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Abstract
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to external classical gravitational and electromagnetic fields in a curved space-time with ahsolute time.
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First, we study the Galilei general relativistic space-time, as classical background; then, we develop the
quantum theory.
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erence.
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Preface

The book 1s addressed to a double audience: to mathematicians who at
some point were attracted by the subject of quantum mechanics, but soon
were repelled because they could not find a geometrical door to this magic
palace. It is also addressed to those physicists who knowing all kinds of culi-
nary recipes of how to compute quantum mechanical effects are still unsat-
isfied and thirsty of knowing some solid and primary mathematical principles
that can be used to derive or to justify some of their successful formulae.

In fact the book is more than just a compendium building from scratch ge-
ometrical foundation for Galileian relativity, wave functions, quantisation
and Schrodinger equation. It 1s also an invitation to a further research.

The greatest unsolved problem of the XX-th century physics Is as old as
the famous Finstein-Bohr debate. There were two main revolutions In
physics witnessed by this century: relativity and quantum theory. Both were
radical enough to change not only physics but also our entire Weltanschauung.
After the great drama of Einstein's failure to reduce quantum theory to a
unified non-linear classical field theory, after so many and so spectacular
successes both of relativity and quantum theory, we are tempted to believe
that what we need i1s a union of the two opposites rather than a reduction of
one to the other. It 1s with this in mind that we have undertaken the research
whose fruits we want to share in this book. We hope that perhaps our way of
approaching quantum mechanics geometrically will trigger new ideas in some
readers, and clearly new ideas are necessary to catalyse the fruitful chemi-
cal reaction between so different components.

We would like to point out the difference between our approach and that of
geometric quantisation. Geometrical quantisation method is a powerful ma-
chine feeding 1tself on symplectic manifolds and their polarisations. So, 1t
has a different scope than our approach because we are concerned with
structures related to space-time. On the other hand "time" i1s merely a pa-
rameter in geometrical quantisation; 1t i1s never treated fully geometrically.
Thus it i1s difficult or impossible to discuss in that framework changes of



states corresponding to accelerated observers. Our approach stresses the
full covariance from the very beginning, and covariance proves to be a
powerful guiding principle.

We thank our colleagues for their interest, questions, comments and criti-
cism; they allowed us to shape our research domain.

Thanks are due to Daniel Canarutto, Antonio Cassa, Christian Duval,
Riccardo Giachetti, Josef Janyska, Jerzy Kijowski, Ivan Kolar, Luca Lusanna,
Peter Michor, Michele Modugno, Zbignew Oziewicz, Antonio Pérez-Rendon,
Cesare Reina and Andrze] Trautman for stimulating discussions. Thanks are
also due to Raffaele Vitolo for careful reading and commenting through the
manuscript.

The book came out as a result of several years of collaboration that was
supported by Italian MURST (by national and local funds) and GNFM of
Consiglio Nazionale delle Ricerche and by Polish KBN. We acknowledge their
kind support with gratitude.

Florence, 31 December 1993

Arkadiusz Jadczyk, Marco Modugno
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4 A. JADCZYK, M. MODUGNO

La filosofia e scritta in questo grandissimo libro che conti-
nuamente ci sta aperto innanzi agli occhi (io dico 1'universo),
ma non si pud intendere se prima non si impara a intender la
lingua, e conoscer i caratteri, ne quali & scritto. Egli € scritto
in lingua matematica, e i caratteri son triangoli, cerchi ed al-
tre figure geometriche, senza i quali mezzi & impossibile in-
tenderne umanamente parola; senza questi ¢ un aggirarsi vana-
mente per un oscuro labirinto.

G. Galilei, VI, 232, Tl Saggiatore, 1623.

0 - INTRODUCTION

0.1. Aims

The standard quantum mechanics (see, for instance, [Me], [Sk], [Sc]) is
quite well established and tested, so that it must be taken as touchstone for
any further development.

The supporting framework of this theory is the standard flat Galilel space-
time. Moreover, an Inertial frame of reference is usually assumed and the
implicit covariance of the theory is achieved by imposing a suitable transfor-
mation under the action of the Galilel group.

As 1t 1s well known, the standard quantum mechanics conflicts with the
classical theory of curved space-time and gravitational field. This great
problem 1s still open, In spite of several important attempts. We share the
opinion that the first step aimed at approaching the solution should be a
general relativistic formulation of quantum mechanics interacting with a
given classical gravitational field in a curved space-time.

In the physical literature, the principle of covariance is mostly formulated
in terms of representations. This viewpoint is very powerful and has been
largely successful. Moreover, it is related to the view of geometry based on
the famous Klein's programme, hence to the theories of representation of
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groups and Lie algebras. However, we think that the modern developments of
geometry cannot be exhausted by this approach. Indeed, we think that a di-
rect approach to geometrical structures in terms of Intrinsic algebraic
structures, operators and functors is quite interesting and might deserve a
primitive consideration. Then, the groups of automorphisms of such struc-
tures arise subsequently. Moreover, If the developments of the primitive
structures are derived intrinsically, through functorial methods, then the in-
variance of the theory under the action of the automorphism groups is auto-
matic. So, we think that, when we know the basic structures of our physical
model, 1t 1s worthwhile following an intrinsic, 1.e. manifestly covariant, ap-
proach. Indeed, in the cases when we know both an intrinsic formulation of a
physical theory and a formulation via representations, the first one appears
to be simpler and neater. Just to fix the ideas, consider a very simple exam-
ple and refer to the formulations of electromagnetic field through the modern
intrinsic language of exterior differential calculus and the older language
based on components and the action of the Lorentz group. Actually, 1t is a
pity that an intrinsic geometrical language has not yet been achieved for all
domains that occur in physics. On the other hand, the method of representa-
tions remains essential for the study of classifications.

So, the goal of our paper i1s a general relativistic quantum mechanics. As
usual, by 'general relativistic’ we mean '‘covariant’ with respect to the change
of frames of reference (observers and units of measurement) and charts.
Even more, we look for an explicitly covariant formulation based on intrinsic
structures. The reader will judge if such an approach is neat and heuristically
valuable.

A general relativistic quantum mechanics demands a general relativistic
classical space-time as necessary support. Certainly, the most natural and
Interesting programme would be to study quantum mechanics on an Einstein
general relativistic back-ground, hence on a curved space-time equipped with
a Lorentz metric. On the other hand, it is possible to develop a general rela-
tivistic classical theory, based on a space-time fibred over absolute time and
equipped with a vertical Riemannian metric. This theory - which will be re-
ferred to as Galilelan - 1s mathematically rigorous and self-contained and
provides a description of physical phenomena with a good approximation
(with respect to the corresponding Finstein theory) in presence of low ve-
locities and weak gravitational field. The Galilel classical mechanics has been
studied by several authors (for instance, see [Ca], [Dv1], [Dv2], [DBKP], [DGH],
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[DH], [Eh], [Ha], [Ku], [Ke1], [Ke2], [Ku], [Ki1], [Ki2], [Ki3], [Ki4], [KD], [LBL],
[Le], [Ma], [Mot], [P1], [Pr1], [Pr2], [SP], [Tr1], [Tr2], [Tu]); nevertheless, it is
not common belief that many features, which are usually attached exclu-
sively to Einstein general relativity, are also present in the Galilel theory.
Then, in order to avoid confusion, we stress the difference between the
general validity of notions such as general relativity, curved space-time
manifold, accelerated observers, equivalence principle and so on and their
possible specifications into an Einstein or a Galilel theory. In spite of its
weaker physical validity, the Galilel theory has some advantages due to its
simplicity. Hence, we found worth starting our approach to quantum mechan-
ics from the Galilei case. Later we shall apply to the Finstein case what we
have learned In the Galilel case. On the other hand, this study can be consid-
ered not only as an useful exercise in view of further developments, but also
physically interesting by itself.

0.2. Summary

In order to help the reader to get a quick synthesis of our approach, we
sketch the main ideas and steps.

0.2.1. Classical theory

We assume the classical space-time to be a 4-dimensional oriented fibred
manifold (see § I11.1)

t.:F—>T

over a 1-dimensional oriented affine space associated with the vector space
T. The typical space-time chart 1s denoted by (x?, v') and the corresponding

. . 0
time unit of measurement by uOETT oru €m*.

We obtain the scaled time form
dt:E—~T®T*E,
with coordinate expression

dt = uo®d0.

We deal with the jet space (see § I11.53)
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JIE%E
and the natural complementary contact maps
A:J1Eﬂr*®TE 3:J1E%T*E(§VE,
with coordinate expressions

.0 .0 i ol _ i_ 0 40
A=uen =u ®(ao+)roal) 8—3®ai—(d )Od)®ai.

