The Frölicher-Nijenhuis bracket on some functional spaces

Ivan Koláŕr ${ }^{1}$, Marco Modugno ${ }^{2}$
${ }^{1}$ Department of Mathematics, Masaryk University
Janáčkovo nám 2a, 66295 Brno, Czech Republic
email: kolar@math.muni.cz
${ }^{2}$ Department of Applied Mathematics, Florence University
Via S. Marta 3, 50139 Florence, Italy
email: modugno@dma.unifi.it

This is a reprint of a published paper.
Date of the reprint: 2002.05.27.
The original paper has been published in Ann. Pol. Math., 68, 2 (1998), 97-106.

Abstract

Two fiber bundles E_{1} and E_{2} over the same base space M yield the fibered set $\mathcal{F}\left(E_{1}, E_{2}\right) \rightarrow M$, whose fibers are defined as $C^{\infty}\left(E_{1 x}, E_{2 x}\right)$, for each $x \in M$. This fibered set can be regarded as a smooth space in the sense of Frölicher and we construct its tangent prolongation.

Then, we introduce a graded Lie bracket for projectable tangent valued forms on $\mathcal{F}\left(E_{1}, E_{2}\right)$. These forms turn out to be a kind of differential operators. In particular, we consider a general connection on $\mathcal{F}\left(E_{1}, E_{2}\right)$ and study the associated covariant differential and curvature.

Introduction

The idea of the Schrödinger connection on a double fibered manifold by A. Jadczyk and the second author, [4], [5], inspired the study of differential geometric properties of certain bundles with infinite dimensional fibers. In particular, let E_{1} and E_{2} be two classical fiber bundles over the same base space M and $\mathcal{F}\left(E_{1}, E_{2}\right)$ denote the set of all smooth maps of a fiber of E_{1} into the fiber of E_{2} over the same base point. In [1], A. Cabras and the first author studied the connections on $\mathcal{F}\left(E_{1}, E_{2}\right) \rightarrow M$ by means of some procedures, which are based directly on the concept of fiber jet, [7]. However, an essential progress in the theory of general connections on classical fiber bundles has recently been achieved by using the Frölicher-Nijenhuis bracket. That is why we devote the present paper to projectable tangent valued forms on $\mathcal{F}\left(E_{1}, E_{2}\right)$ and their Frölicher-Nijenhuis bracket. Our main tool is a formula by P. W. Michor, [7], and the second author, [9], which expresses the classical Frölicher-Nijenhuis bracket in terms of the bracket of vector fields. This enables us to develop a generalization, which preserves the most important properties of the classical case. In the last section we present the first applications of our general results to connections on $\mathcal{F}\left(E_{1}, E_{2}\right)$, but we hope there will be many others, similarly to the classical case.

Since the objects we study represent a kind of differential operators, their basic properties can be treated systematically within the framework of the theory of smooth spaces by A. Frölicher, [2]. However, we use a simplified version of that theory, which is sufficient for our purposes. We define a smooth space as a set S together with a set of curves $\mathcal{C}(S)=\{c: \mathbb{R} \rightarrow S\}$, which is called the set of smooth curves. A map $f: S \rightarrow S^{\prime}$ between two smooth spaces is called smooth if, for each smooth curve $c: \mathbb{R} \rightarrow S$, the composition $f \circ c: \mathbb{R} \rightarrow S^{\prime}$ is also a smooth curve.

In particular, each classical manifold becomes a smooth space by assuming as smooth curves, in the sense of Frölicher, just the smooth curves in the classical sense. Moreover, a map between classical manifolds turns out to be smooth in the classical sense if and only if it is smooth in the sense of Frölicher, see e.g. [7], p. 172. We observe that, each subset $\iota: S^{\prime} \hookrightarrow S$ of a smooth space S inherits naturally a structure of smooth space, by assuming as smooth curves the curves $c^{\prime}: \mathbb{R} \rightarrow S^{\prime}$ such that $\iota \circ c^{\prime}: \mathbb{R} \rightarrow S$ is smooth. Actually, these curves constitute the largest set $\mathcal{C}\left(S^{\prime}\right)$ which makes ι smooth.

1 Preliminaries

Let $p_{1}: E_{1} \rightarrow M$ and $p_{2}: E_{2} \rightarrow M$ be two classical fiber bundles over the same base space. Consider the fibered set

$$
\begin{equation*}
p: \mathcal{F}\left(E_{1}, E_{2}\right)=\bigcup_{x \in M} C^{\infty}\left(E_{1 x}, E_{2 x}\right) \rightarrow M \tag{1.1}
\end{equation*}
$$

of all smooth maps of a fiber of E_{1} into the fiber of E_{2} over the same base point. We define no topology on $\mathcal{F}\left(E_{1}, E_{2}\right)$, but equip naturally this set with a structure of smooth space
by assuming as smooth curves the curves $c: \mathbb{R} \rightarrow \mathcal{F}\left(E_{1}, E_{2}\right)$ such that $p \circ c: \mathbb{R} \rightarrow M$ is smooth and the induced map $\hat{c}:(p \circ c)^{*} E_{1} \rightarrow E_{2}$, given by $\hat{c}(\tau, y)=c(\tau)(y)$, with $\tau \in \mathbb{R}, y \in E_{1 p(c(\tau))}$, is also smooth.

