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Abstract

The geometric structure of phase space of a classical particle in the Einstein
general relativistic framework is studied. Namely, the jet space of time-like sub-
manifolds of space-time is introduced and the associated connections, jet–contact
and contact structure are analysed. Moreover, the electromagnetic field is incorpo-
rated in the gravitational structures. A rigorous mathematical treatment of units
of measurement is included as well.

The above setting is regarded as a framework aimed at extending to the Einstein
case a recent quantisation procedure in the Galilei case, based on jets, connections
and co–symplectic forms. According to this purpose, a structural comparison be-
tween Einstein’s and Galilei’s frameworks is performed.
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Introduction

Recently, a covariant geometric approach to general relativistic quantum mechanics
based on jets, general connections and co–symplectic forms has been presented in a Galilei
general relativistic background (i.e. in a curved space–time with absolute time). The case
of a scalar particle has been studied in [4], [5]; later, this formulation has been extended
to a spin particle in [1].

The authors started from Galilei’s general relativistic model just as first step toward
Einstein’s case. Actually, several interesting techniques developed in the Galilei case can
be fruitfully used also in the Einstein case, after a certain adjustment. This paper is aimed
at transferring to the Einstein space–time the basic geometrical techniques developed in
the Galilei case, in view of a covariant formulation of quantum mechanics in the Einstein
framework by an approach analogous to [1], [4], [5].

The Galilei space–time is assumed to be a fibred manifold equipped with a vertical
Riemannian metric and a fibre preserving linear connection. On the other hand, the Ein-
stein space time is assumed to be a time orientable Lorentzian manifold. A fundamental
role in the classical and quantum theory is played by the classical phase space, namely by
the first jets of sections in the Galilei case and by the first jets of time–like submanifolds
in the Einstein case.

Essentially, the goal of the present paper is to show how typical geometrical construc-
tions arising from the fibring in the Galilei case can be recovered through the Lorentzian
metric in the Einstein case. The price we pay consists in the fact the several objects
living on space–time in the Galilei case have their counterpart living on the jet space in
the Einstein case. Actually, this fact encodes one of the main difficulties for a covariant
quantum theory in the Einstein background.

Summarising the main results of the paper, we obtain the Einstein analogues of the
differential of the absolute time function, of the tangent sequence of space–time fibred
manifold, of its splitting over the jet space, of the first and second order connections on
the jet bundle and of the co–symplectic form. These objects have a key role in the Galilei’s
case, hence we expect they will be an essential tool for pursuing the programme toward
a covariant quantum mechanics in Einstein’s case.

Our approach yields a structural comparison between Galilei’s and Einstein’s settings.

Throughout the paper all manifolds and maps are assumed to be smooth.

We shall be involved with non–linear connections on fibred manifolds. So, we recall a
few basic notions and results (see [14]).

Let us consider a fibred manifold q : F → B. We denote a fibred chart of F by (xϕ, yi)
and the induced chart of TF by (xϕ, yi, ẋϕ, ẏi).

We recall that a (general) connection can be defined as a tangent valued form

C : F → T ∗B ⊗
F
TF

projectable over idTB. The connection C is also characterised by the vertical projection,
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or, equivalently, by the vertical valued form

νC : TF → V F , νC : F → T ∗F ⊗
F
V F .

We have the coordinate expressions

C = dϕ ⊗ (∂ϕ + Cϕ
i∂i) , νC = (di − Cϕ

idϕ)⊗ ∂i , Cϕ
i ∈ C∞(F ) .

The curvature and the torsion of C can be expressed in a unified way by means of
the Frölicher-Nijenhuis bracket [ , ]. The torsion requires the choice of a vertical valued
1–form

Φ : F → T ∗B ⊗
F
V F .

Actually, in most cases, the geometrical structure of q : F → B exhibits a distinguished
Φ; for instance, the standard torsion of linear connections on a manifold M are taken
with respect to the basic form idM : M → T ∗M ⊗M TM . Curvature and torsion fulfill
generalised first and second Bianchi’s identities, which are again expressed through the
Frölicher-Nijenhuis bracket.

Thus, the curvature and the torsion with respect to Φ are defined, respectively, as the
2–forms

RC = 1
2

[C,C] : F → ∧2T ∗B ⊗
F
V F , TC = [C,Φ] : F → ∧2T ∗B ⊗

F
V F ,

with coordinate expressions, respectively,

RC = (∂λCµ
i + Cλ

j ∂jCµ
i) dλ ∧ dµ ⊗ ∂i ,(0.1)

TC = (∂λΦµ
i + Cλ

j ∂jΦµ
i − Φµ

j ∂jCλ
i) dλ ∧ dµ ⊗ ∂i .(0.2)

We assume the following fundamental unit spaces [4]:
(1) the oriented 1–dimensional vector space T over IR of time intervals ,
(2) the positive 1–dimensional semi–vector space L over IR+ of lengths ,
(3) the positive 1–dimensional semi–vector space M over IR+ of masses .
A time unit of measurment is defined to be an oriented basis of T or its dual

u0 ∈ T , u0 ∈ T∗ .

Further details about the mathematical formalism on units of measurement can be found
in [1], [5].

We shall be involved with the following construction. LetM be a manifold and consider
the vector bundle πM : T∗ ⊗ TM → M . The projection TπM : T (T∗ ⊗ TM) → TM can
be regarded as vector valued 1-form

σ : T∗ ⊗ TM → T ∗(T∗ ⊗ TM) ⊗
T∗⊗TM

TM ;
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its coordinate expression is

(0.3) σ = dϕ ⊗ ∂ϕ .

1 Galilei’s case

In this section we briefly recall the basic geometric constructions on Galilei’s general
relativistic space–time introduced in [4], [5], along with some additional results on the
correspondence between space–time connections and connections on the phase space and
the ‘universal’ electric and magnetic fields.

1.1 Gravitational structures

We start with the phase space and the gravitational structures in the Galilei frame-
work.

G.1 Assumption. We assume space–time to be a 4-dimensional oriented fibred man-
ifold

t : E → T ,

over a 1-dimensional oriented affine space T (time), associated with the vector space
T, equipped with a scaled Riemannian metric on the fibres, i.e. with a scaled vertical
Riemannian metric,

g : E → L2 ⊗ V ∗E ⊗
E
V ∗E .

We observe that g can be regarded as a non-scaled Riemannian metric on the vector
bundle L∗ ⊗ V E → E.

The typical space–time coordinate charts, adapted to the fibring, to a time unit of
measurement u0 and to the space–time orientation, will be denoted by (x0, xi). Through-
out this section, the index 0 will refer to the base space, Latin indices i, j, p, . . . = 1, 2, 3
will refer to the fibres, while Greek indices λ, µ, ϕ, · · · = 0, 1, 2, 3 will refer both the base
space and the fibres.

In coordinates

g = gij ď
i ⊗ ďj , gij : E → L2 ⊗ IR , |g| ≡ det(gij) > 0 ,

where the check ‘ˇ’ denotes vertical restriction.
A motion in E is defined to be a section s : T → E.
The phase space is defined to be the first jet space of sections π1

0 : JE ≡ J1E → E. A
relevant feature of the Galilei case is due to the affine structure of the bundle JE → E.
A first consequence is the fibred isomorphism over JE

VEJE ' JE ×
E
T∗ ⊗ V E .
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We deal with the natural complementary jet–contact maps

D : JE × T→ TE , ϑ : JE ×
E
TE → V E ,

or equivalently
D : JE → T∗ ⊗ TE , ϑ : JE → T ∗E ⊗

E
V E ,

which split the natural exact sequence

(1.1) 0 −−−→ V E −−−→ TE
dt−−−→ E × T −−−→ 0 ,

through the exact sequence over JE

(1.2) 0 −−−→ JE × T D−−−→ JE ×
E
TE

ϑ−−−→ JE ×
E
V E −−−→ 0 .