A classical (absolute) motion is defined to be a section
s:T—E
and its (absolute) velocity is the jet prolongation
j1s:T%J1E C T*®TE,
with coordinate expression
j1s = u%@((boos + aosi (aios)).
An observer 1s defined to be a section
o E— J1E C T*®TE

and the observed velocity of the motion s 1s the vertical section
Vs = jls -oos : T — T*OVE,
with coordinate expression in an adapted chart
_ .0
Vs=0,su ®(al.os).

[{2@}]

Vertical restrictions are denoted by
We assume space-time to be equipped with a scaled vertical Riemannian
metric

g E->AQ(VFEQV*E),
E

with coordinate expression
g=8, ded g, € JM(E,AQR).

The metric and the time form, along with a choice of the orientation, yield
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the scaled space-time and space-like volume forms
OE(TOAY)OATHE n:E%Az”’Q@f\\w’*E,
with coordinate expressions
v = \/@ uO®dOAdlAdzAd5 n = \/@ d'nd*nd’.
Moreover, the metric yields the vertical Riemannian connection

#:VE->VF¥EQVVE
VE

on the fibres of space time.

There 1s a natural bijection between the dt-preserving torsion free linear
connections

K. TE-T*EQTTE
TE
on the vector bundle TE—F and the torsion free affine connections

I'J E-T*EQTJE
1 JE 1

on the affine bundle J E—E, with coordinate expressions

- A L i .0 . g i . h ] 0
kK=d ®(a>\ ’ (Ax;h yor K'»\ 0 ) ai) I=d ®(ax ’ (F_}\h Yo ¥ F;\ o) ai)

Then, each of such equivalent connections, will be called a space-time
connection.

A space-time connection K yields, by vertical restriction, the space-time
vertical connection

K:VE->V*EQVVE
VE

on the fibres of space-time, with coordinate expression
oG] i hoy
K=d ®(aj <K/ 7).

If T i1s a space-time connection and o an observer, then we obtain the co-
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variant differential
Vo:E—=T*®(T*EQVE).
E

Then, the vertical metric and the observer itself yield the splitting of Vo
into 1ts symmetrical and anti-symmetrical components

Z:E%(T*@A)@%T*E CI):E%(T*@A)@;\T*E,
with coordinate expressions
Si= -2 Lz(’@(rojo d’val + L d'val) D=2 uo®(rojc d’ral + Fie d' rd’)
The connection I' 1s characterised by K, S and 0.

A space-time connection K 1s said to be metrical if it preserves the con-
travariant vertical metric, 1.e. if

VKg‘z 0.

We cannot fully apply the methods of Riemannian geometry, because the
metric g 1s degenerate.
A space-time connection T yields the connection

¢ =a-l:JE—T'OTJE

on the fibred manifold J1E%T and the scaled 2-form

2
Qi=v S JE — (TTOA)OAT I E
on the manifold J E, with coordinate expressions

_ .0 o i h _k i h { 0
¥ =u @(ao Y, 0,7 (I yviy +21 " vy + I, ) ai)

hk-0-0 ho+o
QO = 0 (dl _ idO T ] Sh) 3/
S &ueldy Ty nY Y

They are saild to be, respectively, the second order connection and the
contact 2-form assoclated with T.
These objects fulfill the equality

-8 =0;

moreover
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thQAQAQ:JlE%(TTW@AZ)@ AT*J1E
1S a scaled volume form on J,IE,' furthermore, for each observer o, we obtain

D =20%Q,

hence, we say that @ is the observed contact 2-form.
On the other hand, y and Q2 characterise I itself.

We assume space-time to be equipped with a space-time connection

I%JE-T*EQTJE
1 JE 1

and a scaled 2-form

2
F:E—=BOAT™E,

representing the gravitational connection and the electromagnetic field.

The gravitational connection and the electromagnetic field can be coupled
In a natural way through a constant ¢, which can be either the square root
VK of the gravitational constant, or the ratio g/m of a mass meM and a
charge €0 of a given particle: the coupled objects will be called total. In
practice, we are concerned with ¢ = vk only in the context of the second
gravitational field equation and in all other cases we consider ¢ = g/m. So,
we obtain the total contact 2-form

Q= Qf v Q° = Q%écF,
the total second order connection
v o=yt
and the total space-time connection
r=T4+T°,
where
" J E-THO(THOVE)

turns out to be the Lorentz force and
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Fe:J1E%T*E®(T*®\~’E)
E

a certain soldering form assoclated canonically with F, with coordinate ex-
pressions

e _ l i h 0,0 e 1 i _h ! 0 4] 0
C=e () F y)uleo I _:c((Fh).U+2FU)d +Fj.d)®ai.

This splitting will be reflected 1n all other objects derived from the total
connection.

In order to couple the total connection with the vertical metric, we postu-
late the first field equation : for each charge and mass, the total contact 2-
form is closed, 1.e.

d2 = 0.

This equation expresses, In a compact way, a large number of important
conditions. Namely, the first field equation is equivalent to the fact that the
total connection 1s metrical and the total curvature tensor fulfills the stan-
dard symmetry properties. Moreover, the first field equation is equivalent to

the fact that the vertical total connection K coincides with the vertical

Riemannian connection » and, for each observer o, S is given by the time
derivative of the metric and @ is closed. Moreover, in virtue of the arbitrari-
ness of the mass and the charge, the first field equation implies the first
Maxwell equation.

In order to couple the total connection with the matter source, we postu-
late the second gravitational and electromagnetic field equations :

rh = 1t divi F = .

We restrict ourselves to consider a charged incoherent fluid, just as an ex-
ample; these equations yield an Einstein type equation for the total connec-
tion

The only observer independent way of expressing the generalised New ton
law of motion of a classical particle, under the action of the gravitational
and electromagnetic fields, 1s to assume that the covariant differential of
the motion with respect to the second order total connection y vanishes



12 A. ADCZYK, M. MODUGNO

V(les =0.

We stress that the standard Hamiltonian and Lagrangian approaches to
classical dynamics depend on the choice of an observer in an essential way.
Hence, they are not suitable for a general relativistic formulation of classical
mechanics.

Under reasonable hypothesis, there exist background affine structures on
space-time, which allow us to re-interpret the second field equation as the
Newton law of gravitation.

In particular, the special relativistic case 1s obtained by considering an
affine space-time with vanishing energy tensor of matter.

By means of a slight modification of the above scheme we can formulate
the n-body field theory and mechanics on a curved Galilel space-time. In par-
ticular, the standard results for the two-body classical mechanics can be re-
covered as a special solution of our equations.

0.2.2. Quantum theory

We assume the gquantum bundle to be a line-bundle
T:Q@—F

over space-time. The quantum histories are described by the quantum sec-
tions

v F—Q.

In some respects, it is useful to regard a quantum section ¥ as a quantum
density

U= eV  E— Q"

The typical normal chart of @ will be denoted by () and the corresponding
base by (b); accordingly, we write

v =g b, g = zoW,

Then, we assume the gquantum connection to be a Hermitian universal con-
nection

uQ'-T*JEQTQ'
U E
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on the pullback quantum bundle
Tl =
T Q' = JIEEX_Q - J1E,

whose curvature is proportional to the classical total contact 2-form, ac-
cording to the formula

. m

°
quz;Q@n Q' — /\T*J1E®QT.

J,E
The universal connection u can be naturally regarded as a system of
Hermitian connections

. *
$JEQ@—T EOTQ

on the bundle m:Q —~FE, whose curvature 1s proportional to the observed total
contact 2-form @, for each observer o, according to the formula

1.
B, =1
So 2

~

S oen:Q & /Z\T*E(?Q

The quantum connection 1s essentially our unique structure postulated for
quantum mechanics; all other structures and objects will be derived from
this In a natural way.

We prove that the coordinate expression of the quantum connection, is of
the type

u =-H/h u.=p/h q’ = 0,
0 J J J

where H and p are the classical Hamiltonian and momentum assoclated with
the frame of reference attached to the chosen chart, with a suitable gauge
of the total potential

a:E—-(T*QA)QT*E

of the closed 2-form ®, which refers both to the gravitational and electro-
magnetic filelds.
The composition

r-u:Q'-Trerq’

turns out to be a connection on the fibred manifold "' —T, whose coordinate
expression is of the type
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¥ -4 = uo®(ao + yé 0.+ ‘! a? +iL/fin),

where L 1s the classical Lagrangian assoclated with the frame of reference
attached to the chosen chart.

If ¥:E—@Q is a quantum section, then we obtain the quantum covariant
differential

V V:J E~T*EQQ,
U 1 F
with coordinate expression

V= (¢ + i H/E @) d’ + (O -ip/tig) a')ob.

The quantum connection lives on the pull-back quantum bundle QT%J1E (i.e.

is parametrised by all observers), but we wish to derive further physical ob-
jects living on the quantum bundle @ —E (i.e. observer independent objects).
We shall achieve them by means of a principle of projectability, which turns
out to be our way to implement the principle of general relativity in the
framework of quantum mechanics.

