] is defined by

[Y[f1],Y[f2]] := −i[[Y[f1],Y[f2]]] ,

where8

[[Y[f1],Y[f2]]] := Y[f1] ◦ Y[f2] − Y[f2] ◦ Y[f1] .

The Euler-Lagrange operator [MM83b, Gar74]

E : J2Q → L3 ⊗ ∧4 T ∗E ⊗
E

Q∗

deriving from the quantum lagrangian can be characterized, via the Hodge iso-
morphism and the real part of the Hermitian metric h, by a map

∗E# : J2Q → T∗ ⊗Q .

Then we define the Schrödinger operator, acting on quantum densities, by

S(Ψη) := − i
2∗E

#[Ψ]⊗√
η .

It can be proved that S is a symmetric operator with respect to the Hermitian
product.

We shall sketch in the more general spin case (§7.5) the construction which
yields the infinite-dimensional pre-Hilbert bundle H ′Qη → T over time (even-
tually, this will yield the quantum Hilbert bundle HQη → T by the completion
procedure). Here we just observe that, if f is a quantizable phase function, then
in general the operator Y[f ] will not correspond to a fibred automorphism of
H ′Qη over T ; in fact the expression of Y[f ](Ψη), if f ′′ �= 0, will contain the time
derivative of Ψ. In order to construct from Y[f ] such a fibred automorphism,
which we shall indicate by f̂ and call a pre-Hilbert quantum operator, we have,
in rough terms, to ‘eliminate’ the time derivative. There is a natural way of
obtaining this result, namely by using the Schrödinger operator (whose kernel
is constituted by the solutions of the generalized Schrödinger equation)9 and
setting

f̂ := Y[f ] − if ′′ � S .

The operator f̂ is symmetric iff f ′′ is constant. This is true in all physically
significant cases, where f ′′ is either 0 or u0. Thus, the above formula is our
implementation of the principle of correspondence, achieved in a purely geo-
metric way. In particular, in the flat spacetime case, these operators and their
commutators correspond to the standard ones.

8Throughout this paper we shall indicate commutators by this ‘blackboard bold’ bracket,
as in general we shall have to distinguish them from Lie brackets.

9The Schrödinger operator can also be seen as a connection on the infinite-dimensional
pre-Hilbert bundle.
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4 Classical spin

It is well known that quantum spin has no classical counterpart in a strict sense.
However, we can give a mathematically self-consistent formulation of the classi-
cal mechanics of a charged spinning particle, which under certain circumstances
yields a good approximation of the real mechanics and, at the same time, will
constitute the background for quantum spin.

4.1 Classical spin particle

We first note that g can be seen as a (non-scaled) metric on the vector bundle
L∗⊗V E → E (this will be the fundamental bundle for spin particles). The
induced ‘index-lowering’ and ‘index-raising’ morphisms will be indicated, re-
spectively, by

g� : L∗⊗V E → L⊗V ∗E , g# : L⊗V ∗E → L∗⊗V E .

We shall denote by (er) a positively-oriented orthonormal frame of L∗⊗V E.
The dual frame (εr) of L⊗V ∗E determines a linear fibred chart (xλ, εr) on
L∗⊗V E.

Consider any linear connection C : V E → T ∗E ⊗V E TV E on the bundle
V E → E. Clearly, C can be regarded also as a connection

C : L∗⊗V E → T ∗E ⊗
L∗⊗V E

T (L∗⊗V E) ,

with coordinate expression

C = dxλ ⊗ (∂xλ + C p
λ rε

rep)

where C p
λ r := −〈εp , ∇λ[C]er〉 . Note that here λ is an index of spacetime

coordinates, while the latin indices appearing in this formula are related to
the linear coordinates εr , on the fibres of L∗⊗V E, that are not induced by
spacetime coordinates. Moreover, C is said to be metrical if ∇[C]g = 0. Then,
in particular, the vertical restriction K ′ of a metrical spacetime connection is a
connection of this type.

We shall indicate by UE → E the subbundle of L∗⊗V E whose fibres are
unit 3-spheres. The history of a classical spinning particle will be described by
a section U : T → UE. Its projection s : T → E is a particle motion in the
usual way, while the vertical vector field over it represents the particle’s spin;
more precisely, the classical intrinsic angular momentum of the particle is 1

2�U.
We can state the equation of motion for U by means of a couple of connec-

tions: the spacetime connection Γ := Γq/m, where q is the charge and m is the
mass of the considered particle, and a metrical linear connection C := K ′

2µ on
the bundle V E → E (which reduces to a connection on UE). Here,

µ ∈ T∗ ⊗L3/2 ⊗M−1/2
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is a new coupling constant which we call the spin-magnetic field coupling con-
stant. We shall also write µ as

µ = G
q

2m
, G ∈ R .

Eventually, by comparing the flat case with standard formulas (see [LL74]), the
section µU : T → T∗ ⊗L1/2 ⊗M−1/2 ⊗V E will turn out to be the magnetic
moment of the particle, and the real number G will turn out to be its gyromag-
netic ratio. When q = e is the positron’s charge, then µ�/G = e�/2m is the so
called Bohr magneton.

In an orthonormal frame (er) the components of C := K ′
2µ are given by:

C r
h s =Γ̃� r

h s ;

C r
0 s =Γ̃� r

0 s + u0µF̃ r
s =

=Γ̃� r
0 s + 2u0µεr

spB̃
p .

where
B := 1

2 ∗ F̌ : E → L−5/2 ⊗M1/2 ⊗V E

is the magnetic field.10 The tilde over the components of Γ�, F̌ and B indicates
that these are components in the frame (er). In particular we have

B̃p = 1
2ε sp

r F̃ r
s = 1

2εrspF̃rs .

Furthermore, C : V E → T ∗E ⊗E TV E yields the map

γ′ := d � C : J1E ×
E

V E → T∗ ⊗TV E ,

with coordinate expression

γ′ = u0 ⊗ (∂0 + yj
0∂j + γ′re.

r ) , γ′r = (C r
0 s + C r

h sy
h
0 )εs ,

where (e.
r) is the frame induced on VEV E. The couple (Γ, C) is a linear connec-

tion on J1E ×E UE → E. Thus the equation of motion for U can be formulated
as

∇[γ′]U ′ := j1U
′ − (γ, γ′) ◦ U

′ = 0 ,

where
U
′ := (j1s, U) : E → J1E ×

E
UE .

Now the above equation splits into two equations: the equation of motion for
s, which is the standard one (§3.2), and that for U, which reads ∇[C]j1sU = 0

10In the Galileian context, the magnetic field is observer-independent.
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(thus a first-order equation: the covariant derivative of the spin vector along
the particle motion vanishes). In coordinates it reads

∇[C]j1sU = u0
(
∂0U

r − C0
r
pU

p − C r
h p(∂0s

h)U
p
)
er .

Moreover, the same equation can also be written as

∇�
j1sU − µU × B = 0 ;

in the flat spacetime case the above covariant derivative reduces to ordinary
derivative, so that we obtain the standard equation [Jac75].

For a classical charged particle in the flat case it is known [Jac75] that the
interaction between spin and magnetic field yields an energy

−µ� g(U, B) = −µ� ∗(U
� ∧ F̌ ) = − 1

2µ� ε rs
p U

pF̃rs .

This function is well-defined also in the general curved case. In order to see
that it has the same meaning we should postulate the effect of spin on the
electromagnetic field, through a suitable current to be coupled to the field via
the Maxwell equations, and study the energy balance in the present context.
We omit such analysis, and just assume that the classical spin Hamiltonian
HS : J1E ×E V E → T∗ ⊗T∗ ⊗L2 ⊗M is given by11

HS[U] := H[s] − µ� g(U, B) ,

that is
HS = 1

2mgjkyj
0y

k
0 − ma0 − 1

2µ�ε rs
p εpF̃rs .

We would be tempted to extend these arguments in order to include a spin-
gravitation energy. For example, formal similarity might suggest a term of the
form

1
2ε rs

p εp
(
Γ̃�

0rs + Γ̃hrs(∂0s
h)

)
.

An interpretation of this kind, however, would need a more general approach to
the classical theory of angular momentum, which should include orbital angular
momentum in a general relativistic context. We shall address this question in
future work.

4.2 Quantizable functions

In view of quantum operators for spin particles we wish to extend the Lie algebra
of quantizable functions, by considering functions f : J1E ×E (L∗⊗V E) → R.

In §3.3 we showed how the Lie algebra AP of quantizable phase functions on
J1E arises naturally from geometric arguments. Up to now, we are not able to

11Note that the first term in the right-hand side is observer-dependent, while the second is
observer-independent.
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extend those arguments to the spin case. Hence we present a more restricted
approach which, however, encompasses most physically interesting examples.