Next, we define the tangent space $T \mathcal{F}\left(E_{1}, E_{2}\right)$ in the following way. For every smooth curve $c: \mathbb{R} \rightarrow \mathcal{F}\left(E_{1}, E_{2}\right)$ and $\tau \in \mathbb{R}$, we first construct the tangent vector $X=\left.\frac{\partial}{\partial t}\right|_{\tau}(p \circ$ $c) \in T_{x} M$, where $x=p(c(\tau))$, and consider the subsets $T_{X} E_{1}=\left(T p_{1}\right)^{-1}(X) \subset T E_{1}$ and $T_{X} E_{2}=\left(T p_{2}\right)^{-1}(X) \subset T E_{2}$. It can be easily seen that $T_{X} E_{1}$ and $T_{X} E_{2}$ are affine bundles over $E_{1 x}$ and $E_{2 x}$ with derived vector bundles $T\left(E_{1 x}\right)=V_{x} E_{1}$ and $T\left(E_{2 x}\right)=V_{x} E_{2}$, respectively. Then, we obtain a map $T_{\tau} c: T_{X} E_{1} \rightarrow T_{X} E_{2}$ which is well defined by the formula

$$
\begin{equation*}
T_{\tau} c\left(\left.\frac{\partial}{\partial t}\right|_{\tau} h(t)\right)=\left.\frac{\partial}{\partial t}\right|_{\tau} c(t)(h(t)), \tag{1.2}
\end{equation*}
$$

where $h: \mathbb{R} \rightarrow E_{1}$ is a smooth curve such that $p \circ c=p_{1} \circ h$. Having another smooth curve $c^{\prime}: \mathbb{R} \rightarrow \mathcal{F}\left(E_{1}, E_{2}\right)$ and $\tau^{\prime} \in \mathbb{R}$, satisfying $\left.\frac{\partial}{\partial t}\right|_{\tau^{\prime}}\left(p \circ c^{\prime}\right)=X$, the equivalence relation $T_{\tau} c=T_{\tau^{\prime}} c^{\prime}: T_{X} E_{1} \rightarrow T_{X} E_{2}$ defines a tangent vector of $\mathcal{F}\left(E_{1}, E_{2}\right)$ which is denoted by $\left.\frac{\partial}{\partial t}\right|_{\tau} c$. Then, the tangent space $\operatorname{T\mathcal {F}}\left(E_{1}, E_{2}\right)$ is defined as the set consisting of all tangent vectors of $\mathcal{F}\left(E_{1}, E_{2}\right)$.

By the way, we can interpret the tangent vectors also in the following way. If $A \in$ $T \mathcal{F}\left(E_{1}, E_{2}\right)$, then we shall denote by $\hat{A}: T_{X} E_{1} \rightarrow T_{X} E_{2}$ the associated map (1.2). One sees easily that $T_{\tau} c: T_{X} E_{1} \rightarrow T_{X} E_{2}$ is an affine bundle morphism over the base map $\phi=c(\tau): E_{1 x} \rightarrow E_{2 x}$ with derived linear morphism $T \phi: T\left(E_{1 x}\right) \rightarrow T\left(E_{2 x}\right)$. In [1] the converse assertion is proved: if $C: T_{X} E_{1} \rightarrow T_{X} E_{2}$ is an affine bundle morphism over $\phi: E_{1 x} \rightarrow E_{2 x}$ with derived linear morphism $T \phi: T\left(E_{1 x}\right) \rightarrow T\left(E_{2 x}\right)$, then there exists a smooth curve $c: \mathbb{R} \rightarrow \mathcal{F}\left(E_{1}, E_{2}\right)$ and a $\tau \in \mathbb{R}$, such that $C=\left.\frac{\partial}{\partial t}\right|_{\tau} c$.

The tangent space is naturally equipped with the following structures. By (1) we have defined an inclusion

$$
\begin{equation*}
T \mathcal{F}\left(E_{1}, E_{2}\right) \subset \mathcal{F}\left(T E_{1} \rightarrow T M, T E_{2} \rightarrow T M\right) \tag{1.3}
\end{equation*}
$$

Hence, $\operatorname{T\mathcal {F}}\left(E_{1}, E_{2}\right)$ inherits a structure of smooth space. Moreover, we have two canonical projections $\pi: T \mathcal{F}\left(E_{1}, E_{2}\right) \rightarrow \mathcal{F}\left(E_{1}, E_{2}\right)$ and $T p: T \mathcal{F}\left(E_{1}, E_{2}\right) \rightarrow T M$, which turn out to be smooth. Even the tangent prolongation $d c=\frac{\partial}{\partial t} c: \mathbb{R} \rightarrow T \mathcal{F}\left(E_{1}, E_{2}\right):\left.\tau \mapsto \frac{\partial}{\partial t}\right|_{\tau} c$ of a smooth curve $c: \mathbb{R} \rightarrow \mathcal{F}\left(E_{1}, E_{2}\right)$ is smooth.

