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Abstract
We present a general relativistic approach to quantum mechanics of a spinless charged particle, subject

to external classical gravitational and electromagnetic fields in a curved space-time with absolute time.
The scheme is also extended in order to treat the n-body quantum mechanics.

First, we study the Galilei general relativistic space-time, as classical background; then, we develop the
quantum theory.

The formulation is fully based on geometrical ideas and methods and is explicitly covariant.
In the special relativistic case, our theory agrees with the standard one referred to a given frame of ref-
erence.

Our approach takes into account several classical ideas and results of Galilei general relativity and ge-
ometric quantisation (see E. Cartan, C. Duval, K. Kucha®, H. P. Künzle, E. Prugovecki, A. Trautman, N.
Woodhouse and several others). However, we present original ideas and results as well.
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Preface

The book is addressed to a double audience: to mathematicians who at
some point were attracted by the subject of quantum mechanics, but soon
were repelled because they could not find a geometrical door to this magic
palace. It is also addressed to those physicists who knowing all kinds of culi-
nary recipes of how to compute quantum mechanical effects are still unsat-
isfied and thirsty of knowing some solid and primary mathematical principles
that can be used to derive or to justify some of their successful formulae.

In fact the book is more than just a compendium building from scratch ge-
ometrical foundation for Galileian relativity, wave functions, quantisation
and Schrödinger equation. It is also an invitation to a further research.

The greatest unsolved problem of the XX-th century physics is as old as
the famous Einstein-Bohr debate. There were two main revolutions in
physics witnessed by this century: relativity and quantum theory. Both were
radical enough to change not only physics but also our entire Weltanschauung.
After the great drama of Einstein's failure to reduce quantum theory to a
unified non-linear classical field theory, after so many and so spectacular
successes both of relativity and quantum theory, we are tempted to believe
that what we need is a union of the two opposites rather than a reduction of
one to the other. It is with this in mind that we have undertaken the research
whose fruits we want to share in this book. We hope that perhaps our way of
approaching quantum mechanics geometrically will trigger new ideas in some
readers, and clearly new ideas are necessary to catalyse the fruitful chemi-
cal reaction between so different components.

We would like to point out the difference between our approach and that of
geometric quantisation. Geometrical quantisation method is a powerful ma-
chine feeding itself on symplectic manifolds and their polarisations. So, it
has a different scope than our approach because we are concerned with
structures related to space-time. On the other hand "time" is merely a pa-
rameter in geometrical quantisation; it is never treated fully geometrically.
Thus it is difficult or impossible to discuss in that framework changes of



states corresponding to accelerated observers. Our approach stresses the
full covariance from the very beginning, and covariance proves to be a
powerful guiding principle.

We thank our colleagues for their interest, questions, comments and criti-
cism; they allowed us to shape our research domain.

Thanks are due to Daniel Canarutto, Antonio Cassa, Christian Duval,
Riccardo Giachetti, Josef Janyska, Jerzy Kijowski, Ivan Kolá®, Luca Lusanna,
Peter Michor, Michele Modugno, Zbignew Oziewicz, Antonio Pérez-Rendón,
Cesare Reina and Andrzej Trautman for stimulating discussions. Thanks are
also due to Raffaele Vitolo for careful reading and commenting through the
manuscript.

The book came out as a result of several years of collaboration that was
supported by Italian MURST (by national and local funds) and GNFM of
Consiglio Nazionale delle Ricerche and by Polish KBN. We acknowledge their
kind support with gratitude.

Florence, 31 December 1993

Arkadiusz Jadczyk, Marco Modugno
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La filosofia è scritta in questo grandissimo libro che conti-
nuamente ci sta aperto innanzi agli occhi (io dico l'universo),
ma non si puó intendere se prima non si impara a intender la
lingua, e conoscer i caratteri, ne quali è scritto. Egli è scritto
in lingua matematica, e i caratteri son triangoli, cerchi ed al-
tre figure geometriche, senza i quali mezzi è impossibile in-
tenderne umanamente parola; senza questi è un aggirarsi vana-
mente per un oscuro labirinto.

G. Galilei, VI, 232, Il Saggiatore, 1623.

0 - INTRODUCTION

0.1. Aims

The standard quantum mechanics (see, for instance, [Me], [Sk], [Sc]) is
quite well established and tested, so that it must be taken as touchstone for
any further development.

The supporting framework of this theory is the standard flat Galilei space-
time. Moreover, an inertial frame of reference is usually assumed and the
implicit covariance of the theory is achieved by imposing a suitable transfor-
mation under the action of the Galilei group.

As it is well known, the standard quantum mechanics conflicts with the
classical theory of curved space-time and gravitational field. This great
problem is still open, in spite of several important attempts. We share the
opinion that the first step aimed at approaching the solution should be a
general relativistic formulation of quantum mechanics interacting with a
given classical gravitational field in a curved space-time.

In the physical literature, the principle of covariance is mostly formulated
in terms of representations. This viewpoint is very powerful and has been
largely successful. Moreover, it is related to the view of geometry based on
the famous Klein's programme, hence to the theories of representation of
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groups and Lie algebras. However, we think that the modern developments of
geometry cannot be exhausted by this approach. Indeed, we think that a di-
rect approach to geometrical structures in terms of intrinsic algebraic
structures, operators and functors is quite interesting and might deserve a
primitive consideration. Then, the groups of automorphisms of such struc-
tures arise subsequently. Moreover, if the developments of the primitive
structures are derived intrinsically, through functorial methods, then the in-
variance of the theory under the action of the automorphism groups is auto-
matic. So, we think that, when we know the basic structures of our physical
model, it is worthwhile following an intrinsic, i.e. manifestly covariant, ap-
proach. Indeed, in the cases when we know both an intrinsic formulation of a
physical theory and a formulation via representations, the first one appears
to be simpler and neater. Just to fix the ideas, consider a very simple exam-
ple and refer to the formulations of electromagnetic field through the modern
intrinsic language of exterior differential calculus and the older language
based on components and the action of the Lorentz group. Actually, it is a
pity that an intrinsic geometrical language has not yet been achieved for all
domains that occur in physics. On the other hand, the method of representa-
tions remains essential for the study of classifications.

So, the goal of our paper is a general relativistic quantum mechanics. As
usual, by 'general relativistic' we mean 'covariant' with respect to the change
of frames of reference (observers and units of measurement) and charts.
Even more, we look for an explicitly covariant formulation based on intrinsic
structures. The reader will judge if such an approach is neat and heuristically
valuable.

A general relativistic quantum mechanics demands a general relativistic
classical space-time as necessary support. Certainly, the most natural and
interesting programme would be to study quantum mechanics on an Einstein
general relativistic back-ground, hence on a curved space-time equipped with
a Lorentz metric. On the other hand, it is possible to develop a general rela-
tivistic classical theory, based on a space-time fibred over absolute time and
equipped with a vertical Riemannian metric. This theory - which will be re-
ferred to as Galileian - is mathematically rigorous and self-contained and
provides a description of physical phenomena with a good approximation
(with respect to the corresponding Einstein theory) in presence of low ve-
locities and weak gravitational field. The Galilei classical mechanics has been
studied by several authors (for instance, see [Ca], [Dv1], [Dv2], [DBKP], [DGH],
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[DH], [Eh], [Ha], [Ku], [Ke1], [Ke2], [Ku], [Kü1], [Kü2], [Kü3], [Kü4], [KD], [LBL],
[Le], [Ma], [Mo1], [Pl], [Pr1], [Pr2], [SP], [Tr1], [Tr2], [Tu]); nevertheless, it is
not common belief that many features, which are usually attached exclu-
sively to Einstein general relativity, are also present in the Galilei theory.
Then, in order to avoid confusion, we stress the difference between the
general validity of notions such as general relativity, curved space-time
manifold, accelerated observers, equivalence principle and so on and their
possible specifications into an Einstein or a Galilei theory. In spite of its
weaker physical validity, the Galilei theory has some advantages due to its
simplicity. Hence, we found worth starting our approach to quantum mechan-
ics from the Galilei case. Later we shall apply to the Einstein case what we
have learned in the Galilei case. On the other hand, this study can be consid-
ered not only as an useful exercise in view of further developments, but also
physically interesting by itself.

0.2. Summary

In order to help the reader to get a quick synthesis of our approach, we
sketch the main ideas and steps.

0.2.1. Classical theory

We assume the classical space-time to be a 4-dimensional oriented fibred
manifold (see § III.1)

t:EEEEéTTTT

over a 1-dimensional oriented affine space associated with the vector space

T. The typical space-time chart is denoted by (x0, yi) and the corresponding

time unit of measurement by u
0
$T or u0$T*.

We obtain the scaled time form

dt:EEEEéTÆT*EEEE,

with coordinate expression

dt = u
0
æd0.

We deal with the jet space (see § III.3)
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J
1
EEEEéEEEE

and the natural complementary contact maps

d:J
1
EEEEéT*ÆTEEEE ª:J

1
EEEEéT*EEEEÆ

EEEE
VEEEE,

with coordinate expressions

d = u0æd
0
= u0æ(Ù

0
_ y

0
i Ù

i
) ª = ªiæÙ

i
= (di - y

0
i d0)æÙ

i
.

A classical (absolute) motion is defined to be a section

s:TTTTéEEEE

and its (absolute) velocity is the jet prolongation

j
1
s:TTTTéJ

1
EEEE ç T*ÆTEEEE,

with coordinate expression

j
1
s = u0æ⁄(Ù

0
©s _ Ù

0
si (Ù

i
©s)^.

An observer is defined to be a section

o : EEEE é J
1
EEEE ç T*ÆTEEEE

and the observed velocity of the motion s is the vertical section

ı
o
s ˆ j

1
s - o©s : TTTT é T*ÆVEEEE,

with coordinate expression in an adapted chart

ı
o
s = Ù

0
si u0æ(Ù

i
©s).

Vertical restrictions are denoted by “ê”.
We assume space-time to be equipped with a scaled vertical Riemannian

metric

g:EEEEéAÆ(V*EEEEÆ
EEEE
V*EEEE),

with coordinate expression

g = g
ij
êdiæêdj g

ij
$ M(EEEE,AÆ·).

The metric and the time form, along with a choice of the orientation, yield
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the scaled space-time and space-like volume forms

¨:EEEEé(TÆA3/2)ÆL
4
T*EEEE ∆:EEEEéA3/2ÆL

3
V*EEEE,

with coordinate expressions

¨ = ÊÕ¡g¡ u
0
æd0◊d1◊d2◊d3 ∆ = ÊÕ¡g¡ êd1◊êd2◊êd3.

Moreover, the metric yields the vertical Riemannian connection

º:VEEEEéV*EEEEÆ
VEEEE
VVEEEE

on the fibres of space time.

There is a natural bijection between the dt-preserving torsion free linear
connections

K:TEEEEéT*EEEEÆ
TEEEE
TTEEEE

on the vector bundle TEEEEéEEEE and the torsion free affine connections

Í:J
1
EEEEéT*EEEEÆ

J1EEEE
TJ

1
EEEE

on the affine bundle J
1
EEEEéEEEE, with coordinate expressions

K = d¬æ(Ù
¬
_ (K

¬
i
h
îyh _ K

¬
i
0
îx0) Ùî

i
) Í = d¬æ(Ù

¬
_ (Í

¬
i
h
y
0
h _ Í

¬
i
©
) Ù0

i
)

K
µ
i
¬
= K

¬
i
µ
= Í

¬
i
µ
= Í

µ
i
¬
.

Then, each of such equivalent connections, will be called a space-time
connection.

A space-time connection K yields, by vertical restriction, the space-time
vertical connection

êK:VEEEEéV*EEEEÆ
VEEEE
VVEEEE

on the fibres of space-time, with coordinate expression

êK = êdjæ(Ù
j
_ K

j
i
h
îyh Ùî

i
).

If Í is a space-time connection and o an observer, then we obtain the co-
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variant differential

ıo:EEEEéT*Æ(T*EEEEÆ
EEEE
VEEEE).

Then, the vertical metric and the observer itself yield the splitting of ıo
into its symmetrical and anti-symmetrical components

Á:EEEEé(T*ÆA)ÆÓ
2
T*EEEE È:EEEEé(T*ÆA)ÆL

2
T*EEEE,

with coordinate expressions

Á ˆ - 2 u0æ(Í
0j©

d0√dj _ Í
ij©
di√dj) È ˆ - 2 u0æ(Í

0j©
d0◊dj _ Í

ij©
di◊dj)

The connection Í is characterised by êK, êÁ and È.
A space-time connection K is said to be metrical if it preserves the con-

travariant vertical metric, i.e. if

ı
K
ãg = 0.

We cannot fully apply the methods of Riemannian geometry, because the
metric g is degenerate.

A space-time connection Í yields the connection

˙ ˆ dœÍ : J
1
EEEE é T*ÆTJ

1
EEEE

on the fibred manifold J
1
EEEEéTTTT and the scaled 2-form

Ò ˆ ~
Í
◊ª : J

1
EEEE é (T*ÆA)ÆL

2
T*J

1
EEEE

on the manifold J
1
EEEE, with coordinate expressions

˙ = u0æ⁄Ù
0
_ y

0
i Ù

i
_ (Í

h
i
k
y
0
h y

0
k _ 2 Í

h
i
©
y
0
h _ Í

0
i
©
) Ù0

i
^

Ò = g
ij
u0æ(d

0
i - ˙i d0 - Í

h
i ªh)◊ªj.

They are said to be, respectively, the second order connection and the
contact 2-form associated with Í.

These objects fulfill the equality

˙œÒ = 0;

moreover
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dt◊Ò◊Ò◊Ò:J
1
EEEEé(T*2ÆA3)ÆL

7
T*J

1
EEEE

is a scaled volume form on J
1
EEEE; furthermore, for each observer o, we obtain

È = 2 o*Ò,

hence, we say that È is the observed contact 2-form.

On the other hand, ˙ and Ò characterise Í itself.

We assume space-time to be equipped with a space-time connection

ÍŸ:J
1
EEEEéT*EEEEÆ

J
1
EEEE
TJ

1
EEEE

and a scaled 2-form

F:EEEEéBÆL
2
T*EEEE,

representing the gravitational connection and the electromagnetic field.
The gravitational connection and the electromagnetic field can be coupled

in a natural way through a constant cccc, which can be either the square root
¢Ãkkkk of the gravitational constant, or the ratio qqqq/m of a mass m$M and a
charge qqqq$Q of a given particle: the coupled objects will be called total. In
practice, we are concerned with cccc = ¢Ãkkkk only in the context of the second
gravitational field equation and in all other cases we consider cccc = qqqq/m. So,
we obtain the total contact 2-form

Ò ˆ ÒŸ _ Òe ˆ ÒŸ _ 1
2
cccc F,

the total second order connection

˙ ˆ ˙Ÿ _ ˙e

and the total space-time connection

Í ˆ ÍŸ _ Íe,

where

˙e:J
1
EEEEéT*Æ(T*ÆVEEEE)

turns out to be the Lorentz force and
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Íe:J
1
EEEEéT*EEEEÆ

EEEE
(T*ÆVEEEE)

a certain soldering form associated canonically with F, with coordinate ex-
pressions

˙e = - c (F
0
i _ F

h
i y

0
h) u0æÙ

i
0 Íe = 1

2
c ⁄(Fi

h
y
0
h _ 2 Fi

0
) d0 _ Fi

j
dj^æÙ

i
0.

This splitting will be reflected in all other objects derived from the total
connection.

In order to couple the total connection with the vertical metric, we postu-
late the first field equation : for each charge and mass, the total contact 2-
form is closed, i.e.

dÒ = 0.

This equation expresses, in a compact way, a large number of important
conditions. Namely, the first field equation is equivalent to the fact that the
total connection is metrical and the total curvature tensor fulfills the stan-
dard symmetry properties. Moreover, the first field equation is equivalent to

the fact that the vertical total connection êK coincides with the vertical

Riemannian connection º and, for each observer o, êÁ is given by the time
derivative of the metric and È is closed. Moreover, in virtue of the arbitrari-
ness of the mass and the charge, the first field equation implies the first
Maxwell equation.

In order to couple the total connection with the matter source, we postu-
late the second gravitational and electromagnetic field equations :

rŸ = tŸ divŸ F = j.

We restrict ourselves to consider a charged incoherent fluid, just as an ex-
ample; these equations yield an Einstein type equation for the total connec-
tion

r = t.

The only observer independent way of expressing the generalised Newton
law of motion of a classical particle, under the action of the gravitational
and electromagnetic fields, is to assume that the covariant differential of
the motion with respect to the second order total connection ˙ vanishes
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ı̇ j
1
s = 0.

We stress that the standard Hamiltonian and Lagrangian approaches to
classical dynamics depend on the choice of an observer in an essential way.
Hence, they are not suitable for a general relativistic formulation of classical
mechanics.

Under reasonable hypothesis, there exist background affine structures on
space-time, which allow us to re-interpret the second field equation as the
Newton law of gravitation.

In particular, the special relativistic case is obtained by considering an
affine space-time with vanishing energy tensor of matter.

By means of a slight modification of the above scheme we can formulate
the n-body field theory and mechanics on a curved Galilei space-time. In par-
ticular, the standard results for the two-body classical mechanics can be re-
covered as a special solution of our equations.

0.2.2. Quantum theory

We assume the quantum bundle to be a line-bundle

π:QQQQéEEEE

over space-time. The quantum histories are described by the quantum sec-
tions

„:EEEEéQQQQ.

In some respects, it is useful to regard a quantum section „ as a quantum
density

„∆ ˆ „æ¢Ã∆ : EEEE é QQQQ∆.

The typical normal chart of QQQQ will be denoted by (z) and the corresponding
base by (b); accordingly, we write

„ = ¥ b, ¥ ˆ z©„.

Then, we assume the quantum connection to be a Hermitian universal con-
nection

c:QQQQŸéT*J
1
EEEEÆ
J
1
EEEE
TQQQQŸ
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on the pullback quantum bundle

πŸ : QQQQŸ ˆ J
1
EEEE
E̊EEE
QQQQ é J

1
EEEE,

whose curvature is proportional to the classical total contact 2-form, ac-
cording to the formula

R
c
= i m

hhhh
Òæi : QQQQŸ é L

2
T*J

1
EEEEÆ
J
1
EEEE
QQQQŸ.

The universal connection c can be naturally regarded as a system of
Hermitian connections

≈:J
1
EEEE
E̊EEE
QQQQéT*EEEEÆ

EEEE
TQQQQ

on the bundle π:QQQQéEEEE, whose curvature is proportional to the observed total
contact 2-form È, for each observer o, according to the formula

R
≈o
= 1

2
i m
hhhh
Èæi : QQQQ é L

2
T*EEEEÆ

EEEE
QQQQ

The quantum connection is essentially our unique structure postulated for
quantum mechanics; all other structures and objects will be derived from
this in a natural way.

We prove that the coordinate expression of the quantum connection, is of
the type

c
0
= - H/h c

j
= p

j
/h c

0
j
= 0,

where H and p are the classical Hamiltonian and momentum associated with
the frame of reference attached to the chosen chart, with a suitable gauge
of the total potential

a:EEEEé(T*ÆA)ÆT*EEEE

of the closed 2-form È, which refers both to the gravitational and electro-
magnetic fields.

The composition

˙œc:QQQQŸéT*ÆTQQQQŸ

turns out to be a connection on the fibred manifold QQQQŸéTTTT, whose coordinate
expression is of the type
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˙œc = u0æ(Ù
0
_ y

0
i Ù

i
_ ˙i Ù

i
0 _ i L/h i),

where L is the classical Lagrangian associated with the frame of reference
attached to the chosen chart.

If „:EEEEéQQQQ is a quantum section, then we obtain the quantum covariant
differential

ı
c
„:J

1
EEEEéT*EEEEÆ

EEEE
QQQQ,

with coordinate expression

ı„ = ⁄(Ù
0
¥ _ i H/h ¥) d0 _ (Ù

j
¥ - i p

j
/h ¥) dj^æb.

The quantum connection lives on the pull-back quantum bundle QQQQŸéJ
1
EEEE (i.e.

is parametrised by all observers), but we wish to derive further physical ob-
jects living on the quantum bundle QQQQéEEEE (i.e. observer independent objects).
We shall achieve them by means of a principle of projectability, which turns
out to be our way to implement the principle of general relativity in the
framework of quantum mechanics.

By means of the principle of projectability, we can exhibit a distinguished
quantum Lagrangian

L:J
1
QQQQéA3/2ÆL

4
T*EEEE,

with coordinate expression

L
„
= 1

2
⁄- h

m
gij Ù

i
ã¥ Ù

j
¥ - i (Ù

0
.ã¥ ¥ - ã¥ Ù

0
.¥) _ i ai (Ù

i
ã¥ ¥ - ã¥ Ù

i
¥) _

_ m
h
(2 a

0
- a

i
ai) ã¥ ¥^ u0æ¨.

The quantum Lagrangian yields the quantum 4-momentum

p:J
1
QQQQéT*ÆTEEEEÆ

EEEE
QQQQ,

with coordinate expression

p
„
= u0æ⁄¥ Ù

0
- i h

m
gij (Ù

j
¥ - i m

h
a
j
¥) Ù

i
^æb.
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This can also be obtained directly from the contact structure of space-
time and the vertical quantum covariant differential, by means of the princi-
ple of projectability.

Then, the Euler-Lagrange equation associated with the quantum Lagrangian
turns out to be the generalised Schrödinger equation

* êE#:J
2
QQQQéT*ÆQQQQ,

with coordinate expression

* êE#
„
= 2 ⁄i Ù

0
¥ _ m

h
a
0
¥ _ 1

2
i
Ù
0
ÊÕ¡g¡

ÊÕ¡g¡
¥ _

_ h

2m
(gij (Ù

ij
¥ - 2 i m

h
a
i
Ù
j
¥ - (i m

h
Ù
i
a
j
_ m

2

h
2 ai aj) ¥) _

_
Ù
i
(gijÊÕ¡g¡ )

ÊÕ¡g¡
(Ù

j
¥ - i m

h
a
j
¥))^ b.

This can also be obtained directly from the time-like quantum covariant
differential of the quantum section and the quantum covariant codifferential
of the quantum 4-momentum, by means of the principle of projectability.

The invariance of the quantum Lagrangian with respect to the group U(1)
yields a conserved probability 4-current

j:J
1
QQQQéA3/2ÆL

3
T*EEEE,

with coordinate expression

j
„
= ÊÕ¡g¡ ⁄ã¥ ¥ d1◊d2◊d3 _

_ (-1)h (- i h

2m
ghk (ã¥ Ù

k
¥ - Ù

k
ã¥ ¥) - ah ã¥ ¥) d0◊d1…◊âdh…◊d3^.

In view of quantum operators, we need further preliminary results on
classical mechanics.

The contact 2-form

m
hhhh
Ò:J

1
EEEEéL

2
T*J

1
EEEE
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yields a natural Hamiltonian lift of the classical functions f:J
1
EEEEé· into

vector fields

f
††††
#:J

1
EEEEéTJ

1
EEEE

with a given time-component ††††:J
1
EEEEéT. We have the coordinate expression

f
††††
# = † (Ù

0
_ y

0
i Ù

i
_ ˙i Ù

i
0) _ h

m
gij ⁄- Ù0

j
f Ù

i
_ (Ù

j
f _ (Í

j
k - Ík

j
) Ù0

k
f) Ù

i
0^.

Moreover, such a vector field is projectable over a vector field

fH:EEEEéTEEEE

if and only if the function f is quadratic with respect to the fibre of J
1
EEEEéEEEE

and its second fibre derivative is proportional to the metric g through the
coefficient ††††. The coordinate expression of such a function is of the type

f = f» m
2h
g
ij
y
0
i y

0
j _ f

i
y
0
i _ f

©
, f»,f

©
,f

i
$F(EEEE).

These functions are called quantisable functions and we prove that they
constitute naturally a Lie algebra. The coordinate expression of the bracket
is quite long.

The classical time, position, momentum, Hamiltonian and Lagrangian func-
tions are quantisable functions.

Then, we consider the vector fields

XŸ:QQQQŸéTQQQQŸ

on the pull-back quantum bundle, with a given time-component ††††:J
1
EEEEéT,

which preserve the quantum structures. We prove that they are of the type

XŸ
f,††††

ˆ c(f
††††
#) _ i i f,

where f:J
1
EEEEé· is a function.

Then, we prove that the vector field XŸ
f,††††

is projectable over a vector field

X
f
:QQQQéTQQQQ

if and only if the corresponding function f is a quantisable function and the
time-component of the vector field coincides with the time-component of
the quantisable function. The coordinate expression of such a vector field is
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given by the important formula

X
f
= f» Ù

0
- h

m
fi Ù

i
_ i (m

h
f» a

0
- fi a

i
_ f

©
) i.

These projected vector fields X
f
are called quantum vector fields.

Moreover, we prove that they constitute a Lie algebra and that the map

f ´ X
f

is a Lie algebra isomorphism.

The quantum vector fields act naturally on the quantum densities „∆ as
quantum Lie operators

Y
f
ˆ i X

f
.,

according to the coordinate expression

Y
f
(„∆) =

= i ⁄f» ıo
0
¥∆ - h

m
fi ıo

i
¥∆ - i f

©
¥∆ _ 1

2
(Ù

0
f» - h

m
Ù
i
fi) ¥∆^ bæÊêd1◊êd2◊êd3.

Therefore, we obtain a Lie algebra isomorphism

f ´ Y
f

between the quantisable functions and the quantum Lie operators.
In particular, in the special Galilei case, the classical Hamiltonian corre-

sponds to the time-derivative and the affine quantisable functions corre-
spond to the standard quantum operators.

So far, the quantum theory has been developed on the finite dimensional
bundle QQQQéEEEE over space-time. Next, in order to achieve the Hilbert structure
in the quantum framework, we derive in a natural way an infinite dimensional

Hilbert bundle HQQQQ∆éTTTT over time.

Namely, we consider the infinite dimensional fibred set

ß:SQQQQ∆éTTTT

constituted by the tube sections of the double fibred manifold QQQQ∆éEEEEéTTTT and
obtain a natural bijection
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„´ â„

between the sections „∆:EEEEéQQQQ∆ and â„∆:TTTTéSQQQQ∆.
Then, we define a smooth structure on SQQQQ∆éTTTT, according to the Frölicher's

definition of smoothness; hence, we are able to construct the tangent space

and define the connections on the fibred set SQQQQ∆éTTTT.
The above constructions are compatible with any subsheaf of tube sections

of the double fibred manifold QQQQ∆éEEEEéTTTT; in particular, we are interested to
the tube sections with space-like compact support. They yield the fibred set

ßc:ScQQQQ∆éTTTT.

Moreover, we prove that the Schrödinger equation can be regarded as the
equation

ıâk
â„∆ = 0,

where

âk:ScQQQQ∆éT*ÆTScQQQQ∆

is a symmetric connection on the infinite dimensional bundle ScQQQQ∆éTTTT, which
is called the Schrödinger connection, and has the coordinate expression

k
0
(„∆) = i ( h

2m
êËo¥∆ _ m

h
a
0
¥∆) u0æbæÊêd1◊êd2◊êd3.

There is a unique natural way to obtain a fibred morphism ScQQQQ∆éScQQQQ∆ over

TTTT (and not only a differential operator acting on the sections â„∆:TTTTéQQQQ∆) from
any quantisable function. Namely, the quantum operator associated with the
quantisable function f is defined to be the symmetric fibred morphism

âÚ
f
:ScQQQQ∆éScQQQQ∆

induced by the sheaf morphism

âÚ
f
ˆ âY

f
- i ffff»œıâk

,

with coordinate expression

Ú
f
(„∆) =
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= ⁄f
o
¥∆ _ i 1

2
(Ù

0
f» - h

m
Ù
i
fi) ¥∆ - i h

m
fi ıo

i
¥∆ - f» h

2m
êËo¥∆^ bæÊêd1◊êd2◊êd3.

Thus, the above formula is our implementation of the principle of corre-
spondence, achieved in a pure geometrical way.

In particular, in the special Galilei case, these operators and their commu-
tators correspond to the standard ones.

Eventually, the fibred set ScQQQQ∆éTTTT yields the quantum Hilbert bundle

HQQQQ∆éTTTT,

by the completion procedure. This bundle will carry the standard probabilistic
interpretation of quantum mechanics. We stress that we do not have a unique
Hilbert space, but a Hilbert bundle over time. Indeed, a unique Hilbert space
would be in conflict with the principle of relativity. On the other hand, a
global observer yields an isometry between the fibres of the quantum Hilbert
bundle.

The Feynmann amplitudes arise in a natural and nice way in our frame-
work.

By means of a slight modification of the above scheme we can formulate
the n-body quantum mechanics on a curved Galilei space-time. In particular,
the standard results for the two-body quantum mechanics can be recovered
as a special solution of our equations.

0.3. Main features

The literature concerning classical Galilei general relativity and geometric
approaches to quantum mechanics is very extended.

We have been mainly influenced by the ideas due to E. Cartan (see [Ca]), C.
Duval (see [DBKP]), H. P. Künzle (see [DBKP], [Kü1], [Kü2], [Kü3]), E.
Prugovecki (see [Pr]) and A. Trautman (see [Tr1], [Tr2]) and by the scheme of
geometrical quantisation due to B. Kostant and J. M. Souriau (see [St], [Wo]).
Also the papers by F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D.
Sternheimer (see BFFLS]), W. Pauli (see [Pl]), H. D. Dombrowski and K.
Horneffer (see [DH]), P. Havas (see [Ha]), X. Kepes (see [Ke1], [Ke2]), C.
Kiefer and T.P. Singh (see [KS]), K. Kucha® (see [Ku]), M. Le Bellac (see
[LBL]), J. M. Levy-Leblond (see [LBL], [Le]), L. Mangiarotti (see [Ma]), M.
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Modugno (see [Mo1]), E. Schmutzer and J. Plebanski (see [SP]) and W. M.
Tulczyjew (see [Tu]) have been considered.

We omit a detailed comparison between the above literature and our paper,
because it would take too much space. Indeed, sometimes, such a comparison
turns out to be very hard because it is not possible to recover our intrinsic
and well defined spaces in other papers. We just say that our approach and
results seem to be original in several respects.

Our touchstone for quantum mechanics is the standard theory. Actually,
even if our scheme is quite far from the usual one, we stress that we do not
touch the standard probabilistic interpretation and, eventually, our concrete
results agree with the standard ones in the special Galilei case. So, our the-
ory can be regarded both as a generalisation of the standard theory (in order
to fulfill the principle of general relativity and to include the interaction with
a gravitational field on a curved space-time) and as a new heuristic language
(in view of further interpretations and developments).

All ideas and developments are achieved in a fully geometrical way. All
formulas are expressed intrinsically and their coordinate or observer depen-
dent expressions are given as well.

As we have already largely discussed, groups have no direct role. On the
other hand we define carefully the geometrical structures of the fundamental
spaces and derive the physical theory from them. Of course, the transfor-
mation laws of the derived objects can also be checked directly.

We stress that the representations arising from our intrinsic methods are
not trivial and could not be guessed as consequence of standard procedures.
In particular, our implementation of the covariant principle of correspon-
dence seems to be a miracle due to these specific geometrical structures.

The principle of relativity is basically implemented by the fact that space-
time is a fibred manifold, without any distinguished trivialisation. Each
splitting of space-time is associated with an observer and no distinguished
observers are assumed. All subsequent structures must respect this original
feature. So, time cannot be just a trivial parameter, but the fibring over time
yields structures playing an important role in the theory.

The most usual (mostly Lagrangian or Hamiltonian) formulations of classi-
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cal mechanics are based on the vertical tangent or cotangent spaces, or on
the cotangent space of space-time. These approaches are related to a phi-
losophy, which is very far from ours; in fact, the final physical interpreta-
tion of these theories cannot be expressed in an observer independent way;
so, we disregard this viewpoint. Conversely, the approach based on the tan-
gent space of space-time is manifestly observer independent, but it depends
on the choice of a time unit of measurement. Our approach is based on the jet
space, because this is the only way to obtain a formulation which is indepen-
dent of observers and units of measurement of time. Our choice yields im-
portant consequences both for the classical and quantum theories.

Another, typical feature of our formulation depends on the fundamental
role played by connections both in the classical and quantum theories. So, the
classical field theory and mechanics is based on the space-time connection;
moreover, we derive the quantum dynamics and operators from the quantum
connection.

We mostly deal with linear or affine connections, but we are also con-
cerned with notions and methods related to general connections (see [ MM],
[Mo2], [Mo3]). As it is well known, a general connection on a fibred manifold
is defined as a section of the jet bundle; such a section can also be regarded,
equivalently, as a horizontal valued 1-form on the base space, or a vertical
valued 1-form on the total space. The first viewpoint is more suitable for its
relation with jets and the Frölicher-Nijenhuis bracket, while the second one
is more directly related to the covariant differential of forms. We refer to
the first viewpoint as the primitive one; for this reason, our coefficients of
the connections turn out to be the negatives of the standard ones.

It is well known that the differential calculus associated with a general
connection can be derived from the Frölicher-Nijenhuis graded Lie algebra of
tangent valued forms (see [ MM], [Mo2], [Mo3]); this calculus is simple and
more powerful than the standard one, even in the case of linear connections.
Therefore, we find it convenient to refer always to this general method.
Indeed, some steps of our theory require specifically notions of this general
calculus (see, for instance, the upper quantum vector fields, § II.3.2).

Classical mechanics cannot be formulated by Hamiltonian or Lagrangian
approaches in an observer independent way. On the other hand, a classical
Hamiltonian (contact) formalism can be developed; however, it has no co-
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variant role in classical mechanics, but yields a fundamental link between
classical and quantum structures, with respect to the quantum connection
and quantum operators.

Some analogies between our approach and the geometrical quantisation
(see, for instance, [St], [Wo]) are evident; but also several important differ-
ences arise. The main source of differences is again due to our requirement
of general relativistic covariance, hence to the role of time. In particular, we
are led to base the quantisation procedure on a contact 2-form; indeed the
symplectic structure of geometric quantisation is essentially vertical, hence
cannot have a relativistically covariant total role.

As the vertical metric is degenerate, the standard methods of Riemannian
geometry cannot be applied fully. However, the first field equation, based on
the closure of the contact 2-form, provides a compact way of expressing the
coupling between the vertical metric and the space-time connection, and
several other important equations as well.

The gravitational and electromagnetic coupling works well and consistently
in all respect, in the classical and quantum theories. This seems to be an
original aspect of our theory.

The Lie algebra of quantisable functions is new, as far as we know. It is
one of the key points of the covariant principle of correspondence.

The coordinate expression of the generalised Schrödinger equation is simi-
lar to the standard one in the flat case. For short, it replaces the wave
function with a wave density; but the difference is more subtle than it could
seem at a first insight.

We stress that, in the quantum theory, the total potential associated with
an observer cannot be split into its gravitational and electromagnetic compo-
nents.

The reader is only requested to have a standard knowledge of differential
geometry, general relativity and quantum mechanics. Besides that, the work
is rather self-contained.

An appendix provides a quick outline of the basic notions on fibred mani-
folds, tangent and jet spaces, general connections and tangent valued forms,
which are traceable only in a specialised literature. These notions are neces-
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sary for a full understanding of all details of our treatment. However, we
stress that the reader, who does not like to spend too much time on an ab-
stract geometrical language, does not need to go thoroughly through this
subject: a glance will be sufficient for understanding the greatest part of the
paper.

0.4. Units of measurement

A further original feature of our formulation concerns the way we treat
the units of measurement, in order to emphasise, in a clear and rigorous
way, the independence of the theory from any choice of scales.

In fact, some physical objects (mass, charge, and so on) can be described
by elements of one dimensional vector spaces. Moreover, some other physical
objects (metric, electromagnetic field, and so on) can be described by sec-
tions of vector bundles, which can be identified with geometrical bundles up
to a scale factor. Furthermore, each frame of reference involves a time
scale.

Only ratios of two vectors of such a 1 dimensional vector space or of two
scale factors are numbers. Then, we are led to consider “semi-vector”

spaces over the “semi-field” ·_ ˆ {x$· ¡ x>0} and define the dual of a semi-

vector space and the tensor products over ·_ of semi-vector spaces. In par-
ticular, a vector space is also a semi-vector space and the tensor product of
a semi-vector space with a vector space turns out to be a vector space. A
positive semi-vector space is defined to be a semi-vector space whose

scalar multiplication cannot be extended neither to ·_‰{0} nor to ·.
When we are concerned with a 1-dimensional positive semi-vector space,

we often denote the duals of its elements as inverses and the tensor prod-
ucts of its elements with vectors as scalar products; in this way, we can
treat elements of 1-dimensional positive semi-vector spaces as they were
numbers. So, our practical formulas look like the standard ones in the physi-
cal literature.

We can also define the roots of 1-dimensional positive semi-vector spaces.
The half-densities can be obtained as a by-product of the above algebraic

scheme.
Thus, in our theory we obtain vector fields, forms, tensors and so on,

which are tensorialised with some scale factor belonging to a 1-dimensional
vector or positive semi-vector space. We stress that the usual differential
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operations, such as Lie derivative, exterior differential, covariant differen-
tial, and so on, can be naturally extended to the above scaled objects. We
shall perform these operations without any further warning.

0.5. Further developments

In the special relativistic Galilei case, our practical results agree with the
corresponding ones of standard quantum mechanics. For example, in this
case, the concrete computations concerning harmonic oscillator, hydrogen
atom and so on agree with the standard ones. Thus, unlike some other geo-
metrical approaches to quantum mechanics, nothing needs to be checked in
this direction. Nevertheless, a possible theoretical interest of our scheme
might be maintained also in the special relativistic case.

Therefore, in order to provide some new concrete quantum examples on an
effectively curved space-time, one has first to find non-trivial solutions of
the classical fields.

Eventually, we observe that our theory can be also considered from an ex-
perimental viewpoint. In fact, some results could be checked in principle by
experiments. But a detailed analysis of this aspect is beyond the purpose of
the present work.

In a forthcoming paper we shall extend our approach, preserving the spirit
of the present work, in order to include spin. Moreover, we expect that our
methods be suitable for further extension to Einstein general relativistic
space-time.
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I - THE CLASSICAL THEORY

The general relativistic quantum theory requires a general relativistic
classical space-time as support.

Therefore, the first part of the paper is devoted to a model of Galilei
curved space-time with absolute time. In this framework, we formulate
the dynamics of classical gravitational and electromagnetic fields and of a
classical test particle.

I.1 - Space-time

First, we introduce the space-time fibred manifold and its space-like
metrical structure.

I.1.1. Space-time fibred manifold

In this section, we introduce the space-time fibred manifold and study
its tangent and jet prolongations. Moreover, we state our conventions
about coordinates.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN CCCC1111. We assume space-time to be a 4-dimensional orientable
fibred manifold (see § III.1)

t:EEEEéTTTT

over a 1-dimensional oriented affine space TTTT, associated with the vector
space T. ò
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RRRREEEEMMMMAAAARRRRKKKK IIII....1111....1111....1111. Thus, we assume the absolute time TTTT and the absolute
time function t. But we do not mention any “absolute space”, as we do not
assume any distinguished splitting of the space-time fibred manifold into a
product of time and space. Later, any choice of such a local splitting will be
associated with an observer; no distinguished observer is assumed. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....1111....1111....2222. The differential of the time function is the T-valued
form

dt:EEEEéTÆT*EEEE.

We shall be involved with the tangent space TEEEE and the vertical subspace
VEEEE; we recall the exact sequence of vector bundles over EEEE (see § III.2)

0 ä V EEEEä T EEEEä

The 1-jet space J
1
EEEE (see § III.3) plays an important role in the classical

and quantum theories. We recall that J
1
EEEEéEEEE is an affine bundle associated

with the vector bundle T*ÆVEEEEéEEEE....
We shall be involved with the canonical fibred morphisms over EEEE (see

[Mo2])1

d:J
1
EEEEéT*ÆTEEEE ª:J

1
EEEEéT*EEEEÆ

EEEE
VEEEE,

which provide a natural splitting of the above exact sequence over J
1
EEEE (they

are quoted as the contact structure of jets). ò

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....1111....1111....1111. An (absolute) motion is defined to be a section

s:TTTTéEEEE

and its (absolute) velocity is defined to be its first jet prolongation

j
1
s:TTTTéJ

1
EEEE. ¡

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....1111....1111....2222. An observer is defined to be a section

o:EEEEéJ
1
EEEE. ¡

1
d is the Cyrillic character corresponding to “d”.
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Thus, J
1
EEEE can be considered as the target space both of the velocity of

particles and of observers.

RRRREEEEMMMMAAAARRRRKKKK IIII....1111....1111....3333. Global observers exist, because of the affine structure
of J

1
EEEEéEEEE.

Each observer o is nothing but a connection on the fibred manifold t:EEEEéTTTT
(see § III.5). Hence, an observer o yields a splitting of the exact tangent se-
quence

0 ä EEEE˚T ä
o

TEEEE ä
~o V EEEE ä0,

where

~
o
: TEEEE é VEEEE : X ´ X - dt(X)œo.

In other words, an observer o yields a splitting of the tangent bundle of
space-time into its “observed” time-like and space-like components

TEEEE ≠ (EEEE˚T)
E̊EEE
VEEEE,

given by the two linear fibred projections over EEEE

dt:TEEEEéEEEE˚T ~
o
:TEEEEéVEEEE.