The space of quantizable spin functions is defined to be the space AS :=
ASQ ⊕ ASL of all functions φ : L∗⊗V E → R of the type φ = φQ + φL, where
φL ∈ ASL is linear, φQ ∈ ASQ is quadratic and proportional to g. Namely, the
expression of φ ∈ AS in an orthonormal frame is of the type

φ = φ′′δrsε
rεs + φrε

r ,

with φ′′, φr : E → R.
By means of the vertical isomorphism g# any φ ∈ AS yields12 the section

X[φ] =: φQ# + φL# : E → ⊗2(L∗⊗V E)⊕
E

L∗⊗V E ,

Its orthonormal frame expression is

X[φ] = δrs(φ′′er ⊗ es + φser) := δrsφ′′er ⊗ es + φrer .

By analogy with phase functions we call X[φ] the tangent lift of φ.
We indicate by VE the space of all vertical-valued vector fields on E. Then

L∗ ⊗VE is naturally equipped with the FE-Lie algebra structure given by
cross-product. Since the map ASL → L∗ ⊗VE : φL �→ X[φ] is an FE-linear
isomorphism, it induces an FE-Lie algebra structure on ASL. Moreover we
define an FE-Lie algebra structure on AS by assuming ASQ to be an Abelian
ideal. Then we have

[φ , θ] := (φL# × θL#)� ,

or [φ , θ] = ε rs
p φrθsε

p .

Namely, only the linear parts of φ and θ contribute to [φ , θ].
Now we note that AP ∩ AS = {0}, and set

A := AP ⊕AS .

We are going to define a bracket on A. Since we have brackets on AP and AS,
it suffices to define the bracket between any f ∈ AP and any φ ∈ AS. Then we
set

[f, φ] := ∇[C]X[f ]φ
L ∈ ASL ,

and [φ, f ] := −[f, φ]. Then AS and ASL are ideals of A. We have the coordinate
expression

[f, φ]s = (u0f ′′∂0 − u0
�

m
f j∂j)φs + (u0f ′′C r

0 s − u0
�

m
fhC r

h s)φr .

12An equivalent construction may be given by using the natural symplectic structure [God69]
of any Riemannian manifold (here, all spacetime’s fibres). This fact might be useful for future
generalizations of this approach.
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The new bracket fulfills the Jacobi identity in all cases except when one
and only one of the three factors belongs to ASL. In fact, by straightforward
calculation we prove:

Proposition 4.1 Let f1 , f2 ∈ AP, φ, θ ∈ AS. Then

[f1 , [φ, θ]] + [φ, [θ, f1]] + [θ, [f1 , φ]] = 0 ;

[f1, [f2 , φ]] + [f2, [φ, f1]] + [φ, [f1, f2]] = R[C](X[f1], X[f2], φL#) .



Then A := AP ⊕ AS will be called the R-algebra of quantizable functions.
The tangent lift of f+φ ∈ A is defined to be X[f+φ] := X[f ] + X[φ]. Then we
obtain a map

A → T E ⊕ ∨2(L∗ ⊗VE) ⊕ (L∗ ⊗VE) ,

where ∨ denotes symmetrized tensor product. This is an FE-linear epimor-
phism, and turns out to be an R-algebra morphism if we take, on the right-hand
space, the bracket:

(u, v) �→


[u, v] , u, v ∈ T E ;
u × v , u, v ∈ L∗ ⊗VE ;
∇[C]uv , u ∈ T E, v ∈ L∗ ⊗VE ;
0 , u ∈ ∨2(L∗ ⊗VE) .

The most important quantizable function is the classical spin Hamiltonian
(§4.1), which can be written as

H := u0H
S/� := u0(H/� − µB�) .
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5 Spin bundle and connection

In this chapter we shall introduce two basic mathematical objects: the spin
bundle and the Pauli map (a kind of ‘soldering form’); the latter, together with
a spacetime connection, yields in a natural way a connection on the spin bundle.
In the next chapter, this will allow us to formulate the quantum mechanics of a
particle with spin along the lines of the scalar theory.

5.1 Spin bundle

Consider a complex vector bundle πS : S → E with fibres of (complex) dimen-
sion 2, endowed with a Hermitian metric

hS : E → S� ⊗
E

S�

where S� and S� are the complex dual and antidual bundles, respectively
(namely the bundles of linear and antilinear morphisms S → C over E). We
shall also be involved with the ‘conjugate’ bundle S• := (S�)� ≡ (S�)� (whose
transition maps are conjugate to those of S).

Consider an hS-orthonormal frame (ζA) of S, A = 1, 2, and its dual frame
(zA). Then we have the linear fibred coordinate chart (xλ, zA) on S. The
conjugate chart on S• will be denoted by (xλ, z̄A•). The induced frame of V S
will be denoted by (∂A := ∂zA); its dual and antidual frames by (dA := dzA)
and (d̄A• := dz̄A•). Since S admits a bundle atlas constituted by hS-orthonormal
charts, it can be regarded as a bundle associated with the principal bundle of
all hS-orthonormal frames, with structure group U(2).

We shall also consider the case when S is endowed with a non-singular hS-
normalized 2-form

εS : E → ∧2S� ,

and define a normal spin frame to be an ordered hS-orthonormal frame such
that εS = z1 ∧ z2. Then S can be regarded as a bundle associated with the
principal bundle of normal spin frames, with structure group SU(2).

Now we focus our attention on the vector bundle End(S) ≡ S ⊗E S� of
complex linear endomorphisms, whose fibres are equipped with the standard
structure of associative algebra, given by φθ := φ ◦ θ, and with the induced
structure of Lie algebra, given by [φ, θ] := [[φ, θ]] := φθ− θφ. This bundle splits
naturally into the direct sum of the real subbundles of all Hermitian and anti-
Hermitian endomorphisms:

End(S) = H ⊕
E

iH .

Moreover, H splits into the direct sum of the vector subbundle 〈1〉 generated
by the identity and the vector subbundle H0 of all traceless endomorphisms,
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according to the formula

φ = 1
2 (Tr φ)1 + (φ − 1

2 (Tr φ)1) .

Then we obtain
End(S) = 〈1〉⊕

E
H0 ⊕

E
〈i1〉⊕

E
iH0 .

The bundle H0 → E will play an essential role in the Galileian quantum
theory of spin. For this reason we are going to make a fairly detailed study of its
rich algebraic structure. Note that H0 is constituted by all endomorphisms φ
whose matrix, in any hS-orthonormal frame of S, is of the type (φA

B) =
(

r c
c̄ −r

)
,

with r ∈ R, c ∈ C; actually, the fibres of H0 have (real) dimension 3.
We first observe that the fibred map over E,

k : H0 ×
E

H0 → R : (φ, θ) �→ 1
2 Tr(φ ◦ θ) ,

turns out to be an Euclidean metric on the fibres of H0. Hence, we can regard
H0 as a bundle associated with the principal bundle of all k-orthonormal frames,
with structure group O(3).

Lemma 5.1 Let (ζA) be an orthonormal frame of S, and (σr) an orthonormal
frame of H0 . Then, for each P ∈ U(2), the endomorphisms

σ′
r := σ A

r BP (ζA)⊗ (P ∗)−1(zB) , r = 1, 2, 3 ,

constitute a k-orthonormal frame with the same orientation as (σr). Hence,
there is a unique P̃ ∈ SO(3) such that σ′

s = P̃ r
sσr . The map U(2) → SO(3) :

P �→ P̃ is a group epimorphism (which depends on the choice of (ζA) and (σr )).
In particular, the map SU(2) → SO(3) is double valued.13 

The following lemma is the key for studying those structures of H0 which arise
from the algebra End(S).

Lemma 5.2 For each φ, θ ∈ H0 we have

φθ = k(φ, θ)1 + i ξ ,

where ξ ∈ H0 and

k(ξ, ξ) = k(φ, φ) k(θ, θ) − (k(φ, θ))2 ,

k(φ, ξ) = k(θ, ξ) = 0 .

Moreover, we have θφ = k(φ, θ)1−i ξ. 

13This last statement is a geometric reformulation, in our context, of a well-known algebraic
result.
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Thus H0 is closed neither under the associative multiplication (φ, θ) �→ φθ nor
under the commutator (φ, θ) �→ [[φ, θ]] := φθ− θφ . However, we shall see that
these operations are related to further structures on H0 .

In particular, if φ ∈ H0 and ||φ|| = 1, then

φφ = 1 ;

if φ, θ ∈ H0, ||φ|| = ||θ|| = 1 and k(φ, θ) = 0, then

φθ = iξ

with ξ ∈ H0 , ||ξ|| = 1, k(φ, ξ) = k(θ, ξ) = 0.
The above result yields a distinguished global orientation on the bundle

H0 → E. In fact, for each k-orthonormal frame (σr), the condition σ1σ2 = iσ3

determines an orientation which does not depend on the frame’s choice.
The metric k and the above orientation yield a global volume form η̃ : E →

∧3H0 . Accordingly, the bundle H0 → E can be seen as associated with the
principal bundle of all positively oriented k-orthonormal frames, with structure
group SO(3).