Now, let us consider the vector fields on $\mathcal{F}\left(E_{1}, E_{2}\right)$. As usual, a vector field on $\mathcal{F}\left(E_{1}, E_{2}\right)$ is defined to be a smooth map $A: \mathcal{F}\left(E_{1}, E_{2}\right) \rightarrow T \mathcal{F}\left(E_{1}, E_{2}\right)$ satisfying $\pi \circ A=i d$. We say that A is projectable if there exists a classical smooth vector field $A^{0}: M \rightarrow T M$ such that $A^{0} \circ p=T p \circ A$. A vector field A on $\mathcal{F}\left(E_{1}, E_{2}\right)$ projectable over A^{0} is said to be of order r if the condition $j_{y}^{r} \phi=j_{y}^{r} \psi$, with $\phi, \psi \in C^{\infty}\left(E_{1 x}, E_{2 x}\right), y \in E_{1 x}$, implies

$$
\begin{equation*}
\widehat{A \phi}\left|\left(T_{A^{0}(x)} E_{1}\right)_{y}=\widehat{A \psi}\right|\left(T_{A^{0}(x)} E_{1}\right)_{y} \tag{1.4}
\end{equation*}
$$

Let $S\left(T E_{1}, T E_{2}\right) \rightarrow E_{1} \times_{M} E_{2} \times_{M} T M$ be the fiber bundle of all affine morphisms $\left(T_{X} E_{1}\right)_{y} \rightarrow\left(T_{X} E_{2}\right)_{z}$, with $p_{1}(y)=p_{2}(z)=\pi_{M}(X)$, where $\pi_{M}: T M \rightarrow M$ is the bundle projection. Write

$$
\begin{equation*}
\mathcal{F} J^{r}\left(E_{1}, E_{2}\right)=\bigcup_{x \in M} J^{r}\left(E_{1 x}, E_{2 x}\right) \tag{1.5}
\end{equation*}
$$

which also is a classical manifold. An r-th order vector field A over A^{0} defines the associated map $\mathcal{A}: \mathcal{F} J^{r}\left(E_{1}, E_{2}\right) \rightarrow S\left(T E_{1}, T E_{2}\right)$ by

$$
\begin{equation*}
\mathcal{A}\left(j_{y}^{r} \phi\right)=\widehat{A \phi} \mid\left(T_{A^{0}(x)} E_{1}\right)_{y} \tag{1.6}
\end{equation*}
$$

In [1] it is proved that \mathcal{A} is a classical C^{∞}-map. The derived linear map of each element of $S\left(T E_{1}, T E_{2}\right)$ is identified with an element of $\mathcal{F} J^{1}\left(E_{1}, E_{2}\right)$. This defines a map D : $S\left(T E_{1}, T E_{2}\right) \rightarrow \mathcal{F} J^{1}\left(E_{1}, E_{2}\right)$ and the following diagram commutes

where β_{r} is the jet projection. Conversely, let $\mathcal{A}: \mathcal{F}\left(E_{1}, E_{2}\right) \rightarrow S\left(T E_{1}, T E_{2}\right)$ be a C^{∞}-map with underlying vector field $A^{0}: M \rightarrow T M$ such that (4) commutes. Then the rule

$$
\begin{equation*}
\widehat{A(\phi)}=\bigcup_{y \in E_{1 x}} \mathcal{A}\left(j_{y}^{r} \phi\right) \tag{1.8}
\end{equation*}
$$

defines an r-th order vector field A on $\mathcal{F}\left(E_{1}, E_{2}\right)$ over A^{0}.
Let $\left(x^{i}\right)$ be a local chart on $M,\left(y^{p}\right)$ and $\left(z^{a}\right)$ be additional fiber coordinates on E_{1} and E_{2}, respectively, and

$$
\begin{equation*}
x^{i}=c^{i}(t), \quad z^{a}=c^{a}\left(y^{p}, t\right) \tag{1.9}
\end{equation*}
$$

be the coordinate expression of $c: \mathbb{R} \rightarrow \mathcal{F}\left(E_{1}, E_{2}\right)$. Write $Y^{p}=d y^{p}, Z^{a}=d z^{a}, \phi^{a}(y, \tau)=$ $c^{a}(y, \tau), \Phi^{a}(y, \tau)=\frac{\partial c^{a}}{\partial t}(y, \tau)$. Then the coordinate expression of $d c(\tau)$ is

$$
\begin{equation*}
Z^{a}(\tau)=\frac{\partial \phi^{a}}{\partial y^{p}}(y, \tau) Y^{p}+\Phi^{a}(y, \tau) \tag{1.10}
\end{equation*}
$$