By means of the principle of projectability, we can exhibit a distinguished
quantum Lagrangian

5/2 o F oy
2:J QA" "ONTE,
with coordinate expression
£o=(-2g"25800-i(0,.3¢-30,.9)+vid 0y -Tog)+
T2 m i Ji 0 0 i i

m
4+ —

—(2a, -a a) o o) ulev.

The quantum Lagrangian yields the quantum 4-momentum
p:J QT *OTEQQ,
1 E
with coordinate expression

_ 0 i _om
p, =u 2w 2,1 -8 (ajs.p L a w) ai)®b.
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This can also be obtailned directly from the contact structure of space-
time and the vertical quantum covariant differential, by means of the princi-
ple of projectability.

Then, the Euler-Lagrange equation assoclated with the quantum Lagranglan
turns out to be the generalised Schrodinger equation

+E£7:,QT70Q,
with coordinate expression

%‘é# _Q(I'a +ECI +1I‘W +
L o T T ¥ Ty Vgl ¢

% .. . . 2
t o (g" (aij"P - 21 %ai ajr.p - (i %aia./ + ';izai a']_) Q) +
> (g Vgl
vz 7T _;m
+ x/|g’| (aj,:.p L a; :.p))) b.

This can also be obtained directly from the time-like quantum covariant
differential of the quantum section and the quantum covariant codifferential
of the quantum 4-momentum, by means of the principle of projectability.

The invariance of the quantum Lagrangian with respect to the group U(1)
yields a conserved probability 4-current

5 5
j:J1Q%A3/‘®/\T*E,

with coordinate expression

jy = Vgl (¢ wdhd®d” +
f (1) i g (0,9 -0 9 @) -d" g ) ddd"nd).

In view of quantum operators, we need further preliminary results on
classical mechanics.
The contact 2-form

m 2
—QJE->NANT*JE
# 1 1
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yvields a natural Hamiltonian lift of the classical functions fJE-R into

vector fields
f=:J E-TJE
T 1 1
with a given time-component T:J E—T. We have the coordinate expression

4 o
f’z‘ =T (aO + \[I) ai + b/l ai) +

h
T m

A CEN ER CH NGRS U ENOER)
Moreover, such a vector field is projectable over a vector field
M E~TE
iIf and only if the function f i1s quadratic with respect to the fibre of J E—E

and 1ts second fibre derivative 1s proportional to the metric g through the
coefficient T. The coordinate expression of such a function is of the type

nom

f = f Egl] "VE) ~’V.(]] + f, )’,(I] + foﬁ f”)fojfiESC(E)‘

These functions are called quantisable functions and we prove that they
constitute naturally a Lie algebra. The coordinate expression of the bracket
1S quite long.

The classical time, position, momentum, Hamiltonian and Lagrangian func-
tions are quantisable functions.

Then, we consider the vector fields
X:@'-rq’
on the pull-back quantum bundle, with a given time-component T J E-T,
which preserve the quantum structures. We prove that they are of the type

Xt = q(ff) +iuf,

/.t
where f:J E—R 1s a function.

Then, we prove that the vector field XTf . 1s projectable over a vector field
Xf:Q%TQ

1If and only 1If the corresponding function f 1s a quantisable function and the
time-component of the vector field coincides with the time-component of
the quantisable function. The coordinate expression of such a vector field 1s
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given by the important formula

h

- pl _hL S LN _opl
Af_f % nlfal'+l(ﬁfa0 fai+fo)l/l'

These projected vector fields Xf are called quantum vector fields.

Moreover, we prove that they constitute a Lie algebra and that the map

Y

1s a Lie algebra isomorphism.

The quantum vector fields act naturally on the quantum densities ¥" as
quantum Lie operators

according to the coordinate expression

ng”)=

h
m

SE(f VOt VIRt i Wt O - o) e beVatidthd,

Therefore, we obtain a Lie algebra i1somorphism

Y
fey,

between the quantisable functions and the quantum Lie operators.

In particular, in the special Galilel case, the classical Hamiltonlan corre-
sponds to the time-derivative and the affine quantisable functions corre-
spond to the standard quantum operators.

So far, the quantum theory has been developed on the finite dimensional
bundle @ ~FE over space-time. Next, in order to achieve the Hilbert structure
in the quantum framework, we derive in a natural way an infinite dimensional

Hilbert bundle HQ" T over time.
Namely, we consider the infinite dimensional fibred set
5:5Q"~T

constituted by the tube sections of the double fibred manifold " >E—T and
obtain a natural bijection
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Uy

between the sections ¥ E—Q" and " T —SQ".
Then, we define a smooth structure on SQ"—T, according to the Frolicher's
definition of smoothness; hence, we are able to construct the tangent space

and define the connections on the fibred set SQ"—T.
The above constructions are compatible with any subsheaf of tube sections

of the double fibred manifold @"—~E—T; in particular, we are interested to
the tube sections with space-like compact support. They yield the fibred set

59:8°Q"—~T.

Moreover, we prove that the Schrodinger equation can be regarded as the
equation

V. xp” 0,
where
k:sQ"—T*OrsQ"

is a symmetric connection on the infinite dimensional bundle S°Q"—T , which
1s called the Schrodinger connection, and has the coordinate expression

ko(llfn) = (21; O + fa oM ulebe Vd' d*rd’.

There is a unique natural way to obtain a fibred morphism S°Q@"—5°Q" over

T (and not only a differential operator acting on the sections T Q") from
any quantisable function. Namely, the quantum operator associated with the
quantisable function f 1s defined to be the symmetric fibred morphism

éf:S(’)Q“%S(”QY1
induced by the sheaf morphism

E =Y -if'aV.
pEYp Ve

with coordinate expression

E (v =
A
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_ n, 1 n_h ) n_h o v o B Yo om 152 3
—(f();p +12(aof mal.f)np Vi fzmAgp)b@@«/dAdAd.
Thus, the above formula is our implementation of the principle of corre-
spondence, achieved In a pure geometrical way.
In particular, in the special Galilel case, these operators and thelr commu-

tators correspond to the standard ones.

Eventually, the fibred set S°Q"—T yields the quantum Hilbert bundle
HQ"“—T,

by the completion procedure. This bundle will carry the standard probabilistic
interpretation of quantum mechanics. We stress that we do not have a unique
Hilbert space, but a Hilbert bundle over time. Indeed, a unique Hilbert space
would be 1n conflict with the principle of relativity. On the other hand, a
global observer yields an isometry between the fibres of the quantum Hilbert
bundle.

The Feynmann amplitudes arise In a natural and nice way 1n our frame-
work.

By means of a slight modification of the above scheme we can formulate
the n-body quantum mechanics on a curved Galilel space-time. In particular,
the standard results for the two-body quantum mechanics can be recovered
as a special solution of our equations.

0.3. Main features

The literature concerning classical Galilel general relativity and geometric
approaches to quantum mechanics 1s very extended.

We have been mainly influenced by the ideas due to E. Cartan (see [Ca]), C.
Duval (see [DBKP]), H. P. Kunzle (see [DBKP], [Kut], [Ku2], [Ku3]), E.
Prugovecki (see [Pr]) and A. Trautman (see [Tr1], [Tr2]) and by the scheme of
geometrical quantisation due to B. Kostant and J. M. Souriau (see [St], [Wo]).
Also the papers by F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D.
Sternheimer (see BFFLS]|), W. Pauli (see [P1]), H. D. Dombrowski and K.
Horneffer (see [DH]|), P. Havas (see [Ha]), X. Kenec (see [Kel], [Ke2]), C.
Kiefer and T.P. Singh (see [KS]), K. Kuchatl (see [Kul]), M. Le Bellac (see
[LBL]), J. M. Levy-Leblond (see [LBL], [Le]), L. Mangiarotti (see [Ma]), M.
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Modugno (see [Mo1]), E. Schmutzer and J. Plebanski (see [SP]) and W. M.
Tulezyjew (see [Tul) have been considered.

We omit a detailed comparison between the above literature and our paper,
because 1t would take too much space. Indeed, sometimes, such a comparison
turns out to be very hard because it i1s not possible to recover our intrinsic
and well defined spaces In other papers. We just say that our approach and
results seem to be original in several respects.

Our touchstone for quantum mechanics is the standard theory. Actually,
even If our scheme 1s quite far from the usual one, we stress that we do not
touch the standard probabilistic interpretation and, eventually, our concrete
results agree with the standard ones in the special Galilel case. So, our the-
ory can be regarded both as a generalisation of the standard theory (in order
to fulfill the principle of general relativity and to include the interaction with
a gravitational field on a curved space-time) and as a new heuristic language
(in view of further interpretations and developments).

All 1deas and developments are achieved In a fully geometrical way. All
formulas are expressed intrinsically and their coordinate or observer depen-
dent expressions are given as well.