Moreover, an observer o yields the translation fibred morphism over EEEE

ı
o
: J

1
EEEE é T*ÆVEEEE : ß

1
- o©ß.

So, if s:TTTTéEEEE is a motion and o is an observer, then we define the observed
velocity to be the fibred morphism over s

ı
o
s ˆ ı

o
©j

1
s : TTTT é T*ÆVEEEE

and we obtain

j
1
s = ı

o
s _ o©s. ò

A time unit of measurement is defined to be an oriented basis or its dual
(see § III.1)

u
0
$T_ u0$T_*.
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A frame of reference is defined to be a pair (u
0
, o), where u

0
is a time

unit of measurement and o an observer.

We denote the typical chart of EEEE, adapted to the fibring, to a time unit of

measurement u
0
$T_ and to the space-time orientation, by

(x0,yi).

The induced charts of TEEEE, J
1
EEEE and TJ

1
EEEE are denoted by

(x0,yi; îx0, îyi), (x0,yi;y
0
i), (x0,yi,y

0
i; îx0, îyi, îy

0
i).

Moreover, the corresponding local bases of vector fields and 1-forms of EEEE,
TEEEE and J

1
EEEE are denoted by

(Ù
0
,Ù
i
), (Ù

0
,Ù
i
,Ùî
0
,Ùî
i
), (Ù

0
,Ù
i
,Ù

i
0) (d0,di), (d0,di,d

î
0,d

î
i), (d0,di,d

0
i),

Thus, by construction, we have

dt©Ù
0
= u

0
t*u0 = dx0.

Moreover, we can write

Ù
i
0 = u0æÙ

i
.

In general, vertical restrictions will be denoted by “ê”. In particular, the

local base of vertical 1-forms of EEEE will be denoted by (êdi).
Greek indices ¬, µ, … run from 0 to 3, Latin indices i,j,h,k, … run from 1 to

3 and capital Latin indices A, B, … span the values 0,1,2,3,1
0
,2
0
,3
0
.

The coordinate expressions of dt, d and ª are

dt = u
0
ædx0

d = u0æd
0

ª = ªiæÙ
i
,

with

d
0
ˆ Ù

0
_ y

0
i Ù

i
ªi ˆ di - y

0
i d0.

The coordinate expression of the absolute velocity of a motion s is
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j
1
s = u0æ⁄(Ù

0
©s _ Ù

0
si (Ù

i
©s)^.

Each chart (x0,yi) determines the local observer

o ˆ u0æÙ
0
: EEEE é T*ÆTEEEE,

with coordinate expression (in the same chart) oi
0
= 0. This chart is said to

be adapted to o. Conversely, each observer admits many adapted charts.
Let o be an observer and let us refer to adapted coordinates. Then, we

obtain the following coordinate expressions

~
o
= diæÙ

i
ı
o
= yi

0
u0æÙ

i
;

moreover if s:TTTTéEEEE is a motion, then the coordinate expression of the ob-
served velocity is

ı
o
s = Ù

0
si u0æÙ

i
.

I.1.2. Vertical metric

In this section, we introduce the space-time metric and study the main
related structures.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN CCCC2222. We assume space-time to be equipped with a scaled
2vertical Riemannian metric

g:EEEEéAÆ(V*EEEEÆ
EEEE
V*EEEE),

where A is a 1-dimensional positive semi-vector space (see § III.1.3). ò

Thus, A represents the space of area units.

We can also regard g as a degenerate 4-dimensional metric of signature
(0,3) by considering the associated contravariant tensor

ãg : EEEE é A*Æ(VEEEEÆ
EEEE
VEEEE) ç A*Æ(TEEEEÆ

EEEE
TEEEE).

The metrical linear fibred isomorphism and its inverse will be denoted by

2 Here and later, “scaled” means “defined up to a scale factor”.



30 A. JADCZYK, M. MODUGNO

g@:VEEEEéAÆV*EEEE g#:V*EEEEéA*ÆVEEEE.

The coordinate expressions of g and ãg are

g = g
ij
êdiæêdj ãg = gij Ù

i
æÙ

j

with

g
ij
$ M(EEEE,AÆ·) gij $ M(EEEE,A*Æ·).

RRRREEEEMMMMAAAARRRRKKKK IIII....1111....2222....1111. The metric, the time-fibring and the choice of an orien-
tation of the manifold EEEE yield a space-time and a space-like scaled volume
form

¨:EEEEé(TÆA3/2)ÆL
4
T*EEEE ∆:EEEEéA3/2ÆL

3
V*EEEE.

Then, we obtain the dual elements

ã̈:EEEEé(T*ÆA*3/2)ÆL
4
TEEEE ã∆:EEEEéA*3/2ÆL

3
VEEEE.

We have the coordinate expressions

¨ = ÊÕ¡g¡ u
0
æd0◊d1◊d2◊d3 ∆ = ÊÕ¡g¡ êd1◊êd2◊êd3

ã̈ =
1

ÊÕ¡g¡
u0æÙ

0
◊Ù

1
◊Ù

2
◊Ù

3
ã∆ =

1
ÊÕ¡g¡

Ù
1
◊Ù

2
◊Ù

3
,

where

¡g¡ ˆ det (g
ij
) $ M(EEEE,A3). ò

RRRREEEEMMMMAAAARRRRKKKK IIII....1111....2222....2222. The metric g yields the Riemannian connection on the fi-
bres of t:EEEEéTTTT, which can be regarded as the section

º:VEEEEéV*EEEEÆ
VEEEE
VVEEEE,

with coordinate expression

º = êdjæ(Ù
j
_ º

j
i
h
îyh Ùî

i
),

where



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS 31

º
h
i
k
= - 1

2
gij (Ù

h
g
jk
_ Ù

k
g
jh
- Ù

j
g
hk
). ò

Thus, the differences between the Einstein and Galilei general relativistic
space-times can be summarised as follows:

- in the Einstein case, we have a Lorentz metric and no fibring over abso-
lute time;

- in the Galilei case, we have a “space-like” metric ãg and a “time-like” 1-

form dt:EEEEéTÆT*EEEE, which determines the fibring over absolute time.
In brief words, we can say that the essential difference between the two

theories consists in the replacement of the light cones with the vertical sub-
spaces.

I.1.3. Units of measurement

We have already introduced the 1-dimensional oriented vector space of
units of measurement of time T (Ass. C1 in I.1.1) and 1-dimensional posi-
tive vector space of units of measurement of area (Ass.C2 in I.1.2). Now,
we complete our assumptions of fundamental spaces of units of measure-
ment by introducing the 1-dimensional positive vector space of masses.

These three spaces generate all other spaces of units of measurement.
In the classical theory we assume a distinguished element in one of

these spaces, namely the universal gravitational coupling constant.
In the quantum theory we shall assume another distinguished element in

one of these spaces, namely the Plank constant (see Ass. Q2 in § II.1.4).

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN CCCC3333. We assume the space of masses to be a 1-dimensional
positive semi-vector space (see § III.1.3) M. ò

The mass of a classical or quantum particle is defined to be an element

m $ M.

The mass plays the role of coupling constants for the metric.

The three fundamental 1-dimensional semi-vector spaces (see § III.1.3) T,
A and M generate all spaces of units of measurement.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....1111....3333....1111. A space of units of measurement is defined to be a
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1-dimensional semi-vector space of the type

U ˆ T
pÆAqÆMr,

where p, q, and r are rational numbers (see § III.1.3).
We say that U has dimensions

(p,q,r). ¡

In the classical theory we assume just one universal unit of measurement.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN CCCC4444. We assume the gravitational coupling constant to be an
element

kkkk $ T*2ÆA3/2ÆM*. ò
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I.2 - Space-time connections

In view of further development of our model, we need a preliminary
study of connections which preserve the fibred and metrical structure of
space-time.

I.2.1. Space-time connections

In this section, we introduce the notion of space-time connection by
referring to the tangent or to the jet space, equivalently.

RRRREEEEMMMMAAAARRRRKKKK IIII....2222....1111....1111. Let K be a linear connection on the vector bundle TEEEEéEEEE
(see § III.5).

The following conditions are equivalent:
i) K is dt-preserving, i.e.

ıdt = 0;

ii) the coefficients K
¬
0
µ
$F(EEEE) of K with time-like superscript vanish, i.e.

K
¬
0
µ
= 0.

Moreover, the following conditions are equivalent:
iii) the fibres of t:EEEEéTTTT are auto parallel with respect to K, i.e.

ı
X
Y $ S(VEEEEéEEEE) ÅX,Y$S(VEEEEéEEEE):

iv) K can be restricted to the fibres of t:EEEEéTTTT;
v) the coefficients K

i
0
j
$F(EEEE) of K with time-like superscript vanish, i.e.

K
i
0
j
= 0.

Furthermore, i) implies iii). ò

Let us consider a dt-preserving torsion free linear connection

K:TEEEEéT*EEEEÆ
TEEEE
TTEEEE
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on the vector bundle TEEEEéEEEE and a torsion free3 affine connection

Í:J
1
EEEEéT*EEEEÆ

J
1
EEEE
TJ

1
EEEE,

on the affine bundle J
1
EEEEéEEEE.

Their coordinate expressions are of the type

K = d¬æ(Ù
¬
_ K

¬
i Ùî

i
) Í = d¬æ(Ù

¬
_ Í

¬
i Ù0

i
)

where

K
¬
i ˆ K

¬
i
h
îyh _ K

¬
i
0
îx0 Í

¬
i ˆ Í

¬
i
h
y
0
h _ Í

¬
i
©

Í
¬
i
µ
= Í

µ
i
¬

K
¬
i
µ
= K

µ
i
¬
,

with

Í
¬
i
µ
, K

¬
i
µ
$ F(EEEE).

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....2222....1111....1111. There is a natural bijection

K ´ Í

between such connections; its coordinate expression is given by

Í
¬
i
µ
= K

¬
i
µ
.

PROOF. It follows by considering the following commutative diagram

J
1
EEEE á á á

Í
T*EEEEÆ

EEEE
TJ

1
EEEE

d ¸ ¸
T * Æ T EEEEä

K
T*Æ(T*EEEEÆ

T EEEE
T T EEEE )ä

≠
T*EEEEÆ

TEEEE
T(T*ÆTEEEE) ò

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....2222....1111....1111. A space-time connection is defined to be, equiva-
lently, a connection K, or Í, of the above type. ¡

3 The torsion for such an affine connection is defined through the T-valued
soldering form ª, via the Frölicher-Nijenhuis bracket (see § III.4, § III.5).
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The first viewpoint is more suitable for field theory (where we have to
take covariant derivatives of space-time tensors), the second one for classi-
cal and quantum particle mechanics (where the jet space plays the role of
kinematical space).

We shall be involved with the vertical valued 1-forms associated with the
space-time connection (see § III.5)

~
K
:TEEEEéT*TEEEEÆ

TEEEE
TEEEE ~

Í
:J
1
EEEEéT*Æ(T*J

1
EEEEÆ
J
1
EEEE
VEEEE)

with coordinate expressions

~
K
= d0.æÙ

0
_ (di. - K

¬
i d¬)æÙ

i
~
Í
= (di

0
- Í

¬
i d¬)æÙ

i
0.

RRRREEEEMMMMAAAARRRRKKKK IIII....2222....1111....2222. The space-time connection K restricts to the linear
connection

K':VEEEEéT*EEEEÆ
VEEEE
TVEEEE

of the vertical bundle VEEEEéEEEE, with coordinate expression

K' = d¬æ(Ù
j
_ K

¬
i
h
îyh Ùî

i
). ò

RRRREEEEMMMMAAAARRRRKKKK IIII....2222....1111....3333. The natural linear fibred epimorphism T*EEEEéV*EEEE over EEEE
yields the further restriction

êK:VEEEEéV*EEEEÆ
VEEEE
VVEEEE,

which can be regarded as a smooth family of linear connections on the fibres
of t:EEEEéTTTT, and has coordinate expression

êK = êdjæ(Ù
j
_ K

j
i
h
îyh Ùî

i
). ò

RRRREEEEMMMMAAAARRRRKKKK IIII....2222....1111....4444. Given a space-time connection K, we can define, as

usual, its curvature4 (see § III.5)

4 [ , ] is the Frölicher Nijenhuis bracket.
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R ˆ 1
2
[K,K] : TEEEE é L

2
T*EEEEÆ

EEEE
VEEEE

its Ricci tensor

r ˆ 2 C1
1
R : EEEE é T*EEEEÆ

EEEE
T*EEEE

and its scalar curvature

s ˆ Çãg, r¶ : EEEE é ·,

with coordinate expressions

R ˆ R
¬µ
i
~
d¬◊dµæÙ

i
æd~ = (Ù

¬
K
µ
i
~
_ K

¬
j
~
K
µ
i
j
) d¬◊dµæÙ

i
æd~

r = (Ù
i
K
¬
i
µ
- Ù

¬
K
i
i
µ
_ K

i
j
µ
K
¬
i
j
- K

¬
j
µ
K
i
i
j
) d¬ædµ

s = ghk (Ù
i
K
h
i
k
- Ù

h
K
i
i
k
_ K

i
j
h
K
k
i
j
- K

h
j
k
K
i
i
j
).

Then, the scalar curvature of K coincides with the scalar curvature of êK

s = ês. ò

I.2.2. Space-time connections and observers

In this section, we consider a space-time connection Í, an observer o
along with an adapted space-time chart (x0,yi) and describe the connection
through the observer.

RRRREEEEMMMMAAAARRRRKKKK IIII....2222....2222....1111. The covariant differential of the observer is the section

ıo:EEEEéT*Æ(T*EEEEÆ
EEEE
VEEEE),

with coordinate expression in adapted coordinates

ıo = - u0æ(Í
0
i
©
d0 _ Í

j
i
©
dj)æÙ

i
. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....2222....2222....2222. The metric g and the inclusion V*EEEE ç T*EEEE induced by the
observer allow us to regard ıo as a section
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(ıo)@:EEEEé(T*ÆA)Æ(T*EEEEÆ
EEEE
T*EEEE),

whose expression in adapted coordinates is

(ıo)@ = - u0æ(Í
0i©

d0 _ Í
ij©
di)ædj.

We can split the above tensor into its symmetrical and anti symmetrical
components

(ıo)@ = 1
2
Á _ 1

2
È,

where

Á:EEEEé(T*ÆA)ÆÓ
2
T*EEEE È:EEEEé(T*ÆA)ÆL

2
T*EEEE.

Then, we obtain the coordinate expressions

Á ˆ u0æ⁄2 Á
0j
d0√dj _ Á

ij
di√dj^ = - 2 u0æ(Í

0j©
d0√dj _ Í

ij©
di√dj)

È ˆ u0æ⁄2 È
0j
d0◊dj _ È

ij
di◊dj) = - 2 u0æ(Í

0j©
d0◊dj _ Í

ij©
di◊dj),

where

Á
ij
= - (Í

ij©
_ Í

ji©
) Á

0j
= - Í

0j©
= È

0j
È
ij
= - (Í

ij©
- Í

ji©
),

with

Á
¬j
, È

¬j
$ M(EEEE,AÆ·). ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....2222....2222....1111. The maps

K ´ ( êK, ıo) ´ ( êK, êÁ, È)

are bijections. ò

In other words, êK and ıo carry independent information on K; êÁ and È
carry independent information on o; moreover, êÁ and È characterise ıo and

the pair ( êK, ıo) characterises K itself.

An observer o is said to be inertial with respect to the space-time con-
nection K if ıo = 0.
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Of course, inertial observers on a curved space-time might not exist at all.

I.2.3. Metrical space-time connections

This section is devoted to study space-time connections which preserve
the metric. This subject needs a little care because of the degeneracy of
the metric.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....2222....3333....1111. Let K be a space-time connection. Then, the fol-
lowing four conditions i), ii), iii), iv) are equivalent:

i) ıãg = 0;

ii) in a space-time chart

Ù
¬
gij - K

¬
i
h
ghj - K

¬
j
h
gih = 0;

iii) iii)' êK = º,

iii)" for an observer o:EEEEéT*ÆTEEEE

êÁ = g@ L
o
ãg;

iv) in a space-time chart

iv)' K
ihj
= - 1

2
(Ù

i
g
hj
_ Ù

j
g
hi
- Ù

h
g
ij
),

iv)" K
0ij
_ K

0ji
= - Ù

0
g
ij
.

PROOF. We can easily see that i) ∞ ii) ∞ iv) and iii)' ∞ iv)'.
Moreover, we can easily see that, with reference to an observer o and any

adapted chart, iii)' ∞ iv)". Then, we can conclude the proof by closing the
circle of equivalencies (recalling that each space-time chart is adapted to an
observer). ò

Then, we give the following definition.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....2222....3333....1111. A space-time connection K is said to be metrical if

ıãg = 0. ¡
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CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIII....2222....3333....1111. Let K be a metrical space-time connection and let o
be a global observer. Then, the following conditions are equivalent:

- for each †,†'$TTTT the diffeomorphism

EEEE
†
éEEEE

†'

induced by o is an isometry;

- êÁ = 0.

PROOF. It follows immediately from iii)" of Prop. I.2.3.1. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....2222....3333....1111. If K is a metrical space-time connection, then

*) K
j
i
i
= - 1

2
gih Ù

j
g
ih
.

PROOF. Formula *) follows immediately from iv)'. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIII....2222....3333....2222. If K is a metrical space-time connection, then

**) ı¨ = O;

**)' K
¬
i
i
= -

Ù
¬
ÊÕ¡g¡

ÊÕ¡g¡
;

***) ghk K
h
i
k
=
Ù
j
(gijÊÕ¡g¡ )

ÊÕ¡g¡
.

PROOF. Formula **)' follows from *) of Rem. I.2.3.1 and from the algebraic
identity

ÇA-1,DA¶ =
D(detA)
detA

,

which holds for any map

A : · é Auto (V) ç V*ÆV,
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where V is a vector space5.
Moreover, formula **)' is the coordinate expression of **).
Furthermore, we have, in virtue of iv)' of Prop. I.2.3.1,

ghk K
h
i
k
= Ù

j
gij _ 1

2
gij ghk Ù

j
g
hk
,

hence, in virtue of *),

ghk K
h
i
k
= Ù

j
gij - gij K

j
h
h
,

hence, in virtue of **)',

ghk K
h
i
k
= Ù

j
gji _ gij

Ù
j
ÊÕ¡g¡

ÊÕ¡g¡
,

which yields ***). ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIII....2222....3333....4444. If K is a metrical space-time connection, then

ı∆ = O,

where the covariant differential is performed through the induced linear
connection K' on the vector bundle VEEEEéEEEE (see Rem. I.2.1.2). ò

I.2.4. Divergence and codifferential operators

This section is devoted to the study of different kinds of divergence
operators. This subject needs a little care because of the degeneracy of
the metric.

Let us start by considering just the vertical metric g.
If

X:EEEEéTEEEE

is a vector field, then we define the codifferential of X to be the function

5 In a (pseudo-)Riemannian manifold, we can define the volume form ¨ by
means of the condition g(¨,¨) = — 1; then, the identity ı¨ = 0 can be deduced
directly from the metricity of the connection. But this direct argument does
not hold for our degenerate metric.
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∂ X ˆ Çã̈, di
X
¨¶ = Çã̈, L

X
¨¶ : EEEE é ·,

with coordinate expression

∂ X =
Ù
¬
(X¬ÊÕ¡g¡ )

ÊÕ¡g¡
.

We have no corresponding codifferential for forms, because the metric g is
degenerate. However, we can define the vertical codifferential of the verti-
cal restrictions of forms, as usual.

Next, let us assume a space-time connection K.
If

X:EEEEéTEEEE

is a vector field, then we define the divergence of X to be the function

div X ˆ tr ıX : EEEE é ·,

with coordinate expression

div X = Ù
¬
X¬ - K

¬
i
i
X¬.

If

∑:EEEEéT*EEEE

is a 1-form, then we define the divergence of ∑ to be the function

div ∑ ˆ Çãg,ı∑¶ : EEEE é A*Æ·,

with coordinate expression

div ∑ = gij (Ù
i
∑
j
_ K

i
h
j
∑
h
).

We remark that this divergence depends only on the vertical restrictions of
∑ and K, i.e. we can write

div ∑ = êdiv ê∑ ˆ Çãg, êıê∑¶.

The above two divergence operators can be extended to the tensor algebra
by means of the Leibnitz rule.

Eventually, let us assume that the space-time connection K be metrical.
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Then we obtain the following results.
If

X:EEEEéTEEEE

is a vector field, then

∂X = div X,

because the coordinate expressions of the two hand sides coincide.
If

∑:EEEEéL
2
T*EEEE

is a 2-form, then we obtain

div2∑ = 0;

in fact div2∑ = êdiv2 ê∑ and we can apply the classical Riemannian identity.

I.2.5. Second order connection and contact 2-form

Next, we associate two further objects with a space-time connection: a
second order connection and a contact 2-form. These objects will play a
fundamental role in the classical and quantum theories.

First, let us show how a space-time connection yields naturally these two
objects.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....2222....5555....1111. If Í is a space-time connection, then we obtain the
connection on the fibred manifold J

1
EEEEéTTTT

˙ ˆ dœÍ : J
1
EEEE é T*ÆTJ

1
EEEE,

with coordinate expression

˙ = u0æ(Ù
0
_ y

0
i Ù

i
_ ˙i Ù0

i
),

where

˙i = Í
h
i
k
y
0
h y

0
k _ 2 Í

h
i
©
y
0
h _ Í

0
i
©
. ò



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS 43

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....2222....5555....2222. If Í is a space-time connection, then we obtain the

scaled 2-form on the manifold J
1
EEEE6

Ò ˆ ~
Í
◊ª : J

1
EEEE é (T*ÆA)ÆL

2
T*J

1
EEEE,

with coordinate expression

Ò = g
ij
u0æ(d

0
i - ˙i d0 - Í

h
i ªh)◊ªj. ò

It can be proved that Ò is the unique scaled 2-form on J
1
EEEE naturally induced

by g and Í (see [Ja]).

Next, let us study the main properties of these two objects.

Let us recall that a second order connection on the fibred manifold t:EEEEéBBBB
is defined to be a section (see § III.3, [MM1])

c:J
1
EEEEéJ

2
EEEE.

Moreover, we have natural fibred mono-morphisms over J
1
EEEE

J
1
J
1
EEEE à T*ÆTJ

1
EEEE J

2
EEEE à J

1
J
1
EEEE.

Actually, J
2
EEEE turns out to be the fibred submanifold

J
2
EEEE à T*ÆTJ

1
EEEE

over J
1
EEEE, which projects over ª:J

1
EEEEéT*ÆTEEEE.

Hence, a (first order) connection

c:J
1
EEEEéT*ÆTJ

1
EEEE

of the fibred manifold J
1
EEEEéTTTT is a second order connection of the fibred

manifold t:EEEEéTTTT if and only if c is projectable over ª:J
1
EEEEéT*ÆTEEEE, i.e. if and

only if the coordinate expression of c is of the type

˙ = u0æ⁄Ù
0
_ y

0
i Ù

i
_ ci Ù0

i
^ ci$F(J

1
EEEE).

6 The symbol “◊” denotes wedge product ◊ followed by scalar product g.
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Moreover, by considering the algebraic structure of the bundle J
2
EEEEéEEEE, we

can define the homogeneous second order connections: they are charac-

terised in coordinates by the fact that the coefficients ci are second order

polynomials in the coordinates y
0
j.

RRRREEEEMMMMAAAARRRRKKKK IIII....2222....5555....1111. If Í is a space-time connection, then ˙ is a homogeneous

second order connection7. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....2222....5555....1111. If Í is a space-time connection and o is an ob-
server, then we obtain the following important equality (see § I.2.2)

È ˆ 2 o*Ò. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....2222....5555....2222. If Í is a space-time connection, then the 2-form Ò
is non-degenerate in the sense that it yields the non singular scaled volume

form8 on the manifold J
1
EEEE

dt◊Ò◊Ò◊Ò:J
1
EEEEé(T*2ÆA3)ÆL

7
T*J

1
EEEE. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....2222....5555....3333. If Í is a space-time connection, then the 2-form Ò
is characterised by the following property:

- for each second order connection ˙', we obtain the formula

i
˙'
Ò = ªœ(˙' - ˙),

with coordinate expression

i
˙'
Ò = g

ij
(˙'i- ˙i) u0æªj.

7 If we choose a time unit of measurement u0 and replace T with ·, then the
theory of second order connections on the jet space reduces to the more
usual theory of second order differential equations on the tangent space. Our
approach based on jets is required by the explicit independence from time
units of measurements of our theory.
8 This form can be taken as the “Liouville volume form” of our model and can
be used for developing a Galilei general relativistic statistics.
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PROOF. It follows from a computation in coordinates, by considering the

base of forms ⁄d0, ªi, (di
0
- ˙i d0)^. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIII....2222....5555....1111. If Í is a space-time connection, then ˙ and Ò fulfill
the property

˙œÒ = 0. ò

So, we introduce the following definition.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....2222....5555....1111. If Í is a space-time connection, then

˙ ˆ dœÍ Ò ˆ ~
Í
◊ª

are said to be, respectively, the second order connection and the scaled

contact 2-form 9 associated with Í. ¡

Eventually, let us see how ˙ and Ò characterise Í.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....2222....5555....4444. If ˙ is a homogeneous second order connection on
EEEEéTTTT, then there is a unique torsion free affine connection Í on J

1
EEEEéEEEE, such

that

˙ = dœÍ.

PROOF. It follows from a comparison of the coordinate expressions of ˙ and
Í. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIII....2222....5555....2222. If Ò is the contact 2-form associated with the
space-time connection Í, then there is a unique connection ˙' on the fibred
manifold J

1
EEEEéTTTT, such that

i
˙'
Ò = 0.

Namely, we have

9 In the literature, the term “contact form” is devoted to a 1-form of class
2n_1 on a manifold of dimension 2n_1. So, there is no conflict between the
usual terminology and ours.
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˙' = ˙.

PROOF. It follows from Prop. I.2.5.3. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIII....2222....5555....3333. If Ò is the contact 2-form associated with the
space-time connection Í, then there is a unique space-time connection Í'
such that

Ò = ~
Í'
◊ª.

Namely, we have

Í' = Í.

PROOF. It follows from Prop. I.2.5.4 and Cor. I.2.5.2. ò

We observe that, if the space-time connection is metrical, then the verti-
cal restriction of the contact 2-form Ò turns out to be the vertical symplec-
tic 2-form

êÒ = ~
º
◊Vπ

EEEE
: VEEEE é AÆL

2
V*VEEEE

associated with the vertical metric g. But êÒ cannot have a total role in our

theory, as a consequence of the principle of relativity. The replacement of êÒ
with Ò makes an essential difference between our approach and the view-
point of geometrical quantisation.

I.2.6. Space-time connections and acceleration

We conclude this section with the study of the acceleration of a motion
with respect to a given space-time connection. This subject is necessary
for a full understanding of the meaning of the space-time second order
connections. The results below will be used in the expression of the law of
motion of classical particles (see § I.5.1).

Let us consider the second jet space J
2
EEEE (see § III.3). We recall that the

natural map J
2
EEEEéJ

1
EEEE:ß

2
´ß

1
is an affine bundle associated with the vector

bundle (T*ÆT*)ÆVEEEE.
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Now, let us consider a space-time connection Í and the associated second
order connection ˙ (see § I.2.5).

We obtain the translation fibred morphism over J
1
EEEEéEEEE

ı̇ : J
2
EEEE é (T*ÆT*)ÆVEEEE : ß

2
´ ß

2
- ˙(ß

1
).

Then, let us consider a motion s:TTTTéEEEE.
We define the (absolute) acceleration of s to be the second order covari-

ant differential of s, i.e. the section

ı̇ j
1
s ˆ j

2
s - ˙©j

1
s : TTTT é (T*ÆT*)ÆVEEEE,

with coordinate expression

ı̇ j
1
s = (Ù

00
si - ˙i©j

1
s) u0æu0æ(Ù

i
©s) =

= (Ù
00
si - Í

h
i
k
©s Ù

0
sh Ù

0
sk - 2 Í

h
i
©
©s Ù

0
sh - Í

0
i
©
©s) u0æu0æ(Ù

i
©s).
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I.3 - Gravitational and electromagnetic fields

So far, the space-time fibred manifold has been equipped only with the
vertical metric. Now, we complete the structure of space-time by adding
the gravitational and electromagnetic fields.

I.3.1. The fields

In this section, we introduce the gravitational and electromagnetic
fields.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN CCCC5555. We assume space-time to be equipped with a space-time
connection (see § I.2.1)

ÍŸ:J
1
EEEEéT*EEEEÆ

J
1
EEEE
TJ

1
EEEE,

and a scaled 2-form

F:EEEEéBÆL
2
T*EEEE,

where B is the 1-dimensional vector space

B = A1/4ÆM1/2. ò

We say that ÍŸ is the gravitational field and F the electromagnetic field .

The superscript “Ÿ” will label objects related to the gravitational connec-
tion ÍŸ. In particular, we have (see § I.2.1, § I.2.5):

ıŸ ˆ ı
ÍŸ

˙Ÿ ˆ dœÍŸ ÒŸ ˆ ~
ÍŸ
◊ª.

We stress that, as the metric is degenerate, it cannot determine fully the
gravitational connection. Hence, we must assume that the gravitational field
is described just by the gravitational connection ÍŸ.

The sections s:TTTTéEEEE, which fulfill the equality

ı̇
Ÿ
j
1
s = 0
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will be interpreted as free falling motions, according to the Newton law of
motion (see § I.5.1).

The coordinate expression of F is

F = 2 F
0j
d0◊dj _ F

ij
di◊dj, F

¬j
$M(EEEE,BÆ·).

The (observer independent) magnetic field and electric field related to
an observer o are defined to be the vertical 1-forms

B ˆ 1
2
ê* êF : EEEE é (BÆA1/2*)ÆV*EEEE E ˆ - (oêœF) : EEEE é (T*ÆB)ÆV*EEEE

with coordinate expressions

B = ÊÕ¡g¡ (F12 êd3 _ F31 êd2 _ F23 êd1) E = F
i0
êdi

and we can write

F = 2 dt◊o*(E) _ 2 o*(ê* B).

I.3.2. Gravitational and electromagnetic coupling

Next, we exhibit a natural way to incorporate the electromagnetic field
and the gravitational connection into the geometric structures of space-
time. This coupling is parametrised either by the ratio of a charge and a
mass or by the square root of the gravitational constant.

Such a procedure works very well both in classical and quantum theo-
ries.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....3333....2222....1111. We define the space of charges to be the oriented 1-
dimensional vector space

Q = T*ÆA3/4ÆM1/2. ò

The charge of a classical or quantum particle is defined to be an element

qqqq $ Q.

Moreover, given u
0
$T_, we set

q ˆ qqqq(u
0
) $ A3/4ÆM1/2.
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The charge plays the role of coupling constants for the electromagnetic
field.

RRRREEEEMMMMAAAARRRRKKKK IIII....3333....2222....1111. The square root of the gravitational coupling constant
(see Ass. C4 in §I.1.3) and the ratio qqqq/m of any charge qqqq and mass m have
the same dimensions:

¢Ãkkkk $ T*ÆA3/4ÆM*1/2 qqqq
m
$ T*ÆA3/4ÆM*1/2.

Hence, the following objects have the same dimensions

ÒŸ:J
1
EEEEé(T*ÆA)ÆL

2
T*J

1
EEEE

¢Ãkkkk F:EEEEé(T*ÆA)ÆL
2
T*EEEE qqqq

m
F:EEEEé(T*ÆA)ÆL

2
T*EEEE.

Therefore, there are two distinguished ways to couple the gravitational
contact 2-form ÒŸ and the electromagnetic field F in a way independent of
the choice of any unit of measurement. Namely, we can use as coupling con-
stant both the square root of the universal gravitational coupling constant
¢Ãkkkk and the ratio qqqq/m of a given charge qqqq and a mass m. In the first case we
obtain a universal coupling, in the second case the coupling depends on the
choice of a particular particle. ò

In practice, we are concerned with cccc = ¢Ãkkkk only in the context of the
second gravitational field equation (see § I.4.5, § I.4.7) and in all other cases
we consider cccc = qqqq/m.

Thus, let us consider an element

cccc $ T*ÆA3/4ÆM*1/2,

which might be either ¢Ãkkkk, or qqqq
m
(for a certain given charge qqqq and mass m).

Moreover, given u
0
$T_, we set

c ˆ cccc(u
0
) $ A3/4ÆM*1/2.

We shall exhibit a natural way to deform the gravitational space-time con-
nection ÍŸ, the related second order connection ˙Ÿ and contact 2-form ÒŸ
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into corresponding “total objects ” Í, ˙ and Ò, through the electromagnetic
field F.

Let us start with ÒŸ. In fact, it is natural to consider the deformed “total”
2-form

Ò ˆ ÒŸ _ Òe ˆ ÒŸ _ 1
2
cccc F,

obtained by adding the electromagnetic 2-form to the gravitational contact
2-form.

Here, the coupling constant cccc is necessary for the equality of the left and
right hand sides (i.e. the correct dimensionality of the above formula). On
the other hand, we remark that we could have multiplied F by any other non-
zero scalar factor; the factor 1/2 has been chosen just in order to obtain the
standard normalisation in the classical and quantum equations.

Then, we can prove the following result.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIII....3333....2222....1111. Let us consider the total contact 2-form

Ò ˆ ÒŸ _ Òe ˆ ÒŸ _ 1
2
cccc F.

Then, there exist a unique torsion free affine connection Í on the bundle
J
1
EEEEéEEEE and a unique connection ˙ on the fibred manifold J

1
EEEEéTTTT

Í = ÍŸ _ Íe ˙ = ˙Ÿ _ ˙e

such that10

˙ ˆ dœÍ Ò ˆ ~
Í
◊ª ˙œÒ = 0.

Namely, ˙e turns out to be the Lorentz force

˙e ˆ - cccc g#(dêœF) : J
1
EEEE é T*Æ(T*ÆVEEEE)

and Íe the electromagnetic soldering form

Íe ˆ 1
4
cccc g#⁄(ª _ 3 d)ê◊F^ : J

1
EEEE é T*EEEEÆ

EEEE
(T*ÆVEEEE).

10 These are just the same equalities valid for the corresponding pure
gravitational objects (see § I.2.5).
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Moreover, the above objects fulfill the following equalities

˙e = dœÍe - Íe◊ª = Òe.

We have the coordinate expressions

˙e = - c (F
0
i _ F

h
i y

0
h) u0æÙ

i
0 Íe = 1

2
c ⁄(Fi

h
y
0
h _ 2 Fi

0
) d0 _ Fi

j
dj^æÙ

i
0,

hence

Í
h
i
k
= ÍŸ

h
i
k

Í
0
i
k
= ÍŸ

0
i
k
_ 1

2
c Fi

k
Í
0
i
©
= ÍŸ

0
i
©
_ c Fi

0
.

PROOF. The proof can be obtained by a computation in coordinates. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIII....3333....2222....1111. If o is an observer, then the gravitational and elec-
tromagnetic coupling can be read in the following way

êK = êKŸ êÁ = êÁŸ È = ÈŸ _ cccc F.

PROOF. It follows from the Theor. I.3.2.1 and Prop. I.2.2.1. ò

We stress that the Lorentz force has been derived and not postulated. The
coupling of the gravitational connection and the electromagnetic field does

not affect the torsion: both KŸ and K = KŸ _ Ke are torsion free.
This coupling of the gravitational connection with the electromagnetic

field seems to be a non standard result.

RRRREEEEMMMMAAAARRRRKKKK IIII....3333....2222....1111. Suppose that the forms È, ÈŸ and F be closed and a be a
local potential of È. Then, the above splitting of È into its gravitational and
electromagnetic components does not yield an analogous distinguished split-
ting of a. In fact, the potentials of È, ÈŸ and F are defined up to a gauge and
it is not possible to split naturally the gauge of a into gravitational and elec-
tromagnetic components. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIII....3333....2222....2222. The curvature R of the total connection K splits as
follows

R = RŸ _ RŸe_ Re,

where
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RŸ ˆ 1
2
[KŸ,KŸ]

is the standard gravitational curvature and the other two terms are given by

RŸe ˆ dŸKe ˆ [KŸ,Ke] Re ˆ [Ke,Ke].

We have the following coordinate expressions

RŸ ˆ RŸ
¬µ
i
~
d¬◊dµæÙ

i
æd~ = (Ù

¬
KŸ

µ
i
~
_ KŸ

¬
j
~
KŸ

µ
i
j
) d¬◊dµæÙ

i
æd~

RŸe = 1
2
c ⁄⁄(ıŸ

0
Fk
j
- 2 ıŸ

j
Fk
0
) îx0 - ıŸ

j
Fk
h
îyh^ d0◊dj _ ıŸ

i
Fk
j
îx0 di◊dj^æÙ

k

Re = 1
4
c2 Fh

j
Fi
h
dj◊d0æÙ

i
æd0.

PROOF. We have (see § III.5 and § III.4)

R = 1
2
[K,K] = 1

2
[KŸ,KŸ] _ 1

2
[KŸ,Ke] _ 1

2
[Ke,KŸ] _ 1

2
[Ke,Ke].

Moreover, we can write (see § III.4)

[KŸ,Ke] = [Ke,KŸ]. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIII....3333....2222....4444. The Ricci tensor r of the total connection K splits as
follows

r = rŸ _ rŸe_ re,

where

rŸ ˆ 2 C1
1
RŸ

is the standard gravitational Ricci tensor and the other two terms are given
by

rŸe ˆ 1
2
cccc (dtædivŸ F _ divŸ Fædt) re ˆ - 1

4
êF2 cccc2 dtædt,

where

êF2 ˆ (g#æg#)©êF œ êF : EEEEéA*3/2ÆM.

We have the following coordinate expressions
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rŸe = 1
2
c ı

k
Fk
¬
(d0æd¬ _ d¬æd0) re = - 1

4
c2 F

ij
Fij d0æd0. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIII....3333....2222....5555. The scalar curvature s of the total connection K is
just the scalar curvature of the gravitational connection

s = sŸ = êsŸ. ò
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I.4 - Field equations

Now, we introduce the gravitational and electromagnetic field equations.
We consider two equations: the first one couples just the gravitational and
electromagnetic fields, while the second one couples the gravitational and
electromagnetic fields with the charged matter sources.

I.4.1. First field equation

The first field equation is expressed through the closure of the total
contact 2-form.

This equation turns out to be a compact way to express several impor-
tant conditions involving the classical fields. Moreover, it could be used to
formulate the inverse Lagrangian problem of dynamics (for the trivial
case, see, for instance, [Cr], [CPT]). Furthermore, it will occur as an es-
sential integrability condition in the quantum theory (see § II.1.4).

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN CCCC6666. (First field equation) We assume that, for any coupling
constant cccc, the total contact 2-form Ò is closed, i.e.

dÒ = 0 Å cccc $ T*ÆA3/4ÆM*1/2. ò

We stress that there is no canonical local potential of Ò even in the case

when the space-time connection is flat11.

We can interpret the above equation in several interesting ways.

I.4.2. Geometrical interpretation of the first field equation

The first field equation says that, for each coupling constant cccc, the to-

11 In a sense, in the quantum framework, we shall postulate a distinguished
potential of Ò, after adding a complex dimension to space-time through the
quantum bundle QQQQéEEEE.
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tal connection is metrical and the standard algebraic Riemannian identities
for the total curvature hold.

We stress that we cannot apply fully the standard procedures of
Riemannian geometry in our context, because the metric is degenerate.

First, we prove a technical lemma.

LLLLEEEEMMMMMMMMAAAA IIII....4444....2222....1111. The equation

i) dÒ = 0

is locally equivalent to the system

ii)I Ù
¬
g
ij
= - Í

¬ij
- Í

¬ji

ii)II Ù
¬
Í
µji

- Ù
¬
Í
µij

_ Ù
µ
Í
¬ji

- Ù
µ
Í
¬ij

= 2 Ù
i
Í
¬jµ

- 2 Ù
j
Í
¬iµ

ii)III Ù
i
Í
jh¬

_ Ù
h
Í
ij¬

_ Ù
j
Í
hi¬

- Ù
j
Í
ih¬

- Ù
i
Í
hj¬

- Ù
h
Í
ji¬
= 0.

PROOF. The coordinate expression of dÒ is

dÒ = - (d
0
.g

ij
_ Í

ji
_ Í

ij
) d0◊ªi◊dj

0
_ (- d

0
.Í

ij
_ Ù

i
˙
j
) d0◊ªi◊ªj -

- Ù
i
Í
jh
ªi◊ªj◊ªh - (Ù

i
g
hj
_ Í

ijh
) d

0
h◊ªi◊ªj.