Hence, the tangent vector to (6) at τ is locally characterized by two systems of numbers $x^{i}=c^{i}(\tau), X^{i}=\frac{d c^{i}}{d t}(\tau)$ and two systems of functions $\phi^{a}\left(y^{p}, \tau\right), \Phi^{a}\left(y^{p}, \tau\right)$. In this sense,
the coordinate form of the map \mathcal{A} associated with an r-th order vector field is given by $X^{i}\left(x^{j}\right)$ and

$$
\begin{equation*}
\Phi^{a}=\Phi^{a}\left(x^{i}, y^{p}, z_{\alpha}^{a}\right) \quad 0 \leq|\alpha| \leq r, \tag{1.11}
\end{equation*}
$$

where α is a multi-index, whose range is the dimension of the fiber of E_{1}.
The inclusion $T \mathcal{F}\left(E_{1}, E_{2}\right) \subset \mathcal{F}\left(T E_{1} \rightarrow T M, T E_{2} \rightarrow T M\right)$ defines the second tangent bundle $\operatorname{TTF}\left(E_{1}, E_{2}\right)$ of $\mathcal{F}\left(E_{1}, E_{2}\right)$, [1], which turns out to be a smooth space. We can easily see that the usual geometric structures of the classical second tangent bundle (such as the canonical involution and vertical inclusion) can be naturally extended to our smooth spaces $\mathcal{F}\left(E_{1}, E_{2}\right)$.

A projectable vector field A on $\mathcal{F}\left(E_{1}, E_{2}\right)$ is said to be differentiable if the rule $\left.T A\left(\left.\frac{\partial}{\partial t} \right\rvert\, c\right)=\frac{\partial}{\partial t} \right\rvert\,(A \circ c)$ defines a smooth map $T A: T \mathcal{F}\left(E_{1}, E_{2}\right) \rightarrow \operatorname{TT\mathcal {F}}\left(E_{1}, E_{2}\right)$. One sees easily that every r-th order vector field is differentiable, [1].

Given two differentiable vector fields A, B on $\operatorname{T\mathcal {F}}\left(E_{1}, E_{2}\right)$ projectable over A^{0}, B^{0}, their bracket $[A, B]: \mathcal{F}\left(E_{1}, E_{2}\right) \rightarrow T \mathcal{F}\left(E_{1}, E_{2}\right)$ is a projectable vector field over $\left[A^{0}, B^{0}\right]$ defined by means of the so-called strong difference

$$
\begin{equation*}
[A, B]=T B \circ A \div T A \circ B \tag{1.12}
\end{equation*}
$$

where \div is a special operation based on the geometry of the second tangent bundle, [1], [6], [8].

Let B be an s-th order vector field with associated map $Y^{i}\left(x^{j}\right)$ and

$$
\begin{equation*}
\Psi^{a}\left(x^{i}, y^{p}, z_{\beta}^{a}\right), \quad 0 \leq|\beta| \leq s \tag{1.13}
\end{equation*}
$$

In [1] it is deduced that the bracket of (8) and (10) has order $r+s$. To express its associated map, we need the concept of formal derivatives of a smooth function $f: \mathcal{F} J^{r}\left(E_{1}, E_{2}\right) \rightarrow$ \mathbb{R}. The rule

$$
\begin{equation*}
D f\left(j_{y}^{r+1} \phi\right)=\left(d f\left(j^{r} \phi\right)\right)_{y} \tag{1.14}
\end{equation*}
$$

defines a map

$$
\begin{equation*}
D f: \mathcal{F} J^{r+1}\left(E_{1}, E_{2}\right) \rightarrow V^{*} E_{1} \tag{1.15}
\end{equation*}
$$

called the formal differential of f. For the coordinate vector fields $\frac{\partial}{\partial y^{p}}$ we obtain the formal derivatives

$$
\begin{equation*}
D_{p} f=\left\langle D f, \frac{\partial}{\partial y^{p}}\right\rangle=\frac{\partial f}{\partial y^{p}}+\frac{\partial f}{\partial z^{a}} z_{p}^{a}+\cdots+\frac{\partial f}{\partial z_{\alpha}^{a}} z_{\alpha+p}^{a} \tag{1.16}
\end{equation*}
$$