As we have already largely discussed, groups have no direct role. On the
other hand we define carefully the geometrical structures of the fundamental
spaces and derive the physical theory from them. Of course, the transfor-
mation laws of the derived objects can also be checked directly.

We stress that the representations arising from our intrinsic methods are
not trivial and could not be guessed as consequence of standard procedures.
In particular, our implementation of the covariant principle of correspon-
dence seems to be a miracle due to these specific geometrical structures.

The principle of relativity is basically implemented by the fact that space-
time 1s a fibred manifold, without any distinguished trivialisation. Each
splitting of space-time is associated with an observer and no distinguished
observers are assumed. All subsequent structures must respect this original
feature. So, time cannot be just a trivial parameter, but the fibring over time
yields structures playing an important role in the theory.

The most usual (mostly Lagrangian or Hamiltonian) formulations of classi-
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cal mechanics are based on the vertical tangent or cotangent spaces, or on
the cotangent space of space-time. These approaches are related to a phi-
losophy, which is very far from ours; in fact, the final physical interpreta-
tion of these theories cannot be expressed In an observer independent way;
so, we disregard this viewpoint. Conversely, the approach based on the tan-
gent space of space-time Is manifestly observer independent, but 1t depends
on the choice of a time unit of measurement. Our approach is based on the jet
space, because this is the only way to obtain a formulation which is indepen-
dent of observers and units of measurement of time. Our choice ylelds 1m-
portant consequences both for the classical and quantum theories.

Another, typical feature of our formulation depends on the fundamental
role played by connections both in the classical and quantum theories. So, the
classical field theory and mechanics 1s based on the space-time connection;
moreover, we derive the quantum dynamics and operators from the quantum
connection.

We mostly deal with linear or affine connections, but we are also con-
cerned with notions and methods related to general connections (see [ MM],
[Mo2], [Mo3]). As it is well known, a general connection on a fibred manifold
1s defined as a section of the jet bundle; such a section can also be regarded,
equivalently, as a horizontal valued 1-form on the base space, or a vertical
valued 1-form on the total space. The first viewpoint is more suitable for its
relation with jets and the Frolicher-Nijenhuis bracket, while the second one
1Is more directly related to the covariant differential of forms. We refer to
the first viewpoint as the primitive one; for this reason, our coefficients of
the connections turn out to be the negatives of the standard ones.

It is well known that the differential calculus associated with a general
connection can be derived from the Frolicher-Nijenhuis graded Lie algebra of
tangent valued forms (see [ MM], [Mo2], [Mo3]); this calculus is simple and
more powerful than the standard one, even in the case of linear connections.
Therefore, we find it convenient to refer always to this general method.
Indeed, some steps of our theory require specifically notions of this general
calculus (see, for instance, the upper quantum vector fields, § 11.3.2).

Classical mechanics cannot be formulated by Hamiltonian or Lagrangian
approaches 1n an observer independent way. On the other hand, a classical
Hamiltonian (contact) formalism can be developed; however, it has no co-
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variant role in classical mechanics, but ylelds a fundamental link between
classical and quantum structures, with respect to the quantum connection
and quantum operators.

Some analogles between our approach and the geometrical quantisation
(see, for instance, [St], [Wo]) are evident; but also several important differ-
ences arise. The main source of differences 1Is again due to our requirement
of general relativistic covariance, hence to the role of time. In particular, we
are led to base the quantisation procedure on a contact 2-form; indeed the
symplectic structure of geometric quantisation is essentially vertical, hence
cannot have a relativistically covariant total role.

As the vertical metric is degenerate, the standard methods of Riemannian
geometry cannot be applied fully. However, the first field equation, based on
the closure of the contact 2-form, provides a compact way of expressing the
coupling between the vertical metric and the space-time connection, and
several other important equations as well.

The gravitational and electromagnetic coupling works well and consistently
in all respect, in the classical and quantum theories. This seems to be an
original aspect of our theory.

The Lie algebra of quantisable functions 1s new, as far as we know. It Is
one of the key points of the covariant principle of correspondence.

The coordinate expression of the generalised Schrodinger equation Is simi-
lar to the standard one in the flat case. For short, 1t replaces the wave
function with a wave density; but the difference is more subtle than it could
seem at a first insight.

We stress that, in the quantum theory, the total potential associated with
an observer cannot be split into its gravitational and electromagnetic compo-
nents.

The reader 1s only requested to have a standard knowledge of differential
geometry, general relativity and quantum mechanics. Besides that, the work
1s rather self-contained.

An appendix provides a quick outline of the basic notions on fibred mani-
folds, tangent and jet spaces, general connections and tangent valued forms,
which are traceable only In a specialised literature. These notions are neces-
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sary for a full understanding of all details of our treatment. However, we
stress that the reader, who does not like to spend too much time on an ab-
stract geometrical language, does not need to go thoroughly through this
subject: a glance will be sufficient for understanding the greatest part of the

paper.

0.4. Units of measurement

A further original feature of our formulation concerns the way we treat
the units of measurement, in order to emphasise, In a clear and rigorous
way, the independence of the theory from any choice of scales.

In fact, some physical objects (mass, charge, and so on) can be described
by elements of one dimensional vector spaces. Moreover, some other physical
objects (metric, electromagnetic field, and so on) can be described by sec-
tions of vector bundles, which can be identified with geometrical bundles up
to a scale factor. Furthermore, each frame of reference involves a time
scale.

Only ratios of two vectors of such a 1 dimensional vector space or of two
scale factors are numbers. Then, we are led to consider “semi-vector”

spaces over the “semi-field” R™ := {x€R | x,0} and define the dual of a semi-

vector space and the tensor products over R" of semi-vector Spaces. In par-
ticular, a vector space Is also a semi-vector space and the tensor product of
a semi-vector space with a vector space turns out to be a vector space. A
positive semi-vector space is defined to be a semi-vector space whose

scalar multiplication cannot be extended neither to R "U{0} nor to R.

When we are concerned with a 1-dimensional positive semi-vector space,
we often denote the duals of its elements as inverses and the tensor prod-
ucts of its elements with vectors as scalar products; in this way, we can
treat elements of 1-dimensional positive semi-vector spaces as they were
numbers. So, our practical formulas look like the standard ones in the physi-
cal literature.

We can also define the roots of 1-dimensional positive semi-vector spaces.

The half-densities can be obtained as a by-product of the above algebraic
scheme.

Thus, In our theory we obtain vector fields, forms, tensors and so on,
which are tensorialised with some scale factor belonging to a 1-dimensional
vector or positive semi-vector space. We stress that the usual differential
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operations, such as Lie derivative, exterior differential, covariant differen-
tial, and so on, can be naturally extended to the above scaled objects. We
shall perform these operations without any further warning.

0.5. Further developments

In the special relativistic Galilel case, our practical results agree with the
corresponding ones of standard quantum mechanics. For example, in this
case, the concrete computations concerning harmonic oscillator, hydrogen
atom and so on agree with the standard ones. Thus, unlike some other geo-
metrical approaches to quantum mechanics, nothing needs to be checked in
this direction. Nevertheless, a possible theoretical interest of our scheme
might be maintained also in the special relativistic case.

Therefore, in order to provide some new concrete quantum examples on an
effectively curved space-time, one has first to find non-trivial solutions of
the classical flelds.

Eventually, we observe that our theory can be also considered from an ex-
perimental viewpoint. In fact, some results could be checked in principle by
experiments. But a detailed analysis of this aspect is beyond the purpose of
the present work.

In a forthcoming paper we shall extend our approach, preserving the spirit
of the present work, in order to include spin. Moreover, we expect that our
methods be suitable for further extension to Einsteln general relativistic
space-time.
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| - THE CLASSICAL THEORY

The general relativistic quantum theory requires a general relativistic
classical space-time as support.

Therefore, the first part of the paper is devoted to a model of Galilel
curved space-time with absolute time. In this framework, we formulate
the dynamics of classical gravitational and electromagnetic fields and of a
classical test particle.

|.1 - Space-time

First, we introduce the space-time fibred manifold and 1ts space-like
metrical structure.

I.1.1. Space-time fibred manifold

In this section, we introduce the space-time fibred manifold and study
1ts tangent and jet prolongations. Moreover, we state our conventions
about coordinates.

ASSUMPTION C1. We assume space-time to be a 4-dimensional orientable
fibred manifold (see § I11.1)

t.:F—>T

over a 1-dimensional oriented affine space T, associated with the vector
space T. >
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REMARK I.1.1.1. Thus, we assume the absolute time T and the absolute
time function t. But we do not mention any “absolute space”, as we do not
assume any distinguished splitting of the space-time fibred manifold into a
product of time and space. Later, any choice of such a local splitting will be
associated with an observer; no distinguished observer is assumed. a

REMARK 1.1.1.2. The differential of the time function is the T-valued
form

dt:E—>TOT*E.