We have the coordinate expressions

(1.3) D = u0 ⊗D0 = u0 ⊗ (∂0 + xi0∂i) , ϑ = ϑi ⊗ ∂i = (di − xi0d0)⊗ ∂i ,

where (x0, xi, xi0) is the induced coordinate chart on JE.

A connection K on the bundle TE → E can be expressed, equivalently, by a tangent
valued form, or by a vertical valued form

K : TE → T ∗E ⊗
TE

TTE , νK : TE → T ∗TE ⊗
TE

TE ,

respectively, with coordinate expressions

(1.4) K = dϕ ⊗ (∂ϕ +Kϕ
µ∂̇µ) , νK = (ḋµ −Kϕ

µdϕ)⊗ ∂µ , Kϕ
µ ∈ C∞(TE) ,

where (xϕ, ẋϕ) is the induced coordinate chart on TE.
The connection K is linear if and only if its coordinate expression is of the type

(1.5) Kϕ
λ = Kϕ

λ
ψẋ

ψ , Kϕ
λ
ψ ∈ C∞(E) .

If the connection K is linear, then we can define the vertical projection νΛ∗⊗K :
T (T∗ ⊗ TE) → T∗ ⊗ TE, where Λ is the canonical linear flat connection on T. For the
sake of brevity, we shall use the same symbol and write νK ≡ νΛ∗⊗K . In the induced
coordinate chart (xϕ, ẋϕ0 ) on T∗ ⊗ TE, we have

(1.6) νK = νΛ∗⊗K = u0 ⊗ (ḋµ0 −Kϕ
µ
ψẋ

ψ
0 d

ϕ)⊗ ∂µ .

Analogously, a connection Γ on the affine bundle JE → E can be expressed, equiva-
lently, by a tangent valued form, or by a vertical valued form

Γ : JE → T ∗E ⊗
JE
TJE , νΓ : JE → T∗ ⊗ T ∗JE ⊗

JE
V E ,
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respectively, with coordinate expressions

(1.7) Γ = dϕ ⊗ (∂ϕ + Γϕ
i
0∂

0
i ) , νΓ = u0 ⊗ (di0 − Γϕ

i
0d
ϕ)⊗ ∂i , Γϕ

i
0 ∈ C∞(JE) .

The connection Γ is affine if and only if its coordinate expression is of the type

Γϕ
i
0 = Γϕ

i
0

0
jx

j
0 + Γϕ

i
0

0
0 , Γϕ

i
0

0
α ∈ C∞(E) .

1.1 Theorem. For any linear connection K on TE, the map

νΓ = ϑ ◦ νK ◦ TD

given by the following diagram

TJE
νΓ - V JE

'
- JE ×

E
(T∗ ⊗ V E)

JE ×
E
T (T∗ ⊗ TE)

(πJE, TD)

?

(idJE ×νK)
- JE ×

E
(T∗ ⊗ TE)

(idJE ×ϑ)6

turns out to be a connection on the bundle JE → E with coordinate expression

(1.8) Γϕ
i
0 = Kϕ

i
jx
j
0 +Kϕ

i
0 − xi0(Kϕ

0
jx
j
0 +Kϕ

0
0) .

Thus, we have obtained a map

χ : K 7→ Γ .

Proof. It can be proved in coordinates by using (1.3), (1.6) and (1.7). QED

A linear connection K is said to be time–preserving if ∇K(dt) = 0; in coordinates it
reads K0

ϕψ = 0.

1.2 Corollary. If K is time–preserving, then the corresponding Γ is affine. More-
over, the correspondence between time–preserving linear connections on TE and affine
connections on JE is one–to–one [5].

1.3 Corollary. If K is time–preserving and torsion free, then the corresponding Γ is
torsion free, with respect to the scaled vertical valued form ϑ on JE.

The curvatures (see Introduction), of a connection K on TE and of a connection Γ
on JE are, respectively, the 2–forms

RK = 1
2

[K,K] : TE → ∧2T ∗E ⊗
E
TE , RΓ = 1

2
[Γ,Γ] : JE → T∗ ∧2 T ∗E ⊗

E
V E ,

whose coordinate expressions can be easily computed by (0.1).
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1.4 Theorem. If Γ is the connection on JE induced by a linear connection K on
TE, then the we have

RΓ = ϑ ◦RK ◦D ,

according to the following commutative diagram

JE ×
E

(T∗ ⊗ TE)
idJE ×RK- JE ×

E
(∧2T ∗E ⊗

E
T∗ ⊗ TE)

JE

(idJE, D)

?

RΓ

- ∧2T ∗E ⊗
E
T∗ ⊗ V E

ϑ
6

i.e. in coordinates

(RΓ)λµ
i
0 = (RK)λµ

i
jx
j
0 + (RK)λµ

i
0 − xi0

(
(RK)λµ

0
jx
j
0 + (RK)λµ

0
0

)
.

Proof. It can be proved by using (1.8) and the coordinate expressions of RK and
RΓ. QED

We observe that a connection K on TE and a Riemannian metric h on E would
induce the scaled 2–form Ω(h,K) on T∗ ⊗ TE given by νK∧̄σ, where σ is defined in the
Introduction and ∧̄ denotes the wedge product followed by the contraction through the
metric h. But, in our framework, we cannot define νK∧̄σ since our metric g is only vertical;
we need a projection of TE on V E. Actually, we can use the projection ϑ : JE×E TE →
V E.

Thus, we set

Ω(g,K) := (ϑ ◦ νK)∧̄(ϑ ◦ σ) : JE ×
E
T∗ ⊗ TE → T∗ ⊗ L2 ⊗ ∧2T ∗(T∗ ⊗ TE) .

In coordinates

(1.9) Ω(g,K) = giju
0 ⊗

(
ḋi0 − xi0ḋ0

0 − (Kϕ
i − xi0Kϕ

0)dϕ
)
∧ ϑj .

On the other hand, a connection Γ on JE and the vertical metric g yield the natural
contact scaled 2–form Ω(g,Γ) on JE, [5],

Ω(g,Γ) = νΓ∧̄ϑ : JE → T∗ ⊗ L2 ⊗ ∧2T ∗JE

with coordinate expression

(1.10) Ω(g,Γ) = giju
0 ⊗ (di0 − Γϕ

i
0d
ϕ) ∧ ϑj .
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1.5 Theorem. If Γ is the connection on JE associated with a linear connection K
on TE, then

Ω(g,Γ) = (idJE,D)∗Ω(g,K) .

Proof. The pullback of the form Ω(g,K) with respect to (idJE,D) is the form

(idJE,D)∗Ω(g,K) : JE → T∗ ⊗ L2 ⊗ ∧2T ∗JE .

The identification of Ω(g,Γ) and (idJE,D)∗Ω(g,K) follows from (1.3) (1.8), (1.9) and
(1.10). QED

In [7] all 2–forms on JE generated naturally by a vertical Riemannian metric and by
a time–preserving linear connection have been classified by using naturality methods of
differential geometry, [8], [9]. It has been proved that all such forms are constant multiples
of the form Ω(g,Γ).

The form Ω(g,Γ) is non-degenerate, namely

dt ∧ Ω(g,Γ) ∧ Ω(g,Γ) ∧ Ω(g,Γ) : JE → T∗2 ⊗ L6 ⊗ ∧7T ∗JE

is a scaled volume form on JE.

1.6 Theorem. In the case when K is torsion free time–preserving, the 2–form Ω(g,Γ)
is closed if and only if (see [4], [5])

∇g = 0, Ri
λ
j
µ = Rj

µ
i
λ .QED

G.2 Assumption. Space–time is assumed to be equipped with a torsion free time–
preserving connection K\, called gravitational ; moreover, we postulate the following con-
dition as a field equation for g and K\

dΩ(g,Γ\) = 0 ,

where

Γ\ :=χ ◦K\ .

Thus, under assumptions (G.1) and (G.2), the form

Ω\ := Ω(g,Γ)

turns out to be “co–symplectic”. This form encodes the main information arising from the
classical space–time background and is the source of the quantisation procedure presented
in [4], [5].