By iteration, we introduce $D_{\alpha}: \mathcal{F} J^{r+|\alpha|}\left(E_{1}, E_{2}\right) \rightarrow \mathbb{R}$, for every multi-index α. According to [1], the map associated to $[A, B]$ is given by $\left[A^{0}, B^{0}\right]$ and

$$
\begin{equation*}
\frac{\partial \Psi^{a}}{\partial x^{i}} X^{i}+\frac{\partial \Psi^{a}}{\partial z^{b}} \Phi^{b}+\cdots+\frac{\partial \Psi^{a}}{\partial z_{\beta}^{b}} D_{\beta} \Phi^{b}-\frac{\partial \Phi^{a}}{\partial x^{i}} Y^{i}-\frac{\partial \Phi^{a}}{\partial z^{b}} \Psi^{b}-\cdots-\frac{\partial \Phi^{a}}{\partial z_{\alpha}^{b}} D_{\alpha} \Psi^{b} . \tag{1.17}
\end{equation*}
$$

We conclude this section by a lemma. Consider two differentiable vector fields A, B over A^{0}, B^{0} and a function $f \in C^{\infty}(M, \mathbb{R})$. Then $f A$ is a differentiable vector field as well.
1.1 Lemma. It holds $[f A, B]=f[A, B]-\left(B^{0} f\right) A$.

Proof. Let $B(\phi)=\left.\frac{\partial}{\partial t}\right|_{0} g(t), \phi \in \mathcal{F}\left(E_{1}, E_{2}\right)$. Then we have $T(f A)\left(\left.\frac{\partial}{\partial t}\right|_{0} g(t)\right)=\left.\frac{\partial}{\partial t}\right|_{0} f((p o$ $g)(t)) A(g(t))=\left(B^{0} f\right) A+f T A(B(\phi))$. So, our claim follows from (9).

2 Projectable tangent valued forms on $\mathcal{F}\left(E_{1}, E_{2}\right)$

We start with a more general concept. Let $V \rightarrow M$ be a vector bundle.
2.1 Definition. A tangent valued form of type V on $\mathcal{F}\left(E_{1}, E_{2}\right)$ is defined to be a map $A: \mathcal{F}\left(E_{1}, E_{2}\right) \times_{M} V \rightarrow T \mathcal{F}\left(E_{1}, E_{2}\right)$, which is linear in the second factor and satisfies the following three conditions: (i) $\pi \circ A=p r_{1}$, (ii) there exists a linear base-preserving morphism $A^{0}: V \rightarrow T M$ which makes the following diagram commutative

(iii) for every C^{∞}-section $s: M \rightarrow V$, the induced vector field $A s$ in $\mathcal{F}\left(E_{1}, E_{2}\right)$ is smooth.

Clearly, the lifting $s \mapsto A s$ is $C^{\infty}(M, \mathbb{R})$-linear, i.e., for every smooth function f : $M \rightarrow \mathbb{R}$, it holds $A(f s)=f A s$. We say that A is differentiable if $A s$ is a differentiable vector field for every C^{∞}-section s. Furthermore, A is said to have order r, if $A s$ is an r-th order vector field for every C^{∞}-section s. Such a form A defines the associated map $\mathcal{A}: \mathcal{F} J^{r}\left(E_{1}, E_{2}\right) \times_{M} V \rightarrow S\left(T E_{1}, T E_{2}\right)$ by

$$
\begin{equation*}
\mathcal{A}\left(j_{y}^{r} \phi, v\right)=\widehat{A(\phi, v)}\left(T_{A^{0}(v)} E_{1}\right)_{y} \tag{2.19}
\end{equation*}
$$

Let w^{λ} be some additional linear fiber coordinate on V. Then, the coordinate form of \mathcal{A} is given by $A_{\lambda}^{i}(x) v^{\lambda}$ and

$$
\begin{equation*}
A_{\lambda}^{a}\left(x^{i}, y^{p}, z_{\alpha}^{a}\right) v^{\lambda} \quad 0 \leq|\alpha| \leq r \tag{2.20}
\end{equation*}
$$

Obviously, every r-th order tangent valued form of type V is differentiable.
Consider an arbitrary mapping Φ transforming C^{∞}-sections of V into vector fields on $\mathcal{F}\left(E_{1}, E_{2}\right)$. The following lemma will be of fundamental importance in $\S 4$.
2.2 Lemma. If Φ is $C^{\infty}(M, \mathbb{R})$-linear, then there exists a tangent valued form A of type V such that $\Phi s=A s$ for all $s \in C^{\infty} V$.