We shall be involved with the tangent space TE and the vertical subspace
VE; we recall the exact sequence of vector bundles over E (see 8§ 111.2)

0 V E -

The 1-jet space J E (see § II1.3) plays an important role in the classical

and quantum theories. We recall that JE—E 1s an affine bundle associated

with the vector bundle T*QVE—E.
We shall be involved with the canonical fibred morphisms over E (see

[Mo2])'
A:J1Eﬂr*®TE 3:J1E%T*E®VE,
E

which provide a natural splitting of the above exact sequence over J E (they

are quoted as the contact structure of jets). a
DEFINITION I.1.1.1. An (absolute) motion 1is defined to be a section
s:T—F
and its (absolute) velocity is defined to be its first jet prolongation

j1s:T%J1E. *

DEFINITION I.1.1.2. An observer 1s defined to be a section

o:E%J1E. +*

' a is the Cyrillic character corresponding to “d”.
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Thus, J1E can be considered as the target space both of the velocity of

particles and of observers.

REMARK I.1.1.3. Global observers exist, because of the affine structure
of J1E—>E.

Each observer o 1s nothing but a connection on the fibred manifold ¢:E—T
(see § I11.5). Hence, an observer o yields a splitting of the exact tangent se-
quence

where

v :TE > VE:X — X - dt(X)-o.

In other words, an observer o ylelds a splitting of the tangent bundle of
space-time into its “observed” time-like and space-like components

TE = (EX"JT)EX_\VV""E,
given by the two linear fibred projections over E
dt:TE—ExT v :-TE-VE.
Moreover, an observer o yields the translation fibred morphism over E
V :JE—>T'OVE: G5 -o0°5.

So, if s:T —E 1s a motion and o 1s an observer, then we define the observed
velocity to be the fibred morphism over s

Vs=Vojs:T —T‘QVE
[¢] o “1

and we obtain

] s=Vs+o0s. a
“1 o

A time unit of measurement 1s defined to be an oriented basis or 1ts dual
(see S 111.1)

uo€1T+ uleT* .
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A frame of reference 1s defined to be a pair (uo, 0), where u, 1S a time

unit of measurement and o an observer.

We denote the typical chart of E, adapted to the fibring, to a time unit of

measurement uOETF and to the space-time orientation, by

(x%, ).

The induced charts of TE, J1E and TJ1E are denoted by

0 o0 - 0 . . 0 . Ce0 g -
(X ))’,l;x, J)"'I)J (X ;)”'15)’8); (X J,)‘}IJ)”’(I);*X J)"'lj,yé)'

Moreover, the corresponding local bases of vector fields and 1-forms of E,
TE and J1E are denoted by

S 0 0 4 0 4 40 4 0 4 4
(aOJaI)J (aojaljaojal)) (aojalﬁal) (d Jd )J (d Jd Jd'Jd')J (d Jd JdD)J

Thus, by construction, we have
dtod =u t*u’ = ax’.
0 0
Moreover, we can write
a? =u's al..

In general, vertical restrictions will be denoted by * *. In particular, the
local base of vertical 1-forms of E will be denoted by (d).

Greek indices A, y, .. run from 0 to 3, Latin indices i,j,h,k, .. run from 1 to
123

53 and capital Latin indices A, B, ... span the values 0, 1,2,5,0,0,0

The coordinate expressions of dt, n and $ are

dt = u0®dx0

A = uo®ao g = 3’7®ai,

with

The coordinate expression of the absolute velocity of a motion s is



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS 29

.0 i
IS =u ®((aoos +0,8 (aios)).
Each chart (,X'O,)f'i) determines the local observer
0 = u“®a0 - F — T*OTE,

with coordinate expression (in the same chart) oé = 0. This chart i1s said to

be adapted to o. Conversely, each observer admits many adapted charts.
Let o be an observer and let us refer to adapted coordinates. Then, we
obtain the following coordinate expressions

v =d®o. v =y oo ;
[¢] [ [¢] v 0 [

moreover if s:T —FE 1s a motion, then the coordinate expression of the ob-
served velocity Is

vVs=0s u'®o.
0 0 1

[.1.2. Vertical metric

In this section, we introduce the space-time metric and study the main
related structures.

A SSUMPTION C2. We assume space-time to be equipped with a scaled

*vertical Riemannian metric
g:EaA@(\,ff"*E%v*E),
where A is a 1-dimensional positive semi-vector space (see § I11.1.3). >
Thus, A represents the space of area units.

We can also regard g as a degenerate 4-dimensional metric of signature
(0,3) by considering the associated contravariant tensor

The metrical linear fibred i1somorphism and its inverse will be denoted by

9 .
Here and later, “scaled” means “defined up to a scale factor”.
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grVE->AOV*E g7 VYE->ATOVE.
The coordinate expressions of g and g are
g=g,dod g=¢g"209
with
g;; € AM(E,AOR) g/ € M(E,AFOR).
REMARK [.1.2.1. The metric, the time-fibring and the choice of an orien-

tation of the manifold E yield a space-time and a space-like scaled volume
form

- 4
VE—(TOA”*)OAT*E WE->A” 2OAVHE,
Then, we obtain the dual elements
~ 5/25 o & _ 5/2 0.
VE=(T*®A* " )OATE NE—-A*""®AVE.

We have the coordinate expressions

v = \/Tg“l u0®d0Ad1Ad2Ad5 n = \/@ &1AEZSA&5
U u ®a 8 8 8 n L O AD_AD
A A A = —F— A A B
¢Ig’| Vigl Ttz s
where
gl =det (g,) € M(E,A”). =

REMARK [.1.2.2. The metric g yields the Riemannian connection on the fi-
bres of t:E—T, which can be regarded as the section

©WVE-V*EQVVE,
VE

with coordinate expression
x—d'@(a +M, ’73)

where
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]

_ 1 _
e = 28 (ahg Jk ’ akg Jh ajg’ hkf)' -

Thus, the differences between the Einstein and Galilel general relativistic
space-times can be summarised as follows:

- 1n the Einstein case, we have a Lorentz metric and no fibring over abso-
lute time;

- in the Galilei case, we have a “space-like” metric g and a “time-like” 1-
form dt:E—T®T *E, which determines the fibring over absolute time.

In brief words, we can say that the essential difference between the two
theories consists in the replacement of the light cones with the vertical sub-
spaces.

[.1.3. Units of measurement

We have already introduced the 1-dimensional oriented vector space of
units of measurement of time T (Ass. C1inI.1.1) and 1-dimensional posi-
tive vector space of units of measurement of area (Ass.C2 in 1.1.2). Now,
we complete our assumptions of fundamental spaces of units of measure-
ment by introducing the 1-dimensional positive vector space of masses.

These three spaces generate all other spaces of units of measurement.

In the classical theory we assume a distinguished element In one of
these spaces, namely the universal gravitational coupling constant.

In the quantum theory we shall assume another distinguished element in
one of these spaces, namely the Plank constant (see Ass. Q2In 8 11.1.4).

ASSUMPTION C3. We assume the space of masses to be a 1-dimensional
positive semi-vector space (see § II11.1.3) M. >

The mass of a classical or quantum particle 1s defined to be an element
m € M.

The mass plays the role of coupling constants for the metric.

The three fundamental 1-dimensional semi-vector spaces (see § 111.1.3) T,
A and M generate all spaces of units of measurement.

DEFINITION I.1.3.1. A space of units of measurement 1s defined to be a
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1-dimensional semi-vector space of the type
U:=T’'oAeM",

where p, g, and r are rational numbers (see § 111.1.3).
We say that U has dimensions

(p,q,r). *

In the classical theory we assume Just one universal unit of measurement.

ASSUMPTION C4. We assume the gravitational coupling constant to be an
element

K € TF QA 2OM*. >
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|.2 - Space-time connections

In view of further development of our model, we need a preliminary
study of connections which preserve the fibred and metrical structure of
space-time.

|.2.1. Space-time connections

In this section, we introduce the notion of space-time connection by
referring to the tangent or to the jet space, equivalently.

REMARK I.2.1.1. Tet K be a linear connection on the vector bundle TE—~E
(see § 111.5).

The following conditions are equivalent:

i) K is dt-preserving, i.e.

Vdt = 0;

11) the coefficients K}OJESF(E) of K with time-like superscript vanish, i.e.

Moreover, the following conditions are equivalent:
iii) the fibres of t:E—T are auto parallel with respect to K, i.e.

V.Y €S (VE-E) VX, Ye#(VE—E):

iv) K can be restricted to the fibres of t:E—T;
v) the coefficlents KI,OI,ESF(E) of K with time-like superscript vanish, i.e.