We recall that a second order connection on E is defined as a section

γ : JE → J2E ,
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where J2E is the space of second order jets of sections of E → T .
Moreover, we recall that D2 : J2E ↪→ T∗ ⊗ TJE turns out to be exactly the fibred

submanifold over JE, which makes the following diagram commutative

J2E
D2 - T∗ ⊗ TJE

JE

π2
1

? D
- T∗ ⊗ TE

id⊗Tπ1
0

?

T

π1

? 1T - T∗ ⊗ T

id⊗Tt

?

where D2 denotes the second order jet–contact map.
Therefore, by considering the inclusion D2, each second order connection γ can be

characterised as a scaled vector field

γ : JE → T∗ ⊗ TJE ,

which makes the following diagram commutative

JE
γ

- T∗ ⊗ TJE

JE

id

? D
- T∗ ⊗ TE

id⊗Tπ1
0

?

T

π1

? 1T - T∗ ⊗ T

id⊗Tt

?

In particular, a second order connection turns out to be a (first order) connection on
the fibred manifold JE → T .

Now, for each time–preserving connection K, the map [5],

γ :=D yΓ : JE → T∗ ⊗ TE

turns out to be a second order connection; moreover, it is uniquely characterised by

γ yΩ(g,Γ) = 0 .
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In particular, we are involved with the gravitational second order connection

γ :=D yΓ\ ,

which provides the equation of inertial motion of particles.

1.2 Electromagnetic field and geometric structure

So far, we have assumed on space–time the gravitational structure associated with the
vertical Riemannian metric g and the space–time connection K. Next, we introduce the
electromagnetic field.

G.3 Assumption. We assume the electromagnetic field to be a closed scaled 2-form
on E

F : E → (L1/2 ⊗M1/2)⊗ ∧2T ∗E .

We denote the local potential of F by A : E → (L1/2 ⊗ M1/2) ⊗ T ∗E. Thus, by
definition, we set

2dA = F .

We define the ‘universal’ electric and ‘universal’ magnetic fields to be the scaled forms
on JE

E := −D yF : JE → (T∗2 ⊗ L1/2 ⊗M1/2)⊗ T ∗E ,
B :=F + 2dt ∧ E : JE → (L1/2 ⊗M1/2)⊗ ∧2T ∗E .

Thus, we can write
F = −2dt ∧ E +B.

Hence, the electric and magnetic fields associated with an observer o : E → JE are
defined as the pullback forms

o∗E : E → (T∗ ⊗ L1/2 ⊗M1/2)⊗ T ∗E ,
o∗B : E → (L1/2 ⊗M1/2)⊗ ∧2T ∗E .

We stress that the universal electric field carries the full information of the electro-
magnetic field.

1.7 Remark. We have the coordinate expressions

F = 2F0jd
0 ∧ dj + Fijd

i ∧ dj = −2u0Ejd
0 ∧ ϑj +Bijϑ

i ∧ ϑj ,

and

E = Ejd
j + E0d

0 = Eiϑ
i , B = Bijd

i ∧ dj + 2B0jd
0 ∧ dj = Bijϑ

i ∧ ϑj ,
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12 J. Janyška and M. Modugno

where

Ej = −u0(F0j + Fhjx
h
0) E0 = −u0Fh0x

h
0 ,

Bij = Fij B0j = −Fhjxh0 .

Therefore, in a chart adapted to an observer o, the coordinate expressions of the
observed electric and magnetic fields are

o∗E = −u0F0jd
j o∗B = Fijd

i ∧ dj .

Next, we show that the electromagnetic field can be naturally incorporated into the
gravitational structures of the phase spase.

Namely, let us consider the following gravitational objects on the phase space JE:

Γ\ : JE → T ∗E ⊗
E
TJE , γ\ : JE → T∗ ⊗ TJE ,

Ω\ : JE → T∗ ⊗ L2 ⊗ ∧2T ∗JE ,

which fulfill the following structural relations

γ\ = D yΓ\ , Ω\ = νΓ\∧̄ϑ , γ\ yΩ\ = 0 , dΩ\ = 0 .

We are looking for total objects obtained correcting the gravitational objects by an
electromagnetic term, in such a way to preserve the above relations.

For this purpose we need a suitable coupling constant. So, we consider a particle with
a given mass and charge

m ∈M , q ∈ T∗ ⊗ L3/2 ⊗M1/2 ,

and refer to the coupling constant

q

m
∈ T∗ ⊗ L3/2 ⊗M∗1/2 .

We start from the obvious coupling of the electromagnetic field with the gravitational
co–symplectic 2–form on JE.

Accordingly, we define the total co–symplectic form to be

Ω := Ω\ +
q

2m
F : JE → T∗ ⊗ L2 ⊗ ∧2T ∗JE .

Here, the factor 1
2

is chosen in such a way to recover the standard normalization in
practical formulas.

Of course, we obtain

dΩ = 0 .
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We have
dt ∧ Ω ∧ Ω ∧ Ω = dt ∧ Ω\ ∧ Ω\ ∧ Ω\ .

So, the electromagnetic field does not contribute to the total volume form on the phase
space.

Moreover, in [5] the following result has been proved.

1.8 Theorem. There is a unique torsion free affine connection Γ and a unique second
order connection on the bundle JE → E

Γ = Γ\ + Γe , γ = γ\ + γe ,

such that
γ = D yΓ , Ω = νΓ∧̄ϑ , γ yΩ = 0 .

Namely, γe turns out to be the Lorentz force

γe =
q

m
g] ◦ Ě : JE → T∗2 ⊗ V E

and Γe the electromagnetic soldering form

Γe = − q

2m
g]2 ◦ (F − 2dt ∧ E) : JE → T ∗E ⊗

E
(T∗ ⊗ V E) ,

where g]2 denotes the metric isomorphism on the second component after vertical restric-
tion.

Moreover, the above objects fulfill the following equalities

γe = D yΓe , −Γe∧̄ϑ = Ωe .

We have the coordinate expressions

γe = − q

m
(F0

i + Fh
ixh0)u0 ⊗ ∂0

i , Γe = − q

2m
u0
(
(Fh

ixh0 + 2F0
i)d0 + Fj

idj
)
⊗ ∂0

i ,

hence

Γh
i
0k = Γ\h

i
0k , Γ0

i
0k = Γ\0

i
0k +

q

2m
u0F i

k , Γ0
i
00 = Γ\0

i
00 +

q

2m
u0F i

0 .

Hence, the above total Γ induces a total space–time connection K.

2 Einstein’s case

In this section, we study the geometric structures of phase space in the Einstein general
relativistic framework.

We start with the basic assumptions on space–time.

EiPhSp.tex; [output 2011-08-19; 17:32]; p.13



14 J. Janyška and M. Modugno

E.1 Assumption. We assume space–time to be a 4–dimensional oriented and time–
oriented manifold M equipped with a scaled Lorentzian metric of signature (+−−−)

g : M → L2 ⊗ T ∗M ⊗
M
T ∗M .

Local coordinate charts on M will be denoted by (xϕ), ϕ = 0, 1, 2, 3. The coordinate
expression of g is then

g = gϕψd
ϕ ⊗ dψ , gϕψ : M → L2 ⊗ IR .

In what follows we shall use local coordinate charts such that the vector ∂0 is time–like
and time oriented and ∂1, ∂2, ∂3 are space–like; hence g00 > 0, g11, g22, g33 < 0.

Latin indices i, j, p, . . . will span space–like coordinates, while Greek indices λ, µ, ϕ,
. . . will span space–time coordinates.

Obviously, in the Einstein case we have no time fibring t, i.e. no absolute time T .
However we still have a vector space T which now describes the proper time intervals.
We stress that this fact is in full agreement with the standard interpretation of general
relativity.

E.2 Assumption. We assume the light velocity to be a positive element

c ∈ T∗ ⊗ L .

We observe that g and g/c2 can be regarded as non-scaled Lorentzian metrics on the
vector bundles L∗ ⊗ TM →M and T∗ ⊗ TM →M , respectively.