Therefore, i) is equivalent to the following system

d
0
.g

ij
= - Í

ji
- Í

ij

d
0
.(Í

ij
- Í

ji
) = Ù

i
˙
j
- Ù

j
˙
i

Ù
i
Í
jh
_ Ù

h
Í
ij
_ Ù

j
Í
hi
- Ù

i
Í
hj
- Ù

h
Í
ji
- Ù

j
Í
ih
= 0

Ù
i
g
hj
- Ù

j
g
hi
= Í

jih
- Í

ijh
,

which is equivalent to the following system

Ù
0
g
ij
= - Í

0ij
- Í

0ji
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Ù
h
g
ij
= - Í

hij
- Í

hji

Ù
k
Í
ijh
- Ù

k
Í
jih
_ Ù

h
Í
kji
- Ù

h
Í
kij
= 2 Ù

i
Í
hjk

- 2 Ù
j
Í
hik

Ù
0
Í
ijh
- Ù

0
Í
jih
_ Ù

h
Í
0ji
- Ù

h
Í
0ij
= 2 Ù

i
Í
0jh

- 2 Ù
j
Í
0ih

Ù
0
Í
0ji
- Ù

0
Í
0ij
= Ù

i
Í
0j©

- Ù
j
Í
0i©

Ù
i
Í
jhk

_ Ù
h
Í
ijk
_ Ù

j
Í
hik

- Ù
j
Í
ihk

- Ù
i
Í
hjk

- Ù
h
Í
jik
= 0

Ù
i
Í
jh©

_ Ù
h
Í
ij©
_ Ù

j
Í
hi©

- Ù
j
Í
ih©

- Ù
i
Í
hj©

- Ù
h
Í
ji©
= 0,

which is equivalent to ii). ò

Then, we can state a first result.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....4444....2222....1111. The first field equation implies that the space-time
connection is metrical, i.e.

ıãg = 0.

PROOF. It follows from i) £ ii)I. ò

In order to complete the geometrical interpretation of the first field equa-
tion in terms of the curvature R of K, we need further technical lemmas.

Let K be any metrical space-time connection.

LLLLEEEEMMMMMMMMAAAA IIII....4444....2222....2222. The coordinate expression of

R@ ˆ g@(R) = R
¬µi~

d¬◊dµæêdi◊d~

can be written as

a) 2 R
¬µi~

= Ù
¬
Í
µi~

- Ù
µ
Í
¬i~

_ Í
¬hi

Í
µ
h
~
- Í

µhi
Í
¬
h
~
.

PROOF. We have

2 R
¬µi~

= Ù
¬
Í
µi~

- Ù
µ
Í
¬i~

- Ù
¬
g
ij
Í
µ
j
~
_ Ù

µ
g
ij
Í
¬
j
~
_ Í

¬
h
~
Í
µih

- Í
µ
h
~
Í
¬ih
.
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Then, the condition ıãg = 0 yields the result. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....4444....2222....1111. The fact that K is torsion free yields the standard first
Bianchi identity

b) R
¬µi~

_ R
~¬iµ

_ R
µ~i¬

= 0. ò

LLLLEEEEMMMMMMMMAAAA IIII....4444....2222....3333. The following algebraic identity holds

c) R
¬µij

= - R
¬µji

.

PROOF. Formula a) gives

2 (R
¬µij

_ R
¬µji

) = Ù
¬
Í
µij

- Ù
µ
Í
¬ij

_ Ù
¬
Í
µji

- Ù
µ
Í
¬ji
.

Hence, the condition ıãg = 0 implies

2 (R
¬µij

_ R
¬µji

) = - Ù
¬µ
g
ij
_ Ù

¬µ
g
ji
= 0. ò

LLLLEEEEMMMMMMMMAAAA IIII....4444....2222....4444. The following conditions are equivalent:

ii)II Ù
¬
Í
ijµ

- Ù
¬
Í
jiµ

_ Ù
µ
Í
¬ji

- Ù
µ
Í
¬ij

= 2 Ù
i
Í
µj¬

- 2 Ù
j
Í
µi¬

iii)I (R
i¬jµ

- R
jµi¬

) _ (R
iµj¬

- R
j¬iµ

) = 0.

PROOF. The result follows from the above expression a) of R
¬µi~

. ò

We observe that the vertical restriction (for ¬ = h, µ = k) of condition iii)I,
turns out to be a consequence of the metricity condition only, according to a
standard argument of Riemannian geometry.

LLLLEEEEMMMMMMMMAAAA IIII....4444....2222....5555. The following conditions are equivalent:

ii)III Ù
i
Í
jh¬

_ Ù
h
Í
ij¬

_ Ù
j
Í
hi¬

- Ù
i
Í
hj¬

- Ù
h
Í
ji¬

- Ù
j
Í
ih¬

= 0

iii)II R
ijh¬

_ R
hij¬

_ R
jhi¬

= 0.

PROOF. The result follows from the above expression a) of R
¬µi~

. ò



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS 59

We observe that the vertical restriction (for ¬ = h) of condition iii)II, turns
out to be a consequence of the metricity condition only, according to a stan-
dard argument of Riemannian geometry.

The above conditions iii)I and iii)II on the curvature tensor can be expressed
together in the following compact way.

For this purpose we need some preliminary results.

RRRREEEEMMMMAAAARRRRKKKK IIII....4444....2222....2222. The condition

iii)II R
ijh¬

_ R
hij¬

_ R
jhi¬

= 0

implies the condition

iii)II' R
¬ijh

_ R
¬hij

_ R
¬jhi

= 0.

PROOF. Condition iii)II yields

d) R
ijh¬

= - R
hij¬

- R
jhi¬

.

Then, d), c) and iii)I, respectively, yield

R
ijh¬

_ R
¬ihj

_ R
¬jih

= - R
hij¬

- R
jhi¬

_ R
¬ihj

_ R
¬jih

= - R
hij¬

- R
jhi¬

_ R
i¬jh

_ R
j¬hi

= 0.

Eventually, by adding term by term the circular permutation of the space-
like indices in the above result

R
ijh¬

_ R
¬ihj

_ R
¬jih

= 0 R
hij¬

_ R
¬jih

_ R
¬hji

= 0 R
jhi¬

_ R
¬hji

_ R
¬ihj

= 0

we obtain, in virtue of iii)II,

2 (R
¬ihj

_ R
¬jih

_ R
¬hji

) = 0. ò

LLLLEEEEMMMMMMMMAAAA IIII....4444....2222....6666. The conditions

iii)I R
ijhk

_ R
ikhj

- R
hjik

- R
hkij

= 0

iii)II R
ijh¬

_ R
hij¬

_ R
jhi¬

= 0

are equivalent to
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iii)R R
i¬jµ

= R
jµi¬

.

PROOF. Let us prove that iii)I, iii)II £ iii)R. Identities iii)II', c) and b), respec-
tively, yield

R
i¬jh

= - R
¬ijh

= R
¬hij

_ R
¬jhi

= R
¬hij

_ R
j¬ih

= - R
hji¬

= R
jhi¬

,

hence

R
i¬jh

= R
jhi¬

.

Moreover, iii)I implies

R
i0j0

= R
j0i0

.

Now, let us prove that iii)R £ iii)I, iii)II. We can see immediately that iii)R

£ iii)I. Next, condition iii)R and identities c) and b), respectively, yield

R
ijh¬

_ R
hij¬

_ R
jhi¬

= R
h¬ij

_ R
j¬hi

_ R
jhi¬

= - R
¬hij

- R
j¬ih

_ R
hji¬

= 0. ò

Then, we can state a second result.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....4444....2222....2222. The first field equation implies the identity

R i
¬
j
µ
= R j

µ
i
¬
.

PROOF. It follows from i) £ iii)II, iii)III. ò

The two above results can be joined to provide a first geometrical inter-
pretation of the first field equation.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIII....4444....2222....1111. The first field equation is equivalent to the system

ıãg = 0 R i
¬
j
µ
= R j

µ
i
¬
.

PROOF. It follows from i) ∞ ii)II, ii)III. ò
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I.4.3. First field equation interpreted through an observer

We can exhibit another interesting interpretation of the first field equa-
tion in terms of the vertical restriction of the total connection and the
total symmetric 2-tensor and 2-form associated with an observer.

We have a first immediate result.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....4444....3333....1111. The first field equation implies that the vertical
restriction of K is just the vertical Riemannian connection (see Rem. I.1.2.2)

êK = º .

PROOF. The condition ii)I yields

iv)I êK
hik

ˆ K
hik

= - 1
2
(Ù

h
g
ik
_ Ù

k
g
ih
- Ù

i
g
hk
) = º

hik
. ò

Now, we refer to the tensors Á and È related to a given observer o and to
adapted coordinates (see § I.2.2).

Then, we have a second immediate result.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....4444....3333....2222. The first field equation implies that the vertical
restriction of the tensor Á is determined by the metric, according to the
equation (see formula iii)" in Prop. I.2.3.1)

êÁ = g@ L
o
ãg,

where L
0
is the Lie derivative with respect to the observer o, i.e. in adapted

coordinates

iv)II Á
ij
= Ù

0
g
ij
.

PROOF. It follows from ii)I. ò

In order to complete our interpretation, we need some technical lemmas.

LLLLEEEEMMMMMMMMAAAA IIII....4444....3333....1111. If iv)I and iv)II hold, then, the two following conditions are
equivalent:
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iii)IV Ù
0
Í
ijh
- Ù

0
Í
jih
_ Ù

h
Í
0ji
- Ù

h
Í
0ij
= 2 Ù

i
Í
0jh

- 2 Ù
j
Í
0ih

iv)III Ù
h
È
ij
_ Ù

j
È
hi
_ Ù

i
È
jh
= 0. ò

LLLLEEEEMMMMMMMMAAAA IIII....4444....3333....2222. If iv)II holds, then the two following conditions are
equivalent:

iii)VII Ù
i
Í
0jh

_ Ù
h
Í
0ij
_ Ù

j
Í
0hi

- Ù
i
Í
0hj

- Ù
h
Í
0ji
- Ù

j
Í
0ih

= 0

iv)III Ù
h
È
ij
_ Ù

j
È
hi
_ Ù

i
È
jh
= 0. ò

LLLLEEEEMMMMMMMMAAAA IIII....4444....3333....3333. If iv)II holds, then the two following conditions are
equivalent:

iii)V Ù
0
Í
0ji
- Ù

0
Í
0ij
= Ù

i
Í
0j©

- Ù
j
Í
0i©

iv)IV Ù
0
È
ij
= Ù

i
È
0j
- Ù

j
È
0i
. ò

Then we have a third result.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....4444....3333....3333. The first field equation implies that the form È is
closed

dÈ = 0.

PROOF. It follows from i) £ iv)I, iv)III, iv)IV. ò

The three above results can be joined to provide a second geometrical in-
terpretation of the first field equation.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIII....4444....3333....1111. Given an observer o, the first field equation is equiva-
lent to the following conditions:

- the (observer independent) vertical restriction of K coincides with the
vertical Riemannian connection

êK = º,
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i.e. in coordinates

K
hik

= - 1
2
(Ù

h
g
ik
_ Ù

k
g
ih
- Ù

i
g
hk
);

- the vertical restriction of the tensor Á is determined by the metric, ac-
cording to the equation (see formula iii)" in Prop. I.2.3.1)

êÁ = g@ L
o
ãg,

where L
0
is the Lie derivative with respect to the observer, i.e. in adapted

coordinates

K
0ij
_ K

0ji
= - Ù

0
g
ij
;

- the form È is closed

dÈ = 0,

i.e. in adapted coordinates

(Ù
0
È
ij
- 2 Ù

i
È
0j
) d0◊di◊dj _ Ù

h
È
ij
dh◊di◊dj =

= 2 ⁄(Ù
0
Í
0ij
_ Ù

i
Í
0j0
) d0◊di◊dj _ Ù

h
È
ij
dh◊di◊dj^ = 0.

PROOF. It follows from i)∞ iv)I, iv)II, iv)III, iv)IV. ò

Of course, we might have deduced immediately dÈ = 0 from dÒ = 0 because

the pullback o* commutes with d; but in order to prove the rest, it is neces-
sary to consider the above lemmas dealing with coordinate formulas.

We recall that any space-time connection K is characterised by its vertical

restriction êK and the tensors êÁ and È related to a given observer (see Prop.
I.2.2.1). Hence, we have proved that K is determined by the first jet of the
metric g and by an observer dependent closed 2-form È.

The above result can be re-formulated as follows.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIII....4444....3333....2222. Let

a:EEEEé(T*ÆA)ÆT*EEEE
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be a local potential of the closed 2-form È, i.e. a local solution of the equa-
tion

È = 2 da,

with coordinate expression

È
¬µ
= Ù

¬
a
µ
- Ù

µ
a
¬
,

where

a ˆ a
¬
u0æd¬.

Then, the coordinate expression of the total connection can be written as

K
¬iµ

= - 1
2
(Ù

¬
g
iµ
_ Ù

µ
g
i¬
- Ù

i
g
¬µ
),

where we have set

g
i0
ˆ g

0i
ˆ a

i
g
00
ˆ 2 a

0
. ò

Thus, as in the Einstein theory, the space-time connection is obtained lo-
cally from 10 scalar potentials; in the Galilei theory, only 6 potentials are the
components of the metric g and we have 4 additional potentials. This differ-
ence between the Galilei and the Einstein theories is related to the fact that,
in the Galilei case, g is degenerate.

We stress that the total potential a involves both the gravitational and
electromagnetic fields.

I.4.4. First field equation interpreted through the fields

On the other hand, in virtue of the arbitrariness of the coupling constant
cccc, the above results split into their gravitational and electromagnetic com-
ponents, respectively.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....4444....4444....1111. The first field equation is equivalent to the system

dÒŸ = 0 dF = 0.

PROOF. It follows from the arbitrariness of the coupling constant cccc. ò
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RRRREEEEMMMMAAAARRRRKKKK IIII....4444....4444....1111. The equation dF = 0 is nothing but the first Maxwell
equation.

If o is an observer, then, the first Maxwell equation reads

êdB = 0 êcurl E = Ù
0
B,

where Ù
0
denotes the time derivative with respect to the observer. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....4444....4444....2222. The first field equation is equivalent to the system

ıŸãg = 0 RŸi
¬
j
µ
- RŸj

¬
i
µ
= 0

Fij _ Fji = 0 dF = 0,

where RŸ is the curvature of KŸ.

PROOF. It follows from Theor. I.4.2.1, in virtue of the arbitrariness of the
mass and the charge. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....4444....4444....3333. Given an observer o, the first field equation is
equivalent to the following conditions:

- the (observer independent) vertical restriction of KŸ is just the vertical
Riemannian connection (see Rem. I.1.2.2)

êKŸ = êK = º,

i.e. in coordinates

KŸ
hik

= K
hik

= - 1
2
(Ù

h
g
ik
_ Ù

k
g
ih
- Ù

i
g
hk
);

- the vertical restriction of the tensor ÁŸ is determined by the metric, ac-
cording to the equation (see formula iii)" in Prop. I.2.3.1)

êÁŸ = êÁ = g@ L
o
ãg,

where L
0
is the Lie derivative with respect to the observer, i.e. in adapted

coordinates

KŸ
0ij
_ KŸ

0ji
= K

0ij
_ K

0ji
= - Ù

0
g
ij
;

- the forms ÈŸ and F are closed
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dÈŸ = 0 dF = 0.

PROOF. It follows from Theor. I.4.3.1, in virtue of the arbitrariness of the
coupling constant cccc. ò

Thus, êK and êÁ are completely determined by the first jet of the metric,
while the closed 2-form È splits into a gravitational component, which is not
related to the metric, and an electromagnetic component, which is just the
electromagnetic field F.

I.4.5. Second gravitational equation

The second gravitational equation expresses the coupling of the gravita-
tional field with the matter and electromagnetic sources, by comparing the
gravitational Ricci tensor with the energy tensor of the matter and the
electromagnetic field. We restrict our study to the case of the matter
source constituted by an incoherent fluid, just as an example.

We define the energy tensor of the electromagnetic field F to be the sec-

tion12

t
e:EEEEéT*EEEEÆ

EEEE
T*EEEE,

given by

t
e ˆ 1

4
kkkk êF2 dtædt.

We have the coordinate expression

t
e = 1

4
k F

ij
Fij d0æd0.

We define a mass density to be a section

µ:EEEEéA*3/2ÆM.

We define the energy tensor of the mass density µ to be the section

12
t is the Cyrillic character corresponding to “t”.
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t
µ:EEEEéT*EEEEÆ

EEEE
T*EEEE,

given by

t
µ ˆ kkkk µ dtædt.

We have the coordinate expression

t
µ ˆ k µ d0æd0.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....4444....5555....1111. The energy tensor of the electromagnetic field F and
of the mass density µ is defined to be the section

tŸ ˆ t
e _ tµ : EEEEéT*EEEEÆ

EEEE
T*EEEE. ¡

Just as example, we assume the source of the gravitational field to be
constituted by the electromagnetic field F and a mass density µ. Accordingly,
we make the following assumption.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN CCCC7777. We assume the gravitational field KŸ to fulfill the second
gravitational equation

rŸ = tŸ. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....4444....5555....1111. The coordinate expression of the second gravita-
tional equation is

rŸ
00
= k µ rŸ

0h
= rŸ

h0
= 0 rŸ

hk
= 0;

i.e.

Ù
i
KŸ

0
i
0
- Ù

0
KŸ

i
i
0
_ KŸ

i
j
0
KŸ

0
i
j
- KŸ

0
j
0
KŸ

i
i
j
= k µ

Ù
i
KŸ

0
i
h
- Ù

0
KŸ

i
i
h
_ KŸ

i
j
h
KŸ

0
i
j
- KŸ

0
j
h
KŸ

i
i
j
= 0

Ù
i
KŸ

h
i
k
- Ù

h
KŸ

i
i
k
_ KŸ

i
j
k
KŸ

h
i
j
- KŸ

h
j
k
KŸ

i
i
j
= 0. ò

The particular form of the source of the gravitational field implies that the
fibres of t:EEEEéTTTT are flat.
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PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....4444....5555....2222. We have (see § I.2.4)

êRŸ = 0.

PROOF. The fibres of t:EEEEéTTTT are Ricci flat because êtŸ = 0.
Hence they are flat, because they are 3-dimensional (see [GHL]). ò

RRRREEEEMMMMAAAARRRRKKKK IIII....4444....5555....1111. If we take into account the Bianchi identities and try to
obtain a compatibility condition for the second gravitational equation, by re-
peating a standard procedure in a way appropriate to our Galileian case, we
obtain just a trivial identity. So, in this way, we do not obtain any informa-
tion of the state equation of the source. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....4444....5555....2222. As far as we know, our second gravitational equation
seems to be the most reasonable equation appropriate to the Galileian
framework and inspired by the Einstein equation. The problem of finding the
appropriate coupling between the gravitational field and the matter source
has been investigated by several authors, but we do not know a really defi-
nite answer. In fact, we are not able to derive such an equation from a fully
satisfactory unifying principle (for instance a variational principle). On the
other hand, we could guess several further proposals of stress tensors as-
sociated with the source, but we cannot couple them appropriately with the
Ricci tensor because we do not dispose of a non degenerate metric and of
appropriate coupling constants. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....4444....5555....3333. Our second gravitational equation does not imply any di-
rect effect of the electric field and of the movement of masses on the gravi-
tational field. This is a weaker feature of the Galilei theory with respect to
the Einstein one.

In principle, we could partially overcome this deficiency of the above
Galilei theory, by introducing an energy-momentum tensor, with non-vanish-
ing vertical component and coupling it with the Ricci tensor. However, such
an energy-momentum tensor would be a primitive object, which could not be
related to the movement of matter. We do not develop such a theory in de-
tail. ò
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I.4.6. Second electromagnetic equation

The second electromagnetic equation expresses the coupling of the
electromagnetic field with the charge source.

We define a charge density to be a section

®®®®:EEEEéT*ÆA*3/4ÆM1/2.

Moreover, given u
0
$T_, we set

® ˆ ®®®®(u
0
) $ A*3/4ÆM1/2.

We define the time-like current of the charge density ®®®® to be the section

j:EEEEé(A*3/4ÆM1/2)ÆT*EEEE,

given by

j ˆ ®®®® dt.

We have the coordinate expression

j = ® d0.

Just as example, we assume the source of the electromagnetic field to be
constituted by the charge density ®®®®. Accordingly, we make the following as-
sumption.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN CCCC8888. We assume the electromagnetic field F to fulfill the sec-
ond electromagnetic equation

divŸ F = j. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....4444....6666....1111. The coordinate expression of the second electro-
magnetic equation is

gij (Ù
i
F
j0
_ KŸ

i
h
j
F
h0
) = ® gij (Ù

i
F
jk
_ KŸ

i
h
j
F
hk
) = 0. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....4444....6666....2222. We have

divŸ êF = 0. ò
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RRRREEEEMMMMAAAARRRRKKKK IIII....4444....6666....1111. Both hand sides of the second electromagnetic equation
are identically divergence free. So, application of the divergence operator
does not yield any information of the state equation of the source. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....4444....5555....2222. We can assume that the mass and charge densities are
carried by the same charged incoherent fluid, which can be described in the
following way.

We assume the charge density to be proportional to the mass density

®®®® = ™™™™ µ with ™™™™ $ QÆM*.

We assume a velocity field v in the domain where µ is non vanishing and
define the contravariant momentum, current and stress tensors and the
Lorentz force density

p ˆ µ v c ˆ ®®®® v e ˆ µ væv

f ˆ - ®®®® g#(vêœF).

Then, we assume the equation

divŸ e = f,

which splits into the mass continuity equation and the Newton's equation of
motion

divŸ p = 0 µ ıŸvv = f;

as a consequence of the proportionality between mass and charge densities,
we obtain also the charge continuity equation

divŸ c = 0 ò

RRRREEEEMMMMAAAARRRRKKKK IIII....4444....5555....3333. As far as we know, our second electromagnetic equation
seems to be the most reasonable equation appropriate to the Galileian
framework and inspired by the Maxwell equation. We can define the con-
travariant current involving the charge density and velocity, but we cannot
couple it with the divergence of the electromagnetic field because we do not
dispose of a non degenerate metric. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....4444....5555....4444. Our second electromagnetic equation does not imply any
direct effect of the space-like current on the electromagnetic field. This is a
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weaker feature of the Galilei theory with respect to the Maxwell one.
In principle, we could partially overcome this deficiency of the above

Galilei theory, by introducing a current, with non-vanishing vertical compo-
nent and coupling it with the divergence of the electromagnetic field.
However, such a current would be a primitive object, which could not be re-
lated to the movement of charges. We do not develop such a theory in detail.ò

I.4.7. Second field equation

The second gravitational and electromagnetic equations can be coupled in
a natural way through the gravitational coupling constant. In this way we
obtain the second field equation for the total space-time connection asso-
ciated with the gravitational coupling constant. The corresponding matter
source turns out to be constituted just by the mass and charge densities,
as the contribution of the electromagnetic field is incorporated in the total
Ricci tensor.

We define the energy tensor of the charge density ®®®® to be the section

t
®®®®:EEEEéT*EEEEÆ

EEEE
T*EEEE,

given by

t
®®®® ˆ ¢Ãkkkk ®®®® dtædt.

We have the coordinate expression

t
®®®® ˆ ¢Ãk ® d0æd0.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....4444....7777....1111. The energy tensor of the mass density µ and charge
density ®®®® is defined to be the section

t ˆ t
µ _ t®®®® : EEEEéT*EEEEÆ

EEEE
T*EEEE. ¡

TTTTHHHHEEEEOOOORRRREEEEMMMM IIII....4444....7777....1111. The second gravitational and electromagnetic equations
imply the following second field equation

r = t,

where r is the Ricci tensor of the total space-time connection K induced by
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the coupling of the gravitational connection KŸ and the electromagnetic field
F, through the coupling constant ¢Ãkkkk (see § I.3.2).

PROOF. In fact, we have (see Cor. I.3.2.4, Ass. C7, Ass. C8)

r = rŸ _ rŸe_ re = rŸ _ 1
2
¢Ãkkkk (dtædivŸ F _ divŸ Fædt) - 1

4
êF2 kkkk dtædt =

= 1
4
kkkk êF2 dtædt _ kkkk µ dtædt _ ¢Ãkkkk ®®®® dtædt - 1

4
êF2 kkkk dtædt =

= t. ò
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I.5 - Particle mechanics

Now, we study the dynamics of classical charged particles in the given
gravitational and electromagnetic field.

I.5.1. The equation of motion

The only observer independent approach to classical mechanics can be
achieved in terms of the total connection ˙.

Then, we introduce the fundamental law of particle dynamics.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN CCCC9999. (Generalised Newton law of motion) We assume the law
of motion for a particle, with mass m$M and charge qqqq$Q, whose motion is
s:TTTTéEEEE, to be the equation

ı̇ j
1
s = 0. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....5555....1111....1111. We obtain

ı̇ j
1
s = ı̇

Ÿ
j
1
s - ˙e©j

1
s.

Hence, the Newton law of motion can be written as

ı̇
Ÿ
j
1
s = ˙e©j

1
s,

i.e., in coordinates,

Ù
00
si - (ÍŸ

h
i
k
©s) Ù

0
sh Ù

0
sk - 2 (ÍŸ

0
i
h
©s) Ù

0
sh - (ÍŸ

0
i
©
©s) =

= q
m
(Fi

0
©s _ Fi

h
©s Ù

0
sh). ò

The Newton law of motion can be expressed in a dual way, in terms of the
differential of functions.
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RRRREEEEMMMMAAAARRRRKKKK IIII....5555....1111....2222. If f$F(J
1
EEEE), then, for each solution of the Newton law of

motion s$S(EEEEéTTTT), we can write

d(f©j
1
s) = (˙.f)©j

1
s.

In particular, f turns out to be a constant of motion if and only if

˙.f = 0.

PROOF. We have

d(f©j
1
s) = Ç(df)©j

1
s, Tj

1
s¶ = Ç(df)©j

1
s, j

2
s¶ = Ç(df)©j

1
s, ˙©j

1
s¶ =

= (˙.f)©j
1
s. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....5555....1111....3333. In a sense, the Newton law of motion can be expressed
by a Hamiltonian approach (in terms of a contact structure). In fact, we re-
call (see Cor. I.2.5.2) that ˙ is the unique second order connection which
fulfills the equation

i
˙
Ò = 0.

Hence, the flow of solutions of the Newton law of motion preserves the
total contact 2-form and the induced volume form, i.e.

L
˙
Ò = 0 L

˙
(dt◊Ò◊Ò◊Ò) = 0. ò

I.5.2. Observer dependent formulations of the Newton law of motion

By choosing an observer, we can re-formulate the Newton law of motion
in terms of Euler-Lagrange, or Hamilton, or Poisson equations.

However, the choice of the observer turns out to be essential. So, ex-
plicitly general relativistic Lagrangian, Hamiltonian and Poissonian formu-
lations of classical mechanics do not exist.

The basic maps of classical particle mechanics related to an observer
will be extensively used in quantum mechanics (see Theor. II.1.4.1 and
Cor. II.1.4.1).

First, we recall the following maps.
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Let o be an observer and consider the induced translation fibred morphisms
over EEEE (see Rem. I.1.1.3)

ı
o
:J
1
EEEEéT*ÆVEEEE

and a local potential (which is defined up to a gauge)

a:EEEEéT*ÆAÆT*EEEE

of the 2-form È ˆ 2 o*Ò (see Rem. I.2.2.2 and Prop. I.2.5.1).

Then, we define the following classical objects in a coordinate free way.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....5555....2222....1111. We define the kinetic energy, kinetic momentum,
Lagrangian, momentum and Hamiltonian to be, respectively, the maps

GGGG ˆ 1
2
m g©(ı

o
, ı

o
) : J

1
EEEE é T*ÆT*ÆAÆM

êPPPP ˆ m g@©ı
o
: J

1
EEEE é T*ÆAÆMÆV*EEEE

LLLL ˆ GGGG _ m dœa : J
1
EEEE é T*ÆT*ÆAÆM

êpppp ˆ m g@©ı
o
_ m dœa : J

1
EEEE é T*ÆAÆMÆV*EEEE

HHHH ˆ Çı
o
, êpppp¶ - LLLL : J

1
EEEE é T*ÆT*ÆAÆM. ¡

We can write

êPPPP = V
EEEE
GGGG êpppp = V

EEEE
LLLL.

RRRREEEEMMMMAAAARRRRKKKK IIII....5555....2222....1111. By considering the natural inclusion EEEE˚T* ç T*EEEE, we can
regard the kinetic energy, Lagrangian and Hamiltonian maps as time-like
forms

GGGG:J
1
EEEEéT*ÆAÆMÆT*EEEE LLLL:J

1
EEEEéT*ÆAÆMÆT*EEEE HHHH:J

1
EEEEéT*ÆAÆMÆT*EEEE.

By considering the natural fibred inclusion ª*:J
1
EEEE
E̊EEE
V*EEEE ç T*EEEE (see Rem.

I.1.1.2), we obtain the forms
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PPPP ˆ ª*œ êPPPP : J
1
EEEE é T*ÆAÆMÆT*EEEE pppp ˆ ª*œêpppp : J

1
EEEE é T*ÆAÆMÆT*EEEE,

which will be said to be the kinetic momentum form and momentum form ,
respectively. ò

Moreover, if u
0
$T_, then we set

G ˆ GGGG(u
0
,u
0
) : J

1
EEEE é AÆMÆ· L ˆ LLLL(u

0
,u
0
) : J

1
EEEE é AÆMÆ·

H ˆ HHHH(u
0
,u
0
) : J

1
EEEE é AÆMÆ·

êP ˆ êPPPP(u
0
) : J

1
EEEE é AÆMÆV*EEEE êp ˆ êpppp(u

0
) : J

1
EEEE é AÆMÆV*EEEE

P ˆ PPPP(u
0
) : J

1
EEEE é AÆMÆT*EEEE p ˆ pppp(u

0
) : J

1
EEEE é AÆMÆT*EEEE.

RRRREEEEMMMMAAAARRRRKKKK IIII....5555....2222....2222. With reference to a space-time chart adapted to the
frame of reference (u

0
, o), we have the following coordinate expressions

G = 1
2
m g

ij
y
0
i y

0
j L = 1

2
m g

ij
y
0
i y

0
j _ m (a

i
y
0
i _ a

0
)

H = 1
2
m g

ij
y
0
i y

0
j - m a

0

êP = m g
ij
y
0
j êdi êp = (m g

ij
y
0
j _ m a

i
) êdi

P = - m g
ij
y
0
i y

0
j d0 _ m g

ij
y
0
j di p = - m g

ij
y
0
i y

0
j d0 _ (m g

ij
y
0
j _ m a

i
) di.

RRRREEEEMMMMAAAARRRRKKKK IIII....5555....2222....3333. Let o and o' be two observers and set

v ˆ o' - o : EEEE é T*ÆVEEEE.

Then, we obtain the following relation between the respective kinetic
forms

GGGG' = GGGG _ 1
2
m g©(v,v) - m ı

o
œv@ PPPP' = PPPP - m ª*œv@,

hence (see Remark I.1.1.3)
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GGGG' _ PPPP' = GGGG _ PPPP _ 1
2
m g©(v,v) - m ~

0
*œv@,

where

v@ ˆ g@©v : EEEEéT*ÆAÆV*EEEE.

PROOF. It follows from

ı
o'
= ı

o
- v ı

o
_ ª* = ~

o
. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....5555....2222....4444. We can achieve a Hamiltonian formulation of the Newton
law of motion in three different ways, by considering the symplectic struc-
tures naturally induced by the total contact 2-form Ò on the even dimen-
sional vector bundles

VJ
1
EEEEéJ

1
EEEE VVEEEEéVEEEE VV*EEEEéV*EEEE

and the observer dependent Hamiltonian and momentum functions.
Moreover, the Newton law of motion, in the version quoted in Rem. I.5.1.2,

can be expressed in terms of the Poisson bracket (see, later, Prop. II.3.2.1)
between the function f$F(J

1
EEEE) and the observer dependent Hamiltonian

function.
Furthermore, the Newton law of motion turns out to be the Euler-Lagrange

equation associated with the observer dependent Lagrangian function.
We omit here the details. ò



78 A. JADCZYK, M. MODUGNO

I.6 - Special relativistic case

Under reasonable hypothesis, there exist distinguished metrical space-
time connections, which yield an affine structure on space-time. In such a
case, we avail of this structure to simplify several formulas; in particular,
we prove that the Einstein equation turns out to be just the Newton law of
gravitation.

In the special case when the energy tensor vanishes, possibly the same
gravitational connection yields an affine structure on space-time. Such a
distinguished solution of the field equations is referred to as special rela-
tivistic and constitutes the background for the standard classical New-
tonian mechanics.

I.6.1. Affine structure of space-time

Let us start with preliminary observations on a possible background con-
nection inducing an affine structure on space-time.

RRRREEEEMMMMAAAARRRRKKKK IIII....6666....1111....1111. Let A be an affine space associated with the vector
space ÃA and the translation map f:A˚ÃAéA.

Then, the affine structure yields a linear connection on A

~
K»
: TTA = (A˚ÃA)˚(ÃA˚ÃA) é VTA = (A˚ÃA)˚(0˚ÃA) : (a,u;v,w) ´ (a,u;0,w),

which is geodesically complete and whose curvature vanishes.
Conversely, the above connection K» characterises naturally the affine

structure (ÃA, f) on A in a unique way. ò

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....6666....1111....1111. A background connection is defined to be a space-
time connection K», such that

- K» is metrical (see § I.2.3), i.e. ı»ãg = 0;
- K» induces an affine structure on the space-time manifold EEEE, such that

the time function t is an affine map. ¡

LLLLEEEEMMMMMMMMAAAA IIII....6666....1111....1111. Let K» be a background connection.
Then, t:EEEEéTTTT turns out to be an affine bundle associated with a trivial
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vector bundle

ãt : ÃEEEE = TTTT˚SSSS é TTTT,

where SSSS is a three dimensional vector space. Thus, t:EEEEéTTTT turns out to be a
principal bundle.

Moreover, the vertical metric can be regarded as a constant element

g $ AÆSSSS*ÆSSSS*.

PROOF. Set

SSSS ˆ ker Dt ç DE,

where DE denotes the vector space associated with the affine space E.
Then, for each †$TTTT, we obtain

D(t-1(†)) = SSSS,

in virtue of the fact that t is affine. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....6666....1111....2222. Not all space-times t:EEEEéTTTT admit background connections
K».

If the space-time t:EEEEéTTTT admits a background connection K», then we can
easily see that it admits many background connections. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....6666....1111....3333. Let K» be a background connection. If o and o' are global
observers such that

ı
K»
o = 0 = ı

K»
o',

then we have

o' = o _ v v $ T*ÆSSSS. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....6666....1111....4444. Let K» be a background connection. Then, each global

space-time chart (x0,yi) adapted to the induced affine structure of space-
time yields

K»
¬
i
µ
= 0 g

ij
$ A.

Of course, the observer o associated with such a chart is of the above
type. ò
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I.6.2. Newtonian connections and the Newton law of gravitation

Next, we consider the interesting case of a background connection which
is “tangent” to the gravitational connections on the fibres of space-time.

By considering such a connection, we can write the first and second
gravitational equations in an interesting way.

If the source of the gravitational connection KŸ is an incoherent fluid, then
the gravitational Einstein equation implies that the vertical gravitational

connection êKŸ is flat (see Prop. I.4.5.2). Then, under further reasonable hy-

pothesis, êKŸ may induce an affine structure on the fibres of space-time. Of
course, if the mass density of the source does not vanish, KŸ cannot induce
an affine structure on the whole space-time. However, under further reason-

able hypothesis, êKŸ may be extended to a background connection K» (in a non
unique way). So, we introduce the following notion.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....6666....2222....1111. A Newtonian connection is defined to be a space-
time connection K» which fulfills the following properties:

i) the restrictions of K» and KŸ to the vertical subspace coincide

K»
¡VEEEE

= KŸ
¡VEEEE

: VEEEE é T*EEEEÆ
TEEEE
TVEEEE;;;;

ii) K» induces an affine structure on the space-time manifold EEEE, such that
the time function t is an affine map. ¡

If K» is a Newtonian connection, then a Newtonian observer is defined to
be a global observer o such that ı

K»
o = 0 and a Newtonian chart is defined to

be a global space-time chart (x0,yi) adapted to the induced affine structure
of space-time.

Now on, in this section, we assume that a Newtonian connection K» exist
and we refer to such a connection K» and to Newtonian observers and charts.

Accordingly, some formulas of the classical field theory and particle me-
chanics assume a simplified expression.

RRRREEEEMMMMAAAARRRRKKKK IIII....6666....2222....1111. Condition i) implies

êK» = êKŸ.

But we stress that condition i) is stronger than the above equality. ò
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LLLLEEEEMMMMMMMMAAAA IIII....6666....2222....1111. The connection K» is metrical, hence it is a background
connection.

PROOF. Condition i) and the first gravitational equation (see Prop. I.4.4.2)
yield

ı»ãg = ıŸãg = 0. ò

LLLLEEEEMMMMMMMMAAAA IIII....6666....2222....2222. Condition i) reads in coordinates as

KŸ
¬
i
j
= 0. ò

LLLLEEEEMMMMMMMMAAAA IIII....6666....2222....3333. The gravitational connection can be uniquely written as

KŸ = K» _ dtædtæNŸ

where N is a section

NŸ:EEEEé(T*ÆT*)ÆVEEEE

whose coordinate expression is of the type

NŸ = NŸ
0
i
0
u0æu0æÙ

i
, NŸ

0
i
0
$F(EEEE).ò

We say that NŸ is the Newton vector field associated with the Newtonian
connection K».

Let us discuss at which extent the Newtonian connection is uniquely de-
termined by the gravitational connection (provided at least one Newtonian
connection exists).

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....6666....2222....1111. Let us suppose that K» and K»' be two Newtonian
connections.

Then, the two affine structures induced by K» and K»' on the space-time
manifold EEEE yield the same affine structure on the bundle t:EEEEéTTTT. Hence, we
obtain the same vector bundle

ãt : ÃEEEE = TTTT˚SSSS é TTTT,

with respect to the two Newtonian connections.
Moreover, the Newtonian vector fields associated with K» and K»' differ by
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a time-dependent vector field:

(*) NŸ' - NŸ : TTTT é (T*ÆT*)ÆSSSS.

Furthermore, let o and o' be two Newtonian observers with respect to K»
and K»', respectively. Then, the two observers perform mutually a rigid

translation13:

(**) o' - o : TTTT é T*ÆSSSS.

PROOF. The affine structures induced on the fibres of space-time by K» and
K»' coincide because

êK» = êKŸ = êK»'.

In other words, K» and K»' induce on the space-time fibred manifold the
same structure of affine bundle, associated with the vector bundle

VVVVéTTTT.

Hence, K» and K»' induce the same vertical parallelisation

VEEEE = EEEE
B̊BBB
VVVV.

Moreover, we have

ıŸ(o' - o) = ıŸo' - ıŸo = (ı»'o' - dtædtæNŸ') - (ı»o - dtædtæNŸ) =

= dtædtæ(NŸ - NŸ'),

which yields

(i) ıŸ(o' - o) = dtædtæ(NŸ - NŸ').

The vertical restriction of (i) gives

êıŸ(o' - o) = 0,

i.e. o' - o can be regarded as a section

(**) o' - o : TTTT é T*ÆVVVV.

13 As usual, the difference o' - o is taken with respect to the affine
structure of the bundle J

1
EEEEéEEEE.
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Furthermore, formula (*) implies that ıŸ(o' - o) can be regarded as a sec-
tion

(ii) ıŸ(o' - o) : TTTT é T*ÆT*ÆVVVV.

Then, formulas (i) and (ii) yield (*).
Additionally, formula (**) implies that o and o' yield the same linear split-

ting over TTTT

VVVVéTTTT˚SSSS. ò

Next, let us show that the first and second gravitational equation imply
that N fulfills the Newton law of gravitation.

RRRREEEEMMMMAAAARRRRKKKK IIII....6666....2222....2222. The 2-form ÒŸ becomes

ÒŸ = Ò» - Çdt,NŸ¶◊ª.

Let o be a Newtonian observer. Then the 2-form ÈŸ becomes

ÈŸ = 2 NŸ@◊dt. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....6666....2222....2222. The first gravitational field equation reduces to

êdNŸ@ = 0.

PROOF. Let o be a Newtonian observer. Then, we obtain

êKŸ = êK» = º êÁŸ = êÁ» = 0 êÈ» = 0.

Hence, the first field equation (see Theorem I.4.3.1) reduces to êdNŸ@ = 0. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIII....6666....2222....1111. The first gravitational field equation reduces to

NŸ = êgrad U,

where U is a map

UŸ:EEEEéT*ÆT*ÆA. ò

LLLLEEEEMMMMMMMMAAAA IIII....6666....2222....4444. The Ricci tensor of the gravitational connection turns out
to be
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rŸ = êdivŸ NŸ dtædt : EEEE é T*EEEEÆ
EEEE
T*EEEE. ò

Next, let us assume that the source of the gravitational connection KŸ is
an incoherent fluid with density mass µ, as in § I.4.5. This hypothesis does
not conflict with the above lemma, as both rŸ and tŸ turn out to be time-like
tensors.

Then, we can re-interpret the second gravitational field equation as fol-
lows.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIII....6666....2222....1111. The second gravitational field equation reduces to

êdivŸ NŸ = kkkkæµ,

i.e. to

êË» U = kkkkæµ. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....6666....2222....2222. Let o be a Newtonian observer. The potential of ÈŸ be-
comes

aŸ = Uædt. ò

We can express the curvature through the gravitational potential.

RRRREEEEMMMMAAAARRRRKKKK IIII....6666....2222....3333. Let us regard dtædtæNŸ as a vertical valued 1-form on
the vector bundle TEEEEéEEEE

dtædtæNŸ:TEEEEéT*EEEEÆ
EEEE
VEEEE.

Then, the gravitational curvature turns out to be the covariant exterior
differential (see § III.5) of NŸ, with respect to the background connection
K»,

RŸ = d
K»
(dtædtæNŸ),

with coordinate expression

RŸ = u
0
æu

0
ægih Ù

hj
U dj◊d0æÙ

i
æd0.