A positively oriented orthonormal frame is called a set of Pauli endomor-
phisms. Moreover we set σ0 := 1S , so that (σα), α = 0, 1, 2, 3, is a frame of
H.

For any hS-orthonormal frame (ζA) we may consider, in particular, those
elements (σr) in H0 whose matrix expressions σr = σ A

r BζA ⊗ zB are given by
the Pauli matrices:

(σ A

r B) :=
((

0 1
1 0

)
,
(

0 −i
i 0

)
,
(

1 0
0 −1

))
, r = 1, 2, 3.

Then (σr) is a set of Pauli endomorphisms. Conversely, in virtue of the dou-
ble covering SU(2) → SO(3), for any given set (σr) of Pauli endomorphisms
there exists an orthonormal frame (ζA) such that (σ A

r B) are the Pauli matrices.
However, this particular matrix representation will play no essential role in our
treatment.

In terms of a set of Pauli endomorphisms, the volume form η̃ reads

η̃ = σ1 ∧ σ2 ∧ σ3 =
1
3!

εprsσp ∧ σr ∧ σs ,

and the statement of lemma 5.2 reads

σrσs = δrsσ0 + i εp
rsσp .

The metric k and the volume form η̃ yield the cross-product Lie algebra
structure on H0 , given by

(φ, θ) �→ φ × θ := η̃
(
k�(φ) ∧ k�(θ)

)
.
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In terms of any set of Pauli endomorphisms, this reads

σr × σs = εp
rs σp .

The type fibre of this Lie algebra is su(2), namely the Lie algebra of the Lie
group SU(2), which is usually called the angular momentum algebra.

The cross-product Lie algebra is related to the Lie algebra End(S) by the
formula

φ × θ = − i
2 [[φ, θ]]

which, in a set of Pauli endomorphisms, reads

[[σr , σs]] = 2i εp
rs σp , or [[ − i

2σr,− i
2σs]] = εp

rs · (− i
2σp) .

Then we see that iH0 is closed under the Lie bracket of End(S), and the map
H0 → iH0 : φ �→ − i

2φ is a Lie algebra isomorphism.

Remark 5.1 For all φ, θ ∈ H0 we have

φθ + θφ = 2k(φ, θ)1 .

In terms of a set of Pauli endomorphisms this formula reads

σrσs + σsσr = 2 δrs 1 .

Then one sees easily that the Clifford algebra bundle of H0 (see [Gre78]) co-
incides with the real vector bundle underlying End(S) ≡ S ⊗S�, with the
product given by ordinary composition. This result agrees with dimR End(S) =
8 = 2dim H0 . A set of Pauli endomorphisms yields the following set of generators
of the Clifford algebra:

σ0 , σ1 , σ2 , σ3 ,

σ1σ2 = iσ3 , σ2σ3 = iσ1 , σ3σ1 = iσ2 ,

σ1σ2σ3 = iσ0 .

This Clifford algebra will not enter our treatment in the Galileian context.
However, it is important for a comparison with the Einstein case. •

Remark 5.2 The Hermitian metric hS yields an isomorphism S ⊗S� →
S ⊗S•. The latter is the space of world spinors [PR84], that carries a natural
Lorentz structure defined via ε. An analogous Lorentz metric can be defined on
H, and the above isomorphism is an isometry. Once hS has been assigned, the
two constructions are equivalent. Then k is just the restriction of the Lorentz
metric to the canonical spacelike subbundle H0, while 〈1〉 is its orthogonal
timelike subbundle. Moreover, (σα) is an orthonormal frame of H. •
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5.2 Spin connections

Henceforth we assume that S is endowed with a Hermitian metric hS and a
non-singular hS-normalized 2-form εS : E → ∧2S�.

The coordinate expression of a linear connection B : S → T ∗E ⊗E TS on
the bundle S → E is of the type14

B = dλ ⊗ (∂λ + iB A

λ BzB ∂A) ,

with B A

λ B
: E → C. (The choice of writing the coefficients of the connection with

the factor i is merely a convention.) We have the conjugate linear connection
B• : S•→ T ∗E ⊗TS•, with coordinate expression:

B• = dxλ ⊗ (∂xλ − iB A•
λ B•z̄B•

∂A•)

where B A•
λ B• = B A

λ B
. We also have the induced linear connections on S� and

S�, with coefficients B A

λB
= −B A

λ B
and B A•

λB• = −B A•
λ B• = B A

λB
.

A linear connection B on S will be called Hermitian if it fulfills ∇[B]hS = 0.

Lemma 5.3 A linear connection B on S is Hermitian iff the coefficients of B
in a normal spin frame are given by

B A

λ B = Bµ
λ σ A

µ B ,

where Bµ
λ : E → R, and (σj) is any set of Pauli endomorphisms.

proof: In any linear coordinate chart the condition ∇[B]hS = 0 reads:

∂λhA•B − ihC•B B C•
λ A• + ihA•C B C

λ B = 0 .

According to this formula, in an orthonormal chart the components B A

λ B
, for

each fixed λ, constitute Hermitian 2× 2 matrices, and thus, for any set of Pauli
endomorphisms, are linear combinations of the matrices (σ A

µ B). �

Lemma 5.4 A Hermitian connection B on S fulfills ∇[B]εS = 0 iff B0
λ = 0 in

a normal spin frame, that is iff we have

B A

λ B = Br
λ σ A

r B , r = 1, 2, 3.

for any set of Pauli endomorphisms.

proof: In any linear coordinate chart the condition ∇[B]εS = 0 reads:

∂λεAB + iεCBB C

λ A + iεACB C

λ B = 0 .

In a normal spin chart we have ∂λεAB = 0, hence the matrices (B A

λ B
), for each

fixed λ, are traceless. �
14‘B’ is the cyrillic character ‘Be’ corresponding to latin ‘B’.
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Definition 5.1 A spin connection is a linear connection B on S such that
∇[B]hS = 0 and ∇[B]εS = 0. �

In the particular case when the matrices of the considered Pauli endomorphisms
are the usual Pauli matrices, the components of a spin connection are given by:

(B A

λ B) =

(
B3

λ B1
λ − iB2

λ

B1
λ + iB2

λ −B3
λ

)
.

Henceforth, by B we shall always indicate a spin connection.
Remark 5.3 A spin connection preserves also the Euclidean metric k, as one
sees from its definition via ε (or also by direct calculation). Namely, we have
∇[B]k = 0. •

Lemma 5.5 We have:

∇λ[B]σ0 = 0 ;

∇λ[B]σs = −Bp
λ[[σp , σs]]

A

B
ζA ⊗ zB =

= −2Bp
λεr

spσ
A

r BζA ⊗ zB = −2Bp
λεr

spσr .

proof:

∇λ[B]σα = ∇λ[B](σ A

µ BζA ⊗ zB) =

= σ A

µ B(−iB C

λ AζC ⊗ zB + iB B

λ CζA ⊗ zC) =

= −iBp
λ(σ A

p Bσ C

α B − σ A

α Cσ C

p B)ζA ⊗ zB =

= −iBp
λ[[σp , σα]]A

B
ζA ⊗ zB .

�

Proposition 5.1 The natural extension of B to S ⊗S� gives rise, through re-
striction, to a real linear connection B̃ : H0 → T ∗E ⊗TH0 on the Hermitian
traceless subbundle H0 → E. In a frame of Pauli endomorphisms the coeffi-
cients of B̃ are given by B̃ r

λ s = 2Bp
λεr

sp . 

Conversely, we have:

Proposition 5.2 Let V : H0 → T ∗E ⊗TH0 be a linear connection such that
∇[V]k = 0. Then, there exists a unique spin connection B such that B̃ = V. Its
coefficients are given by:

Bp
λ := 1

4ε sp
r V r

λ s ,

that is:
B A

λ B = 1
4ε sp

r V r
λ sσ

A

p B .
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proof:
Uniqueness: If B exists, then ∇[B]σs = ∇[V]σs ⇒ B̃ r

λ s = V r
λ s, that is:

V r
λ s = 2Bp

λεr
sp .

This equality determines the coefficients Bp
λ (and then also the coefficients B A

λ B
),

since it can be reversed as:

Bp
λ := 1

4ε sp
r V r

λ s .

Existence: The spin connection whose real coefficients Bp
λ are given by the

previous formula satisfies B̃ = V. �

From the above results we see how one is naturally involved with H0 when
considering Hermitian connections.

5.3 Pauli map

An orientation-preserving linear fibred isometry over E,

Σ : L∗⊗V E → H0 ,

will be called a Pauli map. If (er) is a positively-oriented orthonormal frame
of L∗⊗V E, then (σr) := (Σ(er)) is a set of Pauli endomorphisms. Henceforth,
when dealing with Σ we shall use the linear fibred charts on L∗⊗V E and H0

induced by a given frame (er) and the corresponding frame (σr). So, the infor-
mation relative to Σ is encoded in the choice of such an adapted chart.