2.1 Jets of 1–dimensional submanifolds

In order to describe velocities of motions in the Einstein case we need jets of subman-
ifolds. Let us recall the basic notions (for further details see [15]).

A k–jet of 1–dimensional submanifolds of M at x ∈M is defined to be an equivalence
class of 1–dimensional submanifolds touching each other at x with a contact of order k.
The k–jet of a 1-dimensional submanifold s ⊂ M at x ∈ s is denoted by jks(x). The set
of all k–jets of 1–dimensional submanifolds of M can be equipped, in a natural way, with
a smooth structure. The corresponding manifold is denoted by Jk(M, 1).

For p > q we have the canonical projection

πpq : Jp(M, 1) −−−→ Jq(M, 1) : jps(x) 7→ jqs(x),

which makes Jp(M, 1) a bundle over Jq(M, 1); in particular, πk0 : Jk(M, 1)→ J0(M, 1) =
M is a bundle. We set

φ = πk0(φ) , φ ∈ Jk(M, 1).

We stress that, unlike the case of jets of sections of a fibred manifold, the bundle
Jp(M, 1)→ Jp−1(M, 1) is not affine.
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Given a 1–dimensional submanifold s ⊂M and an integer k ≥ 0, we have the map

jks : s→ Jk(M, 1) : x 7→ jks(x) .

Clearly jks(s) ⊂ Jk(M, 1) is a 1–dimensional submanifold.

We have the canonical fibred isomorphism over M of the first jet bundle with the
Grassmannian bundle of dimension 1

J(M, 1) ≡ J1(M, 1) −−−→ Grass(M, 1) : φ 7→ Lφ,

where Lφ ⊂ TφM is the tangent space at φ of 1–dimensional submanifolds generating φ.

A local chart on M is said to be divided if the set of its coordinate functions is divided
into two subsets of 1 and (dimM − 1) elements. Our typical notation for a divided chart
will be

(x0, xi), 1 ≤ i ≤ dimM − 1 .

A divided chart and a 1–dimensional submanifold s ⊂M are said to be related if the
submanifold s can be expressed locally by formulas of the type

xi = si(x0) ;

i.e., more precisely xi|s = si ◦ x0|s , with si : IR→ IR.

Every divided chart on M determines canonically a local fibred chart

(x0, xi;xi0)

on J(M, 1). We shall always refer to such charts.

Thus we can write

xi0 ◦ j1s = ∂0s
i ≡ (Dsi) ◦ (x0|s) .

If φ ∈ J(M, 1), then the subspace Lφ ⊂ TφM is the span

Lφ = 〈∂0 + ∂0s
i∂i〉 .

2.2 Phase space

Next we introduce the phase space as the velocity space of the manifold M and exhibit
the ‘jet-contact structure’ induced by the Lorentz metric.

A motion in M is defined to be a 1–dimensional time–like submanifold s ⊂M .

Let us consider a motion s. By definition, for each x ∈ s, Txs lies inside the light cone.
The 1-jet prolongation js ≡ j1s : s→ J(M, 1) is said to be the velocity of s. The length
of a vector v ∈ Ts is defined to be ‖v‖ =

√
|g(v, v)| ∈ L⊗ IR.
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16 J. Janyška and M. Modugno

2.1 Lemma. Given a motion s we have the canonical isomorphism

us : Ts→ s× T : v ∈ Txs 7→ (x,
±‖v‖
c

) ∈ s× T ,

where we choose + or − according to the time orientation of v.

We define the phase space

UM ≡ U1M ⊂ J(M, 1)

to be the subspace of all 1–jets of motions. In other words, φ = js(φ) ∈ J(M, 1) belongs
to UM if and only if Lφ = Tφs lies inside the light cone.

We stress that the bundle UM → M is not affine (even in the Minkowski case);
its fibres are just Riemannian manifolds. This fact encodes one of the main differences
between the Galilei and the Einstein cases.

2.2 Lemma. For each motion ιs : s ↪→M , there is a unique linear map over UM →
M

Ds : UM ×
s
Ts→ TM ,

which makes the following diagram commutative

UM ×
s
Ts

Ds - TM

Ts

Tιs

-

(js ◦ πs, idTs)

�

The above Lemmas, which are based on the Lorentzian structure of space–time, allow
us to recover the jet–contact structure in the Einstein case.

2.3 Proposition. The above maps us and Ds, for all motions s, yield the fibred
morphism over M

D : UM → T∗ ⊗ TM ,

with coordinate expression

(2.1) D = c αD0 = c α (∂0 + xi0∂i) ,

where

α = 1/‖D0‖ = 1/

√
g00 + 2g0jx

j
0 + gijxi0x

j
0 ∈ L∗ .

2.4 Remark. We have
g ◦ (D,D) = c2 .
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Phase space 17

Thus, the map D makes UM ⊂ T∗ ⊗ TM a fibred submanifold over M .

If s is a motion, then D ◦ js : s→ T∗⊗ TM is the scaled vector field representing the
velocity of s.

The metric allows us to recover the Einstein analogue of the Galilei form dt (but,
indeed, not of t).

2.5 Proposition. We have the scaled 1-form

τ :=
g[

c2
◦D : UM → T⊗ T ∗M ,

with coordinate expression

τ ≡ τλ d
λ =

α

c
(g0λ + giλx

i
0)dλ .

2.6 Remark. We have

D y τ = 1 ,

i.e., in coordinates,

(2.2) c α (τ0 + τhx
h
0) = 1 .

2.7 Remark. We have

∂0
i (1/α) = c τi .

2.3 Orthogonal splitting

The Lorentzian metric yields the standard splitting of each space–time vector into the
parallel and orthogonal components with respect to any given time–like direction. This
standard construction allows us to recover the Einstein analogues of the Galilei horizontal
and vertical bundles and of the corresponding exact tangent sequence. In this context we
establish coordinate formulas which will be largely used in the sequel.

We consider the parallel and orthogonal subspaces, with respect to the map D, of the
space–time tangent and cotangent bundles pullbacked over the phase space.

Namely we define the vector bundles over UM

T ‖M := {(φ,X) ∈ UM ×
M
TM | X ∈ Lφ} ,

T⊥M := {(φ,X) ∈ UM ×
M
TM | X ∈ L⊥φ } ,
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18 J. Janyška and M. Modugno

and

T ∗‖M := {(φ, ω) ∈ UM ×
M
T ∗M | 〈ω, L⊥φ 〉 = 0} ,

T ∗⊥M := {(φ, ω) ∈ UM ×
M
T ∗M | 〈ω, Lφ〉 = 0} .

2.8 Remark. We have the mutually inverse linear fibred isomorphism over UM

(id,D) : UM × T→ T ‖M (id, τ) : T ‖M → UM × T .

Thus, the bundles

T ‖M ' UM × T→ UM , T⊥M → UM

will play here, respectively, the roles played by the bundles

T × T→ T , V E → E

in the Galilei case.

2.9 Proposition. We have the linear fibred splittings over UM

UM ×
M
TM = T ‖M ⊕

UM
T⊥M , UM ×

M
T ∗M = T ∗‖M ⊕

UM
T ∗⊥M .

2.10 Remark. By restriction of the metric, we obtain the scaled metrics

g‖ : UM → L2 ⊗ T ∗‖M ⊗
UM

T ∗‖M , g⊥ : UM → L2 ⊗ T ∗⊥M ⊗
UM

T ∗⊥M

and the linear fibred isomorphisms over UM

g[‖ : T ‖M → L2 ⊗ T ∗‖M , g[⊥ : T⊥M → L2 ⊗ T ∗⊥M ,

g]‖ : T ∗‖M → L∗2 ⊗ T ‖M , g]⊥ : T ∗⊥M → L∗2 ⊗ T⊥M .

2.11 Lemma. The following mutually dual local bases of vector fields and forms are
adapted to the above splittings

D0 ≡ ∂0 + xi0∂i , bi ≡ ∂i − cατiD0 = (δji − cατix
j
0)∂j − cατi∂0 ,

λ0 ≡ d0 + cατiϑ
i = cατϕd

ϕ , ϑi ≡ di − xi0d0 .