Furthermore, i) implies iii). a
Let us consider a dt-preserving torsion free linear connection

K:TE-T*E®TTE
TE
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on the vector bundle TE—E and a torsion free’ affine connection

I:J E-T*E®T.JE,
1 JE 1

on the affine bundle J1E%E.

Their coordinate expressions are of the type

K=de( +K."'9) I =d e +1.'3%)
A M 1 IN N 1
where
Kl'::Ki;’,I'lJrKi;(U ri::ri Vl’z+1—i
A AhY A0 n rhY o0 n o
T i r 1 K { - K i ,
Ay Yo7 A P
with

r' K ’J € 5(E).

PROPOSITION I.2.1.1. There 1s a natural bijection
KT
between such connections; 1ts coordinate expression is given by

[ )
r'o=K

Proor. 1t follows by considering the following commutative diagram

I

1

L 1
T *;(@ T*BTr*EQ® T T T"HRFOI*OTE) Q
. T TE

F [aS]

F T*E@HTE
E

DEFINITION I.2.1.1. A space-time connection 1s defined to be, equiva-
lently, a connection K, or I', of the above type. *

° The torsion for such an affine connection is defined through the T-valued
soldering form &, via the Frolicher-Nijenhuis bracket (see § I11.4, § I11.5).
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The first viewpoint is more suitable for field theory (where we have to
take covariant derivatives of space-time tensors), the second one for classi-
cal and quantum particle mechanics (where the jet space plays the role of
kinematical space).

We shall be involved with the vertical valued 1-forms associated with the
space-time connection (see § I11.5)

v . TE-T*TEQTE v :J E=T*Q(T*J EQVE)
K TE (A Iy

with coordinate expressions

v =d@d + (d' -K.'d")ed v =(d -1."d)ed",
K 0 'S 1 T 0 IS 1

REMARK [.2.1.2. The space-time connection K restricts to the linear
connection

K'VE-T*EQTVE
VE

of the vertical bundle VE—E, with coordinate expression

-l IS - ] ",h .
K'=d ®(aj+LM ) al.). a

REMARK 1.2.1.3. The natural linear fibred epimorphism T*E—V*F over E
ylelds the further restriction

K:VE-V*EQVVE,
VE

which can be regarded as a smooth family of linear connections on the fibres
of t:E—T, and has coordinate expression

K=do( +K'
(J Jr

1

Y o). 0

REMARK [.2.1.4. Given a space-time connection K, we can define, as

usual, its curvature' (see § I11.5)

' [, ]is the Frolicher Nijenhuis bracket.
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2
RB:=_|K,K|: TE -~ NT*EQVE
E

1ts Riccl tensor
ro=2 013 “E - T*EQT*E
E
and its scalar curvature
s:=<g,r>: E— R,
with coordinate expressions

B=R " drd*000d” =0 K" +K' K')d rd"eoded”
AV i noHY NV i

r=0GOK" -2 k' +x! k' -k Kk')ded
1 AU ALy AUy

ty A

_ Sk - - 1 -J ol _ ] ol
sS=8 (ai]‘h k ahl‘:ﬁ K Li h Kk- Ji Rh k ]‘i ,,')'
Then, the scalar curvature of K coincides with the scalar curvature of K

S =8. d

|.2.2. Space-time connections and observers

In this section, we consider a space-time connection I', an observer o
along with an adapted space-time chart (,X’O,)r"l) and describe the connection
through the observer.

REMARK 1.2.2.1. The covariant differential of the observer is the section
Vo:E—~T*"®(T*EQVE),
E
with coordinate expression in adapted coordinates

Vo = - L10®(F0io a’ + Fiio df)®a[.. a

REMARK 1.2.2.2. The metric g and the inclusion V*FE C T*E induced by the
observer allow us to regard Vo as a section
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(Vo) E-(T*QA)O(T*EQT *E),
E

whose expression in adapted coordinates 1s
(Vo)b = - L‘[)@(roio d’ + L dYed!

We can split the above tensor into its symmetrical and anti symmetrical
components

(Vo) =1 %+

where
Y E—(T*OA)QYT*E  O:E—(T*OA)QAT*E.
Then, we obtain the coordinate expressions

s=ulo(2x avdl + 3 dvd')=- 20 dva + T d'va))
0] i 0j° ie

D := uo®(2 CDO/' d’ra! + CD:’/' di/\dj) =-9 LlOG@(FO,O d’ral + Fl,,.o diAd"i),
where

le - (rija * rl]'l'o) ZOJ - r(]jo - (D(JJ CDl'j - (rijo B rjl'o)’

with

S, . @ €(EACR). =

PROPOSITION [.2.2.1. The maps
K — (K, Vo) — (K, =, ®)
are bijections. O
In other words, K and Vo carry independent information on K; S and O

carry independent information on o; moreover, * and ® characterise Vo and

the pair (K, Vo) characterises K itself.

An observer o 1s sald to be inertial with respect to the space-time con-
nection K 1if Vo = 0.
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Of course, Inertial observers on a curved space-time might not exist at all.

1.2.3. Metrical space-time connections

This section 1s devoted to study space-time connections which preserve
the metric. This subject needs a little care because of the degeneracy of
the metric.

PROPOSITION 1.2.3.1. Let K be a space-time connection. Then, the fol-
lowing four conditions i), ii), iii), iv) are equivalent:

i) Vg =0;

ii) in a space-time chart
{

iy o hj J th .
axg Ax n& K'A n8 = 03

~

iii) iii)’ K = »x,

111)" for an observer 0. E—=T*QTE

S b s
2 =g LOg,
iv) in a space-time chart
N - o _1 -
iv) Ky =% (aighj * 98 2,8
iv) Koij R0 = 7 2683

PROOF. We can easily see that i) < ii) € iv) and iii) < iv)'.

Moreover, we can easlly see that, with reference to an observer o and any
adapted chart, iii)’ € iv)". Then, we can conclude the proof by closing the
circle of equivalencies (recalling that each space-time chart is adapted to an
observer). a

Then, we give the following definition.

DEFINITION 1.2.3.1. A space-time connection K is said to be metrical 1If
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COROLLARY I.2.3.1. Let K be a metrical space-time connection and let o
be a global observer. Then, the following conditions are equivalent:
- for each t,t'€T the diffeomorphism

E —F
T T
induced by o 1s an 1sometry;
- S=0
PROOF. It follows immediately from iii)" of Prop. [.2.5.1. a

REMARK [.2.3.1. If K is a metrical space-time connection, then

-1 1 inh
* K . =-- .
) Ji 2 J2ih

Proor. Formula *) follows immediately from iv)'. a

COROLLARY 1.2.3.2. If K is a metrical space-time connection, then

*% ) Vv =0;
0. Vgl
*% )" gl _r 2.
ni Vgl
08" VIgh
hk -1 _ ]
* %k ) g K = 4—\/@ .

Proor. Formula #%)' follows from *) of Rem. 1.2.3.1 and from the algebraic
identity

D(detA)

ATV pA> =
detA

J

which holds for any map

AR — Auto (V) CV*OV,
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where V' 1s a vector spaceS.
Moreover, formula *#*)' is the coordinate expression of *¥ ).
Furthermore, we have, in virtue of iv)' of Prop. 1.2.3.1,

hk .- 1 1]

_ 1 ij _hk
g th_a’g TLE8° 8 ajghk’

hence, in virtue of *),

hk -1 _ o iy - h
g Ah ko a,,‘g g ]‘j n’

hence, in virtue of **)’,

ghk =) gji . g” a,’ ;Igl
hk J /lg’l ’

which yields ### ). O

COROLLARY [.2.3.4. If K is a metrical space-time connection, then
Vn =0,

where the covariant differential 1s performed through the induced linear
connection K' on the vector bundle VE—E (see Rem. 1.2.1.2). a

|.2.4. Divergence and codifferential operators

This section 1s devoted to the study of different kinds of divergence
operators. This subject needs a little care because of the degeneracy of
the metric.

Let us start by considering just the vertical metric g.
If

X:E—=TE

18 a vector field, then we define the codifferential of X to be the function

In a (pseudo-)Riemannian manifold, we can define the volume form v by
means of the condition g(v,v) = * 1; then, the identity Vv = 0 can be deduced
directly from the metricity of the connection. But this direct argument does
not hold for our degenerate metric.
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SX =<0, di vr=<0, 1o E R,

with coordinate expression

We have no corresponding codifferential for forms, because the metric g is
degenerate. However, we can define the vertical codifferential of the verti-
cal restrictions of forms, as usual.

Next, let us assume a space-time connection K.
It

X E—-TE
1s a vector field, then we define the divergence of X to be the function
div X :=tr VX : E - R,
with coordinate expression
divx=o X -k ' X
If
W E->T*E
1s a 1-form, then we define the divergence of w to be the function
divw:= (g,Vw>»: E - ATOR,
with coordinate expression
div @ = g’j (aiwj + Kihj wh).
We remark that this divergence depends only on the vertical restrictions of
w and K, 1.e. we can write
div @ = div @ = <§’,%(:J>.
The above two divergence operators can be extended to the tensor algebra
by means of the Leibnitz rule.