A Pauli map is, obviously, an isomorphism of cross-product Lie algebras (see
§5.1). Moreover, we have the Lie algebra isomorphism − i

2Σ : L∗⊗V E → iH0 .
A Pauli map can be naturally extended to tensor products by setting

Σ
2 : ⊗2(L∗⊗V E) → S ⊗

E
S� : u⊗ v �→ Σ(u) ◦ Σ(v) ∈ H0 ◦ H0 ⊂ S ⊗

E
S� .

Proposition 5.3 Let C be a metrical linear connection on V E → E (§4.1).
Then there exists a unique spin connection B on S such that for any section
v : E → L∗⊗V E one has:

Σ(∇[C]v) = ∇[B](Σ(v)) .

Namely, we have:
B A

λ B = 1
4ε sp

r C r
λ sσ

A

p B .

proof: Since Σ is an isomorphism, the connection C induces a connection V
on H0 according to the above requirement. We have Σ(∇[C]es) = ∇[V]σs , that
is V r

λ s = C r
λ s. Since ∇[C]g = 0, we also have ∇[V]k = 0. Thus we only need

applying proposition 5.2. �
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We shall be concerned with the curvature tensor R[B] of B. We have the
coordinate expression R[B] = R A

λµ B
zBdλ ∧ dµ ⊗ ∂A, where

R A

λµ B = i∂[λB
A

µ] B
+ B A

[λ C
B C

µ] B
.

If we replace the coefficients B A

λ B
in the previous formula with their expression

given in proposition 5.3, we obtain, after some calculations, the following result.

Proposition 5.4 We have

R[B] = − i
4Σ(∗R[C])

where
R[C] : E → ∧2T ∗E ⊗ ∧2 (L⊗V ∗E)

is the completely covariant curvature tensor of C. The coordinate expression of
R[B] is

R A

λµ B = i
4εr

spR[C] r
λµ sσ

A

p B ,

where:
R[C] r

λµ s = ∂λC r
µ s + C q

λ sC
r

µ q .



In particular we shall be involved with the connection B2µ induced by
C := K ′

2µ (§4.1). In that case, proposition 5.4 is the analogous, for the spin
connection, of the formula R[Q] = im

�
Ω⊗1Q for the quantum connection.



35

6 Quantum spin

6.1 Quantum spin connection

In addition to the postulates of the classical theory (§3.1) and of the scalar
quantum theory (§3.2), we have the two following basic geometrical postulates
of the quantum spin theory.
Postulate QS1 The spin bundle is a complex vector bundle S → E with
fibres of (complex) dimension 2, endowed with a Hermitian metric hS and a
non-singular hS-normalized 2-form εS . ♣

Postulate QS2 The Pauli map is an orientation-preserving linear fibred isom-
etry over E,

Σ : L∗⊗V E → H0 .

♣

Then we define the quantum spin bundle to be the tensor product

πW : W := Q⊗
E

S → E .

The Hermitian metrics hQ and hS , defined respectively on Q and S, yield a
Hermitian metric h := hQ ⊗hS on W . We shall indicate by bA := b⊗ ζA the
orthonormal frame of W induced by a normal frame b of Q and by a normal
spin frame (ζA) of S. The corresponding linear coordinates induced on W are
denoted by wA := z ⊗ zA, and the frame induced on V W → W by (∂wA).

Quantum histories will be described as sections Ψ : E → W . Locally:

Ψ = ΨA ⊗ ζA = ψAb⊗ ζ := ψAbA ,

where ΨA := ψAb : E → Q is a scalar quantum history (A = 1, 2), ψA : E → C.
We consider a particle with given values q of the charge, m of the mass and

µ of the spin-magnetic field coupling constant. Then we have (§4.1) the two
spacetime connections Kq/m and K2µ. The first yields a quantum connection
Qq/m on Q↑ (henceforth denoted simply as Q). The second yields a connection
C := K ′

2µ on L∗⊗V E → E (§4.1); this, in turn, yields via Σ a spin connection
B2µ, henceforth denoted simply by B, whose components in a normal spin frame
are given by

B A

j B = 1
4εr

spΓ̃� r
j sσ

A

p B = B� A

j B ,

B A

0 B = 1
4εr

sp(Γ̃� r
0 s + u0µF̃ r

s)σ
A

p B =

= 1
4εr

spΓ̃� r
0 sσ

A

p B + 1
2u0µB̃pσ A

p B

= B� A

0 B + 1
2u0µB̃pσ A

p B ,

where B� is the spin connection arising from Γ� (vanishing coupling constant).
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The quantum connection and the spin connection yield a Hermitian linear
connection QW := Q⊗B, called the quantum spin connection, on the vector
bundle

W ↑ := J1E ×
E

W → J1E .

The components of QW can be synthetically written as

Q A

λ B = qα
λσ A

α B = q0
λδA

B + qp
λσ A

p B ,

where we have set
q0

λ := Qλ , qh
λ := Bh

λ ,

that is (§3.2):

Q A

0 B = −u0
H

�
, Q A

j B =
pj

�
, if A = B ,

Q A

λ B = 1
4εr

spC r
λ sσ

A

p B , if A �= B .

The corresponding covariant derivative of a section Ψ turns out to be the
section ∇Ψ : J1E → T ∗E ⊗E W given by:

∇λΨ : = (∇λΨA)⊗ ζA + ΨA ⊗ (∇λζA) =
= (∇λb)⊗ (ΨAζA) + b⊗∇λ(ΨAζA) .

The coordinate expression of ∇Ψ is:

∇Ψ = (∂λψA − iQλψA − iB A

λ BψB)dλ ⊗ bA .

We also have the derivatives:
◦
∇Ψ := d � ∇Ψ : J1E → T∗ ⊗W ;

∇̌Ψ := ∇Ψ|V E : J1E → V ∗E ⊗W ;

where d : J1E → T∗ ⊗TE is the natural map introduced in §3.1. Their coordi-
nate expressions are:

◦
∇Ψ = u0

(
(∂0 + yj

0∂j)ψA − i(Q0 + yj
0Qj)ψA − i(B A

0 B + yj
0B

A

j B)ψB

)
bA ;

∇̌Ψ = (∂jψ
A − iQjψ

A − iB A

j BψB)dj ⊗ bA .

We shall also be concerned with the curvature tensor of the quantum spin
connection. By a simple calculation one sees that this is essentially the sum of
the curvature tensors of Q and B (see proposition 5.4):

R[Q⊗B] = R[Q]⊗1S + 1Q ⊗R[B] =

= i
m

�
Ωq/m ⊗1W − i

41Q ⊗Σ(∗R[C]) =

= (R[Q]λµδA

B + R[B] A

λµ B)wBdλ ∧ dµ ⊗ bA .
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6.2 Quantum spin Lagrangian and momentum

We have the following distinguished observer-dependent 4-forms over E:

◦
L[Ψ] := 1

2

(
h(Ψ, i

◦
∇Ψ) + h(i

◦
∇Ψ, Ψ)

)
υ : E → L3 ⊗ ∧4 T ∗E ;

Ľ[Ψ] :=
�

2m
(g# ⊗h)(∇̌Ψ, ∇̌Ψ)υ : E → L3 ⊗ ∧4 T ∗E ,

where υ is the spacetime volume form (§3.1). As in the theory without spin we
obtain a Lagrangian independent of any observer by the projectability principle.
Namely:

Proposition 6.1 The form

L[Ψ] :=
◦
L[Ψ] − Ľ[Ψ]

is the unique linear combination (up to an overall factor) of
◦
L and Ľ which

turns out to be independent of the observer.

proof: A rather long computation shows that this is the unique linear com-
bination of

◦
L and Ľ such that the coordinates yj

0 disappear in its coordinate
expression. �

Then we have the main dynamical postulate of the quantum spin theory:

Postulate QS3 The form L of proposition 6.1 is assumed to be the quantum
spin Lagrangian. ♣

In the scalar case it is known [Jan94] that the analogous procedure yields
what is essentially the unique natural and physically meaningful Lagrangian.
Morever, note that adding to our Lagrangian a term proportional to the natural
function

q

m
h
(
Ψ , Σ(B)Ψ

)
: E → R ,

would simply amount to modifying the gyromagnetic ratio.
We have the coordinate expression:

L[Ψ] = 1
2hC•A

(
i(ψ̄C•

∂0ψ
A − ψA∂0ψ̄

C•
) − u0

�

m
gjk∂jψ

A∂kψ̄C•

+ igjkak(ψA∂jψ̄
C• − ψ̄C•

∂jψ
A)

+ u0 m

�
ψAψ̄C•

(2a0 − gjkajak)

+ 2(B A

0 B − gjkakB A

j B)ψBψ̄C•

+ u0
i�

m
gjkB A

k B(ψB∂jψ̄
C• − ψ̄C•

∂jψ
B)

+ u0
�

m
gjkB E

j BB A

k EψBψ̄C•)√|g|ω .
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Note that in simplifying this expression for L we used the property that the
coefficients B A

j B
are Hermitian: hC•AB C•

λ B• = hB•CB C

λ A
.