The inverse transition maps are

∂0 = cατ0D0 − xi0bi , ∂i = bi + cατiD0 ,

d0 = λ0 − cατiϑi , di = (δij − cατjxi0)ϑj + xi0λ
0 .

EiPhSp.tex; [output 2011-08-19; 17:32]; p.18



Phase space 19

2.12 Lemma. We have

g[ ◦D0 =
1

α2
λ0 g[ ◦ bi = g⊥ijϑ

j = (giµ − c2τiτµ)dµ ,

g] ◦ λ0 = α2D0 , g] ◦ ϑi = g⊥
ijbj = (giµ − xi0g0µ)∂µ ,

where we have introduced the mutually inverse matrices

g⊥ij := bi · bj = gij − c2τiτj ,

g⊥
ij :=ϑi · ϑj = gij − gi0xj0 − gj0xi0 + g00xi0x

j
0 .

We shall be involved with further useful identies.

2.13 Lemma. We have

(giµ − xi0g0µ)τµ = 0(2.3)

(giµ − c2τiτµ)dµ = (gij − c2τiτj)ϑ
j(2.4)

(giµ − xi0g0µ)(giν − c2τiτν) = δµν − c2τντ
µ ,(2.5)

Proof. Formula (2.3) follows from

g ◦ (ϑi, τ) = 0 .

Formula (2.4) follows from (2.2), which gives

−(gij − c2τiτj)x
j
0 = (gi0 − c2τiτ0) .

Formula (2.5) follows from

(giµ − xi0g0µ)(giν − c2τiτν) = giµgiν − c2giµτiτν − g0µgiνx
i
0 + c2g0µτiτνx

i
0 =

= giµgiν − c2giµτiτν − g0µgiνx
i
0 + g0µ(g0ν + gjνx

j
0)− c2g0µτ0τν = δµν − c2τντ

µ .QED

The parallel and the orthogonal projections induced by the Lorentzian metric will
provide the Einstein analogues of the exact tangent sequence (1.1) and of its splitting
over the jet space (1.2) in the Galilei case, respectively.

2.14 Proposition. We have the linear exact sequence over UM

0→ T⊥M → UM ×
M
TM

λ−−−→ T ‖M → 0 ,

and its splitting

0→ T ‖M −−−→ UM ×
M
TM

ϑ−−−→ T⊥M → 0 ,
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20 J. Janyška and M. Modugno

where the parallel and orthogonal projections

λ = τ ⊗D : UM ×
M
TM → T ‖M , ϑ = 1M − τ ⊗D : UM ×

M
TM → T⊥M

have the coordinate expressions

λ = λ0 ⊗D0(2.6)

= c2τντ
µdν ⊗ ∂µ = cατν(δ

µ
0 + δµi x

i
0)dν ⊗ ∂µ

and

ϑ = ϑi ⊗ bi(2.7)

= (δµν − c2τντ
µ)dν ⊗ ∂µ = (δµν − cατν(δ

µ
0 + δµi x

i
0))dν ⊗ ∂µ

= (giµ − xi0g0µ)(giν − c2τiτν)d
ν ⊗ ∂µ .

2.15 Corollary. We have the linear exact sequence over UM

0→ T ∗‖M → UM ×
M
T ∗M

ϑ∗−−−→ T ∗⊥M → 0 ,

and its splitting

0→ T ∗⊥M −−−→ UM ×
M
T ∗M

λ∗−−−→ T ∗‖M → 0 ,

where the parallel and orthogonal projections

λ∗ = D⊗ τ : UM ×
M
T ∗M → T ∗‖M , ϑ∗ = 1∗M −D⊗ τ : UM ×

M
T ∗M → T ∗⊥M

have the coordinate expressions

λ∗ = D0 ⊗ λ0 , ϑ∗ = bi ⊗ ϑi .

The physical interpretation of our maps can be achieved by reading the splitting of
velocity of motions in our notation.

An observer is defined to be a section

o : M → UM .

Then D ◦ o : M → T∗ ⊗ TM is the scaled vector field representing the velocity of the
observer o.

By using the parallel and the orthogonal projections associated with the observer o,
we obtain the following splitting.
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2.16 Proposition. We have

D ◦ js = (D ◦ js)‖ + (D ◦ js)⊥ = δ (D ◦ o|s+ β̄) ,

where

δ = (D ◦ js) y (τ ◦ o|s) =
g(D ◦ o|s,D ◦ js)

c2
=

c√
c2 − ‖β̄‖2

: s→ IR

and

β̄ =
c2((D ◦ js) y (ϑ ◦ o|s))

g(D ◦ o,D ◦ js)
: s→ T∗ ⊗ T⊥M .

The vector β̄ ∈ T∗ ⊗ L⊥o can be interpreted as the velocity of the motion s observed
by the observer o. We have

δ > 1 , ‖β̄‖ =
c
√
δ2 − 1

δ
< c ,

which express, respectively, the time dilatation and the fact that the observed velocity of
a motion is smaller than c.

Let (x0, xi) be a local coordinate chart on M adapted to the observer o, i.e., xi0(o) = 0.
We have

α ◦ o = 1/
√
g00 , τ0 ◦ o = 1/(cα) .

Therefore for a motion s we can write

δ =
ατ0√
g00

|js , β̄ =
c xi0(g00∂i − g0i∂0)

τ0
√
g00

|js .

2.4 Vertical bundle of the phase space

We have noticed that in the Einstein case the fibres of the phase space are just Rie-
mannian manifolds; in spite of this fact, the Lorentz metric allows us to recover important
technical results, which in the Galilei case follow from the affine structure of the phase
space.

We shall be involved with the vertical tangent bundle V UM of π1
0 : UM →M .

2.17 Lemma. The vertical prolongation of D

VD : V UM → V (T∗ ⊗ TM) ' (T∗ ⊗ TM)×
M

(T∗ ⊗ TM)

factorises through a fibred isomorphism over UM

v⊥ : V UM → T∗ ⊗ T⊥M ,

EiPhSp.tex; [output 2011-08-19; 17:32]; p.21



22 J. Janyška and M. Modugno

according to the commutative diagram

V UM
VD - (T∗ ⊗ TM)×

M
(T∗ ⊗ TM)

T∗ ⊗ T⊥M

-

v⊥
-

We have the coordinate expressions

(2.8) v⊥ = c α di0 ⊗ bi , v⊥−1 =
1

c α
ϑi ⊗ ∂0

i .

Proof. Let φ ∈ UM and X ∈ VφUM . Then X can be expressed as X = dσ(0),
where σ : IR → U1φM , is a vertical curve such that σ(0) = φ. In virtue of the definition

of D, we have c2 = g ◦ (D ◦ σ, D ◦ σ); hence, by taking into account that σ is vertical, we
can write

0 = g
(
T (D ◦ σ)(0), (D ◦ σ)(0)

)
= g
(
(VD ◦ dσ)(0), (D ◦ σ)(0)

)
= g
(
VD(X), D(φ)

)
.

Eventually, the coordinate expression (2.8) follows from (2.1). QED

The isomorphism V UM ' T∗ ⊗ T⊥M is Einstein the analogue of V JE ' JE ×E
T∗ ⊗ V E.

The map v⊥−1 can be regarded as a scaled soldering 1-form

Φ := v⊥−1 : UM → T⊗ T ∗M ⊗
UM

V UM .

This form is the Einstein analogue of ϑ : JE → T⊗ T ∗E ⊗JE V JE.

2.5 Connections

In the Einstein case we can recover the mapping from space–time connections to
connections on the phase space. However, we do not know the analogue of Corollary
1.2. In the Galilei case the connection on the phase space is affine; on the contrary, in
the Einstein case, the connection on the phase space is highly non linear. However, our
formalism allows us to handle also this case without problems.