Eventually, let us assume that the space-time connection K be metrical.
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Then we obtain the following results.
If

X:E—TE
18 a vector field, then
SX = div X,

because the coordinate expressions of the two hand sides coincide.
If

2
w:E—=AT*E
1s a 2-form, then we obtain
divie = 0;

v v

in fact divie = divie and we can apply the classical Riemannian identity.

[.2.5. Second order connection and contact 2-form

Next, we assoclate two further objects with a space-time connection: a
second order connection and a contact 2-form. These objects will play a
fundamental role in the classical and quantum theories.

First, let us show how a space-time connection yields naturally these two
objects.

PROPOSITION I.2.5.1. If T’ Is a space-time connection, then we obtain the
connection on the fibred manifold JE=T

¢ =Aa-T:JE— I*@TJIE,
with coordinate expression
0 i i 40
¥ =u ®(ao Y, 0t al,),

where



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS 43

PROPOSITION 1.2.5.2. If I' Is a space-time connection, then we obtain the

scaled 2-form on the manifold JIE6
2
Q = vrm‘} : J1E — (T*@A)@/\T*Jﬁ,

with coordinate expression
_ 0 ] i 40 1 qh ]
Q—gi,,u@@(do—bfd - T, 88l u|
[t can be proved that © is the unique scaled 2-form on J E naturally induced
by g and 1 (see [Ja]).
Next, let us study the main properties of these two objects.

Let us recall that a second order connection on the fibred manifold ¢:EF—B
Is defined to be a section (see § I11.3, [MM1])

cJ E—JE.
1 2
Moreover, we have natural fibred mono-morphisms over JlE
J1J1E = T*@TJlE JE — J1J1E.
Actually, J.E turns out to be the fibred submanifold
JE = T*OTJ E

over J E, which projects over S:JlEHTT*(@TE.

Hence, a (first order) connection
¢:J E=T*QTJ E
of the fibred manifold J1E%T 1S a second order connection of the fibred

manifold ¢:E—T if and only If ¢ 1s projectable over 8:J1E%1T*®TE, l.e. If and

only iIf the coordinate expression of ¢ 1s of the type

¥ = uo®(a0 + yoi 0.+ e a?) ciES”(JVIE).

 The symbol “~” denotes wedge product » followed by scalar product g.
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Moreover, by considering the algebraic structure of the bundle JE-E, we

can define the homogeneous second order connections: they are charac-

terised in coordinates by the fact that the coefficients ¢ are second order

polynomials in the coordinates \é

REMARK 1.2.5.1. If T 1s a space-time connection, then y 1s a homogeneous

second order connection’. a

PROPOSITION I.2.5.1. If I' 1s a space-time connection and o 1Is an ob-
server, then we obtain the following important equality (see § 1.2.2)

D =200, a

PROPOSITION 1.2.5.2. If I' 1s a space-time connection, then the 2-form Q
1s non-degenerate in the sense that i1t yields the non singular scaled volume

form® on the manifold J1E

thQAQAQ:J1Ee(1r*Z®A3)®KT*J1E. o

PROPOSITION 1.2.5.3. If I' 1s a space-time connection, then the 2-form Q
1s characterised by the following property:
- for each second order connection y', we obtain the formula

i_(‘Q =94(y' - v),
with coordinate expression

l'r‘Q =8, (= D ules’.

It we choose a time unit of measurement " and replace T with R, then the
theory of second order connections on the jet space reduces to the more
usual theory of second order differential equations on the tangent space. Our
approach based on jets is required by the explicit independence from time

units of measurements of our theory.

8 This form can be taken as the “Liouville volume form” of our model and can

be used for developing a Galilel general relativistic statistics.



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS 45

Proor. 1t follows from a computation in coordinates, by considering the
base of forms (do, 9!, (dé - do)). Q

COROLLARY I.2.5.1. If T i1s a space-time connection, then y and Q fulfill
the property

-8 =0. d

So, we Introduce the following definition.
DEFINITION 1.2.5.1. If T is a space-time connection, then
Vo= n-T Q= vrm‘}

are said to be, respectively, the second order connection and the scaled

contact 2-form ” associated with T, *
Eventually, let us see how y and 2 characterise I'.

PROPOSITION 1.2.5.4. If y 1s a homogeneous second order connection on
E—T, then there is a unique torsion free affine connection I' on J1E%E, such

that

v = a4l

Proor. Tt follows from a comparison of the coordinate expressions of y and
I. a

COROLLARY I1.2.5.2. If @ 1s the contact 2-form assoclated with the
space-time connection I', then there is a unique connection y' on the fibred
manifold JlE%T, such that

Namely, we have

% In the literature, the term “contact form” is devoted to a 1-form of class

2n+1 on a manifold of dimension 2n+1. So, there is no conflict between the
usual terminology and ours.
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[
PRoor. 1t follows from Prop. 1.2.5.5. a

COROLLARY 1.2.5.3. If @ is the contact 2-form associated with the
space-time connection I', then there is a unique space-time connection I’
such that

Q=v =3
I
Namely, we have
r'=rm.
Proor. Tt follows from Prop. [.2.5.4 and Cor. 1.2.5.2. a

We observe that, if the space-time connection is metrical, then the verti-
cal restriction of the contact 2-form Q2 turns out to be the vertical symplec-
tic 2-form

~

Q= vV, VE - AOAVIVE

associated with the vertical metric g. But Q) cannot have a total role in our

theory, as a consequence of the principle of relativity. The replacement of Q
with Q makes an essential difference between our approach and the view -
point of geometrical quantisation.

1.2.6. Space-time connections and acceleration

We conclude this section with the study of the acceleration of a motion
with respect to a given space-time connection. This subject IS necessary
for a full understanding of the meaning of the space-time second order
connections. The results below will be used in the expression of the law of
motion of classical particles (see § 1.5.1).

Let us consider the second jet space J E (see § 111.3). We recall that the

natural map J E—J E:5 —a, 1s an affine bundle associated with the vector

bundle (T*@T*)QVE.
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Now, let us consider a space-time connection I' and the assoclated second
order connection y (see §1.2.5).
We obtain the translation fibred morphism over J E—~E

V :JE— (T*OT*)OVE : 5+ 5, - 5’(61).

4

Then, let us consider a motion s:T —E.
We define the (absolute) acceleration of s to be the second order covari-
ant differential of s, i.e. the section

VK j1s = jzs - bfot/}s T — (T*OQT*)RVE,
with coordinate expression

— i i 0_ 0 _
V{ IS = (ams ¥ 0115) iU ou ®(al_os) =

= s'-T'losos"osk-2r ' osas"-1"0s)uleu’s(os).
00 hk 0 0 ho 0 0o 1
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1.3 - Gravitational and electromagnetic fields

So far, the space-time fibred manifold has been equipped only with the
vertical metric. Now, we complete the structure of space-time by adding
the gravitational and electromagnetic fields.

[.3.1. The fields

In this section, we Introduce the gravitational and electromagnetic
flelds.

ASSUMPTION C5. We assume space-time to be equipped with a space-time
connection (see § 1.2.1)

r%:.J E-T*E®TJE,
1 JE

and a scaled 2-Torm

F:E—BOAT*E,
where B 1s the 1-dimensional vector space

B=A""oM"> >

We say that I' is the gravitational field and F the electromagnetic field .

The superscript “4” will label objects related to the gravitational connec-

tion I'4. In particular, we have (see § 1.2.1, § 1.2.5):
V4= Vi, 4= nart Q% = v Y
We stress that, as the metric 1s degenerate, it cannot determine fully the
gravitational connection. Hence, we must assume that the gravitational field

is described just by the gravitational connection I'%,
The sections s:T —E, which fulfill the equality

VK” 1,8 = 0
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will be interpreted as free falling motions, according to the Newton law of
motion (see § 1.3.1).

The coordinate expression of F is

F=2F d"ra! + F; d rd, F, €(EBOR).

The (observer independent) magnetic field and electric field related to
an observer o are defined to be the vertical 1-forms

B:i=—- +F:E— (BOA"**)OV*E EFi=-(0.F): E— (T*OB)OV*E

DO | =

with coordinate expressions
B= Vgl F*d+ PP a* + FP adh) E=F d
and we can write

F=2dtro*(E) + 2 0*(+ B).

1.3.2. Gravitational and electromagnetic coupling

Next, we exhibit a natural way to incorporate the electromagnetic field
and the gravitational connection into the geometric structures of space-
time. This coupling is parametrised either by the ratio of a charge and a
mass or by the square root of the gravitational constant.

Such a procedure works very well both in classical and quantum theo-
ries.