PROOF. We have (see Rem. I.1.1.3)
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RŸ = 1
2
[KŸ, KŸ] = 1

2
[K» _ dtædtæNŸ, K» _ dtædtæNŸ] = [K», dtædtæNŸ] ˆ

ˆ d
K»
(dtædtæNŸ) . ò

Finally, we study the law of motion of a classical test particle in the and
show that it reduces exactly to the classical Newton law of gravitation.

LLLLEEEEMMMMMMMMAAAA IIII....6666....2222....5555. The gravitational second order connection can be written
as

˙Ÿ = ˙» _ NŸ,

where ˙» is the second order connection associated with Í». ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....6666....2222....3333. The Newton law of motion reads as

ı̇
»
s = NŸ©js. ò

Therefore, NŸ can be interpreted as the gravitational force with respect to
the background connection K».

RRRREEEEMMMMAAAARRRRKKKK IIII....6666....2222....4444. Two different Newtonian connections K» and K»' yield
two different accelerations and gravitational forces

ı̇
»
s ı̇

»'
s NŸ©js NŸ'©js. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....6666....2222....5555. Neither the two fields equations, nor the law of motion
yield any distinguished choice among Newtonian connections admitted by KŸ
(if they exist). ò

I.6.3. The special relativistic space-time

Eventually, we consider the case when the source of the gravitational
field vanishes. In this case, the gravitational connection is Ricci flat;
hence it is possibly flat and, under reasonable hypothesis, the gravitational
connection itself is a Newtonian connection. So, in this case, we have a
distinguished choice of the Newtonian background connection.

Therefore, we are led to introduce the following notion.
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DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIII....6666....3333....1111. A space-time is said to be special if the gravitational
connection KŸ induces an affine structure on the space-time manifold EEEE, such
that the time function t is an affine map. ¡

Of course, if the space-time is special, then we can apply all above results
with the identifications

K» = KŸ NŸ = 0.

This case will be referred to as the special relativistic Galilei case. The
corresponding field theory and mechanics are just the standard classical
theories.
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I.7 - Classical two-body mechanics

So far, space-time has been regarded as the manifold of possible events
“touched” by a classical particle. Moreover, the source of gravitational and
electromagnetic fields has been a given external incoherent charged fluid
(as an example). Furthermore, we have described the mechanics of a clas-
sical particle.

Now, we modify slightly our model in order to describe a closed system
constituted by n classical particles interacting through the gravitational
and electromagnetic fields. Thus, we no longer consider an external source
of the fields, but the source is constituted by the particles themselves.
Then, we are led to consider the fibred product over time of n identical
copies of the “pattern” space-time as the framework of the system; each
component is referred to one of the n particles. In order to describe the
singularities corresponding to the possible collisions, we could describe
the fields in terms of distributions. However, we follow a simpler way: we
just cut the multi-events corresponding to possible collisions and consider
smooth fields. It is a striking fact that the fields and the mechanics of
particles can be formulated in terms of this multi-space-time in strong
analogy with the case of a single particle. Actually, in the one particle
theory, the dimension 3 of the space-time fibre has never played an es-
sential role. So, the basic change from the case n = 1 to the case n > 1
consists in the increase of the dimension of the fibre of space-time (along
with the addition of n projections on the components).

This scheme can be developed for any n ≥ 1. However, we do it explicitly
only for the case n = 2. The reader can generalise it without any difficulty.

We do not find the most general solution of field equations, but we just
exhibit the simplest solution whose symmetries and boundary conditions
are physically sensible. Then, the classical dynamics follows easily. This
solution is nothing but a Galilei general relativistic formulation of the well
known standard classical two body problem. We stress that the field
equations and solutions can be formulated independently of the explicit
motion of the particles.

Many concepts and results of this chapter are quite simple and standard.
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However, it is necessary to spend some words for fixing the notation and
showing how standard notions arise very well in our general formalism.

I.7.1. Two body space-time and equations

We start by introducing the multi-space-time associated with two clas-
sical particles. We consider the associated basic multi-objects such as the
metric, gravitational and electromagnetic fields and we write the multi-
field equations.

We label the objects related to the two particles by the indices 1 and 2,
respectively.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN CCCCTTTTBBBB1111. We assume a space-time fibred manifold

t:EEEEéTTTT

as in Assumption C1, which will be referred to as the pattern space-time. ò

More generally, the adjective pattern will be used for all objects associ-
ated with the pattern space-time.

Then, we define the multi-space-time to be the fibred manifold

ttttt : EEEEE ˆ (EEEE
1
)
T̊TTT
(EEEE

2
) é TTTT

where EEEE
1
and EEEE

2
are two identical copies of the pattern space-time EEEE:

EEEE
1
+ EEEE + EEEE

2
.

We denote the projections on the two components by

p
1
:EEEEEéEEEE

1
p
2
:EEEEEéEEEE

2
.

Of course, we can write

TEEEEE = (TEEEE
1
)
T̊TTTT
(TEEEE

2
) VEEEEE = (VEEEE

1
)
T̊TTT
(VEEEE

2
) J

1
EEEEE = (J

1
EEEE
1
)
T̊TTT
(J
1
EEEE
2
).

Moreover, we consider the reduced multi-space-time obtained by sub-
tracting the diagonal from the multi-space-time:

ttttt' : EEEEE' ˆ {(y
1
,y

2
) $ EEEEE ¡ y

1
= y

2
} é TTTT.
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Then, we can define multi-objects related to multi-space-time analogously
to the one body theory. Let us analyse a few concepts as an example.

A multi-motion is defined to be a section

sssss:TTTTàEEEEE

and its velocity is defined to be its first jet prolongation

j
1
sssss:TTTTéJ

1
EEEEE.

Of course, we can write

sssss = (s
1
,s
2
) ˆ (sssss©pr

1
,sssss©pr

2
) j

1
sssss = (j

1
s
1
,j
1
s
2
) ˆ ⁄j

1
(sssss©pr

1
),j

1
(sssss©pr

2
)^,

where

s
1
:TTTTéEEEE

1
s
2
:TTTTéEEEE

2
j
1
s
1
:TTTTéJ

1
EEEE
1

j
1
s
2
:TTTTéJ

1
EEEE
2
.

A multi-observer is defined to be a section

ooooo:EEEEEéJ
1
EEEEE.

Of course, we can write

ooooo = (o
1
,o
2
) ˆ (ooooo©J

1
pr

1
,ooooo©J

1
pr

2
),

where

o
1
:EEEEEéJ

1
EEEE
1

o
2
:EEEEEéJ

1
EEEE
2
,

need not to be pattern observers in the standard sense because they may de-
pend on the two-body events. In particular, let

o:EEEEéJ
1
EEEE

be a pattern observer and let o
1
and o

2
be two identical copies of o on EEEE

1
and

EEEE
2
, respectively; then, o yields the multi-observer

ooooo ˆ (o
1
,o
2
).

A pattern space-time chart (x0,yi) yields the multi-space-time chart
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(x0, y
1
i, y

2
i) ˆ (x0, yi©pr

1
, yi©pr

1
).

Next, we pursue by assuming further structures on the multi-space-time
analogously to the one body case.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN TTTTBBBB2222. We assume the reduced multi-space-time to be
equipped with a multi-metric

ggggg:EEEEE'éAÆ(V*EEEEEÆ
EEEEE
V*EEEEE),

a multi-gravitational connection

KKKKKŸ:TEEEEE'éT*EEEEE'Æ
EEEEE ''''
TTEEEEE'

and a multi-electromagnetic field

FFFFF:EEEEE'éBÆL
2
T*EEEEE'. ò

Analogously to the one body case, the above fields yield several objects,
which fulfill several relations. In particular, we obtain the multi-gravita-
tional connection (see Prop. I.2.1.1)

ÍÍÍÍÍŸ:J
1
EEEEE'éT*EEEEE' Æ

J
1
EEEEE''''
TJ

1
EEEEE',

the multi-second order gravitational connection (see Prop. I.2.5.1)

˙̇̇̇̇Ÿ:J
1
EEEEE'éT* Æ

J
1
EEEEE''''
TJ

1
EEEEE',

the multi-gravitational contact 2-form (see Prop. I.2.5.2)

ÒÒÒÒÒŸ:J
1
EEEEE'é(T*ÆA)ÆL

2
T*J

1
EEEEE'

the multi-gravitational curvature tensor (see Rem. I.2.1.4)

RRRRRŸ:EEEEE'é L
2
T*EEEEE'Æ

EEEEE''''
V*EEEEE'.

and the multi-gravitational Ricci tensor (see Rem. I.2.1.4)

rrrrrŸ:EEEEE'éT*EEEEE'Æ
EEEEE''''
T*EEEEE'.
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AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN TTTTBBBB3333. We assume two masses and charges

m
1
, m

2
$ M qqqq

1
, qqqq

2
$ Q. ò

We set

µ
1
ˆ

m
1
m

m ˆ m
1
_ m

2
µ
2
ˆ

m
2
m

¯
1
ˆ

qqqq
1
qqqq

qqqq ˆ qqqq
1
_ qqqq

2
¯
2
ˆ

qqqq
2
qqqq
.

Then, we obtain the multi-total objects by coupling the gravitational and
electromagnetic fields (see § I.3.2), analogously to the case of one particle,
both with reference to the above mass m$M and charge qqqq$Q and to the
square root of the universal gravitational constant kkkk.

In particular, we have the following total objects (with respect to both
couplings)

ÍÍÍÍÍ = ÍÍÍÍÍŸ _ ÍÍÍÍÍe ˙̇̇̇̇ = ˙̇̇̇̇Ÿ _ ˙̇̇̇̇e ÒÒÒÒÒ = ÒÒÒÒÒŸ _ ÒÒÒÒÒe.

Moreover, we obtain the following splittings

RRRRR = RRRRRŸ _ RRRRRŸe _ RRRRRe rrrrr = rrrrrŸ _ rrrrrŸe _ rrrrre.

The one body field theory suggests the following field equations.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN TTTTBBBB4444. We assume the metric, gravitational and electromag-
netic field to fulfill the following field equations on the reduced multi-space-
time

d ÒÒÒÒÒŸ = 0 dFFFFF = 0

rrrrrŸ = 0 divŸFFFFF = 0 ò

The one body mechanics suggests the following dynamical equation.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN TTTTBBBB5555. (Generalised Newton law of motion) We assume the
law of motion for two particles, with masses m

1
, m

2
$M and charges qqqq

1
,
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qqqq
2
$Q, whose multi-motion is sssss:TTTTéEEEEE, to be the equation

ı̇
˙̇̇̇
j
1
sssss = 0. ò

Later, in the two body quantum mechanics (see § II.7.2), we shall be in-
volved with the following classical objects.

Let us consider a multi-observer ooooo and the associated map

ı
ooooo
:J
1
EEEEEéT*ÆVEEEEE.

Then, we define the multi-kinetic energy and multi-kinetic momentum to
be the maps (see Def. I.5.2.1)

GGGGG ˆ 1
2
m ggggg©(ı

ooooo
, ı

ooooo
) : J

1
EEEEE é T*ÆT*ÆAÆM

êPPPPP ˆ m ggggg@©ı
ooooo
: J

1
EEEEE é T*ÆAÆMÆV*EEEEE.

Moreover, we obtain the kinetic energy form and kinetic momentum form
(see Rem. I.5.2.1)

GGGGG:J
1
EEEEEéT*ÆAÆMÆT*EEEEE

PPPPP ˆ ªªªªª*œ êPPPPP : J
1
EEEEE é T*ÆAÆMÆT*EEEEE.

I.7.2. The standard two-body solution

Next, we exhibit a distinguished solution of the field equations whose
symmetries and boundary values are physically appropriate.

The background space-time structure

First, we introduce a multi-metric and a background affine structure of
the multi-space-time in the following way.

We consider a vertical metric (see § I.1.2)

g:EEEEéAÆ(V*EEEEÆ
EEEE
V*EEEE)

and a background connection (see Def. I.6.1.1)
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K»:TEEEEéT*EEEEÆ
EEEE
TTEEEE

on the pattern space-time.
Then, we denote by g

1
and g

2
two identical copies of g on EEEE

1
and EEEE

2
, re-

spectively, and consider the multi-metric

ggggg:EEEEEéAÆ(V*EEEEEÆ
EEEEE
V*EEEEE)

given by

ggggg : VEEEEEÆ
EEEEE
VEEEEE é A : (X,Y) ´ µ

1
g
1
(X

1
,Y
1
) _ µ

2
g
2
(X

2
,Y
2
).

Analogously, we denote by K»
1
and K»

2
two identical copies of K» on EEEE

1
and

EEEE
2
, respectively, and consider the multi-background connection

KKKKK» ˆ K»
1
˚K»

2
: TEEEEEéT*EEEEEÆ

EEEEE
TTEEEEE.

Hence, the background affine structure on the multi-space-time yields the
splittings (see Lemma I.6.1.1)

ÃEEEEE = TTTT˚SSSSS VEEEEE = EEEEE˚SSSSS,

where SSSSS is the 6-dimensional vector space

SSSSS = SSSS
1
˚SSSS

2
,

where SSSS
1
and SSSS

2
denote two identical copies of SSSS related to EEEE

1
and EEEE

2
, re-

spectively.
We consider also the reduced subset

SSSS' ˆ SSSS - {0}.

Moreover, the multi-metric turns out to be an element

ggggg $ AÆ⁄(SSSS
1
*ÆSSSS

1
*)˚(SSSS

2
*ÆSSSS

2
*)^.

Before pursuing with the construction of the standard solution of the field
equations, we analyse some important consequences of the above structures
on the multi-space-time.
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We define the space of the centre of mass to be the diagonal fibred sub-
manifold over TTTT

EEEEE
c
ˆ {(e

1
,e
2
) $ EEEEE ¡ e

1
= e

2
} ç EEEEE é TTTT

and the centre of mass projection to be the fibred morphism over TTTT

pr
c
: EEEEE é EEEEE

c
: eeeee + (e

1
,e
2
) ´ eeeee

c
+ (e

c
,e
c
),

where e
c
$ EEEE is the unique element such that

t(e
1
) = t(e

c
) = t(e

2
) µ

1
(e

1
- e

c
) _ µ

2
(e

2
- e

c
) = 0.

Moreover, we define the relative space to be the vector subspace

SSSSS
s
ˆ {(X

1
,X

2
) $ SSSSS ¡ µ

1
X
1
_ µ

2
X
2
= 0} ç SSSSS

and the c-relative projection to be the map

pr
s
: EEEEE é SSSSS

s
: eeeee + (e

1
,e
2
) ´ sssss + (ssss

1
,ssss
2
) ˆ (e

1
- e

c
, e

2
- e

c
).

Furthermore, we define the relative projections to be the map14

pr
r
: EEEEEéSSSSS : eeeee + (e

1
,e
2
) ´ (rrrr

1
,rrrr
2
) ˆ (e

1
- e

2
, e

2
- e

1
).

We set also

® : SSSS é A
1/2Æ· : v ´ ˜v˜ ˆ ÊÕÕg(v,v)

r ˆ ®©rrrr
1
= ®©rrrr

2
: EEEEE é A

1/2Æ·

s ˆ ˜sssss˜ ˆ ÊÕÕôggggg(sssss,sssss) .

Hence, we can write

rrrr
1
= 1
µ
2
ssss
1

r2 = 1
µ
1
µ
2
s2 rrrr

2
= 1
µ
1
ssss
2
.

Therefore, besides the natural fibred splitting over TTTT

14 Of course, these maps should not be confused with the Ricci tensor.



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS 95

(pr
1
,pr

2
) : EEEEE é EEEE

1 T̊TTT
EEEE
2
: eeeee ´ (e

1
, e

2
),

we obtain the further splittings induced by the affine background structure

(pr
c
,pr

s
) : EEEEE é EEEEE

c
˚SSSSS

s
: eeeee ´ ⁄e

c
, (ssss

1
,ssss
2
)^ ˆ (e

c
, (e

1
- e

c
, e

2
- e

c
)^

(pr
c
,pr

r
1
) : EEEEE é EEEEE

c
˚SSSS : eeeee ´ (e

c
, rrrr

1
) ˆ (e

c
, e

1
- e

2
)

(pr
c
,pr

r
2
) : EEEEE é EEEEE

c
˚SSSS : eeeee ´ (e

c
, rrrr

2
) ˆ (e

c
, e

2
- e

1
).

The above splitting is naturally prolonged by the tangent and jet functors,
hence it yields analogous splittings of structures and equations.

If o is a pattern Newtonian observer and (x0,yi) an adapted Cartesian
chart, then we obtain the two distinguished multi-charts

(x0, y
1
i, y

1
i) ˆ (x0, yi©pr

1
, yi©pr

2
) (x0, y

c
i, y

r
i) ˆ (x0, yi©pr

c
, y

2
i - y

1
i).

The gravitational and electromagnetic fields

Next, we exhibit the multi-gravitational connection.
We consider the map

UŸ ˆ -
kkkk

m

m
1
m
2

®
: SSSS' é T*ÆT*ÆAÆM,

which yields

UUUUUŸ ˆ UŸ©rrrr
1
= UŸ©rrrr

2
: EEEEE'éT*ÆT*ÆA.

Then, we obtain the section

NNNNNŸ ˆ êgrad UUUUUŸ : EEEEE'é(T*ÆT*)ÆVEEEEE,

which can be expressed as

NNNNNŸ = (NŸ
1
,NŸ

2
) = -

kkkk

m

m
1
m
2

r3
( 1
µ
1
rrrr
1
, 1
µ
2
rrrr
2
).
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Eventually, we exhibit the multi-electromagnetic field.
We consider the map

Ue ˆ 1
qqqq

qqqq
1
qqqq
2

®
: SSSS' é T*ÆA1/4ÆM1/2

which yields

UUUUUe ˆ Ue©rrrr
1
= Ue©rrrr

2
: EEEEE'éT*ÆA1/4ÆM1/2.

Then, we obtain the section

FFFFF ˆ - 2 dt◊d UUUUUe : EEEEE' é BÆL
2
T*EEEEE',

which can be expressed as

FFFFF ˆ (¯
1
F
1
, ¯

2
F
2
) : EEEEE' é BÆ(L

2
T*EEEE

1
)
T̊TTT
(L
2
T*EEEE

2
) ç BÆL

2
T*EEEEE'.

Moreover, we obtain the section

NNNNNe ˆ qqqq
m

êgrad UUUUUe : EEEEE'é(T*ÆT*)ÆVEEEEE',

which can be expressed as

NNNNNe = (Ne
1
,Ne

2
) = 1

m

qqqq
1
qqqq
2

r3
( 1
µ
1
rrrr
1
, 1
µ
2
rrrr
2
).

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIII....7777....2222....1111. The sections

KKKKKŸ = KKKKK» _ dtædtæNNNNNŸ : TEEEEE' é T*EEEEE'Æ
EEEEE'
TTEEEEE'

and

FFFFF ˆ - 2 dt◊d UUUUUe : EEEEE' é BÆL
2
T*EEEEE'

are a multi-gravitational connection and a multi-electromagnetic field and
fulfill the two-body field equations (see Ass. TB4). ò

RRRREEEEMMMMAAAARRRRKKKK IIII....7777....2222....1111. The Newtonian vector field and the potential factorise
through the following commutative diagrams
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EEEEE ä
NNNNN

(T * Æ T * ) Æ SSSSS EEEEEä
UUUUU

T*

ï À ö Ö
SSSSS
r
ä(T*ÆT*)ÆSSSSS

r
SSSSS
r

ò

RRRREEEEMMMMAAAARRRRKKKK IIII....7777....2222....2222. We obtain

ÒÒÒÒÒŸ = ÒÒÒÒÒ» - 2 dt◊d UUUUU ÒÒÒÒÒe = - 2 qqqq
m
dt◊d UUUUUe

˙̇̇̇̇Ÿ = ˙̇̇̇̇» _ dtædtæNNNNNŸ ˙̇̇̇̇e = dtædtæNNNNNe.

Hence, with reference to any Newtonian multi-observer (see § I.6.2), the
form (see Theor. I.4.3.2))

aaaaa = UUUUU dt ˆ (UUUUUŸ _ qqqq
m
UUUUUe) dt = - 1

m

kkkkm
1
m
2
-qqqq

1
qqqq
2

r
dt

is a potential of the 2-form ÈÈÈÈÈ ˆ 2 ooooo*ÒÒÒÒÒ. ò

RRRREEEEMMMMAAAARRRRKKKK IIII....7777....2222....3333. With reference to any multi-space-time chart, we have
the following coordinate expression

aaaaa ˆ aaaaa
0
u0æd0 = - 1

m

km
1
m
2
-q

1
q
2

r
u0æd0. ò

The two body mechanics

The dynamics of the two classical particles follows from the above solu-
tion of the field equations analogously to the one body dynamics, without any
problem, in full accordance with well known standard results.

We just give explicitly a few further details about objects we shall be in-
volved with later in the quantum theory (see § II.7.2).

RRRREEEEMMMMAAAARRRRKKKK IIII....7777....2222....4444. Let us consider a multi-observer ooooo of the standard type

ooooo = (o,o), where o:EEEEéJ
1
EEEE is a pattern observer.

Then, we obtain the standard formulas

GGGGG = GGGG
1
_ GGGG

2
ˆ 1

2
m
1
g©(ı

o
, ı

o
)©J

1
pr

1
_ 1

2
m
2
g©(ı

o
, ı

o
)©J

1
pr

2
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= GGGG
c
_ GGGG

r
ˆ 1

2
m g©(ı

o
, ı

o
)©J

1
pr

c
_ 1

2
m µ

1
µ
2
g©(ı

o
, ı

o
)©J

1
pr

r

êPPPPP = êPPPP
1
_ êPPPP

2
ˆ (m

1
g@©ı

o
)©J

1
pr

1
_ (m

2
g@©ı

o
)©J

1
pr

2

= êPPPP
c
_ êPPPP

r
ˆ (m g@©ı

o
)©J

1
pr

c
_ (m µ

1
µ
2
g@©ı

o
)©J

1
pr

r

PPPPP = PPPP
1
_ PPPP

2
ˆ ª*œ êPPPP

1
_ ª*œ êPPPP

2

= PPPP
c
_ PPPP

r
ˆ ª*œ êPPPP

c
_ ª*œ êPPPP

r
.

With reference to a Cartesian chart (x0,yi) adapted to o, we obtain the
following coordinate expressions

GGGGG = 1
2
∂
ij
(m

1
y
1
i
0
y
10
j _ m

2
y
2
i
0
y
20
j)

= 1
2
∂
ij
m (y

c
i
0
y
c0
j _ µ

1
µ
2
y
r
i
0
y
r0
j)

PPPPP = - ∂
ij
⁄(m

1
y
10
i y

10
j _ m

2
y
20
i y

20
j) d0 _ (m

1
y
10
j d

1
i _ m

2
y
20
j d

2
i)^

= - ∂
ij
m ⁄(y

c
i
0
y
c0
j _ µ

1
µ
2
y
r
i
0
y
r0
j) d0 _ (y

c0
j d

c
i _ µ

1
µ
2
y
r0
j d

r
i)^. ò

We conclude this chapter with the observation that, in most respects, the
system of two particles with masses (m

1
,m

2
) and charges (qqqq

1
,qqqq

2
) can be

treated just as a system consisting of one particle with mass m and charge qqqq
moving in the multi-space-time.
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II - THE QUANTUM THEORY

The second part of the paper is devoted to a model of general relativistic
quantum mechanics for a spin-less charged particle, interacting with given
classical gravitational and electromagnetic fields in a given classical
Galilei general relativistic curved space-time with absolute time.

So, we consider a classical curved space-time t:EEEEéTTTT (§ I.1.1) equipped
with a vertical metric g (§ I.1.2), a gravitational connection ÍŸ and an
electromagnetic field F (§ I.3.1) fulfilling the field equations (§ I.4.1, §
I.4.5). Moreover, we consider a mass m$M, a charge qqqq$Q and the related
total objects, which involve both the gravitational and electromagnetic
fields (§ I.3.2); in particular, we are involved with the total contact 2-
form Ò (§ I.2.5).

Next, we introduce the quantum framework: it is constituted by a line
bundle, over the classical space-time, equipped with a system of connec-
tions, parametrised by the observers, whose universal curvature is pro-
portional (through the Planck constant) to the classical contact 2-form.
Then, a criterion of projectability expressing the principle of general rela-
tivity, yields the dynamics for the sections of the quantum bundle.
Moreover, pure geometrical constructions produce the quantum operators.

The above theory is referred to the quantum bundle, which is based on
space-time. We can re-formulate this theory, in terms of infinite dimen-
sional systems, by taking time as base space. In this context, we achieve
the Hilbert bundle and related quantum operators.

The standard probabilistic interpretation of quantum mechanics is as-
sumed without any essential change.
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II.1 - The quantum framework

This chapter is devoted to the study of the quantum bundle and the
quantum connection.

II.1.1. The quantum bundle

We start by introducing the quantum bundle, which is the fundamental
space of the quantum theory.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN QQQQ1111. We assume the quantum bundle to be a Hermitian line
bundle over space-time

π:QQQQéEEEE. ò

Thus, we assume the quantum bundle to be a 2-dimensional (real) vector
bundle π:QQQQéEEEE equipped with a linear fibred morphism over EEEE

˘:QQQQéQQQQ

such that ˘2 = - 1 and a Hermitian fibred product

h:QQQQ
E̊EEE
QQQQéÛ.

As usual, π:QQQQéEEEE becomes a 1-dimensional complex vector bundle, by set-
ting

i q ˆ ˘(q), Åq$QQQQ.

We shall be involved with the real and imaginary Liouville vector fields15

i : QQQQ é VQQQQ = QQQQ
E̊EEE
QQQQ : q ´ (q, q) i i : QQQQ é VQQQQ = QQQQ

E̊EEE
QQQQ : q ´ (q, i q)

and we shall often make the identifications

1 = id
QQQQ
≠ i : EEEE é (QQQQ*Æ

EEEE
QQQQ) i = i id

QQQQ
≠ i i : EEEE é (QQQQ*Æ

EEEE
QQQQ).

We denote the tube-like (real) linear charts and dual bases, respectively,

15
i is the Cyrillic character corresponding to “i”.
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by

(wa):QQQQé·2 (b
a
):EEEEéQQQQ

E̊EEE
QQQQ 1≤a≤2.

Moreover, we denote the associated (real) linear bundle trivialisation and
(real) linear complex valued coordinate, respectively, by

ƒ ˆ (π, w1 _ i w2) : QQQQéEEEE˚Û z ˆ w1 _ i w2 : QQQQ é Û.

The above four objects (wa), (b
a
), ƒ and z characterise each other in an

obvious way.
Of course, the tube-like vector field

b ˆ b
1
: EEEEéQQQQ

turns out to be a complex basis.

The above four objects (wa), (b
a
), ƒ and z are said to be normal if

b
2
= i b

1
h(b

1
,b
1
) = 1.

Normality is characterised by each of the following equivalent conditions:

i) z:QQQQéÛ

is a complex linear coordinate,

b:EEEEéQQQQ

is the complex dual basis and

h(b,b) = 1;

ii) ˘ = w1æb
2
- w2æb

1
h = (w1æw1 _ w2æw2) _ i (w1æw2 - w2æw1);

iii) 1 = zæb ≠ z Ù
z
= i i ≠ i zæb ≠ i z Ù

z
≠ i i

h = ãzæz;

iv) ƒ is a tube-like Hermitian complex fibred isomorphism.
The normal bases and trivialisations will be refereed to as quantum

gauges.
It can be proved that the bundle π:QQQQéEEEE admits a bundle atlas constituted
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by normal charts. The associated cocycle takes its values in the group U(1).
Now on, we will always refer to such an atlas, without any explicit mention.

If (x0,yi,wa) is a fibred chart π:QQQQéEEEE, then the induced linear fibred chart
of the vector bundle J

1
QQQQéEEEE will be denoted by

(x0,yi,wa,wa
¬
).

The sections „:EEEEéQQQQ are interpreted physically as the possible quantum
histories.

For each „$S(QQQQéEEEE), we shall write locally

„ = ¥ b, ¥ ˆ z©„ $ M(EEEE,Û).

II.1.2. Quantum densities

The sections of the quantum bundle are sufficient for our starting pur-
poses. However, in several contexts it is useful or necessary to multiply
them by the space-time or space-like half-volume forms. For this reason,
we introduce the notion of quantum half-densities. We have a natural bi-
jection between quantum sections and quantum half-densities.

Let us consider the bundles

T
1/2ÆA3/4ÆÊL

4
T*EEEEéEEEE A

3/4ÆÊL
3
V*EEEEéEEEE,

where Ê denotes the square root of the 1-dimensional positive semi-vector
bundle induced by the positive orientation (see § III.1.3).

Thus, we have the sections (see § I.1.2)

¢Ã̈:EEEEéT1/2ÆA3/4ÆÊL
4
T*EEEE ¢Ã∆:EEEEéA3/4ÆÊL

3
V*EEEE

and, by definition, we obtain

¢Ã̈æ¢Ã̈ = ¨ ¢Ã∆æ ¢Ã∆ = ∆.

The space-time half-densities quantum bundle and the space-like half-
densities quantum bundle are defined to be, respectively, the bundles

π¨ : QQQQ¨ ˆ T
1/2ÆA3/4Æ(QQQQÆ

EEEE
ÊL

4
T*EEEE) é EEEE



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS 103

π∆ : QQQQ∆ ˆ A
3/4Æ(QQQQÆ

EEEE
ÊL

3
V*EEEE) é EEEE,

The above bundles turn out to be 2-dimensional real vector bundles and in-
herit the complex and Hermitian structures from the Hermitian complex bun-
dle QQQQéEEEE.

If „$S(QQQQ), then we obtain the local sections

„¨ ˆ „æ¢Ã̈ : EEEE é QQQQ¨ „∆ ˆ „æ¢Ã∆ : EEEE é QQQQ∆

with coordinate expressions

„¨ = ¥∆ bæÊ(u
0
æd0◊d1◊d2◊d3) „∆ = ¥∆ bæÊ(êd1◊êd2◊êd3),

where we have set

¥∆ + Ê
4
Õ¡g¡ ¥.

Of course, we have the natural linear sheaf isomorphisms

S(QQQQ) é S(QQQQ¨) : „ ´ „¨
S(QQQQ) é S(QQQQ∆) : „ ´ „∆.

II.1.3. Systems of connections

In view of the introduction of the quantum connection, we need a few
recalls on systems of connections (see [ MM], [Mo1]).

Let p:FFFFéBBBB be a fibred manifold.

A system of connections is defined to be a fibred morphism over FFFF

≈ : CCCC
B̊BBB
FFFF é J

1
FFFF ç T*BBBBÆ

FFFF
TFFFF,

where q:CCCCéBBBB is a fibred manifold.
The system ≈ maps in a natural way sections of q:CCCCéBBBB into connections of

p:FFFFéBBBB

≈≈≈≈ : c ´ ≈
c
ˆ ≈©cŸ,

where cŸ denotes the pullback of c (see § III.1).
In other words, a system of connections is a smooth family of connections

parametrised by the sections of the bundle CCCC. The connections of the fibred
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manifold p:FFFFéBBBB, which are of the type ≈
c
, are the distinguished connections

of the system.

Let (x¬,zi) and (x¬,au) be fibred charts of FFFF and CCCC, whose domains project
over the same open subset of BBBB. Then, the coordinate expression of ≈ is of
the type

≈ = d¬æÙ
¬
_ ≈

¬
i d¬æÙ

i
≈
¬
i$F(CCCC

B̊BBB
FFFF).

Given a system of connections ≈, we obtain the “universal connection” in
the following way.

Let us consider the pullback bundle over CCCC

pŸ : FFFFŸ ˆ CCCC
B̊BBB
FFFF é CCCC.

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....1111....3333....1111. We can easily exhibit a natural inclusion

˘ : (J
1
FFFF)Ÿ ˆ CCCC

B̊BBB
J
1
FFFF à J

1
(FFFFŸ).

with coordinate expression

(x¬,au,zi;z
¬
i,z

u
i)©˘ = (x¬,au,zi;z

¬
i,0).

Next, we can easily see that the map

Ó
≈
ˆ ˘©≈Ÿ : FFFFŸ é J

1
(FFFFŸ)

is a section. Thus, Ó
≈
is a connection of the fibred manifold pŸ:FFFFŸéCCCC, with

coordinate expression

Ó
≈
= d¬æÙ

¬
_ duæÙ

u
_ ≈

¬
i d¬æÙ

i
.

The connection Ó
≈
is said to be the universal connection of the system ≈

because every connection ≈
c
of the system can be obtained from Ó

≈
by pull-

back:

≈
c
= c*Ó

≈
. ò

We can characterise the universal connection in the following way.
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RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....1111....3333....2222. i) Let ≈ be a system of connections. Then the coordinate
expression of the universal connection Ó

≈
of the system ≈ shows that the

linear fibred morphism over FFFFŸéFFFF

VCCCC
C̊CCC

FFFF Ÿ‹TCCCC ˚
CCCC

FFFFŸ ä
Ó
≈

T ( FFFF Ÿ) ä TFFFF

vanishes, i. e., for each vertical vector field X:BBBBéVCCCC,

X œ Ó
≈
= X.

In coordinates, this condition reads

Ó
u
i = 0.

ii) Conversely, let q:CCCCéBBBB be a fibred manifold and

Ó:FFFFŸéT*CCCCÆ
FFFFŸ
T(FFFFŸ)

a connection, which fulfills the above condition. Then, we can prove that
there is a unique system of connections

≈
Ó
:CCCC

B̊BBB
FFFFéJ

1
FFFF,

whose universal connection is Ó. ò

Next, let us go back to the system ≈. The curvature of the connection Ó
≈
is

the vertical valued 2-form (see § III.5 and [MM2], [Mo2])

Ò
≈
ˆ 1

2
[Ó

≈
,Ó

≈
] : FFFFŸ é L

2
T*CCCCÆ

FFFF
VFFFF,

with coordinate expression

Ò
≈
= ⁄(Ù

¬
≈
µ
i _ ≈

¬
j Ù

j
≈
µ
i) d¬◊dµ _ Ù

u
≈
µ
i du◊dµ^æÙ

i
.

The curvature Ò
≈
is said to be the universal curvature of the system ≈,

because the curvature

R
≈c
ˆ 1

2
[≈
c
,≈
c
] : FFFF é L

2
T*BBBBÆ

FFFF
VFFFF

of every connection ≈
c
of the system can be obtained from Ò

≈
by pullback:
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R
≈c
= c*Ò

≈
.

Next, let p:FFFFéBBBB be a Hermitian line bundle. Then, a connection16

c:FFFFéT*BBBBÆ
BBBB
TFFFF

is said to be Hermitian if it is (real) linear and preserves the Hermitian
product h. A Hermitian connection turns out to be also complex linear. The
coordinate expression of a Hermitian connection c is of the type

c = d¬æ(Ù
¬
_ i c

¬
i) c

¬
$F(BBBB).

The curvature of a Hermitian connection c can be regarded as an imaginary
2-form

R
c
: BBBBéL

2
T*BBBBÆÛ

with coordinate expression

R
c
= i Ù

¬
c
µ
d¬◊dµæi.

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....1111....3333....3333. Let p:FFFFéBBBB be a Hermitian complex vector bundle and ≈ a
system of connections. Then also pŸ:FFFFŸéCCCC turns out to be a Hermitian com-
plex vector bundle.

Moreover, ≈ is a system of Hermitian connections if an only if Ó
≈
is a

Hermitian connection. ò

II.1.4. The quantum connection

Now, we are in the position to introduce the quantum connection, which
constitutes our basically unique assumption of the quantum theory.

We observe that the quantum bundle lives on the space-time EEEE. However, EEEE
does not carry sufficient information of the classical structure; for in-
stance, Í, ˙ and Ò live on J

1
EEEE. Therefore, we are led to consider the pull-

back bundle

16
c is the Cyrillic character corresponding to “ch”.
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πŸ : QQQQŸ ˆ J
1
EEEE
E̊EEE
QQQQ é J

1
EEEE

of the quantum bundle QQQQéEEEE, with respect to J
1
EEEEéEEEE. In the present context,

this bundle J
1
EEEEéEEEE has to be interpreted as the target space of classical ob-

servers (see § I.1.1).

Then, we make the following main assumptions.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN QQQQ2222. We assume the Planck constant to be an element

hhhh $ T_*ÆAÆM. ò

Moreover, given u
0
$T_, we set

h ˆ hhhh(u
0
) $ AÆM.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN QQQQ3333. We assume the quantum connection to be a connection
on the bundle QQQQŸéJ

1
EEEE

c:QQQQŸéT*J
1
EEEEÆ
J
1
EEEE
TQQQQŸ,

with the following properties:
i) c is Hermitian
ii) c is universal,
iii) the curvature

R
c
:J
1
EEEEéL

2
T*J

1
EEEE Æ
J
1
EEEE
(QQQQ*Æ

EEEE
QQQQ)

of c is given by

(R
c
) R

c
= i m

hhhh
Òæi. ò

We stress that our assumption on the closure of the classical contact 2-
form Ò turns out to be an essential integrability condition for the existence
of the quantum connection. In fact, the equality

dÒ = 0

can be regarded as the Bianchi identity for the connection c.
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PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....1111....4444....1111. Our assumption Q3) on the quantum connection can
be re-formulated by saying that we assume a system of Hermitian connec-
tions, parametrised by the observers o:EEEEéJ

1
EEEE,

≈:J
1
EEEE
E̊EEE
QQQQéT*EEEEÆ

EEEE
TQQQQ,

whose curvature is given, for each observer o, by

R
≈o
= 1

2
i m
hhhh
Èæi.

PROOF. It follows immediately from the properties of universal connection
and curvature of a system of connections (see § II.1.3). ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....1111....4444....1111. For each observer o, we obtain the connection

≈
o
:QQQQéT*EEEEÆ

EEEE
TQQQQ

whose coordinate expression, in adapted coordinates, is

≈
o
= d¬æÙ

¬
_ i a

¬
d¬æi,

where a is a distinguished (see, later, Rem II.1.4.1) choice of the potential of
È.

PROOF. It follows immediately from the coordinate expression of the curva-
ture of a Hermitian connection and the definition of a. ò

LLLLEEEEMMMMMMMMAAAA IIIIIIII....1111....4444....1111. Let b be a quantum gauge. Then, in the tube of the triv-
ialisation, there is a unique flat Hermitian and universal connection

c»:QQQQŸéT*J
1
EEEEÆ
J
1
EEEE
TQQQQŸ,

such that for each section „:EEEEéQQQQ, which is constant with respect to ƒ, we
have ı»„ = 0. ò

We say that c» is the background connection associated with b. We stress
that c» is not a quantum connection because its curvature vanishes (and it is
local).

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....1111....4444....1111. Let b be a quantum gauge and o an observer. Then, in
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the tube of the trivialisation, the quantum connection can be uniquely written
as

(QC) c = c» _ i 1
hhhh
(GGGG _ PPPP _ m a) i,

where GGGG and PPPP are the classical kinetic energy and momentum forms associ-
ated with the observer o (see Rem. I.5.2.1) and a is a potential of the 2-form

È ˆ 2 o*Ò (see Prop. I.2.5.1 and Theor. I.4.3.2), which depends on b and,
obviously, on o.

Thus, with reference to the normal chart associated with b and to any
space-time chart adapted to o, we obtain the following coordinate expression

(QC)' c = d¬æÙ
¬
_ di

0
æÙ

i
0 _ i m

h
(- 1

2
g
ij
y
0
i y

0
j d0 _ g

ij
y
0
i dj _ a

¬
d¬)æi,

hence (see Rem. I.5.2.2)

c
0
= - H/h c

j
= p

j
/h c

0
j
= 0.

PROOF. Let us refer to the normal chart associated with b and to any
space-time chart adapted to o.

Condition ii) reads in coordinates as

c
0
j
= 0.

Moreover, in virtue of condition i), the coordinate expression of the con-
nection c can be written (without loosing in generality) as

c = d¬æÙ
¬
_ di

0
æÙ

i
0 _ i m

h
(- 1

2
g
ij
y
0
i y

0
j d0 _ g

ij
y
0
i dj _ a

¬
d¬)æi,

where

a ˆ a
¬
u0æd¬ : J

1
EEEE é T*ÆT*EEEE

is a suitable fibred morphism over EEEE, which depends on ƒ and the space-time
chart.

Eventually, a computation in coordinates shows that condition iii) implies
that a depends on J

1
EEEE only through EEEE and that it is a potential of È.

Moreover, we can easily see that a change of space-time chart adapted to
the same observer o leaves the term
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d¬æÙ
¬
_ di

0
æÙ

i
0 _ i m

h
(- 1

2
g
ij
y
0
i y

0
j d0 _ g

ij
y
0
i dj)æi

unchanged. Hence, a depends on the space-time chart only through the ob-
server o. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....1111....4444....1111. The composition of the connections ˙ and c

˙œc:QQQQŸéT*ÆTQQQQŸ

is a connection on the fibred manifold QQQQŸéTTTT.
Let b be a quantum gauge and o an observer. Then, in the tube of the triv-

ialisation, we can write

˙œc = ˙œc» _ i 1
hhhh
LLLL i,

where LLLL is the classical Lagrangian form associated with the observer o (see
Rem. I.5.2.1) and with the potential a of È fixed by the above theorem.