For a connection K on TM we can repeat the considerations of the Galilei case.
A connection K on the bundle TM →M can be expressed, equivalently, by a tangent

valued form, or by a vertical valued form

K : TM → T ∗M ⊗
TM

TTM , νK : TM → T ∗TM ⊗
TM

TM ,
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respectively, with coordinate expressions

K = dϕ ⊗ (∂ϕ +Kϕ
µ∂̇µ) , νK = (ḋµ −Kϕ

µdϕ)⊗ ∂µ , Kϕ
µ ∈ C∞(TM) ,

where (xϕ, ẋϕ) is the induced coordinate chart on TM .

The connection K is linear if and only if its coordinate expression is of the type

Kϕ
λ = Kϕ

λ
ψẋ

ψ , Kϕ
λ
ψ ∈ C∞(E) .

If the connection K is linear, then we can define the vertical projection νΛ∗⊗K :
T (T∗ ⊗ TM)→ T∗ ⊗ TM , where Λ is the canonical linear flat connection on T. For the
sake of brevity, we shall use the same symbol and write νK ≡ νΛ∗⊗K . In the induced
coordinate chart (xϕ, ẋϕ0 ) on T∗ ⊗ TM , we have

(2.9) νK = νΛ∗⊗K = u0 ⊗ (ḋµ0 −Kϕ
µ
ψẋ

ψ
0 d

ϕ)⊗ ∂µ .

A connection Γ on UM can be represented, equivalently, by a tangent valued form,
or by a vector valued form

Γ : UM → T ∗M ⊗
UM

TUM , v⊥ ◦ νΓ : UM → T ∗UM ⊗
UM

(T∗ ⊗ T⊥M) ,

with coordinate expressions

(2.10) Γ = dϕ⊗ (∂ϕ + Γϕ
i
0∂

0
i ) , v⊥ ◦ νΓ = cα(di0−Γϕ

i
0d
ϕ)⊗ bi , Γϕ

i
0 ∈ C∞(UM) .

We can define the torsion of Γ as the scaled vertical valued 2-form (see Introduction)

[Γ,Φ] : UM → T⊗ ∧2T ∗M ⊗
UM

V UM .

2.18 Remark. We have the coordinate expression

[Γ,Φ] =
1

c

(
(∂0ρ+ cτjΓ0

j
0)d0 ∧ di

+ ((∂jρ+ cτhΓj
h
0)xi0 − ρ(∂0

jΓ0
i
0 + Γj

i
0 − xh0∂0

hΓj
i
0)d0 ∧ dj

+ (∂jρ+ cτhΓj
h
0)dj ∧ di − ρ∂0

kΓh
i
0d
h ∧ dk

)
⊗ ∂0

i ,

where we have set ρ ≡ 1/α.

2.19 Theorem. For any linear connection K on TM the map

(2.11) v⊥ ◦ νΓ = ϑ ◦ νK ◦ TD
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given by the following diagram

TUM
νΓ - V UM

v⊥
- T∗ ⊗ T⊥M

UM ×
M
T (T∗ ⊗ TM)

(πUM , TD)

?

(idUM ×νM)
- UM ×

M
(T∗ ⊗ TM)

ϑ
6

turns out to be a connection on the bundle UM →M with coordinate expression

(2.12) Γϕ
i
0 = Kϕ

i
jx
j
0 +Kϕ

i
0 − xi0(Kϕ

0
jx
j
0 +Kϕ

0
0) .

Thus, we have obtained a map

χ : K 7→ Γ .

Proof. It can be proved in coordinates by using (2.9), (2.10) and (2.1). QED

2.20 Corollary. The metric g yields the gravitational connections on TM and UM

K\ :=κ , v⊥ ◦ νΓ\ :=ϑ ◦ νK\ ◦ TD ,

where κ is the Levi–Civita connection with the Christoffel symbols

(2.13) κσ
ϕψ = −g

στ

2
(∂ϕgτψ + ∂ψgτϕ − ∂τgϕψ) .

2.6 Curvature

In the Einstein case the curvatures fulfill relations analogous to the Galilei case.

The curvatures (see Introduction) of a connection K on TM and of a connection Γ
on UM are, respectively, the 2–forms

RK = 1
2

[K,K] : TM → ∧2T ∗M ⊗
M
TM , RΓ = 1

2
[Γ,Γ] : UM → ∧2T ∗M ⊗

UM
V UM ,

whose coordinate expressions can be easily computed by (0.1).

Moreover, we obtain

v⊥ ◦RΓ : UM → T∗ ⊗ (∧2T ∗M ⊗
UM

T⊥M) ,

with coordinate expression

v⊥ ◦RΓ = c α (RΓ)λµ
i
0 d

λ ∧ dµ ⊗ bi .
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2.21 Theorem. If Γ is the connection on UM induced by a linear connection K on
TM , then the following diagram commutes

UM ×
M

(T∗ ⊗ TM)
(idUM ×RK)

- UM ×
M

(T∗ ⊗ (∧2T ∗M ⊗
M
TM))

UM

(idUM , D)

?

(v⊥ ◦RΓ)
- T∗ ⊗ (∧2T ∗M ⊗

UM
T⊥M)

id∧2T ∗M⊗θ
?

i.e.,

(2.14) RΓ = ϑ ◦RK ◦D ,

i.e. in coordinates

(RΓ)λµ
i
0 = (RK)λµ

i
jx
j
0 + (RK)λµ

i
0 − xi0((RK)λµ

0
jx
j
0 + (RK)λµ

0
0) .

Proof. It follws in coordinates from (0.1), (2.1), (2.7) and (2.12). QED

2.7 Second order connection

In the Einstein case we can also recover the analogues of the Galilei second order
jet–contact structure and connection. This result is interesting because the second order
connection provides the equation of inertial motion of particles.

Let us denote by U2M ⊂ J2(M, 1) the subspace of all 2–jets of motions.

2.22 Lemma. For each motion ιs : s ↪→ M , there is a unique linear map over
U2M → UM

Ds2 : U2M ×
s
Ts→ TUM

such that the following diagram commutes

U2M ×
s
Ts

Ds2 - TUM

Ts

Tjs

-

(j2s ◦ πs, idTs)

�

2.23 Proposition. The maps us and Ds2 yield the fibred inclusion over UM

D2 : U2M → T∗ ⊗ TUM ,

with coordinate expression

D2 = c α (∂0 + xi0∂i + xi00∂
0
i ) .
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2.24 Corollary. Thus U2M ⊂ T∗ ⊗ TUM turns out to be exactly the fibred sub-
manifold over UM , which makes the following diagram commutative

U2M
D2 - T∗ ⊗ TUM

UM

π2
1

? (id, D)
- UM ×

M
(T∗ ⊗ TM)

(πUM , id⊗Tπ1
0)

?

M

π1

? 1M - T∗ ⊗ T

id⊗τ

?

A second order connection on M is defined to be a section

γ : UM → U2M .

2.25 Corollary. By considering the inclusion D2, every second order connections γ
can be characterised as a scaled vector field

γ : UM → T∗ ⊗ TUM ,

which makes the following diagram commutative

U2M
γ

- T∗ ⊗ TUM

UM

id

? (id, D)
- UM ×

M
(T∗ ⊗ TM)

(πUM , id⊗Tπ1
0)

?

M

π1

? 1M - T∗ ⊗ T

id⊗τ

?

The above result is fully analogous to the Galilei case; however, now we have no fibring
of UM over time, hence we cannot properly say that γ is a connection on UM over time.

The coordinate expression of a second order connection is of the type

(2.15) γ = c α (∂0 + xi0∂i + γ0
i
0∂

0
i ) , γ0

i
0 ∈ C∞(UM) .
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2.26 Theorem. If Γ is a connection on UM , then

γ :=D yΓ : UM → T∗ ⊗ TUM

is a second order connection with coordinate expression (2.15), where

γ0
i
0 = Γ0

i
0 + Γj

i
0x

j
0 .

Proof. It follows from (2.1) and (2.10). QED

2.27 Corollary. The metric g yields the second order gravitational connection

γ\ :=D yΓ\ .

2.8 Distinguished 2–forms

Next, we study the 2-forms induced on the phase space by the connections.
Again, in the Einstein case the Lorentzian metric allows us to recover objects and

relations which in the Galilei case are provided by the fibring over time.