In an h-orthonormal frame (bA) we have hC•A = δC•A, and then the La-
grangian splits as:

L[Ψ] = L[Ψ1] + L[Ψ2] + L[Ψ]spin

where L[Ψ1] and L[Ψ2] (first three lines) are exactly the Lagrangians of the
scalar wave functions Ψ1 and Ψ2 (see 1.2). The spin Lagrangian L[Ψ]spin is the
new part (with respect to the scalar case) and contains interaction terms. By
using proposition 5.3, after some calculations we can express it in terms of the
vertical spacetime connection C.

Proposition 6.2 We have:

L[Ψ]spin = 1
2hC•A

(
1
2 (C r

0 s − gjkakC r
j s)ε

sp
r σ A

p BψBψ̄C•

+ u0
i�

4m
gjkC r

k sε
sp

r σ A

p B(ψB∂jψ̄
C• − ψ̄C•

∂jψ
B)

− u0
�

8m
gjkC r

j sC
r

k sψ
Aψ̄C•

)√
|g|ω .



It is interesting to look at the spin part of the Lagrangian in the flat case.
Setting C r

j s = 0, C r
0 s = u0µF̃ r

s we obtain:

L[Ψ]spin = 1
4u0µ hC•A(F̃ r

sε
sp

r σ A

p BψBψ̄C•
)
√
|g|ω =

= 1
2u0µ hC•AB̃pσ A

p BψBψ̄C•√|g|ω
= 1

2u0µ h(Ψ, Σ(B)Ψ)
√
|g|ω .

This is just the Pauli term which appears in the standard Lagrangian of a
particle with spin.

We shall denote by

L : J1W → L3 ⊗ ∧4 T ∗E

the fibred morphism over E characterized by L ◦ j1Ψ = L[Ψ] ∀Ψ. Here (and
everywhere) J1W → W is the jet bundle of W with respect to the base space
E. The coordinate expression of L is obtaned from that of L[Ψ] by replacing
ψA with wA and ∂λψA with wA

λ . In order to write down the field equation
for a section Ψ, it is convenient to express the Lagrangian as L := �ω, with
ω := d0 ∧ d1 ∧ d2 ∧ d3. We have:

� = 1
2δC•A

√
|g|

[
i(w̄C•

wA

0 − wAw̄C•
0 ) − u0

�

m
gjkwA

j w̄C•
k

+ igjkak(wAw̄C•
j − w̄C•

wA

j ) + χwAw̄C•

+ χpσ A

p BwBw̄C•
+ iχpjσ A

p B(wBw̄C•
j − w̄C•

wB

j )
]
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where χ, χp, χpj : E → R are defined as the following shorthands:

χ := u0 m

�
(2a0 − gjkajak) − u0

�

8m
gjkC r

j sC
s

k r ;

χp := 1
2εsp

r (C r
0 s − gjkakC r

j s) ;

χpj := u0
�

4m
ε sp

r gjkC r
k s .

Recalling that a jet bundle is affine, and since W → E is a vector bundle,
we have the following identification:

VW J1W ≡ J1W ×
W

(T ∗E ⊗
E

W ) .

Then applying the vertical functor to the morphism L, after a contraction with
the spacetime volume form we obtain a map

∗VWL : J1W → T∗ ⊗TE ⊗
E

W ∗ ,

where W ∗ is the real dual bundle of W . The real part of the Hermitian metric
h is a positive-defined metric on the fibres of W , and allows us to trasform the
above morphism into the quantum momentum:

p : J1W → T∗ ⊗TE ⊗
E

W ,

which has the coordinate expression:

p[Ψ] = u0
(
ψA∂0 − i

�

m
gjk(u0∂k − i

m

�
ak)ψA∂j − χrjσ A

r BψB∂j

)
⊗ bA .

6.3 Generalized Pauli equation

The generalized Pauli equation for a section Ψ : E → W is defined to be the
Euler-Lagrange equation:

E [Ψ] := E ◦ j2Ψ = 0 ,

where
E : J2W → L3 ⊗ ∧4 T ∗E ⊗

E
W ∗

is the Euler-Lagrange operator [MM83b, Gar74], which can be characterized,
via contraction with the spacetime volume form, by a morphism

∗E : J2E → T∗ ⊗W ∗ ,

whose coordinate expression is of the type

∗E = EAdwA + EA•dw̄A•
.
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The components EA and EA•, which are conjugate to each other, can be calculated
from the standard Euler-Lagrange formula by treating formally wA and w̄A• as
independent real coordinates. Moreover, through the real part of the Hermitian
metric h we can transform ∗E into a morphism

∗E# : J2W → T∗ ⊗W .

This has the coordinate expression ∗E# = ECbC , where EC := 2hA•CEA•. We
obtain:

Lemma 6.1 The components of the Euler-Lagrange operator of the quantum
spin Lagrangian are given by

EC = 2iu0wC

0 − 2iu0gjkakwC

j +
�

m
· 1√

|g|
∂k(

√
|g| gjk)wC

j +
�

m
gjkwC

jk

+ u0
(
χ +

i√
|g|

∂0

√
|g| − i√

|g|
∂k(

√
|g| gjkaj)

)
wC

+ u0
(
χr − i√

|g|
∂k(

√
|g|χrk)

)
σ C

r BwB − 2iu0χrjσ C

r BwB

j ,

where χ, χr, χrj : E → R are the functions defined in §6.2. 

Note how the above expression for EC splits into the sum of a non-interaction
part and an interaction part. The interaction part consists of all those terms
which contain the sigma’s (last line). The non-interaction part is identical to
the E.-L. operator without spin for each component of Ψ, plus the new term
− �

8mgjkC r
j sC

s
k rψ

C (contained in χ).
Next we would like to write the generalized Pauli equation in a more compact

way. We shall accomplish this by defining two observer-dependent differential
operators Do and ∆̌o, which are immediate generalizations of the analogous
operators defined in [JM93].

Recall that the connection QW := Q⊗B is a map

QW : J1E ×
E

W → T ∗E ⊗
W

TW .

Given an observer o : E → J1E, consider its natural jet prolongation jo :
J1E → J1J1E ⊂ T∗ ⊗TJ1E , given by jo = u0 ⊗ ∂0 in adapted coordinates.
Consider the map

õ := (jo � QW ) ◦ o : E → T∗ ⊗TW ,

or, in adapted coordinates:

õ = u0 ⊗
[
∂0 + i(Q0w

A + B A

0 BwB)bA

]
.
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Recalling §2.1.5 we set:

DoΨ := 〈 1√
υ

, Lõ(Ψ⊗
√

υ) 〉 : E → T∗ ⊗W

with coordinate expression:

DoΨ = u0
(
∂0ψ

A +
∂0

√
|g|

2
√
|g|

ψA − iu0 m

�
a0ψ

A − iB A

0 BψB
)
bA .

The observer-dependent vertical covariant derivative of Ψ is defined to be

∇̌oΨ := ∇̌Ψ ◦ o : E → V ∗E ⊗W .

In a coordinate chart adapted to the observer (yj
0

◦ o = 0), this derivative has
the expression:

∇̌oΨ = (δA

B∂j − iu0 m

�
δA

Baj − iB A

j B)ψB dj ⊗ bA .

Then one defines the observer-dependent vertical Laplacian as

∆̌oΨ := 〈 g# , ∇̌o∇̌oΨ 〉 : E → W ,

with coordinate expression

(∆̌oΨ)A = gjk
(
δA

B(∂j − iu0 m

�
aj) − iB A

j B

)(
δB

C(∂k − iu0 m

�
ak) − iB B

k C

)
ψC .

Then, taking into account the identity gjkΓk
h

j = 1√
|g|

∂j(ghj
√
|g| ), after some

calculations one proves:

Proposition 6.3 The Euler-Lagrange operator can be written as

∗E#[Ψ] = 2(iDoΨ +
�

2m
∆̌oΨ) .



An other formulation of the generalized Pauli equation can be obtained by
introducing the differential d[QS] associated with the connection QS via the
Frölicher-Nijenhuis bracket [MM83a], and the related divergence-type operator
div[QS] defined through the spacetime volume form υ.

Proposition 6.4 If Ψ : E → W is any quantum spin history, then ∗E#[Ψ] is
the unique linear combination (up to a scalar factor) of

◦
∇[Ψ] and div[QS]p[Ψ]

which projects over E. Namely

∗E#[Ψ] = i(
◦
∇[Ψ] + div[QS]p[Ψ]) : E → T∗ ⊗W .