Thus, with reference to the normal chart associated with b and to any
space-time chart adapted to o, we obtain the following coordinate expression

˙œc = u0æ(Ù
0
_ y

0
i Ù

i
_ ˙i Ù

i
0 _ i L/h i),

hence

(˙œc)
0
= L/h. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....1111....4444....2222. Let o be an observer. Let b and b' be two quantum
gauges and set

ei ª ˆ b'/b $ M(EEEE,Û).

Let a and a' be the potentials of the form È ˆ 2o*Ò which appear in the
expressions of the quantum connection c related to the quantum gauges b and
b', respectively, according to formula (QC).

Then, we obtain

a' = a - hhhh
m
dª.

PROOF. Let (x0,yi,z) and (x0',yi',z') be charts of QQQQ associated with (o,b) and
(o,b'), respectively. Then, we can write
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d¬'æÙ
¬'
_ di'

0'
æÙ

i'
0' = d¬æÙ

¬
_ di

0
æÙ

i
0 - i dªæi.

Hence, the comparison of formula (QC) in the two charts yields the result.ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....1111....4444....3333. Let b be a quantum gauge. Let o and o' be two ob-
servers and set

v ˆ o' - o : EEEE é T*ÆVEEEE.

Let a and a' be the potentials of the forms È ˆ 2o*Ò and È' ˆ 2o'*Ò which
appear in the expressions of the quantum connection c related to the quantum
gauge b and the two observers o and o', respectively, according to formula
(QC).

Then, we obtain

(*) a' = a - 1
2
g©(v,v) _ ~

o
*œv@,

where v@ ˆ g@©v, ~
o
*:V*EEEEéT*EEEE is the transpose of ~

o
(see Rem. I.1.1.3) and

g©(v,v) is regarded as a form

g©(v,v) : EEEE é T*ÆAÆT*EEEE.

In particular, by vertical restriction, we obtain

êa' = êa _ v@.

Hence, if (x0,yi) and (x0,y'i) are space-time charts17 adapted to o and o',
respectively, then we can write

a'
0'
= a

0
_ (- 1

2
v
i
_ a

i
) vi

a'
i'
= Ù

i
y'j (a

j
_ v

j
),

where we have set

a' = a'
¬'
u0æd¬' a' = a'

¬
u0æd¬ a = a

¬
u0æd¬ v = vi u0æÙ

i
,

with

17 For the sake of simplicity, we take x'0 = x0.
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a
¬
, a'

¬'
, a'

¬
$ M(EEEE,A) vi $ F(EEEE).

PROOF. Formula (*) follows from formula (QC) and Rem. I.5.2.3.
Then, we can write

a'
0
= a

0
- 1
2
gij v

i vj

a'
i
= a

i
_ g

ij
vj

in the space-time chart (x0,yi). On the other hand, we have

a'
0'
= a'

0
_ Ù

0'
yi a'

i
a'
i'
= Ù

i'
yj a

j
.

Moreover, by taking the composition of the transition map

yi
0
= Ù

j'
yi yj'

0'
_ Ù

0'
yi

with o' = o _ v, we obtain

vi ˆ yi
0
©v = Ù

0'
yi. ò

The above results have delicate aspects which deserve an explanation.

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....1111....4444....1111. In the above expressions of the quantum connection we
deal with two different kinds of observers. First, in order to write an ex-
plicit expression of c, we have chosen an observer o. Then, in order to
parametrise the connections of the system ≈, we deal with all observers

(including o itself). These observers are spanned by the coordinates y
0
i; in

particular, the observer o itself is characterised by y
0
i©o = 0.

We stress that a does not depend on the family of observers of the sys-
tem, but it depends only on the chosen observer o. ò

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....1111....4444....2222. In the classical context, we can refer to any local po-
tential a of the observer dependent form È. Conversely, in the quantum con-
text, c is a global and intrinsic object. Hence, formula (QC) determines, for
each quantum gauge, the choice of the local potential a related to the ob-
server o. Now on, we shall refer to the above choice of a and we say that it
is quantistically gauged . ò
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RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....1111....4444....3333. We stress that locally a quantum connection always ex-
ists; on the other hand, our assumption of a global existence of a quantum
connection may imply global conditions on the quantum bundle.

We do not discuss here these conditions and just assume, as a postulate,
that the compatibility of our assumptions is fulfilled. The special relativistic
space-time (see § I.6.3) and the two-body space-time provide important ex-
amples. ò

The requirement of universality of the quantum connection is very impor-
tant, because it allows us to skip the well known problem of the choice of
polarisations.

II.1.5. Quantum covariant differentials

Next, we study the covariant differentials of the quantum sections, with
respect to the quantum connection.

Let us consider a section „$S(QQQQéEEEE) and its pullback „Ÿ$S(QQQQŸéJ
1
EEEE).

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....1111....5555....1111. The quantum covariant differential of „Ÿ is a 1-
form

ı
c
„Ÿ:J

1
EEEEéT*J

1
EEEE Æ
J
1
EEEE
QQQQŸ.

However, as the section „Ÿ:J
1
EEEEéQQQQŸ is the pull-back of a section „:EEEEéQQQQ

and the connection c is universal, we can write

ı
c
„Ÿ:J

1
EEEEéT*EEEEÆ

EEEE
QQQQ.

Moreover, for each observer o:EEEEéJ
1
EEEE, we have (see § II.1.3)

ı
c
„Ÿ©o = ı

≈≈≈≈(o)
„ : EEEE é T*EEEEÆ

EEEE
QQQQ. ò

Then, we introduce the following notions.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....1111....5555....1111. We define the covariant differential of „ as the
fibred morphism over EEEE
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ı„ ˆ ı
c
„Ÿ : J

1
EEEE é T*EEEEÆ

EEEE
QQQQ,

and the time-like and space-like covariant differentials of „ as the fibred
morphisms over EEEE

ôı„ ˆ dœı„ : J
1
EEEE é T*ÆQQQQ êı„ : J

1
EEEE é V*EEEEÆ

EEEE
QQQQ. ¡

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....1111....5555....1111. We have the coordinate expressions

ı„ = ı
¬
¥ d¬æb = ⁄(Ù

0
¥ _ i H/h ¥) d0 _ (Ù

j
¥ - i p

j
/h ¥) dj^æb

ôı„ = (d
0
.¥ - i (L/h) ¥) u0æb êı„ = ⁄Ù

i
¥ - i (p

i
/h) ¥^ êdiæb. ò

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....1111....5555....2222. If o is an observer, then we define the observed co-
variant differential of „ as the section

ıo„ ˆ ı„©o : EEEE é T*EEEEÆQQQQ,

the observed time-like and observed space-like differentials as the sections

ôıo„ ˆ ôı„©o = oœıo„ : EEEE é T*ÆQQQQ êıo„ ˆ êı„©o : EEEE é V*EEEEÆ
EEEE
QQQQ. ¡

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....1111....5555....2222. In any space-time chart adapted to the observer o, we
have the coordinate expressions

ıo„ = ıo
¬
¥ d¬æb = (Ù

¬
¥ - i m

h
a
¬
¥) d¬æb

ıo„ = ıo
0
¥ u0æb êı„ = ıo

i
¥ êdiæb. ò

With reference to a quantum chart (z), we shall use the standard notation
for the local complex conjugation of the covariant differential and write

Õôıo
i
¥ = Ãıo

i
ã¥ Ãıo

i
ˆ Ù

i
_ i m

h
a
i
.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....1111....5555....2222. The classical connection êK (see Rem. I.2.1.3) and

the quantum connection c yield the covariant differentials of êı„ and êıo„
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êı êı„:J
1
EEEEéV*EEEEÆ

EEEE
V*EEEEÆ

EEEE
QQQQ êıo êıo„:EEEEéV*EEEEÆ

EEEE
V*EEEEÆ

EEEE
QQQQ.

Hence, we obtain the Laplacian and the observed Laplacian

êË„ ˆ Çãg, êı êı„¶ : J
1
EEEE é A*ÆQQQQ êËo„ ˆ Çãg, êıo êıo„¶ : EEEE é A*ÆQQQQ,

with coordinate expressions

êË„ = gij ⁄ı
i
ı
j
¥ _ K

i
h
j
ı
h
¥^ b êËo„ = gij ⁄ıo

i
ıo

j
¥ _ K

i
h
j
ıo

h
¥^ b,

where

gij ıo
i
ıo

j
¥ = gij (Ù

ij
¥ - 2 i m

h
a
i
Ù
j
¥ - (i m

h
Ù
i
a
j
_ m

2

h
2 ai aj) ¥). ò

Analogously, we can define the covariant differential of the space-time

half-density „¨ and the vertical covariant differential of the space-like half-

density „∆. Moreover, we obtain the vertical covariant Laplacians.
In particular, we shall be involved (see Cor. II.2.3.1) with the equality

( êËo„)∆ = êËo(„∆).

Therefore, we shall write locally, without ambiguity,

( êËo¥)∆ = êËo¥∆ = êËo(¥∆).

II.1.6. The principle of projectability

We conclude this chapter with a criterion, which will be our heuristic
guideline for the following developments.

Our only essential assumption for quantum mechanics is the quantum con-
nection. This will be the source of all other quantum structures, including
the quantum Lagrangian, total equation and operators.

But, the quantum connection lives on the bundle QQQQŸ over J
1
EEEE, while we re-

quire that the physically significant objects live on the bundle QQQQ over EEEE. In
fact, in a sense, QQQQŸ involves all observers, while our quantum theory must be
explicitly independent of any observer.

We shall solve this problem by means of a projectability criterion. Namely,
each time we are looking for a physical object on QQQQ, we shall meet two
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canonical analogous objects on QQQQŸ and we shall prove that there is a unique
(up to a scalar factor) combination of them, which projects on QQQQ. Then, we
shall assume such a combination as the searched physical object.

This procedure works pretty well in all cases and yields an effective
heuristic method. Thus, it can be regarded as a new way for implementing
the principle of general relativity.
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II.2 - The generalised Schrödinger equation

This chapter is devoted to the study of the quantum total equation and
related objects.

The main observer independent objects will be achieved by means of the
projectability criterion. We shall follow two independent ways: the Lagran-
gian approach and a geometrical approach based on the quantum covariant
differential.

II.2.1. The quantum Lagrangian

First, we look for the quantum Lagrangian by means of the projectability
criterion.

The time-like and space-like differentials of a quantum section yield natu-
rally two real valued functions.

LLLLEEEEMMMMMMMMAAAA IIIIIIII....2222....1111....1111. If „$S(QQQQ), then we obtain the following natural fibred
morphisms over EEEE

°L
„
ˆ 1

2
⁄h(„, i ôı„) _ h(i ôı„, „)^ ¨ : J

1
EEEE é A

3/2ÆL
4
T*EEEE

êL
„
ˆ 1

2
hhhh

m
⁄(ãgæh)( êı„, êı„)^ ¨ : J

1
EEEE é A

3/2ÆL
4
T*EEEE,

with coordinate expressions

°L
„
= 1

2
⁄i (ã¥ d

0
.¥ - d

0
.ã¥ ¥) _ 2 (L/h) ã¥ ¥^ u0æ¨

êL
„
= h

2m
gij ⁄Ù

i
ã¥ Ù

j
¥ - i (p

i
/h) (Ù

j
ã¥ ¥ - ã¥ Ù

j
¥) _ (p

i
/h) (p

j
/h) ã¥ ¥^ u0æ¨. ò

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....2222....1111....1111. If „$S(QQQQ), then, there is a unique combination L
„
(up

to a scalar factor) of °L
„
and êL

„
, which projects on EEEE; namely
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L
„
= °L

„
- êL

„
: EEEE é A

3/2ÆL
4
T*EEEE,

with coordinate expression

L
„
= 1

2
⁄- h

m
gij Ù

i
ã¥ Ù

j
¥ - i (Ù

0
ã¥ ¥ - ã¥ Ù

0
¥) _ i ai (Ù

i
ã¥ ¥ - ã¥ Ù

i
¥) _

_ m
h
(2 a

0
- a

i
ai) ã¥ ¥^ u0æ¨.

PROOF. This is the unique combination which makes the coordinates yi
0
dis-

appear in its coordinate expression. ò

Thus, we denote by18

L:J
1
QQQQéA3/2ÆL

4
T*EEEE,

the fibred morphism over EEEE, which is characterised by

L
„
= L©j

1
„,

for each section „$S(QQQQ). Its coordinate expression is

L = 1
2
⁄- h

m
gij ãz

i
z
j
- i (ãz

0
z - ãz z

0
) _

_ i ai (ãz
i
z - ãz z

i
) _ m

h
(2 a

0
- a

i
ai) ãz z^ ÊÕ¡g¡ d0◊d1◊d2◊d3,

i.e.

L = ⁄- h

2m
gij (w

i
1 w

j
1 _ w

i
2 w

j
2) _ (w

0
1 w2 - w1 w

0
2) _

- ai (w
i
1 w2 - w1 w

i
2) _ m

h
(a

0
- 1

2
a
i
ai) (w1 w1 _ w2 w2)^ ÊÕ¡g¡ d0◊d1◊d2◊d3.

Moreover, we set

L = l d0◊d1◊d2◊d3 l $ M(J
1
QQQQ,A3/2).

18 Here and later, we denote the jet space of order r of the fibred manifold
π:QQQQéEEEE by J

r
QQQQ.
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We stress that L is a real map.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN QQQQ4444. We assume L to be the quantum Lagrangian responsible
of the quantum total equation. ò

Before analysing the consequences of this assumptions, we conclude this
section with a digression.

We prefer to develop the Lagrangian formalism directly on the quantum
bundle. However, the reader may wish to develop an equivalent theory on the
quantum principal bundle. Here, we just give a hint to find a distinguished
Lagrangian on the quantum principal bundle.

Let PPPPéEEEE be the quantum principal bundle, i.e. the principal bundle with
structure group U(1), whose associated bundle is the quantum bundle QQQQéEEEE.
Let ª:PPPPé· be the normal chart associated with the quantum gauge b.

LLLLEEEEMMMMMMMMAAAA IIIIIIII....2222....1111....2222. The form associated with the quantum connection on the
quantum principal bundle is the fibred morphism

~
c
:J
1
EEEE
E̊EEE
PPPPéT*PPPP

with coordinate expression

~
c
= dª - i m

h
(- 1

2
g
ij
y
0
i y

0
j d0 _ g

ij
y
0
i dj _ a

¬
d¬).

Then, we obtain the fibred morphism over EEEE

G
c
:J
1
EEEE
E̊EEE
PPPPéTÆ(T*PPPPÆ

EEEE
T*PPPP)

defined as

G
c
ˆ ~

c
ædt _ dtæ~

c
,

with coordinate expression

G
c
= u

0
æ⁄dªæd0 _ d0ædª _

- i m
h
(- g

ij
y
0
i y

0
j d0æd0 _ g

ij
y
0
i (djæd0 _ d0ædj) _ a

¬
(d¬æd0 _ d0æd¬)^. ò

LLLLEEEEMMMMMMMMAAAA IIIIIIII....2222....1111....3333. The pullback of the vertical metric is the fibred mor-
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phisms over EEEE

ª*g:J
1
EEEEéAÆMÆ(T*EEEEÆ

EEEE
T*EEEE)

with coordinate expression

ª*g = m g
ij
(di - y

0
i d0)æ(dj - y

0
j d0).

Then, we obtain the fibred morphism over EEEE

GŸ:J
1
EEEEéTÆ(T*EEEEÆ

EEEE
T*EEEE)

defined as

GŸ ˆ m
hhhh
ª*g,

with coordinate expression

GŸ = m
h
g
ij
u
0
æ(di - y

0
i d0)æ(dj - y

0
j d0). ò

The two above objects live on J
1
EEEE, i.e. they are observer dependent. Next,

we show that there is a unique minimal coupling of them, which is pro-
jectable on PPPP, i.e. observer independent.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....2222....1111....2222. There is a unique combination of G
c
and G&, which pro-

jects on PPPP; namely

G ˆ G
c
- i GŸ : PPPPéTÆ(T*PPPPÆ

EEEE
T*PPPP),

with coordinate expression

G = u
0
æ⁄dªæd0 _ d0ædª - i m

h
(g

ij
diædj _ 2 a

0
d0æd0 _ a

i
(diæd0 _ d0ædi)^.

Thus, G is a non-degenerate T-valued metric on the quantum principal
bundle. ò

The above metric G yields naturally a Lagrangian on the quantum principal
bundle, which is equivalent to the above Lagrangian L.
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II.2.2. The quantum momentum

Next, we study the (observer independent) four dimensional quantum
momentum. We follow two independent ways: we deduce it from the
Lagrangian formalism and from another geometrical construction based on
the differential of the quantum section.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....2222....2222....1111. The quantum momentum is defined to be the vertical
derivative of L

V
QQQQ
L :J

1
QQQQéA3/2ÆTEEEEÆ

EEEE
L
4
T*EEEEÆ

EEEE
QQQQ*. ¡

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....2222....2222....1111. The quantum momentum can be naturally regarded
as a fibred morphism over EEEE

p:J
1
QQQQéT*ÆTEEEEÆ

EEEE
QQQQ.

Then, for each „$S(QQQQ), we obtain the observer independent section

p
„
ˆ p©j

1
„ : EEEE é T*ÆTEEEEÆ

EEEE
QQQQ,

with coordinate expression

p
„
= u0æ⁄¥ Ù

0
- i h

m
gij (Ù

j
¥ - i m

h
a
j
¥) Ù

i
^æb.

PROOF. It follows by using the natural fibred isomorphisms19

i re(h):QQQQ*éQQQQ Ç ,ã̈¶:L
4
T*EEEEéT*ÆA*3/2ÆTEEEE. ò

We can recover geometrically the quantum momentum in the following
way.

LLLLEEEEMMMMMMMMAAAA IIIIIIII....2222....2222....1111. If „$S(QQQQ), then we have the following natural fibred
morphisms over EEEE

19 The conventional multiplicative factor i in the isomorphism QQQQ*éQQQQ has been
chosen in such a way to obtain an expression of momentum in agreement with
Prop. II.4.2.1.
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ôp
„
ˆ dæ„ : J

1
EEEE é T*ÆTEEEEÆ

EEEE
QQQQ êp

„
ˆ hhhh

m
êı#„ : J

1
EEEE é T*ÆTEEEEÆ

EEEE
QQQQ,

with coordinate expressions

ôp
„
ˆ ¥ u0æ(Ù

0
_ yi

0
Ù
i
)æb êp

„
ˆ hhhh

m
gij ⁄Ù

j
¥ - i (p

j
/h) ¥^ Ù

i
æb.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....2222....2222....1111. If „$S(QQQQ), then p
„

is the unique combination (up to a

scalar factor) of ôp
„
and êp

„
, which projects over EEEE; namely,

p
„
= ôp

„
- i êp

„
: EEEE é T*ÆTEEEEÆ

EEEE
QQQQ.

PROOF. This is the unique combination which makes the coordinates yi
0
dis-

appear in its coordinate expression. ò

We stress that the quantum momentum is an observer independent four
dimensional object.

The time component of the quantum momentum is defined without refer-
ence to any observer; actually, it coincides with the quantum section itself.
On the other hand, the choice of an observer allows us to define the space-
like component of the quantum momentum.

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....2222....2222....1111. For each „$S(QQQQ), we obtain the observer indepen-
dent section

v
„
ˆ re h(„,p

„
) : EEEE é T*ÆTEEEE.

Moreover, in the domain where „ does not vanish, the section

o
„
ˆ v

„
/h(„,„) : EEEE é T*ÆTEEEE

projects over 1
TTTT
, hence it is an observer, with coordinate expression

o
„
= u0æ⁄Ù

0
- re i h

m
gij

ã¥(Ù
j
¥ - i m

h
a
j
¥)

h(„,„)
Ù
i
^. ò

Thus, we have obtained a distinguished observer associated with „. It is
possible to interpret the physical meaning of this observer in agreement with
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the uncertainty principle; in fact, we can assume that o
„
is determined ex-

perimentally only by means of a statistical procedure which involves many
particles (see [Me]).

II.2.3. The generalised Schrödinger equation

Next, we study the (observer independent) quantum total equation. We
follow two independent ways: we deduce it from the Lagrangian formalism
and from another geometrical construction based on the differentials of
the quantum section and momentum.

For this purpose, we need an intrinsic construction of the Euler-Lagrange
operator. We shall follow the procedure of [Co].

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....2222....3333....1111. The quantum momentum can be regarded as a fibred
morphism over EEEE

P:J
1
QQQQéL

4
T*QQQQ.

PROOF. It follows by applying to V
QQQQ
L the natural linear fibred morphisms

Ç , ¶:TEEEEÆ
EEEE
L
4
T*EEEEéL3T*EEEE ª

QQQQ
*:J

1
QQQQ
E̊EEE
QQQQ*éT*QQQQ

over EEEE and J
1
EEEEéQQQQ, respectively. ò

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....2222....3333....2222. We obtain the fibred morphism over EEEE

E ˆ dL _ d
h
P : J

2
QQQQ é A

3/2ÆL
5
T*QQQQ,

where d is the exterior differential and d
h
the contact horizontal exterior

differential (see [Co]). ò

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....2222....3333....3333. By considering the linear epimorphism T*QQQQéV*QQQQ over
QQQQ, E can be characterised by a fibred morphism over EEEE

êE:J
2
QQQQ é A

3/2ÆL
4
T*EEEEÆ

EEEE
QQQQ*.

Moreover, by taking into account the real component of the Hermitian met-
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ric and the space-time volume form ¨, êE is characterised by the fibred mor-
phism over EEEE

* êE# : J
2
QQQQ é T*ÆQQQQ,

with coordinate expression

(EL) * êE# =
1

ÊÕ¡g¡
⁄Ù

a
l - (Ù

¬
_ w

¬
b Ù

b
_ w

¬
b
µ
Ùµ
b
).Ù¬

a
l^ u0æb

a
. ò

Eventually, we can prove (see [Co]) that * êE# is nothing but the intrinsic
expression of the standard Euler-Lagrange operator associated with the
Lagrangian L.

So, we obtain the following important result.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....2222....3333....1111. (Generalised Schrödinger equation) The coordinate
expression of the Euler-Lagrange equation, in the unknown „$S(QQQQ), is

0 = * êE#©j
2
„ = 2 ⁄i Ù

0
¥ _ m

h
a
0
¥ _ 1

2
i
Ù
0
ÊÕ¡g¡

ÊÕ¡g¡
¥ _

_ h

2m
(gij (Ù

ij
¥ - 2 i m

h
a
i
Ù
j
¥ - (i m

h
Ù
i
a
j
_ m

2

h
2 ai aj) ¥) _

_
Ù
i
(gijÊÕ¡g¡ )

ÊÕ¡g¡
(Ù
j
¥ - i m

h
a
j
¥))^ u0æb.

PROOF. Formula (EL) yields

* êE# = 2 ⁄- w
0
2 - 1

2

Ù
0
ÊÕ¡g¡

ÊÕ¡g¡
w2 _ h

2m
gij w

ij
1 _ ai w

i
2 _ h

2m

Ù
i
(gijÊÕ¡g¡ )

ÊÕ¡g¡
w
j
1 _

_ m
h
(a

0
- 1

2
a
i
ai) w1 _ 1

2

Ù
i
(aiÊÕ¡g¡ )

ÊÕ¡g¡
w2^ u0æb

1
_

_ 2 ⁄w
0
1 _ 1

2

Ù
0
ÊÕ¡g¡

ÊÕ¡g¡
w1 _ h

2m
gij w

ij
2 - ai w

i
1 _ h

2m

Ù
i
(gijÊÕ¡g¡ )

ÊÕ¡g¡
w
j
2 _
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_ m
h
(a

0
- 1

2
a
i
ai) w2 - 1

2

Ù
i
(aiÊÕ¡g¡ )

ÊÕ¡g¡
w1^ u0æb

2
. ò

Thus, the above formula expresses the total equation for a spinless quan-
tum particle with a given mass and charge, in a curved space-time, with ab-
solute time, under the action of a given gravitational and electromagnetic
field.

In order to interpret the above equation correctly, we must take into ac-
count that here a includes both the gravitational and electromagnetic poten-
tials (see Theor. I.4.3.2).

In the special relativistic Galilei case, the above equation reduces exactly
to the standard Schrödinger equation referred to a given quantum gauge.

We can write the Schrödinger equation in a more compact way.
For this purpose, we introduce the following natural derivation.

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....2222....3333....4444. Let o:EEEEéT*ÆTEEEE be an observer.
Then, by functorial prolongation (see § III.3 and [MM2]), we obtain the

section

o' ˆ r
1
©J

1
o : J

1
EEEE é T*ÆTJ

1
EEEE,

with coordinate expression in adapted coordinates

o' = u0æÙ
0
.

Next, the quantum connection yields the vector field

≈(o'):QQQQéT*ÆTQQQQ,

with coordinate expression in adapted coordinates

≈(o') = u0æ(Ù
0
_ i m

h
a
0
i).

Hence, for each „$S(QQQQ), we set (see Rem. I.1.2.1)

Do„ ˆ Ç¢Ãã̈, L
≈(o')

(„æ¢Ã̈)¶ : EEEE é T*ÆQQQQ

and we obtain the coordinate expression
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Do„ = (Ù
0
¥ - m

h
i a

0
¥ _ 1

2

Ù
0
ÊÕ¡g¡

ÊÕ¡g¡
¥) u0æb. ò

We could achieve Do„, in a simpler but less elegant way, by means of the
observed covariant differential of „ and the Lie derivative of ¢Ã̈.

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....2222....3333....1111. If o is an observer, then the Euler-Lagrange equa-
tion, in the unknown „$S(QQQQ), can be written as (see Prop. II.1.5.2)

2 (i Do„ _ hhhh

2m
êËo„) = 0.

PROOF. We have

êËo„ = ⁄gij (Ù
ij
¥ - 2 i m

h
a
i
Ù
j
¥ - (i m

h
Ù
i
a
j
_ m

2

h
2 ai aj) ¥) _ Ki

h
j
(Ù

h
¥ - i m

h
a
h
¥)^ b

and (see formula ***) in Cor. I.2.3.2)

gij K
i
h
j
=
Ù
j
(ghjÊÕ¡g¡ )

ÊÕ¡g¡
. ò

We stress that both terms of the left hand side of the above equation de-
pend essentially on the observer o; however, their sum turns out to be ob-
server independent.

Warning: we might be tempted to write the coordinate expression of the
Schrödinger equation as

2 (i ıo
0
¥∆ _ h

2m
gij ı

i
ı
j
¥∆) = 0;

but, unfortunately, we cannot find a serious and consistent interpretation of
the symbols yielding the above formula.

We can recover geometrically the generalised Schrödinger equation in the
following way.

LLLLEEEEMMMMMMMMAAAA IIIIIIII....2222....3333....1111. If „$S(QQQQ), then we have the following natural fibred
morphisms over EEEE
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°ı„ ˆ dœı„: J
1
EEEE é T*ÆQQQQ ∂ p

„
ˆ Çã̈, dÇ¨,p

„
¶¶ : J

1
EEEE é T*ÆQQQQ,

where d and ∂ are the covariant differential and codifferentials induced by c.ò

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....2222....3333....2222. If „$S(QQQQ), then * êE#
„
is the unique combination (up to

a scalar factor) of °ı„ and ∂p
„
, which projects over EEEE; namely,

* êE#
„
= °ı„ _ ∂ p

„
: EEEE é T*ÆQQQQ.

PROOF. This is the unique combination which makes the coordinates yi
0
dis-

appear in its coordinate expression. ò

In view of later developments, it is convenient to rescale the Euler-
Lagrange fibred morphism in such a way that it can be interpreted as a con-
nection in the infinite dimensional setting of the quantum theory (see, later,
§ II.6.2).

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....2222....3333....1111. The Schrödinger operator is defined to be the sheaf
morphism

S∆ : S(QQQQ∆éEEEE) é S(T*ÆQQQQ∆éEEEE) : „∆ ´ - i 1
2
(* êE#

„
)æ¢Ã∆. ¡

We obtain the coordinate expression

S∆(„∆) = (Ù
0
¥∆ - i h

2m
êËo¥∆ - i m

h
a
0
¥∆) u0æbæÊêd1◊êd2◊êd3,

where (see § II.1.5)

Ù
0
¥∆ ˆ Ù

0
(¥∆) ( êËo¥)∆ = êËo¥∆ = êËo(¥∆).

II.2.4. The quantum probability current

We conclude this chapter by studying the quantum probability current.
As usual, its conservation is an essential requirement of the probabilistic
interpretation of quantum mechanics.

First we introduce the Poincaré-Cartan form associated with the quantum
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Lagrangian (see [GS], [Ga], [Co]).

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....2222....4444....1111. According to the general Lagrangian theory, the Poin-
caré-Cartan form associated with L is the form

Ï:J
1
QQQQéA3/2ÆL

4
T*QQQQ

defined as

Ï ˆ L _ ª◊V
QQQQ
L,

with coordinate expression

Ï = L _ Ù
a
¬
l ª

QQQQ
a◊∑

¬
,

where

ª
QQQQ
a ˆ (dwa - w

¬
a d¬) ∑

¬
ˆ Ù

¬
œ(d0◊d1◊d2◊d3).

So, if „$S(QQQQ), then we obtain the section

Ï
„
:EEEEéA3/2ÆL

4
T*QQQQ

defined as

Ï
„
ˆ Ï©j

1
„.

with coordinate expression

Ï
„
= ÊÕ¡g¡ 1

2
⁄⁄h
m
gij Ù

i
ã¥ Ù

j
¥ _ m

h
(a

0
- 1

2
a2) ã¥ ¥^ d0◊d1◊d2◊d3 _

_ i (ã¥ dz - ¥ dãz)◊d1◊d2◊d3 _

- (-1)i h
m
gij ⁄(Ù

j
ã¥ _ i m

h
a
j
ã¥) dz _ (Ù

j
¥ - i m

h
a
j
¥) dãz)^◊d0◊d1…◊âdi…◊d3^. ò

Then, by considering the invariance of the Lagrangian under the action of
the group U(1), the Nöther theorem yields a conserved current (see [GS],
[Ga], [Co]), which will be interpreted as probability current.

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....2222....4444....2222. The quantum Lagrangian L is invariant under the action
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of the group U(1), hence it is invariant with respect to its infinitesimal gen-

erator, namely with respect to the vertical vector field20

- J
1
(i i):J

1
QQQQéVJ

1
QQQQ,

with coordinate expression

- J
1
(i i) = w2 Ùw

1
- w1 Ùw

2
_ w

¬
2 Ùw¬

1
- w

¬
1 Ùw¬

2
.

PROOF. The complex coordinate expression of L is invariant with respect to
the jet prolongation of a constant change of phase of QQQQ. The infinitesimal
generator of constant changes of phase is i i. So, L is invariant with respect
to the jet prolongation of i i. On the other hand, this last fact can be checked
directly by means of the real coordinate expression of L. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....2222....4444....1111. The Nöther theorem yields the following conserved
current

j:J
1
QQQQéA3/2ÆL

3
T*EEEE

defined as

j ˆ - i iœÏ.

If „$S(QQQQ) is a solution of the Schrödinger equation, then the form

j
„
ˆ 1

2
Ç¨, h(„,p

„
) - h(p

„
,„)¶ : EEEE é A

3/2ÆL
3
T*EEEE,

with coordinate expression

j
„
= ÊÕ¡g¡ ⁄ã¥ ¥ d1◊d2◊d3 _

_ (-1)h (- i h

2m
ghk (ã¥ Ù

k
¥ - Ù

k
ã¥ ¥) - ah ã¥ ¥) d0◊d1…◊âdh…◊d3^,

is closed

dj
„
= 0. ò

20 We recall the canonical fibred isomorphism VJ
1
QQQQéJ

1
VQQQQ over J

1
QQQQ
Q̊QQQ
VQQQQ,

where V is taken with respect to the base space EEEE.
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II.3 - Quantum vector fields

Now, we introduce the quantum vector fields, in view of quantum opera-
tors (see, later, § II.4.2 and § II.6.3).

II.3.1. The Lie algebra of quantisable functions

Quantum vector fields require some preliminary facts. Accordingly, we
present a few further important results of classical mechanics.

Let us consider the sheaves of local functions, of local vector fields and of
local forms of J

1
EEEE, respectively,

F(J
1
EEEE) ˆ {f:J

1
EEEEé·}

T(J
1
EEEE) ˆ {X:J

1
EEEEéTJ

1
EEEE} T*(J

1
EEEE) ˆ {ƒ:J

1
EEEEéT*J

1
EEEE}.

Moreover, let

T
††††
(J
1
EEEE) ç T(J

1
EEEE) T*

˙
(J
1
EEEE) ç T*(J

1
EEEE)

be the subsheaves of local vector fields whose time component is a given
map ††††:J

1
EEEEéT (which will be referred to as a time scale ) and of local forms

which vanish on ˙, respectively.
The coordinate expressions of X$T

††††
(J
1
EEEE) and ƒ$T*

˙
(J
1
EEEE) are of the type

X = X0 (Ù
0
_ y

0
i Ù

i
_ ˙i Ù

i
0) _ Xi Ù

i
_ X

0
i Ù

i
0 ƒ = ƒ

i
ªi _ ƒ

i
0 (d

0
i - ˙i d0),

with

X0 = † ˆ Çu0,††††¶ $ F(J
1
EEEE).

LLLLEEEEMMMMMMMMAAAA IIIIIIII....3333....1111....1111. The contact 2-form

m
hhhh
Ò:J

1
EEEEéL

2
T*J

1
EEEE
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maps each vector field of J
1
EEEE into a 1-form orthogonal to ˙.

PROOF. It follows immediately from ˙œÒ = 0 (see Cor. I.2.5.1). ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....3333....1111....1111. For each time scale ††††:J
1
EEEEéT, we obtain the sheaf

isomorphism

Ò
††††
@ : T

††††
(J
1
EEEE) é T*

˙
(J
1
EEEE) : X ´ m

hhhh
i
X
Ò

with coordinate expression

Ò
††††
@(X) = m

h
⁄(g

ij
X
0
j _ (Í

ij
- Í

ji
) Xj) ªi - g

ij
Xj (d

0
i - ˙i d0)^.

The inverse isomorphism Ò
††††
# has coordinate expression

Ò
††††
#(ƒ) = † (Ù

0
_ y

0
i Ù

i
_ ˙i Ù

i
0) _ h

m
gij ⁄- ƒ0

j
Ù
i
_ (ƒ

j
_ ghk (Í

jh
- Í

hj
) ƒ0

k
) Ù

i
0^. ò

We recall that (see Theor. I.4.3.2)

Í
jh
- Í

hj
= - (Ù

j
g
hl
- Ù

h
g
jl
) y

0
l - È

jh
.

Then, we obtain the following Hamiltonian lift of functions.

LLLLEEEEMMMMMMMMAAAA IIIIIIII....3333....1111....2222. For each f$F(J
1
EEEE), we obtain naturally the form

d
˙
f ˆ df - ˙œdf $ T*

˙
(J
1
EEEE)

with coordinate expression

d
˙
f = Ù

i
f ªi _ Ù

i
0f (d

0
i - ˙i d0). ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....3333....1111....1111. For each time scale ††††:J
1
EEEEéT, we obtain the follow-

ing sheaf morphism

F(J
1
EEEE) é T

††††
(J
1
EEEE) : f ´ f

††††
# ˆ Ò

††††
#(d

˙
f).

with coordinate expression

f
††††
# = † (Ù

0
_ y

0
i Ù

i
_ ˙i Ù

i
0) _ h

m
gij ⁄- Ù0

j
f Ù

i
_ (Ù

j
f _ (Í

j
k - Ík

j
) Ù0

k
f) Ù

i
0^.
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We have the following properties

f
††††
# = ˙(††††) _ f

0
#

(f' _ f")
0
# = f'

0
# _ f"

0
# (f' f")

0
# = f' f"

0
# _ f'

0
# f". ò

The Hamiltonian lift yields the generalised Poisson Lie bracket.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....3333....1111....1111. The sheaf morphism

F(J
1
EEEE)˚F(J

1
EEEE) é F(J

1
EEEE) : (f', f") ´ {f', f"} ˆ m

hhhh
i
f'
0
#
i
f"
0
#
Ò

is a Lie bracket.
Its coordinate expression is

{f',f"} = h

m
gij ⁄Ù

i
f' Ù0

j
f" - Ù

i
0f' Ù

j
f" _ ghk (Í

jh
- Í

hj
) Ù0

k
f' Ù

i
0f"^.

PROOF. The proof can be achieved analogously to the standard case, but
with more difficulties, because we have to replace the standard d with d

˙
. ò

This bracket has some interesting properties. In particular, we have

{f',f"}
0
# = [f'

0
#,f"

0
#].

However, this bracket has no relativistically covariant role in classical
mechanics.

On the other hand, we can prove the following important result based on a
criterion of projectability for classical Hamiltonian lift, which later will play
an essential role in quantum mechanics.

Let us consider the subsheaf of tube-like functions with respect to the
fibring J

1
EEEEéEEEE

F
t
(J
1
EEEE) ç F(J

1
EEEE).

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....3333....1111....2222. If f$F
t
(J

1
EEEE), then the following conditions are

equivalent:
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i) the vector field f
††††
# is projectable over EEEE;

ii) the function f is, with respect to the fibres of J
1
EEEEéEEEE, a polynomial of

degree 2, whose second derivative is of the form

ffff» m
hhhh
g : EEEE é (TÆT)ÆV*EEEEÆ

EEEE
V*EEEE,

where

ffff» = ††††;

iii) the coordinate expression of f is of the following type

f = f» m
2h
g
ij
y
0
i y

0
j _ f

i
y
0
i _ f

©
f»,f

©
,f

i
$F(EEEE),

where

f» = †.

PROOF. The vector field f
††††
# is projectable if and only if

Ù0
h
† = 0 † Ù0

h
y
0
i - h

m
gij Ù0

h
0
j
f = 0

i.e., if and only if

Ù0
h
† = 0 Ù

i
00
j
f = † m

h
g
ij

i.e. if and only if

†:EEEEé· f = † m
2h
g
ij
y
0
i y

0
j _ f

i
y
0
i _ f

©
. ò

Then, we introduce the following definition, for a reason which will be
clear soon.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....3333....1111....1111. We define the quantisable functions to be the func-
tions of the above type. ¡

If f is a quantisable function, then the associated time scale

†††† ˆ ffff» : EEEE é T

is said to be its time component.
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If f is a quantisable function, then the corresponding projectable Hamilton-
ian lift and the associated projection are denoted by

f# ˆ f
††††
# $ T

††††
(J
1
EEEE) fH $ T

††††
(EEEE).

Thus, given u0$T_*, we have implicitly set

f» ˆ Çu0,ffff»¶.

We stress that we have assumed no relation between f» ˆ † and f
©
.

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....3333....1111....2222. If f is a quantisable function, then we obtain the coor-
dinate expression

f# = f» Ù
0
- h

m
fi Ù

i
_

_ gij ⁄1
2
Ù
j
f» g

hk
y
0
h y

0
k _ (h

m
Ù
j
f
h
_ h

m
(Ù

k
g
jh
- Ù

j
g
hk
) fk - f» Ù

0
g
jh
) y

0
h _

_ h

m
Ù
j
f
©
_ h

m
È
hj
fh _ f» È

j0
^ Ù

i
0,

hence

fH = f» Ù
0
- h

m
fi Ù

i
. ò

The quantisable functions constitute a sheaf, which is denoted by

Q(J
1
EEEE) ç F

t
(J
1
EEEE).

Moreover, we shall be concerned with the subsheaves of quantisable func-
tions whose time component is constant and of quantisable functions whose
time component vanishes

Q
c
(J
1
EEEE) ç Q(J

1
EEEE) Q

0
(J
1
EEEE) ç Q

c
(J
1
EEEE).

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....3333....1111....1111. All functions f$F(EEEE), which depend only on space-time
(for instance, the space-time coordinates), are quantisable functions.
Moreover, all functions f$A(J

1
EEEE),which are affine with respect to the fibring

J
1
EEEEéEEEE (for instance, the components of the classical momentum), are quan-
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tisable functions. The remaining quantisable functions (for instance, the
classical kinetic energy, Hamiltonian and Lagrangian) have a quadratic term
with respect to the fibring J

1
EEEEéEEEE, which is proportional to the metric,

through an arbitrary coefficient dependent only on space-time.
Thus, we have the sheaf monomorphisms

F(EEEE) ç A(J
1
EEEE) ç Q(J

1
EEEE). ò

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....3333....1111....2222. The sheaf Q(J
1
EEEE) is a sheaf of Lie algebras with re-

spect to the bracket

[f', f"] ˆ {f', f"} _ ˙(ffff'»).f" - ˙(ffff"»).f'.

Moreover, the sheaves Q
c
(J
1
EEEE) and Q

0
(J
1
EEEE) are subsheaves of Lie algebras.

The coordinate expression of the above Lie bracket is given by

[f', f"] = ⁄f'» Ù
0
f"» - f"» Ù

0
f'» - h

m
(f'i Ù

i
f"» - f"i Ù

i
f'»)^ m

2h
g
hk
y
0
h y

0
k _

_ g
hk
⁄f'» Ù

0
f"k - f"» Ù

0
f'k - h

m
(f'i Ù

i
f"k - f"i Ù

i
f'k)^ y

0
h _

_ f'» Ù
0
f"

©
- f"» Ù

0
f'
©
- h

m
(f'h Ù

h
f"

©
- f"h Ù

h
f'
©
) _

_ (f'» f"h - f"» f'h) È
h0
_ h

m
f'h f"k È

hk
.