Let us consider a linear connection K and recall the canonical form σ (see (0.3)).
Then, we define the 2–form

Ω(g,K) := νK∧̄σ : T∗ ⊗ TM → T∗ ⊗ L2 ⊗ ∧2T ∗(T∗ ⊗ TM)

with coordinate expression (see (1.5), (0.3))

Ω(g,K) = νK∧̄σ = gλµu
0 ⊗ (ḋλ0 −Kϕ

λ
ψẋ

ψ
0 d

ϕ) ∧ dµ .

2.28 Remark. Let us consider the maps

π1 : UM ×
M

(T∗ ⊗ TM)→ UM , π2 : UM ×
M

(T∗ ⊗ TM)→ T∗ ⊗ TM .

Then, we can write on UM ×
M

(T∗ ⊗ TM)

σ ' σ ◦ π2 = (λ+ ϑ) ◦ π1 ' λ+ ϑ .

Therefore, we obtain the splitting of Ω(g,K) over UM ×
M

(T∗⊗ TM) into parallel and

orthogonal components

Ω(g,K) ≡ Ω‖(g,K) + Ω⊥(g,K) := νK∧̄λ+ νK∧̄ϑ ,

where

Ω‖(g,K) ,Ω⊥(g,K) : UM ×
M

(T∗ ⊗ TM)→ T∗ ⊗ L2 ⊗ ∧2T ∗(T∗ ⊗ TM)
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have the coordinate expressions

Ω‖(g,K) = c2τλτµu
0 ⊗ (ḋλ0 −Kϕ

λ
ψẋ

ψ
0 d

ϕ) ∧ dµ ,
Ω⊥(g,K) = (gλµ − c2τλτµ)u0 ⊗ (ḋλ0 −Kϕ

λ
ψẋ

ψ
0 d

ϕ
)
∧ dµ .

The above forms on the tangent space of space–time induce via pullback analogous
forms on the phase space.

2.29 Remark. We obtain on UM the 2-form

ω(g,K) = ω‖(g,K) + ω⊥(g,K) :=D∗Ω(g,K) : UM → T∗ ⊗ L2 ⊗ ∧2T ∗UM

where

ω‖(g,K) := (idUM ,D)∗Ω‖(g,K) , ω⊥(g,K) := (idUM ,D)∗Ω⊥(g,K) .

In coordinates

(2.16) ω(g,K) =

= c α
(
(giµ − c2 τiτµ)di0 − (1

2
c α ∂ϕ(α−2)τµ + gλµ(Kϕ

λ
0 +Kϕ

λ
jx
j
0))dϕ

)
∧ dµ .

and

(2.17) ω‖(g,K) = −c α
(

1
2
c α ∂ϕ(α−2)τµ + c2τλτµ(Kϕ

λ
0 +Kϕ

λ
jx
j
0)
)
dϕ ∧ dµ

(2.18) ω⊥(g,K) =

= c α (giµ − c2τiτµ)
(
di0 − (Kϕ

i
0 +Kϕ

i
jx
j
0 − xi0(Kϕ

0
0 +Kϕ

0
jx
j
0))dϕ

)
∧ dµ .

On the other hand a connection Γ on UM and the metric g yield the scaled 2–form
on UM

Ω(g,Γ) := (v⊥ ◦ νΓ)∧̄ϑ : UM → T∗ ⊗ L2 ⊗ ∧2T ∗UM ,

with coordinate expression

Ω(g,Γ) = c α (giµ − c2τiτµ) (di0 − Γϕ
i
0d
ϕ) ∧ dµ(2.19)

= c α (gij − c2τiτj) (di0 − Γϕ
i
0d
ϕ) ∧ ϑj(2.20)

= c α (gij − c2τiτj) (di0 − γ0
i
0d

0 − Γh
i
0ϑ

h) ∧ ϑj ,(2.21)

where γ :=D yΓ.

2.30 Theorem. If Γ is the connection on UM induced by a linear connection K on
TM then

(2.22) Ω(g,Γ) = ω⊥(g,K) .
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Proof. It can be proved by using (2.12), (2.18) and (2.20). QED

2.31 Theorem. There is a unique second order connection γ such that

γ yΩ(g,Γ) = 0 .

Namely,
γ = D yΓ : UM → T∗ ⊗ TUM .

Proof. It follows from (2.1), (2.15) and (2.21). QED

2.9 Distinguished metric 2–forms

Eventually, we specialise the results of the above section by referring to the gravi-
tational connections K\ ≡ κ and Γ\ induced by g. We analyse the contact structure
on UM via the form c2τ . This structure is expected to be important for our covariant
quantisation programme in the Einstein background.

We start by studying the gravitational 2–form Ω(g,κ) on T∗ ⊗ TM .

2.32 Remark. The metric g yields the scaled Liouville 1–form

θ : T∗ ⊗ TM → T∗ ⊗ L2 ⊗ T ∗(T∗ ⊗ TM)

defined by

θ(X) := g(TπM(X) , πT∗⊗TM(X)) , ∀X ∈ T (T∗ ⊗ TM) .

In coordinates
θ = gµλẋ

λ
0u

0 ⊗ dµ .

2.33 Proposition. The 2–form

(2.23) Ω(g) := dθ : T∗ ⊗ TM → T∗ ⊗ L2 ⊗ ∧2T ∗(T∗ ⊗ TM) ,

with coordinate expression

Ω(g) = u0 ⊗ (∂ϕgµλẋ
λ
0d

ϕ + gµλḋ
λ
0) ∧ dµ ,

is a symplectic form on T∗ ⊗ TM and

(2.24) Ω(g) = Ω(g,κ) .

Next, we study the gravitational 2–form on UM

Ω\ := Ω(g,Γ\) .
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2.34 Lemma. We have

(2.25) ω‖(g,κ) = 0 .

Proof. It can be proved in coordinates, by using (2.17) and (2.13). QED

2.35 Proposition. We obtain

ω(g) :=D∗Ω(g) = ω(g,κ) .

Proof. It follows from (2.22), (2.25), (2.23).

2.36 Lemma. The form

η := c2τ ∧ ω(g) ∧ ω(g) ∧ ω(g) : UM → T∗4 ⊗ L8 ⊗ ∧7T ∗UM ,

with coordinate expression

c2τ ∧ ω(g) ∧ ω(g) ∧ ω(g) = 6 c4α4 |g| d0 ∧ d1 ∧ d2 ∧ d3 ∧ d1
0 ∧ d2

0 ∧ d3
0 ,

is a scaled volume form on UM .

2.37 Lemma. We obtain

D∗θ = c2τ .

2.38 Theorem. The form of UM

Ω\ := Ω(g,Γ\) = ω(g,κ) = ω(g) = c2 dτ .

is the scaled contact 2–form generated by the contact 1–form c2 τ .

Indeed, the 2–form Ω\ is our candidate for the quantisation programme in the Einstein
case along the lines of [4], [5]. The fact that this form is closed is interesting for our aim.
We stress that the form Ω\ has a natural global potential; an analogous result is not true
in the Galilei case.

2.10 Electromagnetic field and geometric structure

So far, we have assumed on space–time the gravitational structure associated with the
Lorentzian metric g. Next, we introduce the electromagnetic field.

E.3 Assumption. We assume the electromagnetic field to be a closed scaled 2-form
on M

F : M → (T∗ ⊗ L3/2 ⊗M1/2)⊗ ∧2T ∗M .
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We denote the local potential of F by A : M → (T∗ ⊗ L3/2 ⊗M1/2)⊗ T ∗M . Thus, by
definition, we set

2dA = F .

We define the ‘universal’ electric and ‘universal’ magnetic fields to be the scaled forms
on UM

E := −D yF : UM → (T∗2 ⊗ L3/2 ⊗M1/2)⊗ T ∗⊥M ,

B :=F + 2τ ∧ E : UM → (T∗ ⊗ L3/2 ⊗M1/2)⊗ ∧2T ∗⊥M .