42 6 QUANTUM SPIN

In particular, let us write down the field equation in the flat case. By
setting Γ̃� r

λ s = 0 and |g| := det(g) = 1 (i.e. by using orthonormal Cartesian
coordinates), since maλ reduces to the electromagnetic potential Aλ, we obtain
the familiar Pauli equation:

i�∂0ψ
C = u0

1
2m

gjk(−i�∂j − u0Aj)(−i�∂k − u0Ak)ψC

− u0A0ψ
C + 1

2u0µ�B̃rσ C

r BψB .

For an electron µ = −e/m (G = 2), thus the last term equals − e�

2mΣ(B)Ψ.
Next we focus our attention on quantum densities Ψη := Ψ⊗√

η, whose co-
ordinate expression will be written as

Ψη = ψηAbA ⊗
√

ω , ψηA := 4
√
|g|ψA .

The Euler-Lagrange operator yields the Pauli operator

P(Ψη) := − i
2 ∗ E#[Ψ]⊗√

η ,

which is the analogous, for the spin case, of the Schrödinger operator introduced
in §3.2. We obtain:

P(Ψη) = u0
(
∂0ψ

ηA − iu0
�

2m
∆̌oΨηA − iu0 m

�
a0ψ

ηA − iB A

0 BψηB
)
bA ⊗

√
ω̌0 .

One then sees that Ψ satisfies the generalized Pauli equation E [Ψ] = 0 iff Ψη

satisfies the equation P(Ψη) = 0, that is:

i∂0ψ
ηA = −u0

�

2m
∆̌oΨηA − u0 m

�
a0ψ

ηA − B A

0 BψηB .

6.4 Symmetries

We recall [Gar74, MM83b] that the Nöther theorem can be expressed in geo-
metrical form through the Poincarè-Cartan form Θ. The Poincarè-Cartan form
of the Lagrangian L can be calculated, similarly to the Euler-Lagrange form,
by treating (wA) and (w̄A•) as formally independent coordinates. We obtain:

Θ =

√
|g|
2

hC•A

[
i(w̄C•

dwA − wAdw̄C•
) ∧ ω0

+
(

u0
�

m
gjk(wA

k dw̄C• − w̄C•
k dwA) + igjkak(wAdw̄C• − w̄C•

dwA)

+ iχrjσ A

r B(wBdw̄C• − w̄C•
dwB)

)
∧ωj

+
(
u0

�

m
gjkwA

j w̄C•
k + χwAw̄C•

+ χrσ A

r BwBw̄C•)
ω

]
.
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where ωλ := ∂λ � ω.
Consider the natural action of the group U(1) on W , given by

R × W → W : (φ, ζ) �→ e−iφζ .

This action can be naturally prolonged to actions on TW and J1W . We then
have two one-parameter groups, which are generated, respectively, by the vector
fields v : W → TW and v : J1W → TJ1W , whose coordinate expressions are:

v = −iwA∂wA ; v = −i(wA∂wA + wA

λ∂wλ
A) .

Moreover, v is the natural prolongation of v [MM83a]. It is immediate to check
that the Lagrangian L is invariant with respect to the natural action of the
group U(1). We have

LvL = LvΘ = 0 ,

thus for each critical section Ψ we have the conserved probability current:

(jΨ)∗(v � Θ) =
√
|g|hC•A

[
ψ̄C•

ψAω0

+
(

iu0
�

2m
gjk(ψ̄C•

ψA − ψ̄C•
ψA

k )

− gjkakψ̄C•
ψA − χrjψ̄C•

σ A

r BψB

)
ωj

]
.

The corresponding conserved quantity is the ω0 component, i.e. the probability
density h(Ψ, Ψ)η .

We have a larger simmetry in the case of flat spacetime and vanishing electro-
magnetic field (set C r

λ s = 0 and F̃ r
s = 0). In this case the Lagrangian is invariant

with respect to the action of the group SU(2) given by

SU(2) × W → W : (P, u) �→ P A

BuB∂wA ,

and its jet prolongation. In particular we have, for r = 1, 2, 3 and φ ∈ R, the
actions of exp( iφ

2 σr) , which yields the vector fields vr (on W ) and their jet
prolongation vr whose coordinate expressions are:15

vr =
i

2
σ A

r BwB∂wA ; vr =
i

2
σ A

r B(wB∂wA + wB

λ ∂wλ
A) .

The related conserved current is:

(jΨ)∗(vr � Θ) =
√
|g|hC•A σ A

r B

[
−ψ̄C•

ψBω0 +

+ gjk

(
iu0

�

2m
(ψ̄C•

ψB

k − ψ̄C•
k ψB) + akψ̄C•

ψB

)
ωj

]
,

and the conserved quantity is, up to integration, the expectation value of spin
h(Ψ, Σ(Ψ))η.

15This action depends on the considered basis. However, the Lie algebra generated by the
fields vr is independent of the basis.



44 7 QUANTUM OPERATORS

7 Quantum operators

We shall construct the algebra of quantum operators by a procedure which
generalizes that used in the scalar case, and is divided into analogous steps.
Starting from the algebra A of all quantizable functions, we first construct the
algebra W of quantum vector fields W → TW , then the algebra O of almost-
quantum operators acting on quantum densities and, finally, the algebra Ô of
quantum operators on the Hilbert bundle. At each step we put together ‘phase’
objects, coming from the Lie algebra AP of quantizable functions on the phase
space J1E, and ‘spin’ objects, coming from the Lie algebra AS of quantizable
spin functions on L∗⊗V E.

7.1 Quantum phase vector fields

In this section we examine the natural prolongation of quantum phase vector
fields on Q to vector fields on W .

Lemma 7.1 There is a natural construction which, for each Hermitian linear
vector field Y : Q → TQ projectable over a vector field X : E → TE, yields a
Hermitian linear vector field

Y W : W → TW

projectable over X. Let Y = Xλ∂λ + iY zz ∂z, with Xλ, Y z : E → R, be the
coordinate expression of Y . Then the coordinate expression of Y W is:

Y W = Xλ∂λ + i(XλB A

λ BwB + Y zwA)∂wA .

proof: Consider the horizontal lift of X by B, i.e. the vector field

X � B = Xλ∂λ + iXλB A

λ BzB∂wA : E → TS ,

which is as well Hermitian and projectable over X. Then we have the tensor
product:

Y ⊗ (X � B) : Q⊗
E

S → TQ ⊗
TE

TS .

Now the universal property of the fibred tensor product over TE yields a linear
fibred morphism

θ : TQ ⊗
TE

TS → T (Q⊗
E

S) := TW

over TE, with coordinate expression

(wA, ẇA) ◦ θ = (z · zA, z · żA + ż · zA) .

Thus by setting
Y W := θ ◦

(
Y ⊗ (X � B)

)
we obtain the claimed result. �
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We shall indicate by W the space of all Hermitian linear projectable vector fields
on W . Clearly W is an FE-modulus, and an R-Lie algebra with respect to the
standard bracket. From the above lemma we see that the map Q → W : Y �→
Y W is an FE-linear isomorphism. In general, this is not an isomorphism of Lie
algebras; namely, by direct calculation one shows the following

Lemma 7.2 If Y1, Y2 : Q → TQ are both projectable, linear and Hermitian,
then also their Lie bracket is such, and we have:

[Y W

1 , Y W

2 ] = [Y1, Y2]W + RW [B](X1, X2) ,

where
RW [B] : E → ∧2T ∗E ⊗

E
V W ⊗

W
V ∗W

is obtained from
R[B] : E → ∧2T ∗E ⊗

E
V S ⊗

S
V ∗S

by tensor product with the identity form E → V Q⊗Q V ∗Q (in these formulas
all vertical spaces are taken with respect to the base space E). In coordinates
we have

[Y W

1 , Y W

2 ] =(Xµ
1 ∂µXλ

2 − Xµ
2 ∂µXλ

1 )∂λ + i(Xµ
1 ∂µXλ

2 − Xµ
2 ∂µXλ

1 )B A

λ BwB∂wA

+ i(Xλ
1 ∂λY z

2 − Xλ
2 ∂λY z

1 )wA∂wA

+ R[B] A

λµ BXλ
1 Xµ

2 wB∂wA .



If f : J1E → R is a quantizable phase function (§3.3), then the quantum vector
field Y [f ] : Q → TQ yields a vector field Z[f ] := Y W [f ] : W → TW , which we
still call the quantum phase vector field corresponding to f , or the quantum lift
of f . Its coordinate expression is

Z[f ] = u0f ′′∂0 − u0
�

m
f j∂j +

+ i

(
(u00 m

�
f ′′a0 − f jaj + f◦)wA + (u0f ′′B A

0 B − u0
�

m
f jB A

j B)wB

)
∂wA .