Proof. We first deduce that $s \mid U=0$, for an open subset $U \subset M$, implies $\Phi(s) \mid p^{-1}(U)=0$. Indeed, for every $x \in U$ we take a function $f \in C^{\infty}(M, \mathbb{R})$ such that $f(x)=0$ and $f \mid M \backslash U=1$. Then $s=f s$, so that $\Phi(s)(\phi)=f(x) \Phi(s)(\phi)=0, \phi \in p^{-1}(x)$. By linearity, we now obtain that $s_{1}\left|U=s_{2}\right| U$ implies $\left.\phi\left(s_{1}\right)\left|p^{-1}(U)=\phi\left(s_{2}\right)\right| p^{-1}(U)\right)$. Further, let $s\left(x_{0}\right)=0$. On a neighbourhood U of x_{0} we have $s(x)=s^{\lambda}(x) e_{\lambda}(x), s^{\lambda}\left(x_{0}\right)=0$, where e_{λ} are C^{∞}-sections of V over U such that $e_{\lambda}(x)$ constitute a basis of each V_{x}. Take a neighbourhood W of x_{0} satisfying $\bar{W} \subset U$ and $g \in C^{\infty}(M, \mathbb{R})$ with $g \mid W=1$, supp $g \subset U$. Then $g^{2} s|W=s| W$ and $g s^{\lambda}$ and $g e_{\lambda}$ are globally defined. Hence $\Phi(s)(\phi)=$ $\left(g s^{\lambda}\left(x_{0}\right)\right) \Phi\left(g e_{\lambda}\right)(\phi)=0$. By linearity, $\Phi(s)(\phi)$ depends on $s(x)$ only. This induces the required map $\mathcal{F}\left(E_{1}, E_{2}\right) \times_{M} V \rightarrow T \mathcal{F}\left(E_{1}, E_{2}\right)$.

Now we restrict ourselves to the case $V=\bigwedge^{k} T M$, which is the main subject of the present paper.
2.3 Definition. A projectable tangent valued k-form on $\mathcal{F}\left(E_{1}, E_{2}\right)$ is defined to be a tangent valued form of type $\bigwedge^{k} T M$.

To simplify the notation, we shall write $A\left(X_{1}, \ldots, X_{k}\right)$ instead of $A\left(X_{1} \wedge \cdots \wedge X_{k}\right)$, for $X_{1}, \ldots, X_{k} \in C^{\infty} T M$. The map $\mathcal{A}: \mathcal{F} J^{r}\left(E_{1}, E_{2}\right) \times_{M} \bigwedge^{k} T M \rightarrow S\left(T E_{1}, T E_{2}\right)$ associated with an r-th order projectable tangent valued k-form A will be expressed by $A_{j_{1} \ldots j_{k}}^{i}(x)$ and

$$
\begin{equation*}
A_{j_{1} \ldots j_{k}}^{a}\left(x^{i}, y^{p}, z_{\alpha}^{a}\right) \quad 0 \leq|\alpha| \leq r, \tag{2.21}
\end{equation*}
$$

which are antisymmetric in all subscripts.

3 The Frölicher-Nijenhuis bracket

Let A and B be differentiable projectable tangent valued forms on $\mathcal{F}\left(E_{1}, E_{2}\right)$ of degree k and l, respectively. Starting from a formula for the classical Frölicher-Nijenhuis bracket [9], [6], we define a mapping $[A, B]$ of $C^{\infty}\left(\bigwedge^{k+l} T M\right)$ into vector fields on $\mathcal{F}\left(E_{1}, E_{2}\right)$ by

$$
\begin{equation*}
[A, B]\left(X_{1}, \ldots, X_{k+l}\right)= \tag{3.22}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{1}{k!l!} \sum_{\sigma} \operatorname{sign} \sigma\left[A\left(X_{\sigma(1)}, \ldots, X_{\sigma(k)}\right), B\left(X_{\sigma(k+1)}, \ldots, X_{\sigma(k+l)}\right)\right] \\
& +\frac{-1}{k!(l-1)!} \sum_{\sigma} \operatorname{sign} \sigma B\left(\left[A^{0}\left(X_{\sigma(1)}, \ldots, X_{\sigma(k)}\right), X_{\sigma(k+1)}\right], X_{\sigma(k+2)}, \ldots, X_{\sigma(k+l)}\right) \\
& +\frac{(-1)^{k l}}{(k-1)!l!} \sum_{\sigma} \operatorname{sign} \sigma A\left(\left[B^{0}\left(X_{\sigma(1)}, \ldots, X_{\sigma(l)}\right), X_{\sigma(l+1)}\right], X_{\sigma(l+2)}, \ldots, X_{\sigma(k+l)}\right) \\
& +\frac{(-1)^{k-1}}{(k-1)!(l-1)!2} \sum_{\sigma} \operatorname{sign} \sigma B\left(A^{0}\left(\left[X_{\sigma(1)}, X_{\sigma(2)}\right], \ldots, X_{\sigma(k+1)}\right), X_{\sigma(k+2)}, \ldots, X_{\sigma(k+l)}\right)
\end{aligned}
$$

$$
+\frac{(-1)^{(k-1) l}}{(k-1)!(l-1)!2} \sum_{\sigma} \operatorname{sign} \sigma A\left(B^{0}\left(\left[X_{\sigma(1)}, X_{\sigma(2)}\right], \ldots, X_{\sigma(l+1)}\right), X_{\sigma(l+2)}, \ldots, X_{\sigma(k+l)}\right)
$$