PROOF. The explicit expression of the bracket follows from a long computa-
tion in coordinates. Then, this expression shows that Q(J

1
EEEE) is closed under

the above bracket.
The Jacobi property could be checked by a very long direct computation in

coordinates. However, in the next section we can obtain an intrinsic proof as
a corollary of an important result of the quantum theory (Cor. II.3.2.2). ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....3333....1111....2222. The subsheaf A(J
1
EEEE) ç Q(J

1
EEEE) is a subsheaf of Lie

algebras. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....3333....1111....3333. The sheaf morphism
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H : Q(J
1
EEEE)éT(EEEE) : f´fH

is a morphsim of Lie algebras, i.e.

[f', f"]H = [f'H, f"H]. ò

EEEEXXXXAAAAMMMMPPPPLLLLEEEE IIIIIIII....3333....1111....1111. We have the following Hamiltonian lifts

(x0)H = 0 (yl)H = 0

(p
i
/h)H = - Ù

i
(H/h)H = Ù

0
(L/h)H = Ù

0
- ai Ù

i
. ò

EEEEXXXXAAAAMMMMPPPPLLLLEEEE IIIIIIII....3333....1111....2222. We have the following brackets

[x0, f] = - f» [yi, f] = h

m
fi

[p
i
/h, p

j
/h] = 0 [H/h, p

i
/h] = m

h
È
0i
. ò

II.3.2. The Lie algebra of quantum vector fields

In this section, we show how the geometrical structure of the quantum
bundle yields naturally a distinguished Lie algebra of vector fields, which
will be called quantum vector fields. Moreover, we exhibit a natural Lie al-
gebra isomorphism between quantisable functions and quantum vector
fields.

Later, the quantum vector fields will be the source of quantum operators
(see, later, § II.4.2 and § II.6.3).

We start by considering the vector fields of QQQQŸ, which preserve the basic
quantum structures. We need to start from this bundle, because the quantum
connection lives on it.

We need the covariant differential of a vector field, which is a particular
case of the differential of tangent valued forms defined in [Mo2], [Mo3] (see
also § III.5). We stress that this differential cannot be understood neither in
the sense of linear connections on a manifold, nor in the sense of derivation
laws.
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RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....3333....2222....1111. Let p:FFFFéBBBB be a fibred manifold and

c:FFFFéT*BBBBÆ
FFFF
TFFFF

a connection. If X:FFFFéTFFFF is a vector field projectable on X:BBBBéTBBBB, then its
covariant differential is defined to be the vertical valued 1-form

d
c
X ˆ [c,X] : FFFF é T*BBBBÆ

FFFF
VFFFF,

where [ , ] is the Frölicher-Nijenhuis bracket, given by

(d
c
X)(u) = [c(u), X] - c([u, X]), Åu$T(BBBB),

and with coordinate expression

d
c
X = (- Ù

¬
Xµ c

µ
i - Ù

µ
c
¬
i Xµ _ Ù

¬
Xi _ c

¬
j Ù

j
Xi - Ù

j
c
¬
i Xj) d¬æÙ

i
.

Moreover, we recall the formula

(R) d
c
(c(X)) = - 2 XœR

c
,

where R
c
:FFFFéL

2
T*BBBBÆ

FFFF
VFFFF is the curvature of c. ò

Next, let p:FFFFéBBBB be a line bundle. Then, a projectable vector field X is said
to be Hermitian if it is (real) linear over its projection X and preserves the
Hermitian product. A Hermitian vector field turns out to be also complex lin-
ear. The coordinate expression of a Hermitian vector field X is of the type

X = X¬ Ù
¬
_ i f i f, X¬$F(BBBB).

Then, we introduce the following concept.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....3333....2222....1111. An upper quantum vector field is defined to be a

(tube-like) vector field21

XŸ:QQQQŸéTQQQQŸ

which

21 Here, the arrow “Ÿ” in XŸ does not refer to any pullback of a possible
section X, but just reminds the pullback bundle QQQQŸ.
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i) projects onto a (local) vector field

XŸ:J
1
EEEEéTJ

1
EEEE,

ii) is Hermitian complex linear over XŸ,
iii) has a TTTT-horizontal covariant differential, i.e.

d
c
XŸ : QQQQŸ é J

1
EEEE
E̊EEE
(T*ÆQQQQ) ç T*J

1
EEEE Æ
J
1
EEEE
QQQQŸ. ¡

d
c
XŸ = ˙œd

c
XŸ. ¡

Condition iii) can be reformulated in a useful way through ˙.

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....3333....2222....2222. Condition iii) is clearly equivalent to

pr©d
c
XŸ = 0,

where pr:T*J
1
EEEEéV*J

1
EEEE is the canonical linear epimorphism over J

1
EEEE.

Thus, condition iii) reads in coordinates as

d
c i
XŸ = 0 d

c i
0XŸ = 0.

Moreover, condition iii) is equivalent to

iii)' d
c
XŸ = ˙œd

c
XŸ. ò

The upper quantum vector fields constitute a sheaf and the upper quantum
vector fields, with a given time component ††††:J

1
EEEEéT, constitute a subsheaf,

which are denoted by

Q(QQQQŸ) ç T(QQQQŸ) Q
††††
(QQQQŸ) ç Q(QQQQŸ).

The above sheaves are not closed with respect to the Lie bracket.
On the other hand, the upper quantum vector fields can be classified, up to

the choice of an arbitrary time scale, by the functions of the classical jet
space, through the following formula.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....3333....2222....1111. For each time scale ††††:J
1
EEEEéT, we have an ·-linear

sheaf isomorphism
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qŸ
††††
: F(J

1
EEEE) é Q

††††
(QQQQŸ) : f ´ XŸ

f,††††

given by

(U) XŸ
f,††††

ˆ c(f
††††
#) _ i f i.

PROOF. 1) Let XŸ be an upper quantum vector field whose time-component is
†††† and let us prove that it is of the type

XŸ ˆ c(f
††††
#) _ i f i,

for some function f$F(J
1
EEEE).

Let us decompose XŸ into its horizontal and vertical components

(c) XŸ = c(XŸ) _ ~
c
(XŸ).

Conditions i) and ii) imply that ~
c
(XŸ) is of the type

(v) ~
c
(XŸ) = i f i, f$F(J

1
EEEE).

Therefore, condition iii)' can be written as

iii)" i (df - ˙.f)æi = ˙œd
c
(c(XŸ)) - d

c
(c(XŸ)).

Moreover, formulas (R) and (R
c
) (see Rem. II.3.2.1) yield

d
c
(c(XŸ)) = - 2 i m

hhhh
XŸœÒæi.

Hence, condition iii)" can be written as

(df - ˙.f) = Ò@
††††
(XŸ)

i.e.

h) XŸ = f
††††
#.

Thus, formulas (c), (v) and (h) yield

XŸ = c(f
††††
#) _ i f i

2) Conversely, if f$F(J
1
EEEE), then analogous computations prove that for-

mula (U) yields an upper quantum vector field, whose time-component is ††††. ò



140 A. JADCZYK, M. MODUGNO

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....3333....2222....1111. The coordinate expression of XŸ
f,††††

is

XŸ
f,††††

= † (Ù
0
_ y

0
i Ù

i
_ ˙i Ù

i
0) _

_ h

m
gij ⁄- Ù0

j
f Ù

i
_ (Ù

j
f _ ghk (Í

jh
- Í

hj
) Ù0

k
f) Ù

i
0^ _

_ i ⁄f _ † L/h - h

m
gij (p

j
/h) Ù0

i
f^ i. ò

Formula (U) clearly recalls a well known formula of geometric quantisation
(see, for instance, [St], [Wo]). However, there are important differences
between our approach and geometric quantisation; they are basically related
to the general covariance and the role of time. In particular, we shall see
that an important difference will arise later in the construction of the quan-
tum operator associated with energy. Indeed, we stress that our upper
quantum vector fields need not to be time-vertical.

The above formula looks nice, but we have got two problems. In fact, we
have been forced to search for distinguished vector fields on QQQQŸ and not on QQQQ,
just because the quantum connection lives on QQQQŸ. But, these vector fields
map sections of QQQQ into sections of QQQQŸ. This problem can be solved if, addi-
tionally, the above vector fields are projectable over EEEE. Moreover, the above
isomorphism depends on the choice of a time scale and we need a reasonable
criterion to make this choice. Luckily, the two problems can be solved to-
gether. In fact, we can prove the following result.

If XŸ:QQQQŸéTQQQQŸ is any vector field, then the canonical fibred epimorphism
pr:TQQQQŸéTQQQQ yields the fibred morphism over QQQQ

X ˆ pr©XŸ : J
1
EEEE
E̊EEE
QQQQ é TQQQQ.

The vector field XŸ is said to be projectable over EEEE if X can be written as

X:QQQQéTQQQQ.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....3333....2222....2222. If XŸ
f,††††

is an upper quantum vector field, then the fol-

lowing conditions are equivalent:
i) XŸ

f,††††
is projectable over EEEE;
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ii) f is a quantisable function and its time component is ††††.

PROOF. i) £ ii). We can prove the assertion directly.
If XŸ

f,††††
is projectable over EEEE, then

Ù0
h
† = 0 † Ù0

h
y
0
i - h

m
gij Ù0

h
0
j
f = 0

i.e.

Ù0
h
† = 0 Ù

i
00
j
f = † m

h
g
ij

i.e.

†:EEEEé· f = † m
2h
g
ij
y
0
i y

0
j _ f

i
y
0
i _ f

©
.

On the other hand we obtain the same result as a consequence of the theo-
rem concerning the projectability of the Hamiltonian lift of functions (see
Prop. II.3.1.2).

ii) £ i). We can easily see that all components of X
f,††††

, including the imagi-

nary component, do not depend on the coordinates y
0
i. ò

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....3333....2222....2222. A quantum vector field is defined to be the vector
field

X:QQQQéTQQQQ

associated with a projectable upper quantum vector field XŸ. ¡

The quantum vector fields constitute a sheaf, which is denoted by

Q(QQQQ) ç T(QQQQ).

Moreover, we shall be concerned with the subsheaves of quantum vector
fields with constant and vanishing time component

Q
c
(QQQQ) ç Q(QQQQ) Q

0
(QQQQ) ç Q

c
(QQQQ).

So, we are in the position to achieve the following important formula.

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....3333....2222....1111. The coordinate expression of the quantum vector
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field associated with the quantisable function

f = f» m
2h
g
ij
y
0
i y

0
j _ f

i
y
0
i _ f

©

is

X
f
= f» Ù

0
- h

m
fi Ù

i
_ i (m

h
f» a

0
- fi a

i
_ f

©
) i.

PROOF. It follows from the coordinate expression of XŸ and f. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....3333....2222....2222. The map

q : Q(J
1
EEEE) é Q(QQQQ) : f ´ X

f

is a sheaf linear isomorphism. In particular, Q
c
(J
1
EEEE) and Q

0
(J
1
EEEE) are isomor-

phic, respectively, to Q
c
(QQQQ) and Q

0
(QQQQ). ò

Eventually, we can prove the following important result.

LLLLEEEEMMMMMMMMAAAA IIIIIIII....3333....2222....1111. The sheaf Q(QQQQ) of quantum vector fields and the sub-
sheaves Q

c
(QQQQ) and Q

0
(QQQQ) of quantum vector fields with constant and vanish-

ing time component are closed under the Lie bracket.

PROOF. It follows from a long computation in coordinates. ò

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....3333....2222....3333. The map (see Theor. II.3.1.2)

Q(J
1
EEEE) é Q(QQQQ) : f ´ X

f

is an isomorphism of sheaves of Lie algebras.
Namely, for each k$·, f,f',f"$Q(J

1
EEEE), we have

X
kf
= k X

f
X
f'_f"

= X
f'
_ X

f"

[X
f'
, X

f"
] = X

[f', f"]
. ò
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II.4 - Quantum Lie operators

In this chapter, we show how the quantum vector fields act naturally on
the quantum sections and yield a Lie algebra of operators, which will be
called quantum Lie operators. Moreover, we exhibit a natural Lie algebra
isomorphism between quantisable functions and quantum Lie operators.

This is our first approach to the subject of quantum operators and to the
principle of correspondence; in this step, the classical Hamiltonian corre-
sponds to the time derivative. A further development of the theory will be
achieved later in the framework of the quantum Hilbert bundle (see §
II.6.3); in this context, the classical Hamiltonian will correspond to the
standard operator, naturally generalised to our curved space-time.

The quantum vector fields act naturally on the quantum sections as Lie
derivatives; so, we might introduce the quantum operators directly in this
way. The result would be quite interesting; but, in order to obtain sym-
metric (possibly self-adjoint) operators (see § II.6.3), we need a little
more complicated approach. Namely, we have to consider quantum half-
densities. More precisely, in the space-like integration procedure (see §
II.6.1), we shall be involved with space-like half-densities. On the other
hand, in the construction of operators, we need to consider space-time
half-densities.

II.4.1. Lie operators

This section is devoted to a preliminary discussion about the action of
linear projectable vector fields on quantum densities.

First, we introduce the notion of Lie derivative of sections of a vector
bundle.

Let p:FFFFéBBBB be a vector bundle.

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....4444....1111....1111. A vertical vector field Y:FFFFéVFFFFˆFFFF
B̊BBB
FFFF is said to be basic

if it projects over a section s:BBBBéFFFF through the following commutative dia-
gram
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FFFF ä
Y

VFFFF ˆ FFFF
B̊BBB
FFFF

p ï ï pr
2

BBBBáä
s

FFFF

Conversely each section s:BBBBéFFFF can be regarded as a basic vertical vector
field Y:FFFFéVFFFF, which is projectable over the section itself. This correspon-
dence between sections and basic vector fields is a bijection. ò

LLLLEEEEMMMMMMMMAAAA IIIIIIII....4444....1111....1111. Let X:FFFFéTFFFF be a linear projectable vector field and let us
denote its projection by X:BBBBéTBBBB.

For each section s:BBBBéFFFF, the Lie bracket

[X,s]:FFFFéVFFFF

is a basic vector field, hence determines the section

X.s ˆ [X,s] : BBBB é FFFF,

with coordinate expression

X.s = (X¬ Ù
¬
si - Xi

j
sj) b

i
. ò

So, if X:FFFFéTFFFF is a linear projectable vector field, then we define the as-
sociated Lie operator as the sheaf morphism

X. : S(FFFF) é S(FFFF) : s ´ X.s.

LLLLEEEEMMMMMMMMAAAA IIIIIIII....4444....1111....2222. The map

X ´ X.

is injective. Moreover, the map

(X,s) ´ X.s

has the following properties

X.(s_s') = X.s _ X.s' X.(fs) = f (X.s) _ X.f s

(X _ X').s = X.s _ X'.s (fX).s = f (X.s)

[X., X'.](s) ˆ X.X'.s - X'.X.s = [X,X'].s
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for each linear projectable vector field X,X':FFFFéTFFFF, section s,s':BBBBéFFFF and
function f:BBBBé·. ò

We can re-interpret the above results in terms of connections.
If we assume a linear connection

c:FFFFéT*BBBBÆ
BBBB
TFFFF

on the vector bundle p:FFFFéBBBB, then we have the following result.

LLLLEEEEMMMMMMMMAAAA IIIIIIII....4444....1111....3333. Let X:BBBBéTBBBB be a vector field and consider its horizontal
prolongation

X ˆ Xœc : FFFF é TFFFF,

which is linear over its projection X.
Then, for each section s:BBBBéFFFF, we obtain the formula

X.s = ı
X
s,

with coordinate expression

X.s = (X¬ Ù
¬
si - Xi

j
sj) b

i
= X¬ (Ù

¬
si - c

¬
i
j
sj) b

i
= ı

X
s. ò

Now, let us apply the above results to our quantum framework.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....4444....1111....1111. Let X:QQQQéTQQQQ be a linear projectable vector field
and let us denote its projection by X:EEEEéTEEEE. Then, we obtain, via the above
Lie derivative, the sheaf morphism

X. : S(QQQQ) é S(QQQQ) : „ ´ [X, „].

Moreover, we obtain, via a standard Lie derivative, the sheaf morphism

X. : S(ÊL
4
T*EEEE) é S(ÊL

4
T*EEEE) : ¢Ã̈ ´ L(X)¢Ã̈,

which depends only on X.
Hence, we can extend, via the Leibnitz rule, the Lie derivative to the

space-time densities and obtain the sheaf morphism

X. : S(QQQQ¨) é S(QQQQ¨) : „ ´ X.„¨ ˆ [X, „]æ¢Ã̈_ „æL(X)¢Ã̈.

Furthermore, let X:QQQQéVQQQQ be a linear vertical vector field. Then, in an
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analogous way, we obtain, via a vertical Lie derivative, the sheaf morphism

X. : S(QQQQ∆) é S(QQQQ∆) : „ ´ X.„∆ ˆ [X, „]æ¢Ã∆ _ „æL(X)¢Ã∆. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....4444....1111....2222. If X,X':QQQQéTQQQQ are linear projectable vector fields,

and we consider their action both on S(QQQQ¨) and S(QQQQ∆), then the standard
identity for the commutator of Lie derivatives yields

[X., X'.] = [X, X']. . ò

II.4.2. The general Lie algebras isomorphism

So, we are in the position to introduce the quantum Lie operators and the
Lie algebra isomorphism between quantisable functions and quantum Lie
operators.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....4444....2222....1111. Let f$Q(J
1
EEEE) be a quantisable function and X

f
$Q(QQQQ)

the corresponding quantum vector field. Then, the quantum Lie operator as-
sociated with f is defined to be the sheaf morphism

Y
f
ˆ i X

f
. : S(QQQQ∆) é S(QQQQ∆) : „∆ ´ i (X

f
.„¨)æ 1

¢Ã̈
æ¢Ã∆. ¡

We have already explained why we apply X
f
to S(QQQQ∆) and not directly to

S(QQQQ): we consider „∆ in view of the integration on the fibres of space-time
and of the symmetry of the quantum Lie operator (see § II.6.3). Moreover,

we are forced to pass through „¨ because, in the general case, the action of
X
f
on ¢Ã∆ is not defined. Furthermore, the reason of the multiplication by the

imaginary unit will appear later (see § II.6.3), when we prove the symmetry
of the quantum operators.

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....4444....2222....1111. In the particular case when the quantisable function f is
affine with respect to the fibres of J

1
EEEEéEEEE, hence the quantum vector field

X
f
is vertical, we obtain, more directly,

Y
f
= i X

f
. : S(QQQQ∆) é S(QQQQ∆) : „∆ ´ i X

f
.„∆. ò
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The quantum Lie operators constitute a sheaf, which is denoted by

L(QQQQ∆).

Moreover, we shall be concerned with the subsheaves of quantum Lie op-
erators corresponding to quantisable functions with constant and vanishing
time component

L
c
(QQQQ∆) ç L(QQQQ∆) L

0
(QQQQ∆) ç L

c
(QQQQ∆).

LLLLEEEEMMMMMMMMAAAA IIIIIIII....4444....2222....1111. The map

Q(J
1
EEEE) é L(QQQQ∆) : f ´ Y

f

is a sheaf isomorphism. ò

LLLLEEEEMMMMMMMMAAAA IIIIIIII....4444....2222....2222. The sheaf L(QQQQ∆) is a sheaf of Lie algebras with respect
to the bracket

L(QQQQ∆)˚L(QQQQ∆) é L(QQQQ∆) : (Y
f'
, Y

f"
) ´ [Y

f'
, Y

f"
] ˆ - i (Y

f'
©Y

f"
- Y

f"
©Y

f'
).

Moreover, L
c
(QQQQ∆) and L

0
(QQQQ∆) are subsheaves of Lie algebras. ò

So, we are in the position to state the following important result.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....4444....2222....1111. The map

Q(J
1
EEEE) é L(QQQQ∆) : f ´ Y

f

is an isomorphism of sheaves of Lie algebras.
Namely, for each k$·, f,f',f"$Q(J

1
EEEE), we have

Y
kf
= k Y

f
Y
f'_f"

= Y
f'
_ Y

f"

[Y
f'
, Y

f"
] = Y

[f', f"]
. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....4444....2222....1111. For each observer o, the action of the quantum Lie

operator Y
f
on „∆ is given by

Y
f
(„∆) = i (fHœıo„)∆ _ ⁄f©o _ i 1

2
(div fH)^ „∆,
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where fH:EEEEéTEEEE is the projection of the Hamiltonian lift of f (see § II.3.1).
In other words, we have the following coordinate expression

Y
f
(„∆) =

= i ⁄f» ıo
0
¥∆ - h

m
fi ıo

i
¥∆ - i f

©
¥∆ _ 1

2
(Ù

0
f» - h

m
Ù
i
fi) ¥∆^ bæÊêd1◊êd2◊êd3,

where

ıo
¬
¥∆ ˆ Ù

¬
¥∆ - i m

h
a
¬
¥∆. ò

II.4.3. Main examples

We conclude this chapter by computing the main examples of quantum Lie
operators.

Let us choose a frame of reference (u0, o) and a related fibred space-time

chart (x0,yi).
As usual, we denote by ıo the quantum covariant differential associated

with o (see Def. II.1.5.2).

LLLLEEEEMMMMMMMMAAAA IIIIIIII....4444....3333....1111. The quantum Lie operator associated with every quantis-
able function of the type

f $ F(EEEE) ç Q(J
1
EEEE)

is

Y
f
(„∆) = f „∆. ò

EEEEXXXXAAAAMMMMPPPPLLLLEEEE IIIIIIII....4444....3333....1111. We have the following quantum Lie operators

Yx0(„
∆) = x0 „∆ Yyi(„

∆) = yi „∆

Yp
i/h

(„∆) = - i Ù
i
¥∆ bæÊêd1◊êd2◊êd3

YH/h(„
∆) = i Ù

0
¥∆ bæÊêd1◊êd2◊êd3. ò



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS 149

EEEEXXXXAAAAMMMMPPPPLLLLEEEE IIIIIIII....4444....3333....2222. For each quantisable function f, we have

[Yx0, Yf] = - f» [Yyi, Yf] =
h

m
fi.

Moreover, we have

[Yp
i/h

, Yx0] = 0 [Yp
i/h

, Yyj] = - ∂i
j [Yp

i/h
, YH/h] = 0. ò
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II.5 - Systems of double fibred manifolds

In view of further developments of the quantum theory, we need some
preliminary notions and results concerning the system associated with a
double fibred manifold. The theory of finite dimensional systems has been
extensively studied in [ MM], [Mo2 ] and has been already used in this paper
(see § II.1.3). In this chapter, we introduce the infinite dimensional sys-
tem of all smooth sections by means of a functorial construction.

II.5.1. The system

We start by introducing the notion of system of sections associated with
a double fibred manifold and studying its basic properties.

First we need a few preliminaries about the concept of smoothness due to
Frölicher and the notion of fibred set.

We shall be concerned with some sets constructed geometrically from
some functional spaces. We could define a topology in order to achieve a
structure of infinite dimensional manifold on such sets; but great difficulties
would arise. On the other hand the concept of smoothness due to Frölicher
([Fr]) is very suitable for our purposes, as it allows us to achieve the geo-
metrical constructions that we need, avoiding all troubles related to infinite
dimensionality.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....5555....1111....1111. A smooth space in the sense of Frölicher (see [Fr],
[Sl]), can be defined as a pair

(SSSS,C),

where SSSS is a set and

C ˆ {c:·éSSSS}

is a set of curves which will be called smooth.
If (SSSS,C) and (SSSS',C') are smooth spaces, then a map f:SSSSéSSSS' is said to be

smooth if, for each smooth curve c:·éSSSS, the curve



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS 151

c' ˆ f©c : · é SSSS'

is smooth. ¡

In particular, each classical manifold MMMM becomes a smooth space by as-
suming as smooth curves, in the sense of Frölicher, just the smooth curves in
the classical sense. Then, it can be proved (see [CCKM], [Bo]) that a map
between classical manifolds is smooth in the classical sense if and only if it
is smooth in the sense of Frölicher.

If (SSSS,C) is a smooth space, then by abuse of language we shall also say
that SSSS is a smooth space.

If SSSS and SSSS' are smooth spaces, then SSSS˚SSSS' becomes a smooth space in a
natural way.

A fibred set is defined to be a set SSSS together with a surjective map

ß:SSSSéBBBB

of SSSS onto a set BBBB. When BBBB is a manifold, we denote by

S€(SSSSéBBBB)

the sheaf of local sections of the fibred set ß:SSSSéBBBB. Moreover, if SSSS is a
smooth space, then we denote by

S(SSSSéBBBB) ç S€(SSSSéBBBB)

the subsheaf of smooth local sections of the fibred set ß:SSSSéBBBB.

Now, let us consider a (smooth) double fibred manifold

FFFF ä
q
EEEE ä

p
BBBB

and denote the typical double fibred charts of FFFF by

(x¬, yi, za) 1≤¬≤m, 1≤i≤l, 1≤a≤n.

We denote by

S
t
€(FFFFéEEEEéBBBB) and S

t
(FFFFéEEEEéBBBB)

the sheaf of tube-sections which are smooth along the fibres but possibly
non-smooth with respect to the base space BBBB and the subsheaf of smooth
tube-sections.
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DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....5555....1111....2222. The system associated with the double fibred
manifold FFFFéEEEEéBBBB is defined to be the pair

(ß:SFFFFéBBBB, ™),

where
i) SFFFF is the set

SFFFF ˆ ø
x$BBBB

S
x
FFFF,

where

S
x
FFFF ˆ {„

x
:EEEE
x
éFFFF

x
}

denotes the set of smooth fibre-sections related to x$BBBB;
ii) ß is the natural surjective map

ß : SFFFF é BBBB : „
x
´ x;

iii) ™ is the evaluation fibred morphism over EEEE

™ : SFFFF
B̊BBB
EEEE é FFFF : („

x
, y) ´ „

x
(y). ¡

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....5555....1111....1111. The evaluation fibred morphism ™ yields the natural
sheaf isomorphism

™™™™ : S€(SFFFFéBBBB) é S
t
€(FFFFéEEEEéBBBB) : â„ ´ „ ˆ ™™™™( â„) ˆ ™© â„Ÿ,

where “Ÿ” denotes the pullback.
The inverse natural sheaf isomorphism is

™™™™-1 : S
t
€(FFFFéEEEEéBBBB) é S€(SFFFFéBBBB) : „ ´ â„,

where

â„ : x ´ „
x
ˆ „

¡EEEE
x

. ò

Next, we introduce a smooth structure in the sense of Frölicher on the set
SFFFF by the following definition (see also [Ko]).

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....5555....1111....3333. A curve âc:·éSFFFF is said to be smooth, in the sense
of Frölicher, if the induced maps
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ß©âc:·éBBBB c : (ß©âc)*EEEEéFFFF : y
¬
´âc(¬)(y

¬
)

are smooth in the classical sense. ¡

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....5555....1111....2222. If MMMM is a manifold, then we can easily prove that a map
âc:MMMMéSFFFF is smooth in the sense of Frölicher if and only if the induced maps

ß©âc:MMMMéBBBB c:(ß©âc)*EEEEéFFFF

are smooth in the classical sense.
Moreover, if SSSS' is a further smooth space, then we can easily prove that

the map f:SFFFFéSSSS' is smooth in the sense of Frölicher if and only if, for each
smooth map âc:MMMMéSFFFF, the map

f©âc:MMMMéSSSS'

is smooth in the sense of Frölicher. ò

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....5555....1111....1111. The maps ß and ™ turn out to be smooth.
Moreover, a local section

â„:BBBBéSFFFF

of the fibred set SFFFFéBBBB turns out to be smooth if and only if the associated
tube-section

„ ˆ ™™™™( â„) : EEEE é FFFF

is smooth.
Thus, the sheaf isomorphism ™™™™ restricts to a sheaf isomorphism

™™™™:S(SFFFFéBBBB)éS
t
(FFFFéEEEEéBBBB). ò

The following remark has an important role in the following (see § II.6.1).

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....5555....1111....3333. Let (ß':S'FFFFéBBBB, ™') be the subsystem of (ß:SFFFFéBBBB, ™)
constituted by any subset of smooth-fibre sections of the double fibred
manifold FFFFéEEEEéBBBB. Then, all above constructions can be easily repeated for
this subsystem. Moreover, the inclusion S'FFFFàSFFFF turns out to be a smooth
map in the sense of Frölicher. ò
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II.5.2. The tangent prolongation of the system

We pursue our presentation of systems by studying the tangent space of
the system and the tangent prolongation of sections. We refer to the dou-
ble fibred manifold and the associated system as in the previous section.

In order to define the tangent space of the smooth space SFFFF let us study
the tangent map of smooth curves ·éSFFFF.

LLLLEEEEMMMMMMMMAAAA IIIIIIII....5555....2222....1111. i) Let

âc:·éSFFFF

be a smooth curve defined in a neighbourhood of 0$·. Let us consider the in-
duced curves

ß©âc:·éBBBB c:(ß©âc)*EEEEéFFFF

and set (see § III.2)

x ˆ (ß©âc)(0) $ BBBB u ˆ Ù(ß©âc) ˆ T(ß©âc)(0,1) $ T
x
BBBB â„

x
ˆ âc(0).

Then, the restriction of the tangent map Tc:T(ß©âc)*TEEEEéTFFFF to the fibre

over (0,1)$·˚· turns out to be an affine fibred morphism over â„
x

È
u
ˆ Ùc ˆ Tc

¡(0,1)
: (TEEEE)

u
é (TFFFF)

u
,

whose fibre derivative is the linear fibred morphism over â„
x

DÈ
u
= T( â„

x
) : (VEEEE)

x
é (VFFFF)

x
.

In other words, if v$(TEEEE)
u
, then we can write

È
u
: (TEEEE)

u
é (TFFFF)

u
: (v _ w) ´ È

u
(v) _ T( â„

x
)(w) Åw$(VEEEE)

x
.

We have the coordinate expression

(yi, za; îx¬, îyi, îza)©È
u
= (yi, „

x
a; u¬, îyi, È

u
a _ Ù

i
„
x
a îyi),

with

u¬ = Ùc¬ $ · È
u
a = Ùca : EEEE

x
é ·.
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ii) Conversely, let

x $ BBBB u $ T
x
BBBB â„

x
$ S

x
FFFF

and

È
u
:(TEEEE)

u
é(TFFFF)

u

be a map of the above type. Then, we can prove (see [CK]) that there is a
smooth curve âc:·éSFFFF, such that

Ùc = È
u
. ò

Then, we are led to the following definition.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....5555....2222....1111. The tangent space of the smooth space SFFFF is de-
fined to be the set

TSFFFF ˆ ø
â„x$SFFFF

T â„x
SFFFF,

where

T â„x
SFFFF ˆ {È

u
}

is the set of smooth sections of the type

È
u
:(TEEEE)

u
é(TFFFF)

u
, u$T

x
BBBB, xˆß( â„

x
)$BBBB,

such that È
u
is an affine fibred morphism over â„

x
and its fibre derivative is

the linear fibred morphism over â„
x

DÈ
u
= T( â„

x
) : (VEEEE)

x
é (VFFFF)

x
. ¡

The basic geometrical constructions which hold for the tangent space of
the standard finite dimensional manifolds can be repeated in our “infinite di-
mensional” case.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....5555....2222....1111. We have the natural surjective maps

π
SFFFF
: TSFFFF é SFFFF : È

u
´ â„

x
, x ˆ π

BBBB
(u),
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and

Tß : TSFFFF é TBBBB : È
u
´ u.

For each â„
x
$SFFFF, the tangent space T â„x

SFFFF of SFFFF at â„
x
turns out to be a

vector space in a natural way.
Namely, if

È
u
, È'

u'
, È"

u"
$ T

â¥
x

SFFFF ¬ $ ·,

then

¬ È'
u'
$ (T

â¥
x

SFFFF)
¬u'

È'
u'
_ È"

u"
$ (T

â¥
x

SFFFF)
u'_u"

are well defined by

(¬ È
u
) : (TEEEE)

¬u
é (TFFFF)

¬u
: (¬ v _ ¬ w) ´ ¬ È

u
(v) _ T( â„

x
)(¬ w)

(È'
u'
_ È"

u"
) : (TEEEE)

u'_u"
é (TFFFF)

u'_u"
:

: (v' _ v" _ w) ´ È'
u'
(v') _ È"

u"
(v") _ T( â„

x
)(w) Åw$(VEEEE)

x

where v$(TEEEE)
u
, v'$(TEEEE)

u'
, v"$(TEEEE)

u"
.

Hence, the map Tß turns out to be a linear fibred morphism over ß. ò

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....5555....2222....1111. We have the natural evaluation fibred morphism over TEEEE

T™ : TSFFFF
T̊BBBB
TEEEE é TFFFF : (È

u
, v) ´ È

u
(v).

Thus, (Tß:TSFFFFéTBBBB, T™) turns out to be a subsystem of the system asso-
ciated with the double fibred manifold TFFFFéTEEEEéTBBBB.

Therefore, all results of the above section apply to this subsystem. ò

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....5555....2222....2222. The vector structure of the fibred set TSFFFFéSFFFF turns
out to be smooth in the sense that the fibred morphisms over SFFFF

÷:·˚TSFFFFéTSFFFF _:TSFFFF˚TSFFFFéTSFFFF

are smooth. ò

We can define the tangent map of sections of the space of fibred sections
in the following way.
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RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....5555....2222....3333. If â„$S(SFFFFéBBBB), then

T„:TEEEEéTFFFF

yields the smooth tube-section

âT„ ˆ (T™™™™)-1(T„) : TBBBB é TSFFFF. ò

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....5555....2222....2222. The tangent prolongation of the section â„$S(SFFFFéBBBB)

is defined to be the section T â„$S(TSFFFFéTBBBB) given by

T â„ ˆ âT„. ¡

II.5.3. Connections on the system

We conclude this chapter by introducing the notion of a connection on our
system. We still refer to the double fibred manifold and the associated
system as in the first section.

Analogously to the finite dimensional case (see § III.2), we have the exact
sequence over SFFFF

0 ä VSFFFF äTSFFFF äSFFFF ˚
BBBB
T BBBB ä0.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....5555....3333....1111. A connection of the fibred set SFFFFéBBBB is defined to

be a smooth splitting22 âk of the above sequence, i.e. a smooth section

âk:SFFFF
B̊BBB
TBBBBéTSFFFF,

which is linear over SFFFF and is projectable over 1
BBBB
:TBBBBéTBBBB. ¡

We can interpret a connection âk as an operator which acts on the tube-
sections of the double fibred manifold FFFFéEEEEéBBBB, in the following way.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....5555....3333....1111. Let âk be a connection.

If â„$S(SFFFFéBBBB), then, we obtain the section

22 k is a Chinese character, whose romanization in Pinyin is “kE”.



158 A. JADCZYK, M. MODUGNO

k(„):TEEEEéTFFFF,

given by the composition

TEEEE ä
â„Ÿ

SFFFF
B̊BBB
TEEEE ä

âkŸ
TSFFFF

T̊ BBBB
Tä

T™
TFFFF,

with coordinate expression

(x¬, yi, za; îx¬, îyi, îza)©k(„) = (x¬, yi, „a; îx¬, îyi, k
µ
a(„) îxµ _ Ù

j
„a îyj),

where

k
µ
a(„) $ F(EEEE).

Moreover, we obtain the smooth section

âk(„) = âk( â„) : TBBBB é TSFFFF.

Therefore, the sheaf morphism

k : S
t
(FFFFéEEEEéBBBB) é S

t
(TFFFFéTEEEEéTBBBB) : „ ´ k(„)

characterises âk itself. ò

A connection âk induces the covariant differential in the standard way.

LLLLEEEEMMMMMMMMAAAA IIIIIIII....5555....3333....1111. Let âk be a connection and â„$S(SFFFFéBBBB). Then, the map

T â„ - âk© â„Ÿ : TBBBB é TSFFFF

takes its values in VSFFFF, is projectable over â„ and is a linear fibred morphism

over â„. Hence, it can be can regard as a smooth section

ıâk
â„ ˆ T â„ - âk© â„Ÿ : BBBB é T*BBBBÆ

SFFFF
VSFFFF,

which is projectable over â„. ò

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....5555....3333....2222. Let âk be a connection. Then, the covariant differen-

tial of â„$S(SFFFFéBBBB) is defined to be the smooth local section

ıâk
â„ ˆ T â„ - âk© â„Ÿ : BBBB é T*BBBBÆ

SFFFF
VSFFFF. ¡
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We can interpret the covariant differential ıâk
â„ in terms of the tube-sec-

tion „, in the following way.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....5555....3333....2222. Let k be a connection and â„$S(SFFFFéBBBB). Then, the
map

T„ - k(„) : TEEEE é TFFFF

is a smooth linear tube-fibred morphism over „, which factorizes through a
smooth linear tube-fibred morphism over „

ı
k
„:EEEE

B̊BBB
TBBBBéVFFFF;

conversely, the map ı
k
„ characterises T„ - k(„).

Moreover, we have

ıâk
â„ = âT„-k(„) : BBBB é T*BBBBÆ

SFFFF
VSFFFF.

The coordinate expression of ı
k
„ is

ı
k
„ = ⁄Ù

¬
„a - k

µ
a(„)^ dµæ(Ù

a
©„). ò

A connection âk is said to be of order k if, for each smooth tube-section
„:EEEEéFFFF, the map k(„) depends on „ through its vertical jet up to order k.

Now, let us consider the case when FFFFéEEEE is a vector bundle, hence SFFFFéBBBB
and TSFFFFéTBBBB turn out to be smoothly equipped with a vector structure on
their fibres.

The connection k is said to be linear if it is linear as a fibred morphism
over BBBB. In other words, the connection k is linear if the operator

k : S
t
(FFFFéEEEEéBBBB) é S

t
(TFFFFéTEEEEéTBBBB) : „ ´ k(„)

is linear.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....5555....3333....3333. Let âk be a connection of order k. Then, the coordi-
nate expression of the linear operator k:„´k(„) is of the type

k
µ
a(„) = k

µ
a
b
„b _ k

µ
aj
b
Ù
j
„b _ … _ k

µ
aj1…jk

b
Ù
j
1
…j

k

„b,
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where

(c) k
µ
a
b
, k

µ
aj
b
, … , k

µ
aj1…jk

b
$ F(EEEE).

Thus, in the linear case, the coordinate expression of ı
k
„ is of the type

ı
k
„ = (Ù

µ
„a - k

µ
a
b
„b - k

µ
aj
b
Ù
j
„b - … - k

µ
aj1…jk

b
Ù
j
1
…j

k

„b) dµæÙ
a .

Thus, the equation

ı
k
„ = 0,

in the unknown section „$S
t
(FFFFéEEEEéBBBB), turns out to be a linear differential

equation of order k in the fibre derivatives and of order 1 in the base deriva-
tives of „. ò

We observe that for any arbitrary choice of the above coefficients (c), we
obtain a local connection. Hence global connections can be obtained by means
of the partition of unity.

We finish this chapter by observing that all above geometrical construc-
tions are compatible, in a natural way, with restrictions to the subsystem
associated with a subsheaf of the sheaf of smooth tube-sections (see Rem.
II.5.1.3). In particular, we shall be concerned with the subsystem of com-
pact support tube-sections, on a vector double fibred manifold.
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II.6 - The infinite dimensional quantum system

So far, the quantum theory has been developed on the quantum bundle QQQQ,
which is based over the space-time EEEE (except for a temporary extension of
the base space to J

1
EEEE) and has one dimensional complex fibres.

On the other hand, the theory of systems suggests to translate the main
concepts and results of the above quantum theory in terms of a new bundle

SQQQQ∆ which is based over the time TTTT and has infinite dimensional complex
fibres.

Such a geometrical development of our quantum theory yields interesting
physical results and interpretations. In particular, it yields the Hilbert
bundle and the generalisation to a curved space-time of the standard
Hamiltonian quantum operator and commutators.

II.6.1. The quantum system

We start by introducing the system associated with the double fibred
manifold of quantum space-like densities (see § II.1.2), according to the
ideas of the previous chapter.

So, we consider the system

(ß:SQQQQ∆éTTTT, ™)

associated with the double fibring

QQQQ∆ ä
π∆
EEEE ä

t
TTTT.

In order to be able to perform integrations over the fibres of SQQQQ∆éTTTT, we
need to consider the subsystem of sections with compact support. So doing,
we miss sections of physical interest, but they can be recovered later by
means of a completion procedure. So, we introduce the following definition.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....6666....1111....1111. The pre-quantum system is defined to be the sub-
system
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(ßc:ScQQQQ∆éTTTT, ™c)

where

ScQQQQ∆ ˆ ø
†$TTTT

Sc
†
QQQQ∆ ç SQQQQ∆,

and

Sc
†
QQQQ∆ ç S

†
QQQQ∆ ˆ {„∆

†
:EEEE
†
éQQQQ∆

†
}

is the subset of sections with compact support. ¡

Let f:EEEEéÛ is a tube-function such that, for each †$TTTT, its restriction
f
†
:EEEE

†
éÛ, has compact support; then we define the “space-like partial inte-

gral” of f as

|f ∆ : TTTT é Û : † ´ (|f ∆)(†) ˆ|
EEEE
†

f
†
∆
†
.