Remark 7.4 The quantum phase vector field Z[f ] can be recovered also by
a procedure similar to that used in the scalar case. In fact, the ‘upper’ vector
field

f# � QW + if i : W ↑ → TW ↑ ,

where i : W ↑ → V W ↑ is the Liouville vector field, turns out to be projectable
exactly over Z[f ]. •
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The quantum lift AP → W : f �→ Z[f ] is an FE-linear monomorphism. In
general, however, it is not an R-Lie algebra isomorphism. In fact from lemma
7.2 we obtain:

Proposition 7.1 Let f1 , f2 : J1E → R be quantizable phase functions. Then
we have [

Z[f1], Z[f2]
]

= Z[[f1 , f2]] + RW [B](X[f1], X[f2]) .



7.2 Quantum spin vector fields

We can naturally associate a quantum vector field with each quantizable spin
function. Namely, for any φQ + φL ∈ AS := ASQ ⊕ ASL (§4.2) we consider the
section

φ̃ := 1
4Σ

2(X[φQ]) + 1
2Σ(X[φL]) : E → H ,

which has the coordinate expression

φ̃ = 3
4φ′′σ0 + 1

2φrσr .

Now we observe that φ̃ can be regarded as a linear fibred morphism φ̃ : S → S
over E. Hence, by tensorializing it with 1Q : Q → Q we obtain the linear fibred
morphism 1Q⊗φ̃ : W → W over E. Finally we recall that V W ≡ W ×E W
(as W → E is a vector bundle, see §2.1.5), and define the quantum spin vector
field corresponding to φ, or the quantum lift of φ, to be the Hermitian vertical
vector field

Z[φ] : W → V W : w �→
(
w, i(1Q⊗φ̃)(w)

)
,

whose coordinate expression is

Z[φ] = i( 3
4φ′′σ A

0 B + 1
2φrσ A

r B)wB∂wA .

The map φ �→ Z[φ] is an FE-linear isomorphism and an R-Lie algebra iso-
morphism from AS to the space VW of all vertical (Hermitian) vector fields
of W. Moreover, this isomorphism associates the subalgebra ASL ⊂ AS with
the subalgebra V0W of traceless vector fields, and the Abelian ideal ASQ ⊂ AS

with the Abelian ideal V1W generated by 1W . In fact, let φ, θ ∈ AS; then by
straightforward calculation one finds

[Z[φ], Z[θ]] = Z[[φ, θ]] = Z[[φL, θL]] ,

or, in orthonormal coordinates

[Z[φ], Z[θ]] = i
2φrθsε

prsσ A

p BwB∂wA .
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7.3 Quantum vector fields

In the previous sections we defined the quantum lifts of phase and spin quan-
tizable functions. Now, the direct sum of these lifts yields the quantum lift of
quantizable functions:

Z : A := AP ⊕AS → W : f+φ �→ Z[f+φ] := Z[f ] + Z[φ] ,

with coordinate expression

Z[f+φ] = u0f ′′∂0 − u0
�

m
f j∂j +

+ i

(
(u00 m

�
f ′′a0 − f jaj + f◦ + 3

4φ′′)wA +

+ (u0f ′′B A

0 B − u0
�

m
f jB A

j B + 1
2φrσ A

r B)wB

)
∂wA .

From the above formula we see that the map Z : AP⊕ASL → W is an FE-linear
isomorphism; the map Z : A → W is an FE-linear epimorphism whose kernel
is constituted by quantizable functions f+φ ∈ FE ⊕ASQ such that f ′′ = − 3

4φ′′.
By straightforward calculation we get:

Lemma 7.3 Let Y : Q → TQ be any linear vector field, projectable over X :
E → TE. Let φ = φQ+φL ∈ AS := ASQ ⊕ASL. Then

[Y W , Z[φ]] = Z[∇[C]Xφ] ,

or, in coordinates:

[Y W , Z[φ]] = i
2Xλ

(
∂λφr − φsC r

λ s

)
σ A

r BwB∂wA .



Hence, the behaviour of the quantum lift Z with respect to the algebra structures
of A and W can be summarized as follows.

Theorem 7.1 Let f1 , f2 ∈ AP, φ1 , φ2 ∈ AS. Then

[Z[f1], Z[f2]] = Z[[f1 , f2]] + RW [B](X[f1], X[f2]) ,

[Z[φ1], Z[φ2]] = Z[[φ1 , φ2]] ,

[Z[f1], Z[φ1]] = Z[[f1 , φ1]] .



Then we see that, if the curvature of C vanishes, then A is an R-Lie algebra
and the quantum lift is a morphism of Lie algebras.
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7.4 Almost-quantum operators

Next we pass from quantum vector fields to operators. Like in the scalar case,
there is a natural way of applying the quantum vector field Z to a quantum
section with spin Ψ (see also §2.1.5); we obtain:

Z.Ψ =
(
Xλ∂λψA − i(XλB A

λ BψB + Y zψA)
)
bA .

The corresponding operator, which acts on quantum densities

Ψη := Ψ⊗√
η : E → W η := L3/2 ⊗W ⊗

√
∧3V ∗E ,

is defined by16

Z(Ψ⊗√
η) := i

(
Z.(Ψ⊗

√
υ)

)
⊗ 1√

υ
⊗√

η ,

and called an almost-quantum operator. Then we have:

Z(Ψ⊗√
η) = i

(
(Z.Ψ) + 1

2 (div X)Ψ
)
⊗√

η .

We shall denote by O the space of almost-quantum operators, and define the
almost-quantum operator lift to be the composition

A → W → O : f+φ �→ Z[f ] �→ Z[f+φ] ,

which is an FE-linear morphism.
We define the bracket of any two (local) Hermitian operators Z1 and Z2 to

be the (local) Hermitian operator

[Z1 ,Z2] := −i [[Z1 ,Z2]] ,

where [[Z1 ,Z2]] := (Z1 ◦ Z2−Z2 ◦ Z1) is the commutator of Z1 and Z2 . Then,
by straighforward calculation, recalling proposition 7.1, we obtain the following
result.

Theorem 7.2 The brackets of the almost-quantum operators corresponding to
the quantizable phase functions f1 , f2 ∈ AP and to the quantizable spin functions
φ1 , φ2 ∈ AS are given by:[

Z[f1],Z[f2]
]
(Ψη) = Z[[f1 , f2]](Ψη) + iRW [B](X[f1], X[f2]).Ψη ,[

Z[φ1],Z[φ2]
]
(Ψη) = Z[[φ1 , φ2]](Ψη) ,[

Z[f1],Z[φ1]
]
(Ψη) = Z[[f1 , φ1]](Ψη) .


16The reason for multiplying by i is that we want Hermitian operators, while Hermitian

vector fields give rise to anti-Hermitian operators. The reason for the ‘odd’ multiplication
and division by υ is that Z does not act naturally on the spacelike object η, but acts naturally
on the spacetime object υ. We guess that this point might be formulated in a more satisfactory
way within a fully Einstenian approach.
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Note that the bracket of the almost-quantum operators corresponding to the
quantizable phase functions f1 and f2 (first formula in the above theorem)
has a term of type spin, corresponding to the linear quantizable spin function
φ ∈ ASL whose components are given by

φp = 1
2ε sp

r R[C] r
λµ sX[f1]λX[f2]µ .

7.5 Quantum operators on the Hilbert bundle

So far, the quantum theory has been developed on the finite-dimensional bundle
W η → E over spacetime. Now, we sketch how to introduce in a natural way
an infinite-dimensional Hilbert bundle HW η → T over time and obtain Hilbert
operators from the almost-quantum operators. Essentially, the construction is
the same in the scalar and spin cases (we just replace W η for Qη).

We focus our attention on the double fibred manifold W η → E → T . Each
(smooth) local tube section Ψη : E → W η (i.e. each section which is defined
on a ‘tubelike’ open set of E) yields, for any given τ ∈ T , a (smooth) section
Ψη

τ : Eτ → W η
τ . Next we consider the fibred set SW η → T , where the fibre

SW η
τ , τ ∈ T , is defined to be the set of all (smooth) sections Ψ̂η

τ : Eτ → W η
τ .

Then clearly we have a natural injection Ψη �→ Ψ̂η from all (smooth) tube
sections Ψη : E → W η to all sections Ψ̂η : T → SW η.

In order to study geometrically the fibred set SW η → T one could use the
standard stuff of infinite dimensional manifolds. But we can skip this unnec-
essary hard machinery and achieve our goal in a much simpler way by using
the concept of smoothness due to Frölicher (see [Frö82, JM93]). Accordingly,
a section Ψ̂η : T → SW η is smooth iff it corresponds to a smooth section
Ψη : E → W η.