3.1 Proposition. The map (17) is $C^{\infty}(M, \mathbb{R})$-linear.

Proof. It suffices to deduce that if we multiply X_{1} by $f \in C^{\infty}(M, \mathbb{R})$ on the left hand side of (17), then the right hand side is also multiplied by f. Using Lemma 1.1 we reduce it to a combinatorial question, which can be answered in the following way. In the case when E_{1} is the trivial fibering $M \rightarrow M$, we have $\mathcal{F}\left(E_{1}, E_{2}\right)=E_{2}$ and formula (17) defines the Frölicher-Nijenhuis bracket of two classical projectable tangent valued forms on E_{2} in the sense of the second author, [9]. Here, we know that (17) well defines the Frölicher-Nijenhuis bracket as a projectable tangent valued $(k+l)$-form. But the combinatorics is the same in both situations, which proves our claim.

Applying Lemma 2.2, we obtain directly.
3.2 Proposition. For every differentiable projectable tangent valued k-form A and l-form B on $\mathcal{F}\left(E_{1}, E_{2}\right),[A, B]$ is a projectable tangent valued $(k+l)$-form on $\mathcal{F}\left(E_{1}, E_{2}\right)$, which will be called the Frölicher-Nijenhuis ($F-N$ for short) bracket of A and B. The following diagram commutes

where $\left[A^{0}, B^{0}\right]$ is the classical F-N bracket.
In [1] Cabras and the first author introduced the canonical involution \varkappa of the iterated tangent bundle $\operatorname{TT\mathcal {F}}\left(E_{1}, E_{2}\right)$. If A is a differentiable vector field on $\mathcal{F}\left(E_{1}, E_{2}\right)$, then $\varkappa \circ T A$ is a vector field on $T A$.
3.3 Definition. A vector field A on $\mathcal{F}\left(E_{1}, E_{2}\right)$ is said to be twice differentiable if $\varkappa \circ T A$ is a differentiable vector field on $T \mathcal{F}\left(E_{1}, E_{2}\right)$. A projectable tangent valued k form A is said to be twice differentiable if $A\left(X_{1}, \ldots, X_{k}\right)$ is a twice differentiable vector field on $\mathcal{F}\left(E_{1}, E_{2}\right)$, for all $X_{1}, \ldots, X_{k} \in C^{\infty} T M$.

If A and B are twice differentiable vector fields on $\mathcal{F}\left(E_{1}, E_{2}\right)$, then the bracket $[A, B]$ is differentiable. Clearly, every finite order vector field is twice differentiable.

There is a proof of the Jacobi identity for classical vector fields on a manifold M, which is based on the concept of strong difference and on the geometry of the third tangent bundle TTTM, [11]. That approach implies directly that every triple of twice differentiable vector fields on $\mathcal{F}\left(E_{1}, E_{2}\right)$ satisfies the Jabobi identity. Then we obtain analogously to the classical case
3.4 Proposition. The twice differentiable projectable tangent valued forms on $\mathcal{F}\left(E_{1}, E_{2}\right)$ constitute a graded Lie algebra for the F-N bracket.

Let A and B be projectable tangent valued forms on $\mathcal{F}\left(E_{1}, E_{2}\right)$ of order r and s, respectively. By (12), the order of $[A, B]$ is $r+s$.
3.5 Proposition. Let (16) be the associated map of A and $B_{j_{1} \ldots j_{l}}^{i}(x), B_{j_{1} \ldots j_{l}}^{a}\left(x^{i}, y^{p}, z_{\beta}^{a}\right)$, with $0 \leq|\beta| \leq s$, be the associated map of B. Then, the associated map of $[A, B]$ is given by $\left[A^{0}, B^{0}\right]$ and the antisymmetrization in i_{1}, \ldots, i_{k+l} of the following expression

$$
\begin{align*}
& A_{i_{1} \ldots i_{k}}^{i} \frac{\partial B_{i_{k+1} \ldots i_{k+l}}^{a}}{\partial x^{i}}+A_{i_{1} \ldots i_{k}}^{b} \frac{\partial B_{i_{k+1} \ldots i_{k+l}}^{a}}{\partial z^{b}}+\cdots+D_{\beta} A_{i_{1} \ldots i_{k}}^{b} \frac{\partial B_{i_{k+1} \ldots i_{k+l}}^{a}}{\partial z_{\beta}^{b}} \tag{3.23}\\
& -(-1)^{k l}\left(B_{i_{1} \ldots i_{l}}^{i} \frac{\partial A_{i_{l+1} \ldots i_{k+l}}^{a}}{\partial x^{i}}+B_{i_{1} \ldots i_{l}}^{b} \frac{\partial A_{i_{l+1} \ldots i_{k+l}}^{a}}{\partial z^{b}}+\cdots+D_{\alpha} B_{i_{1} \ldots i_{l}}^{b} \frac{\partial A_{i_{l+1} \ldots i_{k+l}}^{a}}{\partial z_{\alpha}^{b}}\right) \\
& -k A_{i_{1} \ldots i_{k-1} i}^{a} \frac{\partial B_{i_{k+1} \ldots i_{k+l}}^{a}}{\partial x^{i_{k}}}+(-1)^{k l} l B_{i_{1} \ldots i_{l-1} i}^{i} \frac{\partial A_{i_{l+1} \ldots i_{k+l}}^{i}}{\partial x^{i_{l}}}
\end{align*}
$$

Proof. This follows directly from (1.17) and (3.22).