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....6666....1111....1111. On the fibres of ßc:ScQQQQ∆éTTTT, we obtain the A3/2-
valued Hermitian structure, given by

hâ : ScQQQQ∆
B̊BBB
ScQQQQ∆ é ÛÆA3/2 : (È∆

†
, „∆

†
) ´ ÇÈ∆

†
¡ „∆

†
¶ ˆ|

EEEE
†

h (È
†
, „

†
) ∆

†
. ò

Hence, ßc:ScQQQQ∆éTTTT turns out to be a pre-Hilbert fibred set. Moreover, by
completion (fibre by fibre), we obtain a Hilbert fibred set

HQQQQ∆éTTTT.

By abuse of language, we say that ScQQQQ∆éTTTT is the pre-Hilbert quantum bun-

dle and HQQQQ∆éTTTT the Hilbert quantum bundle.

II.6.2. The Schrödinger connection on the quantum system

Next, we re-interpret the Schrödinger operator in the present frame-
work (see Def. II.2.3.1) and study its basic properties.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....6666....2222....1111. There is a unique linear connection
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âk:SQQQQ∆éT*ÆTSQQQQ∆

on the vector fibred set ß:SQQQQ∆éTTTT, such that the Schrödinger operator S∆ can
be written as

ı
k
= S∆.

The coordinate expression of k is given by

k
0
(„∆) = i ( h

2m
êËo¥∆ _ m

h
a
0
¥∆).

PROOF. It follows immediately from a comparison of coordinate expressions

of ı
k
and S∆. ò

We can easily see that the connection k restricts to the subsystem

ßc:ScQQQQ∆éTTTT.

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....6666....2222....1111. Let o be an observer. Then, the observed vertical
Laplacian can be regarded as a fibred morphism over TTTT

êËo:SQQQQ∆éSQQQQ∆.

Moreover, we can easily see that êËo restricts to the subsystem

ßc:ScQQQQ∆éTTTT. ò

LLLLEEEEMMMMMMMMAAAA IIIIIIII....6666....2222....1111. Let o be an observer. Then, the observed vertical

Laplacian is Hermitian. Namely, for each âÈ∆, â„∆$S(ScQQQQ∆éTTTT), we have

Ç êËo âÈ∆ ¡ â„∆¶ = Ç âÈ∆ ¡ êËo â„∆¶.

PROOF. We have

gij ( Ãıo
i
Ãıo

j
ãƒ ¥ _ K

i
h
j
Ãıo

h
ãƒ ¥ - ãƒ ıo

i
ıo

j
¥ - ãƒ K

i
h
j
ıo

h
¥) =

= gij ⁄ Ãıo
i
( Ãıo

j
ãƒ ¥) _ K

i
h
j
Ãıo

h
ãƒ ¥ - Ãıo

j
ãƒ Ù

i
¥ _

- ıo
i
(ãƒ ıo

j
¥) - ãƒ K

i
h
j
ıo

h
¥ _ Ù

i
ãƒ ıo

j
¥^ =
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= gij ⁄Ù
i
( Ãıo

j
ãƒ ¥) _ K

i
h
j
Ãıo

h
ãƒ ¥ - Ãıo

j
ãƒ Ù

i
¥ _ i m

h
a
i
( Ãıo

j
ãƒ ¥)

- Ù
i
(ãƒ ıo

j
¥) - ãƒ K

i
h
j
ıo

h
¥ _ Ù

i
ãƒ ıo

j
¥ _ i m

h
a
i
(ãƒ ıo

j
¥)^ =

= gij ⁄Ù
i
( Ãıo

j
ãƒ ¥) _ K

i
h
j
Ãıo

h
ãƒ ¥ - Ù

i
(ãƒ ıo

j
¥) - ãƒ K

i
h
j
ıo

h
¥^ =

= gij
Ù
i
( Ãıo

j
ãƒ ¥ ÊÕ¡g¡ )

ÊÕ¡g¡
- gij

Ù
i
(ãƒ ıo

j
¥ÊÕ¡g¡ )

ÊÕ¡g¡
.

Moreover, the integral on EEEE
†
, through a partition of the unity, of each of

the above terms vanishes, in virtue of the Gauss theorem. ò

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....6666....2222....2222. The connection k is Hermitian. Namely, for each âÈ∆,
â„∆$S(ScQQQQ∆éTTTT), we have

dÇ âÈ∆ ¡ â„∆¶ = Çıâk
âÈ∆ ¡ â„∆¶ _ Ç âÈ∆ ¡ ıâk

â„∆¶.

PROOF. We have

Ù
0
(ãƒ∆ ¥∆) = Ù

0
ãƒ∆ ¥∆ _ ãƒ∆ Ù

0
¥∆ =

= Ãı
k0
ãƒ∆ ¥∆ _ ãƒ∆ ı

k0
¥∆ - i h

2m
( êËÃ oãƒ∆ ¥∆ - ãƒ∆ êËo¥∆).

Hence, the Lemma II.6.2.1 yields the result. ò

II.6.3. Quantum operators on the quantum system

Now we are in a position to translate our quantum Lie operators (see §
II.4.2) into quantum operators, in the infinite dimensional context of sys-
tems.

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....6666....3333....1111. A fibred morphism over TTTT

âÚ:SQQQQ∆éSQQQQ∆

can be regarded as a sheaf morphism
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âÚ. : S(SQQQQ∆éTTTT) é S(SQQQQ∆éTTTT) : â„∆ ´ âÚ. â„∆ ˆ âÚ© â„∆.

Moreover, âÚ yields the sheaf morphism

Ú:S(QQQQ∆éEEEE)éS(QQQQ∆éEEEE),

characterised by

âÚ(„∆) = âÚ. â„∆.

The map

âÚ ´ Ú

is a bijection. ò

Henceforth, in order to deal with objects globally defined on the fibres of
t:EEEEéTTTT, we need to restrict our attention to quantisable functions, which are
tube-like with respect to the fibring J

1
EEEEéTTTT.

We shall denote the corresponding sheaves by

Q
t
(J
1
EEEE) ç Q(J

1
EEEE) Q

tc
(J
1
EEEE) ç Q

c
(J
1
EEEE) Q

t0
(J
1
EEEE) ç Q

0
(J
1
EEEE)

L
t
(QQQQ∆) ç L(QQQQ∆) L

tc
(QQQQ∆) ç L

c
(QQQQ∆) L

t0
(QQQQ∆) ç L

0
(QQQQ∆).

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....6666....3333....1111. Let f$Q
t
(J

1
EEEE) and consider Y

f
$L

t
(QQQQ∆).

Then, we obtain the sheaf morphism

âY
f
: S(SQQQQ∆éTTTT) é S(SQQQQ∆éTTTT) : â„∆ ´ âY

f
„∆. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....6666....3333....1111. In the particular case when f$Q
t0
(J

1
EEEE), âY

f
acts

pointwisely on the sections of SQQQQ∆éTTTT, hence it can be regarded as a local
fibred morphism over TTTT

âY
f
:SQQQQ∆éSQQQQ∆. ò

If f" = 0, then âY
f
is a differential operator of first order on the sections of

SQQQQ∆éTTTT.
However, we are looking for a pointwise operator for all quantisable func-
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tions. We shall solve the problem again by means of a criterion of pro-
jectability, according to the following important result.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....6666....3333....1111. For any f$Q
t
(J

1
EEEE), the sheaf morphism

âÚ
f
ˆ âY

f
- i ffff»œıâk

: S(SQQQQ∆éTTTT) é S(SQQQQ∆éTTTT)

acts pointwisely on the sections of SQQQQ∆éTTTT, hence it can be regarded as a lo-
cal fibred morphism over TTTT

âÚ
f
ˆ âY

f
- i ffff»œıâk

: SQQQQ∆ é SQQQQ∆.

Its coordinate expression is

Ú
f
(„∆) =

= ⁄f
o
¥∆ _ i 1

2
(Ù

0
f» - h

m
Ù
i
fi) ¥∆ - i h

m
fi ıo

i
¥∆ - f» h

2m
êËo¥∆^ bæÊêd1◊êd2◊êd3.

In the particular case when f$Q
t0
(J
1
EEEE), we recover

âÚ
f
ˆ âY

f
. ò

Of course, the above operator Ú
f
is intrinsic, by construction. However,

we stress that its coordinate expression cannot be easily guessed by means
of standard arguments of differential geometry. Actually, this result is a
“miracle” produced by the specific structure of the quantum bundle and its
quantum connection.

Then, we are led to introduce the following definition.

DDDDEEEEFFFFIIIINNNNIIIITTTTIIIIOOOONNNN IIIIIIII....6666....3333....1111. A quantum operator is defined to be the local fibred
morphism over TTTT

âÚ
f
ˆ âY

f
- i ffff»œ âı

k
: SQQQQ∆ é SQQQQ∆,

associated with a quantisable function f$Q
t
(J
1
EEEE). ¡

The quantum operators constitute a sheaf (with respect to the tube-topol-

ogy of the fibred set SQQQQ∆éTTTT), which is denoted by
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Q(SQQQQ∆).

Moreover, we shall be concerned with the subsheaves of quantum opera-
tors corresponding to quantisable functions with constant and vanishing time
component

Q
c
(SQQQQ∆) ç Q(SQQQQ∆) Q

0
(SQQQQ∆) ç Q

c
(SQQQQ∆).

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....6666....3333....2222. The map

Q(J
1
EEEE) é Q(SQQQQ∆) : f ´ âÚ

f

is a sheaf isomorphism.

PROOF. It follows from the coordinate expression of Ú
f
(„∆). ò

Thus, this is our implementation of the correspondence principle.

Now, let us compute the main examples of quantum Lie operators.

Let us choose a frame of reference (u0, o) and a related fibred space-time

chart (x0,yi). We observe that, the definition of the quantum operators as-

sociated with the functions yi and p
i
/h requires that these functions be tube-

like of the fibred manifold EEEEéTTTT; hence the space-time chart must be defined
on a space-time tube.

EEEEXXXXAAAAMMMMPPPPLLLLEEEE IIIIIIII....6666....3333....1111. We have

âÚx0(
â„∆) = x0 â„∆ âÚyi(

â„∆) = yi â„∆

Úp
i/h

(„∆) ˆ - i Ù
i
¥∆ bæÊêd1◊êd2◊êd3

ÚH/h(„
∆) ˆ - ⁄ h

2m
êËo¥∆ _ m

h
a
0
¥∆^ bæÊêd1◊êd2◊êd3. ò

In the special relativistic Galilei case, the above operators coincide with
the corresponding operators of standard quantum mechanics.
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II.6.4. Commutators of quantum operators

Next, we study the commutators of quantum operators.

If f,f'$Q(J
1
EEEE) are quantisable functions, then we define the bracket of the

associated quantum operators to be the sheaf morphism

[ âÚ
f
, âÚ

f'
] ˆ - i ( âÚ

f
© âÚ

f'
- âÚ

f'
© âÚ

f
) : SQQQQ∆ é SQQQQ∆.

However, we stress that, in general, the bracket of two quantum opera-
tors needs not to be a quantum operator.

LLLLEEEEMMMMMMMMAAAA IIIIIIII....6666....4444....1111. Let f,f'$Q
t
(J

1
EEEE) be quantisable functions. Then, we ob-

tain

[ âÚ
f
, âÚ

f'
] =

= âY
[f,f']

- ⁄âY
f
©(ffff'»œ âı

k
) - âY

f'
©(ffff»œ âı

k
)^ - ⁄(ffff»œ âı

k
)©âY

f'
- (ffff'»œ âı

k
)©âY

f
^ _

_ i ⁄(ffff»œ âı
k
)©(ffff'»œ âı

k
) - (ffff'»œ âı

k
)©(ffff»œ âı

k
)^. ò

Henceforth, we shall restrict our attention to quantisable functions with
constant time component. In fact, this hypothesis will yield important re-
sults. On the other hand, this is a reasonable restriction from the viewpoint
of physics, because all functions which are relevant for physics are of the
above type.

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....6666....4444....1111. Let f,f'$Q
tc
(J

1
EEEE) be quantisable functions with con-

stant time component. Then, the above commutator reduces to

[ âÚ
f
, âÚ

f'
] =

= âY
[f,f']

_ ⁄âY
f'
©(ffff»œ âı

k
) - âY

f
©(ffff'»œ âı

k
)^ - ⁄(ffff»œ âı

k
)©âY

f'
- (ffff'»œ âı

k
)©âY

f
^. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....6666....4444....1111. Let f,f'$Q
t0
(J

1
EEEE) be quantisable functions with van-

ishing time component. Then, we obtain
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[ âÚ
f
, âÚ

f'
] ˆ [âY

f
, âY

f'
] = âY

[f,f']
. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....6666....4444....2222. Let f$Q
tc
(J

1
EEEE) be a quantisable function with con-

stant time component and f'$Q
t0
(J
1
EEEE) a quantisable functions with vanishing

time component. Then, we obtain

[ âÚ
f
, âÚ

f'
] = âY

[f,f']
_ ⁄âY

f'
©(ffff»œ âı

k
) - (ffff»œ âı

k
)©âY

f'
^. ò

EEEEXXXXAAAAMMMMPPPPLLLLEEEE IIIIIIII....6666....4444....1111. For each quantisable function f$Q
t
(J

1
EEEE), we have

[ âÚx0,
âÚf] = 0.

For each quantisable function f$Q
tc
(J

1
EEEE), we have

[ âÚyi,
âÚ
f
](„∆) = h

m
⁄fi ¥∆_ f» (gij ıo

j
¥∆ _ 1

2
Ù
j
gij ¥∆)^ bæÊêd1◊êd2◊êd3.

In particular, we obtain

[ âÚyi,
âÚp

j
/h] = ∂

i
j
. ò

Eventually, we can state the following important result.

LLLLEEEEMMMMMMMMAAAA IIIIIIII....6666....4444....2222. For each quantisable function f$Q
t
(J
1
EEEE), the correspond-

ing quantum operator restricts to the system of tube-sections with constant
support

âÚ
f
: ScQQQQ∆ é ScQQQQ∆. ò

TTTTHHHHEEEEOOOORRRREEEEMMMM IIIIIIII....6666....4444....2222. Let f$Q
tc
(J

1
EEEE) be a quantisable function with constant

time component. Then, the corresponding quantum operator âÚ
f
is symmetric,

i.e., for each âÈ∆, â„'∆$S(ScQQQQ∆éTTTT),

Ç âÚ
f
âÈ∆ ¡ â„∆¶ = Ç âÈ∆ ¡ âÚ

f
â„∆¶.

PROOF. We have
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Ç âÚ
f
âÈ∆ ¡ â„∆¶ =

=|⁄i h

2m

Ù
i
(fiÊÕ¡g¡ )

ÊÕ¡g¡
ãƒ _ i h

m
fi Ù

i
ãƒ _ (f

©
- fi a

i
) ãƒ - f» h

2m
êËoãƒ^ ¥ ∆ =

=|⁄i h
m

Ù
i
(fi ãƒ ¥ ÊÕ¡g¡ )

ÊÕ¡g¡
- i h

2m

Ù
i
(fiÊÕ¡g¡ )

ÊÕ¡g¡
ãƒ ¥ - i h

m
ãƒ fi Ù

i
¥ _

_ (f
©
- fi a

i
) ãƒ ¥ - f» h

2m
êÃËoãƒ ¥^ ∆.

In an analogous way, we obtain

Ç âÈ∆ ¡ âÚ
f
â„∆¶ =

=|⁄- i h

2m

Ù
i
(fiÊÕ¡g¡ )

ÊÕ¡g¡
ãƒ ¥ - i h

m
ãƒ fi Ù

i
¥ _ (f

©
- fi a

i
) ãƒ ¥ - f» h

2m
ãƒ êËoã¥^ ∆.

Hence, the proof follows from the Gauss theorem, Lemma II.6.4.2 and
Lemma II.6.2.1. ò

Hence, under reasonable hypothesis on the quantisable function f, the as-

sociated quantum operator âÚ
f
can be extended to a self-adjoint operator on

the quantum Hilbert HQQQQéTTTT bundle obtained by completion of ScQQQQéTTTT.
In this way, we can apply the standard probabilistic interpretation of

quantum mechanics to our approach. The only caution to be taken concerns
the fact that we do not deal with a unique Hilbert space, but with a fibred
set of Hilbert spaces equipped with a connection.

II.6.5. The Feynmann path integral

Eventually, we show how the Feynmann path integral principle can be
formulated in the present framework. Of course, we are aware of the se-
rious problems dealing with the existence of an appropriate measure and
we do not offer any help to overcome these difficulties. However, we can
exhibit a nice geometrical interpretation of the Feynmann amplitudes.
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Let us consider the parallel transport on the fibred manifold

πŸ:QQQQŸéJ
1
EEEE

associated with the quantum connection c (see § II.1.4).
Namely, let s:TTTTéEEEE be a (smooth) motion. Then, consider the equation

(*) (Tj
1
s)œı

c
„Ÿ = 0

in the unknown section „©s:TTTTéQQQQ, projectable on s; its coordinate expression
is

Ù
0
(¥©s) - i (L/h)©j

1
s (¥©s) = 0.

Equation (*) can be integrated in any finite interval23 IIIIçTTTT. Its solution is
of the type

(**) q(†) ˆ (¥©s)(†) = q
0
exp ⁄ i

hhhh
|
[†

0
,†]

(LLLL©j
1
s)^, q

0
$Û,

for each †
0
,†$TTTT such that s([†

0
,†])çEEEE belongs to the domain of a quantum

base b:EEEEéQQQQ. For greater times, the solution will be obtained by adding the
gauged analogous contributions of the different quantum charts.

Hence, the section s:TTTTéEEEE yields the complex linear isometry

∏
(s,†

0
,†)

: QQQQ
s(†

0
)
é QQQQ

s(†)
: q

0
b(†

0
) ´ q(†) b(†),

for any †
0
,†$TTTT.

The above map can be easily extended to the case when s:TTTTéEEEE is
“broken”, i.e. continuous and almost everywhere smooth.

Each map ∏
(s,†

0
,†)

as above is said to be a Feynmann amplitude.

The Feynmann integral can be expressed heuristically as follows.
For e

0
,e$EEEE, one might wish to define the complex linear isometry

∏
(e

0
,e)
ˆ‚∏

(s,†
0
,†)

: QQQQ
e
0

é QQQQ
e
,

23 According to our assumptions (smooth fields and motions), the integral
|(LLLL©j1s) exists on any finite time interval.
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with

†
0
ˆ t(e

0
) $ TTTT t(e) ˆ † $ TTTT,

where the “sum” (taken with respect to a suitable measure24) is extended to
all broken motions such that

s(†
0
) = e

0
s(†) = e.

We set

∏ : EEEE˚EEEE é L(QQQQ,QQQQ) : (e
0
,e) ´ ∏

(e
0
,e)
.

Then, for †
0
,†$TTTT, one might wish to define the complex linear map

K
(†

0
,†)

: HQQQQ∆
†
0

é HQQQQ∆
†
: â„∆

†
0

´ â„∆
†
,

where

â„
†
: EEEE

†
é QQQQ

†
: e ´|

EEEE
†
0

∏
( ÷ ,e)

© â„
†
0

∆.

We remark that, if ∏ exists and is not too singular, then, for each e$EEEE
†
,

the above integral makes sense because the integrand is a map on EEEE
†
0

with

values into the fixed vector space QQQQ
†
.

Moreover, suppose that the Schrödinger equation on the Hilbert bundle can
be integrated locally. According to the interpretation of this equation as a
connection, it yields, for †$TTTT sufficiently close to †

0
$TTTT, a parallel transport

S
(†

0
,†)
:HQQQQ∆

†
0

éHQQQQ∆
†
.

Then, the Feynmann guess can be expressed by saying that

S
(†

0
,†)

= K
(†

0
,†)
.

24 Unfortunately, such a measure is known not to exist at all!
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II.6 - Quantum two-body mechanics

So far, we have been dealing with the quantum mechanics of a charged
particle; accordingly, the quantum bundle has been based on the classical
space-time associated with a classical particle.

Now, we modify slightly our model in order to describe a closed system
constituted by two quantum particles interacting through the classical
gravitational and electromagnetic fields. Thus, we no longer consider an
external source of the classical fields, but the source is constituted by the
particles themselves. For this purpose, it suffices to substitute the pat-
tern space-time with the multi-space-time as base of the quantum bundle.

This scheme can be developed for any n ≥ 1. However, we do it explicitly
only for the case n = 2. The reader can generalise it without any difficulty.

We do not find the most general solution of field equations, but we just
exhibit the simplest solution whose symmetries and boundary conditions
are physically sensible. Then, the quantum dynamics follows easily. This
solution is nothing but a Galilei general relativistic formulation of the well
known standard quantum two body problem.

II.6.1. The quantum bundle and connection over the multi-space-time

We start by introducing the quantum bundle and connection over the
multi-space-time associated with two classical particles.

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN QQQQTTTTBBBB1111. We assume the quantum bundle to be a Hermitian line
bundle over reduced multi-space-time (see § I.7.1 and § II.1.1)

π:QQQQéEEEEE'. ò

AAAASSSSSSSSUUUUMMMMPPPPTTTTIIIIOOOONNNN QQQQTTTTBBBB2222. We assume the quantum connection to be a connec-
tion on the bundle QQQQŸéJ

1
EEEEE' (see § II.1.4)

ccccc:QQQQŸéT*J
1
EEEEE' Æ
J
1
EEEEE'
TQQQQŸ
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with the following properties:
i) ccccc is Hermitian

ii) ccccc is universal,
iii) the curvature

R
ccccc
:J
1
EEEEE'éL

2
T*J

1
EEEEE'' Æ

J
1
EEEEE'
(QQQQ*Æ

EEEEE '
QQQQ)

of ccccc is given by

(R
ccccc
) R

ccccc
= i m

hhhh
ÒÒÒÒÒæi. ò

II.6.2. The two-body solution for the quantum bundle and connection

Next, we exhibit a distinguished realisation of quantum bundle and
quantum connection whose symmetries and boundary values are physically
appropriate.

We consider a quantum bundle π:QQQQéEEEEE, which is trivial (but without any
distinguished trivialisation).

PPPPRRRROOOOPPPPOOOOSSSSIIIITTTTIIIIOOOONNNN IIIIIIII....6666....2222....1111. Let b be a global quantum gauge and o a pattern
Newtonian observer (see § I.7.1, I.7.2). Then, the connection

ccccc = ccccc» _ i 1
hhhh
(GGGGG _ PPPPP _ m aaaaa) i,

where ccccc» is the flat connection associated with the quantum gauge, GGGGG and PPPPP
are the classical kinetic energy and momentum forms associated with the
observer o (see § I.7.2) and aaaaa is the potential described in Rem. I.7.2.2., is a
quantum connection. ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....6666....2222....1111. With reference to the normal chart associated with
b and to a Cartesian space-time chart adapted to o, we obtain the following
coordinate expression (see Rem. I.7.2.3)

ccccc = d0æÙ
0
_ d

1
iæÙ

1i
_ d

2
iæÙ

2i
_ d

1
i
0
æÙ

1i
0 _ d

2
i
0
æÙ

2i
0

_ i m
h
⁄- 1

2
g
ij
(µ

1
y
1
i
0
y
10
j _ µ

2
y
2
i
0
y
20
j) d0 _ g

ij
(µ

1
y
10
j d

1
i _ µ

2
y
20
j d

2
i)
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- 1
m

km
1
m
2
-q

1
q
2

r
d0^æi =

= d0æÙ
0
_ d

c
iæÙ

ci
_ d

r
iæÙ

ri
_ d

c
i
0
æÙ

ci
0 _ d

r
i
0
æÙ

ri
0

_ i m
h
g
ij
⁄- 1

2
(y

c
i
0
y
c0
j _ µ

1
µ
2
y
r
i
0
y
r0
j) d0 _ (y

c0
j d

c
i _ µ

1
µ
2
y
r0
j d

r
i)

- 1
m

km
1
m
2
-q

1
q
2

r
d0^æi. ò

Then, the two body quantum theory can be developed in full analogy to the
one body case and our results fit completely the standard ones. In particular,
just as an example, we get the quantum Hamiltonian operator.

RRRREEEEMMMMAAAARRRRKKKK IIIIIIII....6666....2222....1111. Let o be a pattern Newtonian observer and s:TTTTéEEEE any
motion such that j

1
s = o©s. Moreover, let us consider the affine fibred

morphisms over TTTT

˘
1
: EEEEE é EEEEE : eeeee ´ ⁄e

1
,s(ttttt(eeeee))^ ˘

2
: EEEEE é EEEEE : eeeee ´ ⁄s(ttttt(eeeee)),e

2
^

˘
c
: EEEEE é EEEEE : eeeee ´ (e

c
,e
c
) ˘

r
: EEEEE é EEEEE : eeeee ´ ⁄s(ttttt(eeeee)) _ µ

2
rrrr
1
, s(ttttt(eeeee)) _ µ

1
rrrr
2
^.

Then, we obtain the following “Laplacian” operators

êË
1
ˆ êË©˘

1
: M(EEEEE,Û)éM(EEEEE,Û) êË

1
ˆ êË©˘

1
: M(EEEEE,Û)éM(EEEEE,Û)

êË
c
ˆ êË©˘

c
: M(EEEEE,Û)éM(EEEEE,Û) êË

r
ˆ êË©˘

r
: M(EEEEE,Û)éM(EEEEE,Û)

which turn out to be independent of the choice of s.
With reference to any Cartesian space-time chart (x0,yi) adapted to o, we

have the following coordinate expressions

êË
1
¥ = g

i
1
j
1 Ù

i
1
j
1
¥ êË

2
¥ = g

i
2
j
2 Ù

i
2
j
2
¥

êË
c
¥ = g

i
c
j
c Ù

i
c
j
c
¥ êË

r
¥ = g

i
r
j
r Ù

i
r
j
r
¥,
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where, by abuse of language, the indices i
1
, i

2
, i

c
, i

r
refer to the induced

coordinates y
1
i, y

2
i, y

c
i, y

r
i (see § I.7.2). ò

CCCCOOOORRRROOOOLLLLLLLLAAAARRRRYYYY IIIIIIII....6666....2222....2222. With reference to the normal chart associated with
b and to a Cartesian space-time chart adapted to o, we obtain the standard
operator (see Rem. I.7.2.3)

ÚHHHHH/h(„
∆∆∆∆∆) = - ⁄ h

2m
( 1
µ
1

êË
1
¥ _ 1

µ
2

êË
2
¥) _ 1

h

km
1
m
2
-q

1
q
2

r
¥^ bæ¢Ã∆∆∆∆∆

= - ⁄ h

2m
( êË

c
¥ _ 1

µ
1
µ
2

êË
r
¥) _ 1

h

km
1
m
2
-q

1
q
2

r
¥^ bæ¢Ã∆∆∆∆∆. ò
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III - APPENDIX

This appendix is aimed at recalling a few fundamental notions on mani-
folds, fibred manifolds, jets, tangent valued forms and general connec-
tions, in order to fix our basic terminology and notation.

Some of these ideas and results can be found in any standard book of
differential geometry. However, we are concerned with some further geo-
metrical techniques, which can be traced only in a more specialised litera-
ture. Then, we think that the reader will appreciate a brief sketch; further
details can be found, for instance, in [CCKM], [MM1], [MM2], [Mo2], [Mo3].

The non standard techniques are required by some specific subjects of
our theory, hence cannot be avoided. On the other hand, these techniques
are part of a general approach to differential geometry, which is able to
recover in a very compact scheme many standard notions and results. For
this reason the quick summary below has a certain systematic character.

III.1. Fibred manifolds and bundles

In this section we recall a few basic notions on fibred manifolds. For
further details, the reader could refer to [CCKM], [ MM1], [MM2], [Mo2].

Throughout the paper, we deal with smooth manifolds and maps, unless a
different statement is explicitly mentioned.

III.1.1. Fibred manifolds

Let us start with fibred manifolds and bundles without any additional
structure.

Let MMMM and NNNN be manifolds.
A local map defined on the open subset UUUUçMMMM, is often denoted (by abuse of
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language) by

f:MMMMéNNNN.

The local maps f:MMMMéNNNN constitute a sheaf

M(MMMM,NNNN) ˆ {f:MMMMéNNNN}.

In particular, the sheaf of local real valued functions on MMMM is denoted by

F(MMMM) ˆ M(MMMM,·) ˆ {f:MMMMé·}.

We denote the typical manifold chart of MMMM and NNNN by (x¬) and (yi).

A fibred manifold is defined to be a manifold FFFF together with a surjective
map of maximum rank

p:FFFFéBBBB.

Let p:FFFFéBBBB be a fibred manifold, with

n ˆ dim BBBB l ˆ dim FFFF - dim BBBB.

The fibre over x is denoted by

FFFFx ˆ p-1(x) ç FFFF.

By the rank theorem, FFFF admits a local fibred splitting in a neighbourhood
of any y$FFFF. Namely, there is an open neighbourhood VVVVçFFFF of y$FFFF, a manifold
FFFF
VVVV
and a diffeomorphism

È:VVVVép(VVVV)˚FFFF
VVVV
,

such that

pr
1
©È = p.

We identify the real functions of FFFF, which are constant along the fibres
with the corresponding functions of BBBB; hence, we have the natural inclusion

F(BBBB) ç F(FFFF).

A fibred chart is defined to be a chart

(x¬,yi) 1≤¬≤n, 1≤i≤l

of FFFF, adapted to a local fibred splitting.
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A section of p:FFFFéBBBB is defined to be a local map

s:BBBBéFFFF,

such that

p©s = id
BBBB
.

We denote the sheaf of sections of p:FFFFéBBBB by

S(FFFF) ˆ S(FFFFéBBBB) ˆ {s:BBBBéFFFF}.

We stress that a section s is assumed to be local, i.e. it is defined on an
open subset of the base space; in the particular case when s is defined on the
whole base space, we say that it is global.

L e t FFFF ä
q
EEEEä

p
BBBB be a double fibred manifold.

A tube-section is defined to be a section of the type

s : p-1(UUUU) ç EEEE é FFFF

where UUUU ç BBBB is an open subset.
The tube sections constitute a sheaf (with respect to the tube-topology)

S
t
(FFFFéEEEEéBBBB) ç S(FFFFéEEEE).

Let p:FFFFéBBBB and q:GGGGéBBBB be fibred manifolds over the same base space.
Their fibred product over BBBB is defined to be the fibred manifold

FFFF
B̊BBB
GGGG ˆ ø

x$BBBB
FFFF
x
˚GGGG

x
é BBBB.

If s$S(GGGGéBBBB), then we denote the pullback of s by

sŸ : FFFF é FFFF
B̊BBB
GGGG : f ´ ⁄f, s(p(f))^.

Let p:FFFFéBBBB and q:GGGGéCCCC be fibred manifolds.
A fibred morphism is defined to be a pair of local maps

È:FFFFéGGGG È:BBBBéCCCC,

such that

q©È = È©p.



180 A. JADCZYK, M. MODUGNO

Briefly, we say that È is a fibred morphism over È. In particular, if CCCC = BBBB
and È = id

BBBB
, then we say that È is a fibred morphism over BBBB.

Let p:FFFFéBBBB be a fibred manifold.
We say that a local fibred splitting È is a local bundle splitting if it is of

the type

È : VVVV = p-1(UUUU) é UUUU˚FFFF
UUUU
,

where UUUU = p(VVVV) ç BBBB is an open subset.
Then, we say that the fibred manifold p:FFFFéBBBB is a bundle if there exists a

trivialising bundle atlas, i.e. a family of local bundle splittings

{È
å
:p-1(UUUU

å
)éUUUU

å
˚FFFF

0
}
å$A

,

where {UUUU
å
}
å$A

is an open covering of BBBB.

We are concerned with several bundles, whose fibres are smoothly en-
dowed with algebraic structures; moreover, we need to prolong this bundles
and their algebraic structures via the tangent and jet functors. This subject
can be treated in several ways; the most standard approach is based on the
technique of principal and associated bundles. However, in this report, we
prefer to follow a more direct and intrinsic way, which is very suitable for
our goals and fits the intrinsic spirit of our viewpoint. Here and in the fol-
lowing sections, we just sketch the main ideas and results; for a more gen-
eral and detailed treatment the reader can refer to [CCKM].

III.1.2. Structured bundles

Next, we consider bundles whose fibres are equipped with an algebraic
structure.

A vector bundle is defined to be a bundle p:FFFFéBBBB smoothly equipped with a
vector structure on its fibres. Thus, by definition, each fibre FFFF

x
is a vector

space; moreover, there exists a trivialising bundle atlas, whose type-fibre FFFF
0

is a vector space, such that the maps È
åx
:FFFF
x
éFFFF

0
, with x$UUUU

å
, å$A, are linear.

A fibred morphism between vector bundles is said to be linear if it yields
linear maps between the fibres.

If p:FFFFéBBBB is a vector bundle, then we obtain the global section and the fi-
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bred morphisms over BBBB

0:BBBBéFFFF _:FFFF
B̊BBB
FFFFéFFFF ÷:·˚FFFFéFFFF,

which fulfill the standard algebraic properties and characterise the vector
structure of the bundle.

An affine bundle is defined to be a bundle p:FFFFéBBBB smoothly equipped with
an affine structure on its fibres. Thus, by definition, each fibre FFFF

x
is an

affine space associated with a vector space ÃFFFF
x
; moreover, there exists a

trivialising bundle atlas, whose type-fibre FFFF
0
is an affine space associated

with a vector space ÃFFFF
0
, such that the maps È

åx
:FFFF

x
éFFFF

0
, with x$UUUU

å
, å$A, are

affine.
It can be proved that

ÃFFFF ˆ ø
x$BBBB

ÃFFFF
x
é BBBB

has a natural structure of vector bundle; this is said to be the vector bundle
associated with the affine bundle.

A fibred morphism between affine bundles is said to be affine if it yields
affine maps between the fibres.

If p:FFFFéBBBB is an affine bundle, then we obtain the fibred morphism over BBBB

_:FFFF
B̊BBB
ÃFFFFéFFFF,

which fulfills the standard algebraic properties and characterises the affine
structure of the bundle.

Other algebraic structures on bundles can be defined in this way. For in-
stance, the complex structure can be defined by considering a linear endo-

morphism ˘, such that ˘2 = -1.

III.1.3. Positive semi-vector bundles

Furthermore, in order to describe rigorously the units of measurement
and to introduce the bundles of densities, we need the notions of a positive
semi-vector space and a positive semi-vector bundle.

Let us consider ·_ ˆ {x$· ¡ x>0} as a semi-field, i.e. as an abelian semi-
group with respect to the addition and a group with respect to the multipli-
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cation.
Then, we define a semi-vector space to be an abelian semi-group UUUU with a

scalar multiplication by ·_, which fulfills the standard properties

(r _ s) u = r u _ s u (r s) u = r (s u)

r (u _ v) = r u _ r v 1 u = u År,s$·_, u,v$UUUU.

A vector space VVVV and a basis B yield a semi-vector space in a natural way.

In fact, the subset finitely generated by B over ·_ turns out to be a semi-

vector space. In particular, ·_n, with n≥1, is a semi-vector space.
Moreover, any vector space VVVV can be regarded as a semi-vector space in a

natural way. On the other hand, a semi-vector space UUUU is said to be a posi-
tive semi-vector space if the scalar multiplication cannot be extended nei-

ther to ·_‰{0}, nor to ·. Hence, a positive semi-vector space contains nei-
ther the zero element, nor the negative of any element. Thus, a semi-vector
space is a vector space, or a positive semi-vector space, or a positive semi-
vector space extended by the zero element.

Several concepts and results of standard linear and multi-linear algebra
related to vector spaces (including linear and multi-linear maps, bases, di-
mension, tensor products and duality) can be easily repeated for semi- vec-
tor spaces and positive semi-vector spaces. The main caution to be taken is
to avoid the formulations which involve the zero element. We shall use for
semi-vector spaces the standard terminology used for vector spaces.

Let UUUU be a semi-vector space and VVVV a vector space. By regarding VVVV as a

semi-vector space, we can consider the tensor product over ·_

UUUUÆVVVV.

We observe that the semi-vector space UUUUÆVVVV turns out to be also a vector
space, according to the formula

·˚(UUUUÆVVVV) é UUUUÆVVVV : (r, uæv) ´ uæ(rv).

So, any positive semi-vector space UUUU can be extended to the vector space
UUUUÆ·, through the natural inclusion UUUU ç UUUUÆ·.

In particular, we are concerned with 1-dimensional positive semi-vector
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spaces.

If VVVV is an oriented 1-dimensional vector space, then the positively oriented

subset VVVV_ ç VVVV is a positive space.
Moreover, if WWWW is a further vector space, then we obtain the following

useful canonical isomorphisms25

VVVV_ÆWWWW ≠ VVVVÆWWWW

and, in particular,

VVVV_Æ· ≠ VVVVÆ· ≠ VVVV.

Let UUUU and VVVV be 1-dimensional positive semi-vector spaces.
In order to write formulas in a way apparently equal to the standard one

used by physicists, it is convenient to treat the elements of 1-dimensional
positive spaces as they were numbers and introduce some conventions.

So, we can treat the dual element ¨$UUUU* of u$UUUU as its “inverse” and write

UUUU-1 ˆ UUUU* ¨ =
1
u
.

Moreover, if u$UUUU and v$VVVV, then we often omit the tensor product æ and
just write

u v ˆ uæv.

Furthermore, we make the canonical identification

UUUUÆUUUU* ≠ ·_.

Let UUUU be a 1-dimensional positive semi-vector space.
A square root of UUUU is defined to be a 1-dimensional positive semi-vector

space ¢ÃÃUUUU together with a quadratic map q:¢ÃÃUUUU éUUUU, such that, for each 1-
dimensional positive semi-vector space ¢ÃÃUUUU ' and each quadratic map
q':¢ÃÃUUUU 'éUUUU, there is a unique linear map l:¢ÃÃUUUU é¢ÃÃUUUU ', which yields q'©l = q.

By a standard argument related to universal properties, the square root is
unique up to a canonical isomorphism. Moreover, we can easily prove the ex-

25 The first tensor product is taken over ·_ and the second one over ·.
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istence of a square root. So, in the following, we shall refer to “the” square
root ¢ÃÃUUUU of UUUU.

The universal property implies that the quadratic map q is a bijection. So,
we obtain the inverse bijection ¢:UUUUé¢ÃÃUUUU :u´¢Ãu.

Moreover, the universal property of the tensor product implies that there
is a unique linear isomorphism i:¢ÃÃUUUU Æ¢ÃÃUUUU éUUUU, which yields i©∂ = q, where
∂:¢ÃÃUUUU é¢ÃÃUUUU Æ¢ÃÃUUUU is the canonical map.

In an analogous way, for every natural number q, we can define the q-root
UUUU1/q of UUUU.

Therefore, for every pair of natural numbers p and q, we write

UUUUp/q ˆ UUUU1/qÆ …
p times

ÆUUUU1/q UUUU0 ˆ · UUUU- p/q ˆ UUUU*1/qÆ …
p times

ÆUUUU*1/q.

If VVVV is an oriented 1-dimensional vector space, then we set ¢ÃÃVVVV ˆ ÊÕVVVV_.
In particular, if WWWW is an oriented n-dimensional vector space, then we ob-

tain the square root positive semi-vector space ÊôÕÓnWWWW.

The above algebraic constructions on positive semi-vector spaces can be
easily extended to bundles.

So, a semi-vector bundle and a positive semi-vector bundle can be de-
fined analogously to a vector bundle. Moreover, if p:FFFFéBBBB is a 1-dimensional
oriented vector bundle, then we obtain in a natural way the positive semi-

vector bundle p:¢ÃÃFFFF éBBBB and the canonical fibred isomorphism ¢ÃÃFFFF Æ
BBBB
¢ÃÃFFFF ≠ FFFF_

over BBBB.
We observe that these constructions lead naturally to a generalisation of

the half-densities due to de Rham (see [dR]).

III.2. Tangent prolongation of fibred manifolds

In this section we recall a few basic notions on the tangent prolongation
of fibred manifolds. For further details, the reader could refer to [CCKM],
[ MM1], [MM2], [Mo2].

III.2.1 Tangent prolongation of manifolds

We start by considering just simple manifolds.

We denote the tangent functor from the category of manifolds to the cat-
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egory of vector bundles by T.
So, if MMMM is a manifold, then we have the vector bundle

π
MMMM
:TMMMMéMMMM

and if f$M(MMMM,NNNN), then we have the linear fibred morphism over f

Tf:TMMMMéTNNNN,

or, equivalently, the section

df : MMMM é T*MMMM Æ
MMMM˚NNNN

TNNNN : x ´ T
x
f.

We set

T(MMMM) ˆ S(TMMMMéMMMM) T*(MMMM) ˆ S(T*MMMMéMMMM).

We denote the induced linear fibred charts of TMMMM and T*MMMM by

(x¬, îx¬) (x¬, îx
¬
)

and the induced bases of T(MMMM) and T*(MMMM) by

(Ù
¬
) ˆ (Ùx

¬
) (d¬) ˆ (dx¬).

Then, we obtain the coordinate expressions

(yi, îyi)©Tf = (fi, Ù
¬
fi îx¬) df = Ù

¬
fi d¬æ(Ù

i
©f).

If c:·éMMMM is a local map, then we set

dc : · é TMMMM : ¬ ´ Tc(¬,1).

If c:·˚MMMMéNNNN is a map defined in a neighbourhood of {0}˚MMMM ç ·˚MMMM, then we
set

Ùc : MMMM é TNNNN : x ´ d(c
x
)(0).

III.2.1 Tangent prolongation of fibred manifolds

Next, we consider fibred manifolds.