We can repeat the above construction for any subsheaf of tube sections of the
double fibred manifold W η → E → T , and obtain a fibred subset of SW η →
T ; it is remarkable that this inclusion preserves smoothness automatically. In
particular, we consider the fibred space H ′W η → T associated with (smooth)
tube sections Ψη : E → W η with compact support. The fibres of H ′W η are
naturally endowed with a smooth pre-Hilbert structure. Namely we define,
∀ τ ∈ T , a (non-complete) scalar product on H ′W η

τ by

〈 Ψ̂η
τ | Ψ̂′η

τ 〉 =
∫

hτ (Ψτ , Ψ′
τ ) ητ .

Our next goal is to obtain a pre-Hilbert bundle operator from each almost-
quantum operator Z. Let us consider a quantizable function f+φ ∈ A and the
associated almost-quantum operator Z[f+φ]. If f ′′ = 0, then Z[f+φ], which
acts on smooth sections Ψ̂η : T → SW η only through vertical derivatives and
multiplication by scalar functions, can be regarded as a linear fibred automor-
phism of the pre-Hilbert bundle over T . In other words, Z[f+φ] can be regarded
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as a pre-Hilbert operator. On the contrary, if f ′′ �= 0 then the expression of
Z[f+φ](Ψη) contains the time derivative of Ψη. This means that Z[f+φ] can-
not be regarded as a pre-Hilbert operator. However, we can solve this problem
by ‘eliminating’ the time derivative in the following natural and general way.

Consider the Pauli operator P (§6.3) acting on quantum densities (its kernel
is constituted by the solutions of the generalized Pauli equation).17 Then for
any f+φ ∈ A we consider the linear fibred automorphism of the pre-Hilbert
bundle over T :

f̂+φ = Z[f+φ] − if ′′ � P ,

and call it the pre-Hilbert quantum operator associated with f+φ. In particular,
if f ′′ = 0 (this is equivalent to Z[f+φ] being a vertical field), then f̂+φ =
Z[f+φ].

Let Ô be the set of all Hermitian linear fibred automorphisms of the pre-
Hilbert bundle over T . Then the map

A → Ô : f+φ �→ f̂+φ

is our correspondence principle.

Theorem 7.3 Let f+φ ∈ A be a quantizable function such that f ′′ = constant.
Then, the corresponding quantum pre-Hilbert operator f̂+φ is symmetric, i.e.

〈 Ψ̂η
τ | f̂+φ(Ψ̂′η

τ ) 〉 = 〈 f̂+φ(Ψ̂η
τ ) | Ψ̂′η

τ 〉 .

proof: It follows from the symmetry of the observer-dependent spacelike
Laplacian, from Gauss’ theorem and from the fact that the coefficients of the
quantum spin connection are Hermitian. �

Next we give the explicit expressions of the pre-Hilbert quantum operators
corresponding to the physically most important quantizable functions. Consider
first the coordinates xλ and the classical momenta pj/�; these are quantizable
phase functions J1E → R, whose quantum lifts are vertical-valued (for sim-
plicity we assume that spacetime fibres admit global spacelike coordinates, and
refer to such charts). We obtain

x̂λ(Ψη) ≡ Z[xλ](Ψη) = xλΨη ,

p̂j/�(Ψη) ≡ Z[pj/�](Ψη) =
= −(i∂jψ

A + B A

j BψB)bA ⊗√
η = −i(∇j [B]Ψ)⊗√

η .

These formulas enable us to write the observer-dependent vertical Laplacian as
the following generalization of a well-known formula:

∆̌oΨη = −gjk
(
p̂j/� − u0 m

�
aj

)(
p̂k/� − u0 m

�
ak

)
Ψη .

17By the way, we observe that this operator can be nicely interpreted as a linear covariant
differential on the infinite-dimensional pre-Hilbert bundle [JM93].
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Let φ ∈ AS be a quantizable spin function. Then

φ̂ ≡ Z[φ](Ψη) = ( 3
4φ′′δA

B + 1
2φrσ A

r B)ψBbA ⊗√
η .

Remark 7.5 Through the metric g, any vector field v : E → L∗⊗V E can
be identified with the quantizable spin function v�. Then we can define the
quantum spin vector field associated with v as S[v] := Z[v�] = i

2Σ(v)⊗1Q , and
the corresponding quantum spin operator as Ŝ[v](Ψη) := iS[v].Ψη. On the other
hand the quadratic spin function associated with g (φ′′ = 1) yields the operator
Ŝ2, called the square of spin, given by

Ŝ2 = δrsŜ[er] ◦ Ŝ[es] = Ŝ[e1] ◦ Ŝ[e1] + Ŝ[e2] ◦ Ŝ[e2] + Ŝ[e2] ◦ Ŝ[e2] = 3
41 .

Here one recovers well-known facts about spin operators. The operator Ŝ2 is the
Casimir invariant [Hum72, GM89] of this representation of su(2). For any unit
vector field u, Ŝ2 and Ŝ[u] constitute a maximal set of commuting operators,
with eigenvalues, respectively, 1

2 ( 1
2 +1) = 3

4 and ± 1
2 . •

From §4.1 and 4.2 we recall that for a classical spinning particle we have the
Hamiltonian HS := H − µ�B�. Consider the Hamiltonian function

H := u0H
S/� : J1E ×

E
(L∗⊗V E) → R .

This is the main example of a quantizable function which has both phase and
spin components. We have the quantum vector lift

Z[H] := Z[u0H/�] − S[u0µB] ,

with coordinate expression

Z[H] = ∂0 + i
4 (ε sp

r C r
0 s − 2u0µB̃p)σ A

p BwBbA

= ∂0 + i
4ε sp

r Γ̃� r
0 sσ

A

p BwBbA

= ∂0 + iB� A

0 BwBbA .

The corresponding almost-quantum operator is then given by

Z[H](Ψη) = (i∂0ψ
ηA + 1

4ε sp
r Γ̃� r

0 sσ
A

p BψηB)bA ⊗
√

ω .

We obtain the following commutators:[
Z[xλ],Z[xµ]

]
(Ψη) = 0 ;[

Z[x0],Z[pj/�]
]
(Ψη) = 0 ;[

Z[yj ],Z[pk/�]
]
(Ψη) = iδj

kΨη ;
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[
Z[pj/�],Z[pk/�]

]
(Ψη) = R[B] A

jk B
ψBbA ⊗√

η ;[
Z[xλ],Z[φ]

]
(Ψη) = 0 ;[

Z[pj/�],Z[φ]
]
(Ψη) = −iZ[∇j [C]φ](Ψη) ;[

Z[yj ],Z[H]
]
(Ψη) = 0 ;[

Z[x0],Z[H]
]
(Ψη) = −iΨη ;[

Z[pj/�],Z[H]
]
(Ψη) = − i

4ε sp
r R[Γ�] r

j0 sσ
A

p BψBbA ⊗√
η ;[

Z[H],Z[φ]
]
(Ψη) = iZ[∇0[Γ�]φ](Ψη) .

The Hamiltonian function is also the main example of a quantizable function
whose associated sheaf and pre-Hilbert operators do not coincide. We have

Ĥ = Z[H] − iu0 P ,

that is

Ĥ(Ψη) = Z[H](Ψη) − 1
2u0 ∗E#[Ψ]⊗√

η =

= −u0
�

2m
∆̌oΨη − u0 m

�
a0Ψη − u0

µ

2
Σ(B)Ψη =

= u0
�

2m
gjk

(
p̂j/� − u0 m

�
aj

)(
p̂k/� − u0 m

�
ak

)
Ψη −

− u0 m

�
a0Ψη − u0

µ

2
Σ(B)Ψη .

The generalized Pauli equation can now be written as

(i∂0ΨηA + B� A

0 BΨηB)bA ⊗
√

ω = Ĥ(Ψη) .

Then it would be nice if we were be able to interpret the second term in the left-
hand side as arising from the quantization of the energy of interaction between
spin and gravitational field, to be included in the total spin energy operator
composed of a spin-gravitation term and a spin-magnetic field term. An in-
terpretation of this kind would need a deeper understanding of classical and
quantum energy in the general relativistic Galileian context. We shall address
this question in future work.

Eventually, the pre-Hilbert bundle yields the Hilbert bundle HW η → T by
the standard completion procedure. This bundle carries the standard proba-
bilistic interpretation of quantum mechanics. We stress that we do not have a
unique Hilbert space, but a Hilbert bundle over time. Indeed, a unique Hilbert
space would be in conflict with the Galileian principle of relativity. On the other
hand, a global observer yields an isometry between the fibres of the quantum
Hilbert bundle.

Moreover, our symmetric pre-Hilbert operators will yield selfadjoint Hilbert
operators under suitable functional hypotheses concerning the quantizable func-
tions involved and the potentials of the concrete background spacetime.
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[Kol84] I. Kolař. Higher order absolute differentiation with respect to gener-
alised connections. Diff. Geom. Banach Center Publications, 12:153–
161, 1984.
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