4 Connections on $\mathcal{F}\left(E_{1}, E_{2}\right)$

In accordance with [1], a connection Γ on $\mathcal{F}\left(E_{1}, E_{2}\right)$ can be defined as a differentiable projectable tangent valued 1-form on $\mathcal{F}\left(E_{1}, E_{2}\right)$ over id ${ }_{T M}$. On one hand, we have the curvature $C \Gamma$ of Γ introduced in [1]. On the other hand, we can construct the F-N bracket $[\Gamma, \Gamma]$.
4.1 Proposition. It holds $[\Gamma, \Gamma]=2 C \Gamma$.

Proof. For 1-forms A and B, formula (3.22) reads

$$
\begin{gather*}
{[A, B](X, Y)=} \tag{4.24}\\
=[A(X), B(Y)]+[B(X), A(Y)]+A\left(B^{0}([X, Y])\right)+B\left(A^{0}([X, Y])\right) \\
-A\left(\left[X, B^{0}(Y)\right]\right)-A\left(\left[B^{0}(X), Y\right]\right)-B\left(\left[X, A^{0}(Y)\right]\right)-B\left(\left[A^{0}(X), Y\right]\right)
\end{gather*}
$$

Setting $A=B=\Gamma, A^{0}=B^{0}=\mathrm{id}$, we obtain $2[\Gamma(X), \Gamma(Y)]-2 \Gamma([X, Y])$. By Proposition 9 from [1], this is $2 C \Gamma(X, Y)$.

Let Γ be a connection and A a differentiable projectable tangent valued k-form on $\mathcal{F}\left(E_{1}, E_{2}\right)$. The following definition generalizes [9].
4.2 Definition. The F-N bracket $[\Gamma, A]$ is said to be the covariant exterior differential of A with respect to Γ.
4.3 Proposition. (Bianchi identity) Let Γ be a twice differentiable connection on $\mathcal{F}\left(E_{1}, E_{2}\right)$. Then $[\Gamma, C \Gamma]=0$.

Proof. The relation $[\Gamma,[\Gamma, \Gamma]]=0$ follows directly from the graded Jacobi identity.
Consider another connection Δ on $\mathcal{F}\left(E_{1}, E_{2}\right)$.
4.4 Definition. The F-N bracket $[\Gamma, \Delta]$ is said to be the mixed curvature of Γ and Δ.
4.5 Proposition. It holds $[\Gamma, \Delta](X, Y)=[\Gamma(X), \Delta(Y)]+[\Delta(X), \Gamma(Y)]-\Gamma([X, Y])-$ $\Delta([X, Y])$, for every $X, Y \in C^{\infty} T M$.

Proof. This follows from (19).

References

[1] A. Cabras, I. Kolář: Connections on some functional bundles, to appear.
[2] A. Frölicher: Smooth structures, Category theory 1981, LNM 962, SpringerVerlag, 1982, 69-81.
[3] A. Frölicher, A. Nijenhuis: Theory of vector valued differential forms, I, Indagat. Math., 18 (1956), 338-359.
[4] A. Jadczyk, M. Modugno: An outline of a new geometrical approach to Galilei general relativistic quantum mechanics, to appear.
[5] A. Jadczyk, M. Modugno: Galilei general relativistic quantum mechanics, pre-print 1993, 1-220.
[6] I. Kolář: On the second tangent bundle and generalized Lie derivatives, Tensor, N.S. 38 (1982), 98-102.
[7] I. Kolář, P. Michor, J. Slovák: Natural operations in differential geometry, Springer-Verlag, 1993.
[8] Y. Kosmann-Schwarzbach: Vector fields and generalized vector fields on fibred manifolds, LNM 792 (1982), Springer-Verlag, 307-355.
[9] L. Mangiarotti, M. Modugno: Graded Lie algebras and connections on fibred spaces, Jour. Math. Pur. Appl. 83 (1984), 111-120.
[10] P. Michor: Gauge theory for fiber bundles, Bibliopolis, Napoli, 1991.
[11] A. Vanžurová: On geometry of the third order tangent bundle, Acta Universitatis Palackianae Olomucensis, Mathematica XXIV, 82 (1985), 81-96.