Let p:FFFFéBBBB be a fibred manifold.
We have the vector bundle
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π
FFFF
:TFFFFéFFFF

and the fibred manifold

Tp:TFFFFéTBBBB.

If p:FFFFéBBBB is a bundle, then also Tp:TFFFFéTBBBB is a bundle.
The induced fibred chart of TFFFF is

(x¬, yi, îx¬, îyi).

A vector field X$T(FFFF) is said to be projectable if it projects over a vector
field X$T(BBBB). The coordinate expression of a projectable vector field is of
the type

X = Xµ Ù
µ
_ Xi Ù

i
Xµ$F(BBBB), Xi$F(FFFF).

The projectable vector fields constitute the subsheaf

P(FFFF) ç T(FFFF).

We denote the vertical functor from the category of fibred manifolds to
the category of vector bundles by V.

So, if p:FFFFéBBBB is a fibred manifold, then we have the vertical subbundle over
FFFF

VFFFF ˆ ker
FFFF
Tp ç TFFFF,

and the exact sequence of vector bundles over FFFF

0 ä V FFFFä T FFFF ä
BBBB
T BBBB ä0.

The induced fibred chart of VFFFF is

(x¬, yi, îyi).

A vector field X$T(FFFF) is said to be vertical if it is vertical valued, i.e. if
it projects over a zero vector field X$T(BBBB). The coordinate expression of a
vertical vector field is of the type

X = Xi Ù
i

Xi$F(FFFF).

The vertical vector fields constitute the subsheaf
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V(FFFF) ç P(FFFF) ç T(FFFF).

If p:FFFFéBBBB is a vector bundle, then the tangent prolongation of the distin-
guished section and fibred morphisms

T0:TBBBBéTFFFF T_:TFFFF
T̊BBBB
TFFFFéTFFFF T÷:·˚TFFFFéTFFFF

makes

Tp:TFFFFéTBBBB

a vector bundle.

If p:FFFFéBBBB is an affine bundle associated with the vector bundle, ãp:ÃFFFFéBBBB,
then the tangent prolongation of the distinguished fibred morphism

T_:TFFFF
T̊BBBB
TÃFFFFéTFFFF

makes

Tp:TFFFFéTBBBB

an affine bundle associated with the vector bundle

Tãp:TÃFFFFéTBBBB.

The tangent prolongation of other algebraic structures on bundles can be
obtained in this way. For instance, the complex structure can be prolonged by

considering the linear endomorphism T˘, which fulfills (T˘)2 = -1.
In fact, the algebraic constructions of previous sections concerning posi-

tive semi-vector spaces and positive spaces can be easily extended in a
smooth way to any vector bundle (see [CCKM]).

The tangent prolongation and the related differential operators extend to
semi-vector and positive bundles in a natural way. Here, we add a few obser-
vations, which are useful for a clear understanding of our procedures.

The tangent space of a positive space UUUU turns out to be TUUUU = UUUU˚(·æUUUU).
Hence, the vertical bundle of a positive bundle UUUUéBBBB turns out to be the

vector bundle VUUUU = UUUU
B̊BBB
(·æUUUU).

The differential operations such as exterior differential, covariant differ-
ential, Lie derivative and so on, commute with the tensor product with a
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vector space or a positive semi-vector space. So, in our differential calcu-
lus, we extend the standard notation, such as d, ı, L

X
and so on, to the cor-

responding operators acting on the appropriate objects tensorialised with a
scale factor.

III.3. Jet prolongation of fibred manifolds

In this section we recall a few basic notions on the tangent prolongation
of fibred manifolds. For further details, the reader could refer to [CCKM],
[ MM1], [MM2], [Mo2].

Let p:FFFFéBBBB be a fibred manifold.
The k-jet space is defined to be the fibred manifold

p
k
: J

k
FFFF ˆ ø

x$BBBB
J
k x
FFFF é BBBB,

where

J
k x
FFFF ˆ {[s]

k x
}
s$S(FFFF)

is the set of equivalence classes of sections whose partial derivatives at x
coincide up to order k, in any chart, according to the formula

s –
kx
s' ∞ Ù

å
si(x) = Ù

å
s'i(x),

for all multi-indices of length between 0 and k

å ˆ (å
1
, … , å

m
) 0 ≤ ¡å¡ ˆ å

1
_ … _ å

m
≤ k.

If s:S(FFFF), then we obtain the section

j
k
s : BBBB é J

k
FFFF : x ´ [s]

k x
.

We have the following natural fibred epimorphisms

J
k

FFFF ä
pk
hJ ä J

1
FFFF ä

p1
0 J

0
FFFF ˆ FFFFä
p

BBBB.

Accordingly, we obtain the following sequence of natural linear fibred
monomorphisms over J

k
FFFF

V
k - 1

J
k
FFFF ‹V

k - 2
J

k
FFFF ‹… V

0
J

k
FFFF ‹V
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where V
h
J
k
FFFF, 0≤h≤k-1, and VJ

k
FFFF denote the vertical bundles of the fibrings

J
k
FFFFéJ

h
FFFF and J

k
FFFFéBBBB, respectively.

Moreover, the fibring

J
k
FFFFéJ

k-1
FFFF

turns out to be naturally an affine bundle associated with the pullback over
J
k-1
FFFF of the vector bundle

SkT*BBBBÆ
EEEE
VEEEE,

where Sk denotes the symmetrised tensor product.

Let p:FFFFéBBBB and q:GGGGéBBBB be fibred manifolds over the same base space and
f:FFFFéGGGG a fibred morphism over BBBB.

There exists a unique fibred morphism over f:FFFFéGGGG

J
k
f:J

k
FFFFéJ

k
GGGG,

which makes the following diagram commutative, for each section s$S(FFFF),

J
k

FFFF ä
J
k
f

J
k
GGGG

j
k
s Ü Ö j

k
(f©s)

BBBB

Thus, J
k
is a contravariant functor from the category of fibred manifolds

over a given base space into itself.
There is a unique fibred monomorphism over FFFF

d
k
:J
k
FFFF
B̊BBB
TBBBBéTJ

k-1
FFFF,

which makes commutative the following diagram for each section s$S(FFFF),

J
k
FFFF
B̊BBB
TBBBB ä

d
k

TJ
k-1
FFFF

(j
k
s)Ÿ Ü Ö Tj

k-1
s

TBBBB

Moreover, d
k
is a linear fibred monomorphism over J

k
FFFFéJ

k-1
FFFF, projectable
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over 1
BBBB
:TBBBBéTBBBB and a fibred monomorphism over J

k-1
FFFF
B̊BBB
TBBBB.

Hence, in virtue of the rank theorem, J
k
FFFFéJ

k-1
FFFF turns out to be an affine

subbundle over J
k-1
FFFF of the affine bundle

J
1
J
k-1
FFFFéJ

k-1
FFFF

associated with the vector subbundle

S
k
T*BBBB Æ

J
k-1
FFFF
VFFFF é T*BBBB Æ

J
k-1
FFFF
VJ

k-1
FFFF.

Furthermore, we obtain the complementary surjective linear fibred mor-
phism over J

k
FFFFéJ

k-1
FFFF

ª
k
:J
k
FFFF ˚
J
k-1
FFFF
TJ

k-1
FFFFéVJ

k-1
FFFF.

Thus, d
k
and ª

k
yield a splitting over J

k
FFFF of the exact sequence

0 ä VJ
k - 1

FFFF äTJ
k - 1

FFFF äJ
k-1
FFFF
B̊BBB
T BBBB ä0.

Additionally, there is a natural fibred morphism over J
k
FFFF
B̊BBB
J
k
TBBBBéJ

k
FFFF
B̊BBB
TBBBB

r
k
:J
k
TFFFFéTJ

k
FFFF,

which yields the prolongation of a vector field X:FFFFéTFFFF into the vector field

r
k
©J

k
X:J

k
FFFFéTJ

k
FFFF.

If f$F(J
k-1
FFFF), then we can write, for each s$S(FFFFéBBBB),

d(f©j
k-1
s) = (d

k
.f)©j

k-1
f : BBBB é T*BBBB.

We denote the induced fibred chart of J
k
FFFF by

(x¬, y
å
i)
0≤¡å¡≤k

= (x¬, yi, y
¬
i, y

¬µ
, … )

1≤¬≤µ≤…≤m, …
.

Then, we obtain the coordinate expressions

d
k
ˆ d¬æd

k¬
= d¬æ(Ù

¬
_ y

å_¬
i Ù

i
å)
0≤¡å¡≤k-1

= d¬æ(Ù
¬
_ y

¬
i Ù

i
_ y

¬µ
i Ù

i
µ _ …)

1≤¬≤µ≤m, …
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ª
k
ˆ ª

k å
æÙ

i
å = (di - y

¬
i d¬)æÙ

i
_ (d

µ
i - y

¬µ
i d¬)æÙ

i
µ _ ….

(x¬, y
å
i)©j

k
s = (x¬, yi, y

¬
i, y

¬µ
i, …)©j

k
s = (x¬, Ù

å
si) = (x¬, si, Ù

¬
si, Ù

¬µ
si, …)

(x¬, zi, z
¬
i, … )©J

k
f = (x¬, fi, Ù

¬
fi _ y

¬
h Ù

h
fi, … ) = (x¬, fi, d

¬
.fi, … ).

If p:FFFFéBBBB is a vector bundle, then the k-jet prolongation of the distin-
guished section and fibred morphisms

J
k
0:BBBBéJ

k
FFFF J

k
_:J

k
FFFF
B̊BBB
J
k
FFFFéJ

k
FFFF J

k
÷:·˚J

k
FFFFéJ

k
FFFF

makes

p
k
:J
k
FFFFéBBBB

a vector bundle.

If p:FFFFéBBBB is an affine bundle associated with the vector bundle, ãp:ÃFFFFéBBBB,
then the k-jet prolongation of the distinguished fibred morphism

J
k
_:J

k
FFFF
B̊BBB
J
k
ÃFFFFéJ

k
FFFF

makes

p
k
:J
k
FFFFéBBBB

an affine bundle associated with the vector bundle

p
k
:J
k
ÃFFFFéBBBB.

The k-jet prolongation of other algebraic structures on bundles can be ob-
tained in this way. For instance, the complex structure can be prolonged by

considering the linear endomorphism J
k
˘, which fulfills (J

k
˘)2 = -1.

III.4. Tangent valued forms

In this section we recall a few basic notions on the graded Lie algebra of
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tangent valued forms. For further details, the reader could refer to [ MM].

First, let us consider just a manifold, MMMM.
A tangent valued form of MMMM is defined to be a section

ƒ:MMMMéLT*MMMMÆ
MMMM
TMMMM.

We have the coordinate expression

ƒ = ƒ
¬1…¬r

µ d¬1◊…◊d¬ræÙ
µ

ƒ
¬1…¬r

µ$F(MMMM).

In particular, the vector fields are tangent valued forms of degree 0.
The Lie bracket of vector fields can be naturally extended to a graded Lie

bracket of tangent valued forms, which is called the Frölicher-Nijenhuis
bracket .

Namely, there is a unique sheaf morphism

[,] : L
r
T*(MMMM) Æ

F(MMMM)
T(MMMM) ˚ L

s
T*(MMMM) Æ

F(MMMM)
T(MMMM) é L

r_s
T*(MMMM) Æ

F(MMMM)
T(MMMM)

which on decomposable forms is given by

[åæu, ∫æv] = å◊∫æ[u, v] _

_å◊L
u
∫æv - (-1)¡å¡¡∫¡∫◊L

v
åæu _ (-1)ri

v
å◊d∫æu - (-1)¡å¡¡∫¡_¡∫¡ i

u
∫◊dåæv.

We have the coordinate expression

[ƒ, ¥] = (ƒ®
¬1…¬r

Ù
®
¥µ

¬r_1
…¬
r_s

- (-1)rs ¥®
¬1…¬s

Ù
®
ƒµ

¬s_1…¬r_s
_

- r ƒµ
¬1
…¬
r-1

® Ù¬r
¥®

¬r_1
…¬r_s

_ (-1)rs s ¥µ
¬1
…¬
s-1

® Ù¬s
ƒ®

¬s_1
…¬r_s

)÷d¬1◊…◊d¬r_sæÙ
µ
.

Thus, LT*(MMMM) Æ
F(MMMM)

T(MMMM), together with the F-N bracket, is a sheaf of

graded Lie algebras, namely we have

[ƒ _ ƒ', ¥] = [ƒ, ¥] _ [ƒ', ¥] [ƒ, ¥ _ ¥'] = [ƒ, ¥] _ [ƒ, ¥']

[k ƒ, ¥] = k [ƒ, ¥] = [ƒ, k ¥]

[ƒ, ¥] = - (-1)¡ƒ¡¡¥¡ [¥, ƒ]
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[ª, [ƒ, ¥]] = [[ª, ƒ], ¥] _ (-1)¡ª¡¡ƒ¡ [ƒ, [ª, ¥]]

ƒ, ¥, ª$LT*(MMMM) Æ
F(MMMM)

T(MMMM); k$·.

Now, let us replace the manifold MMMM with the fibred manifold p:FFFFéBBBB and
consider the sheaf of tangent valued forms of FFFF

LT*(FFFF) Æ
F(FFFF)

T(FFFF).

A tangent valued form

ƒ:FFFFéLT*BBBBÆ
FFFF
TFFFF,

is said to be projectable if it projects over a tangent valued form of BBBB

ƒ:BBBBéLT*BBBBÆ
BBBB
TBBBB.

The projectable tangent valued forms constitute the subsheaf

LT*(BBBB) Æ
F(BBBB)

P(FFFF) ç LT*(BBBB) Æ
F(BBBB)

T(FFFF).

Their coordinate expression is of the type

ƒ = (ƒ
¬1…¬r

µ Ù
µ
_ ƒ

¬1…¬r

i Ù
i
^æd¬1◊…◊d¬r

with

ƒ
¬1…¬r

µ $ F(BBBB) ƒ
¬1…¬r

i $ F(FFFF).

As a special case, we have the vertical valued forms

ƒ:FFFFéLT*BBBBÆ
FFFF
VFFFF,

which project over the zero tangent valued form of B

ƒ = 0 : BBBB é LT*BBBBÆ
BBBB
TBBBB.

The vertical valued forms constitute the subsheaf

LT*(BBBB) Æ
F(BBBB)

V(FFFF) ç LT*(BBBB) Æ
F(BBBB)

P(FFFF).
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Their coordinate expression is of the type

ƒ = ƒ
¬1…¬r

i Ù
i
æd¬1◊…◊d¬r.

The projectable tangent valued forms constitute a subalgebra of the alge-
bra of tangent valued forms. Moreover, we have

[ƒ,¥]
á

= [ƒ , ¥ ] ƒ, ¥$LT*(BBBB) Æ
F(BBBB)

P(FFFF).

Let p:FFFFéBBBB be a vector bundle. A projectable tangent valued form

ƒ:FFFFéLT*BBBBÆ
FFFF
TFFFF

is said to be linear if it is a linear fibred morphism over ƒ.
The coordinate expression of a linear projectable tangent valued form is of

the type

ƒ = (ƒ
¬1…¬r

µ Ù
µ
_ ƒ

¬1…¬r

i
j
yj Ù

i
^æd¬1◊…◊d¬r

with

ƒ
¬1…¬r

µ, ƒ
¬1…¬r

i
j
$ F(BBBB).

The linear projectable tangent valued forms constitute a subalgebra of the
algebra of projectable tangent valued forms.

Let p:FFFFéBBBB be an affine bundle. A projectable tangent valued form

ƒ:FFFFéLT*BBBBÆ
FFFF
TFFFF

is said to be affine if it is an affine fibred morphism over ƒ.
The coordinate expression of an affine projectable tangent valued form is

of the type

ƒ = ⁄ƒ
¬1…¬r

µ Ù
µ
_ (ƒ

¬1…¬r

i
j
yj _ ƒ

¬1…¬r

i
©
) Ù

i
^æd¬1◊…◊d¬r

with

ƒ
¬1…¬r

µ, ƒ
¬1…¬r

i
j
, ƒ

¬1…¬r

i
©
$ F(BBBB).

The affine projectable tangent valued forms constitute a subalgebra of the
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algebra of projectable tangent valued forms.

III.5. General connections

In this section we recall a few basic notions on general connections. For
further details, the reader can refer to [ MM].

Let p:FFFFéBBBB be a fibred manifold.

A connection is defined to be a section

c:FFFFéJ
1
FFFF,

i.e. a tangent valued 1-form

c:FFFFéT*BBBBÆ
FFFF
TFFFF,

which projects onto

cˆ1
BBBB
:BBBBéT*BBBBÆ

BBBB
TBBBB,

i.e. a linear fibred morphism over FFFF

c:FFFF
F̊FFF
TBBBBéTFFFF,

which projects onto

cˆ1
BBBB
:TBBBBéTBBBB.

Its coordinate expression is of the type

(x¬, yi, y
¬
i)©c = (x¬, yi, c

¬
i),

i.e.

c = d¬æ(Ù
¬
_ c

¬
iæÙ

i
) c

¬
i$F(FFFF).

A connection c yields the linear fibred epimorphism over FFFF

~
c
:TFFFFéVFFFF,

with coordinate expressions

~
c
= (di - c

¬
i d¬)æÙ

i
,
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and the translation fibred isomorphism over FFFF

ı
c
:J
1
FFFFéT*BBBBÆ

FFFF
VFFFF,

with coordinate expression

ı
c
= (y

¬
i - c

¬
i) d¬æÙ

i
.

The maps ~
c
and ı

c
characterise the connection c itself.

The covariant differential of a section s$S(FFFF) is defined to be the section

ı
c
s ˆ ı

c
©j

1
s : BBBB é T*BBBBÆ

FFFF
VFFFF,

with coordinate expression

ı
c
s = (Ù

¬
si - c

¬
i©s) d¬æ(Ù

i
©s).

The covariant differential of a tangent valued form ƒ$L
r
T*(FFFF) Æ

F(FFFF)
T(FFFF) is

defined to be the tangent valued form

d
c
ƒ ˆ [c,ƒ] : FFFFéL

r_1
T*FFFFÆ

FFFF
TFFFF.

In particular, if ƒ is projectable, then its covariant differential turns out
to be vertical valued

d
c
ƒ ˆ [c,ƒ] : FFFFéL

r_1
T*BBBBÆ

FFFF
VFFFF

and its coordinate expression is

d
c
ƒ = (- Ù

¬1
ƒ
¬2…¬r_1

µ c
µ
i - Ù

µ
c¬1

i ƒ
¬2…¬r_1

µ _

_ Ù
¬1
ƒ
¬2…¬r_1

i _ c
¬1

j Ù
j
ƒ
¬2…¬r_1

i - Ù
j
c
¬1

i ƒ
¬2…¬r_1

j) d¬1◊…◊d¬r_1æÙ
i
.

For each ƒ,¥$L
r
T*(FFFF) Æ

F(FFFF)
T(FFFF), we have the following properties

d
c
(ƒ _ ¥) = d

c
ƒ _ d

c
¥

d
c
[ƒ, ¥] = [d

c
ƒ, ¥] _ (-1)¡ƒ¡ [ƒ, d

c
¥]
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d
c
(∑◊ƒ) = d∑◊~

c
(ƒ) _ (-1)¡∑¡ ∑◊d

c
ƒ ∑$T*(BBBB)

and, if ƒ is a projectable vector field

⁄d
c
(ƒ)^(u) = [c(u), ƒ] - c([u,ƒ]), Åu$T(BBBB).

The curvature of c is defined to be the vertical valued 2-form

R
c
ˆ 1

2
d
c
c : FFFF é L

2
T*BBBBÆ

FFFF
VFFFF,

with coordinate expression

R
c
= (Ù

¬
c
µ
i _ c

¬
j Ù

j
c
µ
i) d¬◊dµæÙ

i
.

The curvature is characterised by the following property

2 R
c
(X,Y) = [c(X),c(Y)] - c([X,Y]) X,Y$T(BBBB).

We have the Bianchi identity

d
c
2ƒ = [R

c
,ƒ] ƒ$LT*(FFFF) Æ

F(FFFF)
T(FFFF).

In particular, we obtain

d
c
R
c
= 0,

in virtue of

[c,R
c
] = d

c
R
c
ˆ 1

2
d
c
2c = 1

2
[R
c
,c].

Moreover, if

ƒ ˆ c(ƒ) : BBBB é LT*BBBBÆ
FFFF
TFFFF

is a horizontal tangent valued form, then we obtain the formula26

d
c
ƒ = - R

c
◊ƒ,

with coordinate expression

26 Here ◊ denotes the exterior product combined with an interior product.
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d
c
ƒ = - 2 R

c µ¬1

i ƒ
¬2…¬r_1

µ Ù
i
æd¬1◊…◊d¬r_1.

Given a section ß:FFFFéT*BBBBÆ
FFFF
VFFFF, the torsion of c is defined to be the 2-form

†
c
ˆ d

c
ß : FFFF é L

2
T*BBBBÆ

FFFF
VFFFF.

We have the Bianchi identity

d
c
†
c
= [R

c
, ß].

Let FFFFéBBBB be a vector bundle. A connection c is said to be linear if, as a fi-
bred morphism c:FFFFéJ

1
FFFF over BBBB, it is linear. A connection is linear if and only

if, in a linear fibred chart, its coordinate expression is of the following type

c
¬
i = c

¬
i
j
yj c

¬
i
j
$F(BBBB).

The covariant differential of a linear projectable tangent valued form with
respect to a linear connection turns out to be a linear vertical valued form.

Let FFFFéBBBB be an affine bundle. A connection c is said to be affine if, as a
fibred morphism c:FFFFéJ

1
FFFF over BBBB, it is affine. A connection is affine if and

only if, in an affine fibred chart, its coordinate expression is of the following
type

c
¬
i = c

¬
i
j
yj _ c

¬
i
©

c
¬
i
j
, c

¬
i
©
$F(BBBB).

The covariant differential of an affine projectable tangent valued form
with respect to an affine connection turns out to be an affine vertical valued
form.

Connections adapted to other algebraic structures on bundles can be ob-
tained in a similar way. For instance, a complex connection can be defined as
a real linear fibred morphism c:FFFFéJ

1
FFFF over BBBB, which makes the following di-

agram commute
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FFFF ä
c

J
1
FFFF

˘ ï ï J
1
˘

FFFF ä
c

J
1
FFFF
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IV - INDEXES

IV.1 - Main symbols

Tangent and jet functors

π
MMMM
:TMMMMéMMMM tangent bundle of the manifold MMMM

Tf:TMMMMéTNNNN tangent prolongation of the map f:MMMMéNNNN

df:MMMMéT*MMMM differential of the function f:MMMMé·

df:MMMMéTMMMM differential of the curve f:·éMMMM

X.f ˆ Çdf,X¶ + Xœdf action of the vector field X on the function f

π
EEEE
:VEEEEéEEEE vertical bundle of the fibred manifold p:EEEEéBBBB

Vf:VEEEEéVFFFF vertical prolongation of the fibred morphism f:EEEEéFFFF over BBBB

p
k
:J
k
EEEEéBBBB k-jet fibred manifold of the sections of the fibred manifold p:EEEEéBBBB

pk
h
:J
k
EEEEéJ

h
EEEE bundle projection between jet spaces, with 0≤h<k

j
k
s:BBBBéJ

1
EEEE k-jet prolongation of the section s:BBBBéEEEE

J
k
f:J

k
EEEEéJ

k
FFFF k-jet prolongation of the fibred morphism f:EEEEéFFFF over BBBB

d
k
:J
k
EEEE
B̊BBB
TBBBBéTJ

k-1
EEEE contact fibred morphism of order 1≤k

ª
k
:J
k
EEEE
B̊BBB
TJ

k-1
EEEEéVJ

k-1
EEEE contact fibred morphism of order 1≤k

r
k
:J
k
TEEEEéTJ

k
EEEE exchange fibred morphism between jet and tangent functors
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Sheaves

M(MMMM,NNNN) ˆ {f:MMMMéNNNN} sheaf of local maps between the manifolds MMMM and NNNN
F(MMMM) ˆ {f:MMMMé·} sheaf of local functions of the manifold MMMM

S(FFFF) + S(FFFFéBBBB) ˆ {s:BBBBéFFFF} sheaf of local sections of the fibred manifold FFFFéBBBB

T(MMMM) ˆ {X:MMMMéTMMMM} sheaf of local vector fields of the manifold MMMM

T*(MMMM) ˆ {ƒ:MMMMéT*MMMM} sheaf of local 1-forms of the manifold MMMM

F
BBBB
(FFFF,GGGG) ˆ {f:FFFFéGGGG} sheaf of local fibred morphisms over BBBB

F(J
1
EEEE) ˆ {f:J

1
EEEEé·} sheaf of local functions of J

1
EEEE

T(J
1
EEEE) ˆ {X:J

1
EEEEéTJ

1
EEEE} sheaf of local vector fields of J

1
EEEE

T*(J
1
EEEE) ˆ {ƒ:J

1
EEEEéT*J

1
EEEE} sheaf of local 1-forms of J

1
EEEE

T
††††
(J
1
EEEE) ç T(J

1
EEEE) subsheaf of local vector fields with time component ††††

T*
˙
(J
1
EEEE) ç T*(J

1
EEEE) subsheaf of local forms which vanish on ˙

F
t
(J
1
EEEE) ç F(J

1
EEEE) subsheaf of tube-like functions with respect to J

1
EEEEéEEEE

Q(J
1
EEEE) ç F

t
(J
1
EEEE) subsheaf of quantisable functions

Q
c
(J
1
EEEE) ç Q(J

1
EEEE) subsheaf of q. f. with constant time-component

Q
0
(J
1
EEEE) ç Q

c
(J
1
EEEE) subsheaf of q. f. with vanishing time-component

Q
t
(J
1
EEEE) ç Q(J

1
EEEE)subsheaf of q. f., which are tube-like with respect to J

1
EEEEéTTTT

Q
tc
(J
1
EEEE) ç Q

c
(J
1
EEEE) subsheaf of q. f. with constant time-component

Q
t0
(J
1
EEEE) ç Q

0
(J
1
EEEE) subsheaf of q. f. with vanishing time-component

Q(QQQQŸ) ç T(QQQQŸ) subsheaf of upper quantum vector fields

Q
††††
(QQQQŸ) ç Q(QQQQŸ) subsheaf of upper q. v. f. with time-component ††††

Q(QQQQ) ç T(QQQQ) subsheaf of quantum vector fields

Q
c
(QQQQ) ç Q(QQQQ) subsheaf of q. v. f. with constant time-component

Q
0
(QQQQ) ç Q

c
(QQQQ) subsheaf of q. v. f. with vanishing time-component

L(QQQQ∆) sheaf of quantum Lie operators

L(SQQQQ∆) sheaf of quantum operators
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Q
c
(SQQQQ∆) ç Q(SQQQQ∆) subsheaf of quantum operators corresponding to Q

c
(J
1
EEEE)

Q
0
(SQQQQ∆) ç Q

c
(SQQQQ∆) subsheaf of quantum operators corresponding to Q

0
(J
1
EEEE)

S
t
€(FFFFéEEEEéBBBB) sheaf of tube-sections EEEEéFFFF (non-smooth with respect to BBBB)

S
t
(FFFFéEEEEéBBBB) sheaf of smooth tube-sections EEEEéFFFF

S€(AAAAéBBBB) sheaf of (non-smooth) local sections BBBBéAAAA

Units of measurement

T vector space associated with the affine space TTTT

A 1-dimensional positive semi-space of area units

M 1-dimensional positive semi-vector space of masses

Q ˆ T*ÆA3/4ÆM1/2 1-dimensional vector space of charges

u
0
$T_, u0$T_* time unit of measurement

m $ M mass

qqqq $ Q charge

q ˆ qqqq(u
0
) $ A3/4ÆM1/2 charge (related to u

0
)

hhhh $ T_*ÆAÆM Plank constant

h ˆ hhhh(u
0
) $ AÆM Plank constant (related to u

0
)

kkkk $ T*2ÆA3/2ÆM* gravitational coupling constant

Space-time

t:EEEEéTTTT classical space-time fibred over time

J
1
EEEEéEEEEéTTTT first jet space of the space-time fibred manifold

π
EEEE
:TEEEEéEEEE tangent bundle of the space-time manifold

π
EEEE
:VEEEEéEEEE vertical bundle of the space-time fibred manifold

dt:EEEEéTÆT*EEEE space-time 1-form

d:J
1
EEEEéT*ÆTEEEE contact tangent valued form

ª:J
1
EEEEéT*EEEEÆVEEEE contact vertical valued form
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s:TTTTéEEEE classical motion

j
1
s:TTTTéJ

1
EEEE velocity of the classical motion

o:EEEEéJ
1
EEEE observer

(u
0
, o) frame of reference

g:EEEEéAÆV*EEEEÆ
EEEE
V*EEEE vertical metric

ãg:EEEEéA*ÆVEEEEÆ
EEEE
VEEEE contravariant scaled vertical metric

¨:EEEEé(TÆA3/2)ÆL
4
T*EEEE space-time volume form

∆:EEEEéA3/2ÆL
4
V*EEEE space-like volume form

¢Ã̈:EEEEéT1/2ÆA3/4ÆÊL
4
T*EEEE space-time half-density

¢Ã∆:EEEEéA3/4ÆÊL
3
V*EEEE space-like half-density

Space-time connection

K:TEEEEéT*EEEEÆ
TEEEE
TTEEEE space-time connection on the bundle TEEEEéEEEE

Í:J
1
EEEEéT*EEEEÆ

J
1
EEEE
TJ

1
EEEE space-time connection on the bundle J

1
EEEEéEEEE

~
Í
:J
1
EEEEéT*ÆT*J

1
EEEEÆ
J
1
EEEE
VEEEE vertical valued form associated with Í

˙:J
1
EEEEéT*ÆTJ

1
EEEE connection on the fibred manifold J

1
EEEEéTTTT

Ò:J
1
EEEEé(T*ÆA)ÆL

2
T*J

1
EEEE contact 2-form

È:EEEEé(T*ÆA)ÆL
2
T*EEEE 2-form associated with an observer

ÍŸ:J
1
EEEEéT*EEEEÆ

J
1
EEEE
TJ

1
EEEE gravitational connection

Total objects

F:EEEEéBÆL
2
T*EEEE electromagnetic field

Ò ˆ ÒŸ _ Òe ˆ ÒŸ _ 1
2
qqqq
m
F total contact 2-form

Í = ÍŸ _ Íe total space-time connection
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˙ = ˙Ÿ _ ˙e total second order space-time connection

˙e:J
1
EEEEéT*Æ(T*ÆVEEEE) Lorentz force

Íe:J
1
EEEEéT*EEEEÆ

EEEE
(T*ÆVEEEE) electromagnetic soldering form

a:EEEEé(T*ÆA)ÆT*EEEE potential of È

tˆ tŸ _ te total energy tensor

r = rŸ _ rŸe _ re total Ricci tensor

ı̇ j
1
s:TTTTéT*ÆT*ÆVEEEE covariant differential of the velocity

Classical kinematical functions

G:J
1
EEEEéAÆMÆ· classical kinetic energy (related to u

0
)

H:J
1
EEEEéAÆMÆ· classical Hamiltonian (related to u

0
)

L:J
1
EEEEéAÆMÆ· classical Lagrangian (related to u

0
)

p:J
1
EEEEéAÆMÆV*EEEE classical momentum (related to u

0
)

Quantum bundle

π:QQQQéEEEE quantum bundle

h:QQQQ
E̊EEE
QQQQéÛ Hermitian product

„:EEEEéQQQQ quantum section

„ = ¥ b local expression of a quantum section

QQQQ¨ ˆ T
1/2ÆA3/4Æ(QQQQÆ

EEEE
ÊL

4
T*EEEE) space of space-time quantum half-densities

QQQQ∆ ˆ A
3/4Æ(QQQQÆ

EEEE
ÊL

3
V*EEEE) space of space-like quantum densities

„¨ ˆ „æ¢Ã̈ space-time quantum half-density

„∆ ˆ „æ¢Ã∆ space-like quantum half-density

i : QQQQ é VQQQQ = QQQQ
E̊EEE
QQQQ Liouville vertical vector field

QQQQŸ ˆ J
1
EEEE
E̊EEE
QQQQ é J

1
EEEE pullback of the quantum bundle

c:QQQQŸéT*J
1
EEEEÆ
J
1
EEEE
TQQQQŸ quantum connection
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R
c
= i m

hhhh
Òæi curvature of the quantum connection

ı„ covariant differential of a quantum section

êı#„:J
1
EEEEéA*ÆVEEEEÆ

EEEE
QQQQ space-like covariant differential of a quantum section

ôı„:J
1
EEEEéT*ÆQQQQ time-like covariant differential of a quantum section

Quantum dynamics

L
„
:EEEEéA3/2ÆL

4
T*EEEE quantum Lagrangian along a quantum section

L:J
1
QQQQéA3/2ÆL

4
T*EEEE quantum Lagrangian

V
QQQQ
L :J

1
QQQQéA3/2ÆL

3
T*EEEEÆ

EEEE
QQQQ* quantum momentum

p:J
1
QQQQéT*ÆTEEEEÆ

EEEE
QQQQ quantum momentum

∏:J
1
QQQQéL

4
T*QQQQ quantum momentum

E:J
2
QQQQéA3/2ÆL

5
T*QQQQ Euler-Lagrange form

* êE#:J
2
QQQQ é T*ÆQQQQ Euler-Lagrange fibred morphism

* êE#©j
2
„ = 0 Schrödinger equation

j
„
:EEEEéA3/2ÆL

3
T*EEEE probability current

Quantum operators

Ò
††††
@:T

††††
(J
1
EEEE)é T

˙
*(J

1
EEEE) Hamiltonian isomorphism

F(J
1
EEEE)éT

††††
(J
1
EEEE):f´f

††††
# Hamiltonian lift

{f',f"} Poisson bracket

[f', f"] Lie bracket of quantisable functions

f#
††††
:J
1
EEEEéTJ

1
EEEE Hamiltonian lift of the function f$F(J

1
EEEE)

fH:EEEEéTEEEE Hamiltonian lift of the quantisable function f$Q(J
1
EEEE)

XŸ:QQQQŸéTQQQQŸ upper quantum vector field

XŸ
f,††††
:QQQQŸéTQQQQŸ upper q. v. f. associated with f and ††††
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X
f
:QQQQéTQQQQ q. v. f. associated with the quantisable function f$Q(J

1
EEEE)

[X
f'
, X

f"
] Lie bracket of quantum vector fields

X.s:BBBBéFFFF Lie derivative of the section s with respect to the vector field X

Y
f
ˆ i X

f
. quantum Lie operator associated with the quantisable function f

[Y
f'
, Y

f"
] bracket of quantum Lie operators

Quantum system

FFFF ä
q
EEEE ä

p
BBBB double fibred manifold

(ß:SFFFFéBBBB, ™) system of the double fibred manifold FFFFéEEEEéBBBB

™:SFFFF
B̊BBB
EEEEéFFFF evaluation fibred morphism

â„:BBBBéSFFFF section associated with „:EEEEéFFFF

TSFFFF tangent space of the set SFFFF

âT„:TBBBBéTSFFFF section associated with T„:TEEEEéTFFFF

âk:SFFFFéT*BBBBÆTSFFFF connection on the fibred set SFFFFéBBBB

k(„):TEEEEéTFFFF fibred morphism associated with k and „

k
µ
a(„):EEEEé· components of the connection k

ıâk
â„:BBBBéT*BBBBÆVSFFFF covariant differential of â„ with respect to k

(ß:SQQQQ∆éTTTT, ™) system of space-like quantum half-densities

hâ : ScQQQQ∆
B̊BBB
ScQQQQ∆ é A

3/2ÆÛ Hermitian product

HQQQQ∆éTTTT Hilbert quantum bundle

S:S(QQQQ)éS(T*ÆQQQQ) Schrödinger operator

S∆:S(QQQQ∆)éS(T*ÆQQQQ∆) Schrödinger operator

âk:SQQQQ∆éT*ÆTSQQQQ∆ Schrödinger connection

âY
f
:SQQQQ∆éSQQQQ∆SQQQQ∆éSQQQQ∆ operator associated with the q. f. f$Q(J

1
EEEE)

âÚ
f
:SQQQQ∆éSQQQQ∆ quantum operator associated with the q. f. f$Q(J

1
EEEE)
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Coordinates

(x0,yi) fibred chart of EEEE

(x0,yi, îx0, îyi) fibred chart of TEEEE

(x0,yi,y
0
i) fibred chart of J

1
EEEE

(x0,yi,y
0
i, îx0, îyi, îy

0
i) fibred chart of TJ

1
EEEE

(Ù
0
,Ù
i
) local base of TEEEE

(Ù
0
,Ù
i
,Ùî
0
,Ùî
i
) local base of TTEEEE

(Ù
0
,Ù
i
,Ù

i
0) local base of J

1
EEEE

(d0,di) local base of T*EEEE

(d0,di,d
î
0,d

î
i) local base of T*TEEEE

(d0,di,d
0
i) local base of T*J

1
EEEE

d
0
ˆ Ù

0
_ y

0
i Ù

i
component of the contact form

ªi ˆ di - y
0
i d0 component of the contact form

Í
È
i ˆ Í

È
i
h
y
0
h _ Í

È
i
©

components of the space-time connection Í

K
È
i ˆ K

È
i
h
îyh _ K

È
i
0
îx0 components of the space-time connection K

˙i ˆ Í
h
i
k
y
0
h y

0
k _ 2 Í

h
i
©
y
0
h _ Í

0
i
©

components of the connection ˙

c
0
= - H/h components of the quantum connection

c
j
= p

j
/h components of the quantum connection

c
0
j
= 0 components of the quantum connection
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IV.2 - Analytic index

(absolute) acceleration: § I.2.6
(absolute) motion: § I.1.1
(absolute) velocity: § I.1.1
absolute time: § I.1.1
absolute time function: § I.1.1
adapted chart: § I.1.1
background connection: § I.6.1
charge: § I.3.1
charge density: § I.4.5
classical constant of motion: § I.5.1
classical total objects: § I.3.2
classical total energy tensor: § I.4.5
classical functions quantistically gauged: § II.1.4
classical Lagrangian function: § I.5.2
classical Hamiltonian function: § I.5.2
classical momentum form: § I.5.2
codifferential: § I.2.4
connection on a system: § II.5.3
connection of order k on a system: § II.5.3
contact 2-form: § I.2.5
contact structure of jets: § I.1.1
Einstein equation: § I.4.7
electric field: § I.3.1
electromagnetic field: § I.3.1
electromagnetic soldering form: § I.3.2
Feynmann amplitude: § II.6.5
fibred set: § II.5.1
first field equation: § I.4.1
frame of reference: § I.1.1
generalised Newton law of motion: § I.5.1
generalised Schrödinger equation: § II.2.3
gravitational connection: § I.3.1
gravitational coupling constant: § I.1.3
Hamiltonian lift: § II.3.1
Hermitian connection: § II.1.3
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Hermitian vector field: § II.3.2
Hilbert quantum bundle: § II.6.1
inertial observer: § I.2.2
kinetic energy function: § I.5.2
Lie operator: § II.4.1
linear connection on a system: § II.5.3
Liouville vector fields: § II.1.1
Lorentz force: § I.3.2
mass: § I.3.1
mass density: § I.4.5
metrical space-time connection: § I.2.3
momentum density: § I.4.5
multi-objects: § I.7.1
Newton law of gravitation: § I.6.2
Newtonian chart: § I.6.2
Newtonian connection: § I.6.2
Newtonian observer: § I.6.2
observed velocity: § I.1.1
observer: § I.1.1
Planck constant: § II.1.4
Poisson Lie bracket: § II.3.1
positive semi-vector bundle: § III.1.3
positive semi-vector space: § III.1.3
pre-Hilbert quantum bundle: § II.6.1
pre-quantum system: § II.6.1
projectability criterion: § II.1.6
quantisable functions: § II.3.1
quantum bundle: § II.1.1
quantum connection: § II.1.4
quantum covariant differential: § II.1.5
quantum gauge: § II.1.1
quantum Lagrangian: § II.2.1
quantum Laplacian: § II.1.5
quantum Lie operator: § II.4.2
quantum momentum: § II.2.2
quantum observed covariant differential: § II.1.5
quantum observed Laplacian: § II.1.5
quantum observed space-like differential: § II.1.5
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quantum observed time-like differential: § II.1.5
quantum operator: § II.6.3
quantum probability current: § II.2.4
quantum vector field: § II.3.2
Schrödinger operator: § II.2.3
second field equation: § I.4.5
second order connection: § I.2.5
semi-vector bundle: § III.1.3
semi-vector space: § III.1.3
smooth space in the sense of Frölicher: § II.5.1
space of charges: § I.3.1
space of masses: § I.3.1
space-like volume form: § I.1.2
space-like quantum covariant differentials: § II.1.5
space-like half-densities quantum bundle: § II.1.2
space-time: § I.1.1
space-time volume form: § I.1.2
space-time connection: § I.2.1
space-time half-densities quantum bundle: § II.1.2
special space-time: § I.6.3
special relativistic Galilei case: § I.6.3
system: § II.5.1
system of connections: § II.1.3
tangent prolongation of a section: § II.5.2
tangent space of a system: § II.5.2
time component of a quantisable function: § II.3.1
time unit of measurement: § I.1.1
time-like quantum covariant differential: § II.1.5
universal connection: § II.1.3
universal curvature: § II.1.3
upper quantum vector field: § II.3.2
vertical Riemannian metric: § I.1.2
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