Thus, we can write
F = −2τ ∧ E +B.

Hence, the electric and magnetic fields associated with an observer o : M → UM are
defined as the pullback forms

o∗E : M → (T∗2 ⊗ L3/2 ⊗M1/2)⊗ T ∗M ,

o∗B : M → (T∗ ⊗ L3/2 ⊗M1/2)⊗ ∧2T ∗M .

We stress that the universal electric field carries the full information of the electro-
magnetic field.

2.39 Remark. We have the coordinate expressions

F = 2F0jd
0 ∧ dj + Fijd

i ∧ dj = − 2

cα
Ejλ

0 ∧ ϑj +Bijϑ
i ∧ ϑj ,

and
E = Eiϑ

i = Ejd
j + E0d

0 , B = Bijϑ
i ∧ ϑj = Bij + 2B0jd

0 ∧ dj ,
where

Ej = −cα(F0j + Fhjx
h
0) E0 = −cαFh0x

h
0 ,

Bij = Fij + τiEj − τjEi B0j = −Bhjx
h
0 .

Therefore, in a chart adapted to an observer o, the coordinate expressions of the
observed electric and magnetic fields are

o∗E = − c
√
g00

F0jd
j , o∗B = (Fij −

1

g00

(gi0F0j − gj0F0i))d
i ∧ dj .

Next, we show that the electromagnetic field can be naturally incorporated into the
gravitational structures of the phase space.

Namely, let us consider the following gravitational objects on the phase space UM :

Γ\ : UM → T ∗M ⊗
UM

TUM , γ\ : UM → T∗ ⊗ TUM ,

c2τ : UM → T∗ ⊗ L2 ⊗ T ∗UM , Ω\ : UM → T∗ ⊗ L2 ⊗ ∧2T ∗UM ,
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32 J. Janyška and M. Modugno

which fulfill the following structural relations

γ\ = D yΓ\ , Ω\ = νΓ\∧̄ϑ , γ\ yΩ\ = 0 , c2dτ \ = Ω\ .

We are looking for total objects obtained correcting the gravitational objects by an
electromagnetic term, in such a way to preserve the above relations.

For this purpose we need a suitable coupling constant. So, we consider a particle with
a given mass and charge

m ∈M , q ∈ T∗ ⊗ L3/2 ⊗M1/2 ,

and refer to the coupling constant

q

m
∈ T∗ ⊗ L3/2 ⊗M∗1/2 .

We start from the obvious coupling of the electromagnetic field with the gravitational
contact 2-form on UM .

Accordingly, we define the total 2-form to be

Ω := Ω\ +
q

2mc
F : UM → T∗ ⊗ L2 ⊗ ∧2T ∗UM .

Here, the factor 1
2

is chosen in such a way to recover the standard normalization in
practical formulas.

Of course, we obtain

dΩ = 0 .

However, while Ω\ has a natural and global potential, the potential of Ω is defined up to
a gauge and in general exists only locally. Indeed, we obtain locally

d(c2τ) ≡ d(c2τ \ +
q

mc
A) = Ω .

We can write locally

(c2τ \ +
q

mc
A) ∧ Ω ∧ Ω ∧ Ω = (c2τ \ +

q

mc
A) ∧ Ω\ ∧ Ω\ ∧ Ω\ .

This 7–form needs not to be a local volume form; for instance, if A = −g0µd
µ, then

this 7–form vanishes. Hence, Ω needs not to be locally a contact 2–form.

Next, we look for the total second order connection on UM .

2.40 Lemma. A section γ : UM → T∗ ⊗ TUM is a second order connection if and
only if γ − γ\ is a section γ − γ\ : UM → T∗ ⊗ V UM .
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2.41 Theorem. There is a unique second order connection γ such that

γ yΩ = 0 .

Namely, γ is given by

γ = γ\ + γe ,

where

γe =
q

mc
v⊥−1 ◦ g] ◦ E ,

with coordinate expression

γe = − q

mc
(giµ − xi0g0µ)(F0µ + Fjµx

j
0)∂0

i =
q

mc2α
gij⊥Ej∂

0
i .

Proof. In virtue of the expressions of Ω\, γ\ and F , we have

γ\ yF = D yF , γe yΩ\ = g[ ◦ v⊥ ◦ γe .

Then, we can write

0 = γ yΩ = γ\ yΩ\ +
q

2mc
γ\ yF + γe yΩ\ +

q

2mc
γe yF

= 0 +
q

2mc
D yF + 1

2
g[ ◦ v⊥ ◦ γe + 0 .QED

2.42 Remark. Thus, we have recovered the Lorentz force

f :=
q

mc
◦ g] ◦ E : UM → T∗ ⊗ T⊥M ⊂ UM ×

M
(T∗2 ⊗ TM) ,

with coordinate expression

f =
qα

m
(giµ − xi0g0µ)(F0µ + Fjµx

j
0)bi =

q

mc
gij⊥Ejbi ,

by a natural procedure as a byproduct of the coupling between gravitational and electro-
magnetic field.

2.43 Remark. The law of motion

∇γjs := j2s− γ ◦ js = 0

for the unknown motion s ⊂M reads

v⊥ ◦ ∇γ\js = f ◦ js .
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Eventually, we look for the total connection on UM .
Let us set

g]2 : T ∗M ⊗
M
T ∗M → L∗2 ⊗ T ∗M ⊗

M
TM : α⊗ β 7→ α⊗ g](β) .

2.44 Lemma. We have the following sections

ΓeE := − q

2mc
v⊥−1 ◦ ϑ ◦ g]2 ◦ (2τ ∧ E) : UM → T ∗‖M ⊗

M
V UM ,

ΓeB := − q

2mc
v⊥−1 ◦ g]2 ◦B : UM → T ∗⊥M ⊗

M
V UM ,

with coordinate expressions

ΓeE =
q

2mc2α
g⊥

ijEjτ ⊗ ∂0
i , ΓeB = − q

2mc2α
g⊥

ijBhjϑ
h ⊗ ∂0

i .

Moreover, we obtain

D yΓeE = γe , −(v⊥ ◦ ΓeE)∧̄ϑ = − q

2mc
2τ ∧ E .

D yΓeB = 0 , −(v⊥ ◦ ΓeB)∧̄ϑ =
q

2mc
B .

Proof. It follows by a computation in coordinates, by using the base (λ0, ϑi), Lemma
2.11, and Lemma 2.12. QED

Let us consider a section

H : UM → T ∗M ⊗
UM

V UM .

We define the map
A(v⊥ ◦H) : UM → T∗ ⊗ ∧2T⊥

∗M

by means of the composition

UM
H−−−→ T ∗M ⊗

UM
V UM

ϑ∗⊗(g[◦v⊥)−−−−−−−→ T∗ ⊗ T⊥∗M ⊗
UM

T⊥
∗M

Alt−−−→ T∗ ⊗ ∧2T⊥
∗M .

2.45 Lemma. The following conditions are equivalent

D yH = 0 , (v⊥ yH)∧̄ϑ = 0 ;

H : UM → T ∗⊥M ⊗
UM

V UM ⊂ T ∗M ⊗
UM

V UM , A(v⊥ ◦H) = 0 ;

H = Hj
iϑj ⊗ ∂0

i , g⊥ihHj
h = g⊥ihHj

h .

Proof. It follows in coordinates by using the base (λ0, ϑi). QED
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2.46 Theorem. There is a unique connection Γ : UM → T ∗M ⊗
UM

V UM , such that

D yΓ = γ νΓ∧̄ϑ = Ω , AΓ = AΓ\ .

Namely,
Γ = Γ\ + Γe ,

where
Γe = ΓeE + ΓeB = − q

2mc
v⊥−1 ◦ g]2 ◦ (F + 4τ ∧ E) ,

i.e., in coordinates

Γe =
q

2mc2α
g⊥

ij(Ejτ −Bhjϑ
h)⊗ ∂0

i .

Proof. It follows from the above Lemmas and the expressions of γ and Ω. QED
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