DEFINITION 1.3.2.1. We define the space of charges to be the oriented 1-
dimensional vector space

0=T*0A> oM > 0

The charge of a classical or quantum particle 1s defined to be an element
q e Q.

Moreover, given LzOETT+, we set

q=q(u)e P
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The charge plays the role of coupling constants for the electromagnetic
field.

REMARK 1.3.2.1. The square root of the gravitational coupling constant
(see Ass. C4 in S§1.1.3) and the ratio g/m of any charge ¢ and mass m have
the same dimensions:

VK € TFOA” 'oMt!* e TroA oMtz
m
Hence, the following objects have the same dimensions

2
QE:J1E%(T*®A)® AT*J E

o 2 2
VK F:E=(T*QA)OAT *E %F:E%(T*(@A)(@AT*E.

Therefore, there are two distinguished ways to couple the gravitational
contact 2-form Q% and the electromagnetic field F in a way independent of
the choice of any unit of measurement. Namely, we can use as coupling con-
stant both the square root of the universal gravitational coupling constant
VK and the ratio g/m of a given charge g and a mass m. In the first case we
obtain a universal coupling, in the second case the coupling depends on the
choice of a particular particle. a

In practice, we are concerned with ¢ = vk only in the context of the
second gravitational field equation (see § 1.4.5, § [.4.7) and in all other cases
we conslder ¢ = g/m.

Thus, let us consider an element
c e T oA tom*!*,

which might be either vk, or I% (for a certain given charge g and mass m).

Moreover, given LzOETT+, we set

c = c(uo) e A Tomrr1E,

We shall exhibit a natural way to deform the gravitational space-time con-
nection F%, the related second order connection b/ﬂ and contact 2-form Q4
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into corresponding “total objects ”

field F.

I', v and , through the electromagnetic

Let us start with Q4. In fact, it is natural to consider the deformed “total”
2-form

Q::QE+QQ:=QE+%CF’

obtained by adding the electromagnetic 2-form to the gravitational contact
2-form.

Here, the coupling constant ¢ is necessary for the equality of the left and
right hand sides (i.e. the correct dimensionality of the above formula). On
the other hand, we remark that we could have multiplied F by any other non-
zero scalar factor; the factor 1/2 has been chosen just in order to obtain the
standard normalisation in the classical and quantum equations.

Then, we can prove the following result.

THEOREM [.3.2.1. Let us consider the total contact 2-form
Q=0f+Q"=f+leF,

Then, there exist a unique torsion free affine connection I' on the bundle
J E—FE and a unique connection y on the fibred manifold JE=T

r:r%+re b/:b/%-'—b/e
such that'
v = a2l Q = VI_7K3 7= =0.
Namely, y“ turns out to be the Lorentz force
¢“=-ecgT(aF): JE > T*O(T*OVE)
and T'° the electromagnetic soldering form

= cg=(($+5n)F):JE— T EQ(T*OVE).
‘ E

' These are just the same equalities valid for the corresponding pure

gravitational objects (see § 1.2.5).
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Moreover, the above objects fulfill the following equalities
vO=nar° - T8 = Q°.

We have the coordinate expressions

e _ { i h 0.0 e 1 i h ] 0 4 0
“=-e ) v F ) u'ed] “=e ((Fh yor2F ) d F.d )®ai,
hence
I _rpt I _rpt 1 ! I _rpt ]
hk rhI\ rOI\ rﬂk+ CFk' r()o r0M+CFO
PROOF. The proof can be obtained by a computation in coordinates. a

COROLLARY I.3.2.1. If o0 i1s an observer, then the gravitational and elec-
tromagnetic coupling can be read in the following way

K = K" S = 3k O =0k+eF.

PRroor. It follows from the Theor. 1.5.2.1 and Prop. 1.2.2.1. a

We stress that the Lorentz force has been derived and not postulated. The
coupling of the gravitational connection and the electromagnetic field does
not affect the torsion: both K4 and K = K% + K are torsion free.

This coupling of the gravitational connection with the electromagnetic
field seems to be a non standard result.

REMARK [.3.2.1. Suppose that the forms @, ®% and F be closed and « be a
local potential of ®. Then, the above splitting of ® into its gravitational and
electromagnetic components does not yield an analogous distinguished split-
ting of «. In fact, the potentials of ®, ®% and F are defined up to a gauge and
1t 1s not possible to split naturally the gauge of a Into gravitational and elec-
tromagnetic components. a

COROLLARY 1.3.2.2. The curvature R of the total connection K splits as
follows

B =R+ R B°,

where
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R4 = % (K% K7
1s the standard gravitational curvature and the other two terms are given by
R4 = @K = [K4,K°] R° = [K°,K°].
We have the following coordinate expressions

Bi=Ri U dad?eded” = (0 KA+ KA KW ) dhadYed od”
NIV i ANoouwy nov g i

he 1 6 ko ok Y 20 o gk oY 0 i ok L0 i
& 20(((V (JFJ' ZVJ-F 0)9& Vij) )dAd +V1.FJ,,X dAd)@@k

R =12F" F a'rdes ed.
4 ] h 1

Proor. We have (see § I11.5 and § 111.4)
B=[K.K|=[K% K+ [KAKT]+ ] [K°KA]+ ) [K°.K°.
Moreover, we can write (see § I11.4)
[K4,K°] = [K°,K1]. o

COROLLARY I.3.2.4. The Riccl tensor r of the total connection K splits as

follows
ro=rfh+ P 0
where
=2 C R

1s the standard gravitational Riccl tensor and the other two terms are given
by

ri® = Le (dtodivh F + div Fodt) rC = - L F e dtedt,

1
4
where

FP = (gF0g™)oF o F 1 E->A*"“OM.

We have the following coordinate expressions
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ra® = %c V}\_Fk}(cloémfA + d od") r¢ = - icz FI,,, Flaed. O

COROLLARY 1.3.2.5. The scalar curvature s of the total connection K is
just the scalar curvature of the gravitational connection

~

S:S%:Sﬂ. d
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l.4 - Field equations

Now, we introduce the gravitational and electromagnetic field equations.
We consider two equations: the first one couples just the gravitational and
electromagnetic fields, while the second one couples the gravitational and
electromagnetic fields with the charged matter sources.

1.4.1. First field equation

The first field equation 1s expressed through the closure of the total
contact 2-form.

This equation turns out to be a compact way to express several impor-
tant conditions involving the classical fields. Moreover, 1t could be used to
formulate the inverse lLagrangian problem of dynamics (for the trivial
case, see, for instance, [Cr], [CPT]). Furthermore, it will occur as an es-
sential integrability condition in the quantum theory (see § 11.1.4).

ASSUMPTION C6. (First rield equation) We assume that, for any coupling
constant e, the total contact 2-form Q2 is closed, 1.e.

A9 =0 Ve e THoA o2, »

We stress that there is no canonical local potential of 2 even in the case

when the space-time connection is flat''.

We can interpret the above equation in several interesting ways.

1.4.2. Geometrical interpretation of the first field equation

The first field equation says that, for each coupling constant e, the to-

""'In a sense, in the quantum framework, we shall postulate a distinguished
potential of 2, after adding a complex dimension to space-time through the
quantum bundle @ —E.
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tal connection 1s metrical and the standard algebraic Riemannian identities
for the total curvature hold.

We stress that we cannot apply fully the standard procedures of
Riemannian geometry in our context, because the metric 1s degenerate.

First, we prove a technical lemma.

LEMMA 1.4.2.1. The equation
i) dQ = 0

1s locally equivalent to the system

| - _ _

i) a)\\g ij rm rxjf

i)! 2T -9.T +2T. . -2T. =23 -22TI. .
NIt AUy o At J ALy [N IS} ] A

--NITT _ _ _ _

H) airﬂm ’ ahriﬁ\ ’ ajrlﬁ'A ajrih'/\ airhj% ahrji% = 0.

PROOF. The coordinate expression of d{2 is
_ 0 ol 4] _ 0 ol ol _
dQ = (Ao'gij + r@/i + FI,J) d ' r& Ado + ( Ao'rij + aizfj) d A8 AS
B I o oh _ hool, ol
al. ]".,,h G A8IAG (al,g’hj + rz‘jh) dOAS AT,

Therefore, i) is equivalent to the following system

Ao-8 =~ =Ly

Ay (U = T3) =06, = 9

airjh " ahrij i ajrhi - airhj - ahrji - ajrih =0

aighj - ajghi - rjih - rijh’

which 1s equivalent to the following system

aoglj = - FOI.J. - Fojl.
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ahgij - rhij rhji

akrijh - akrjih ’ ahrk'ji - ahrk'ij =2 airhjk -2 ajrhik'

ol..-ol. +ol . -ol =201 . -201 .
0 ijh 0" jih h o h 01y 1 0jh J 0ih

ol .-ol ..=01 I .
0 0y 0 Ouy 1 Qyo ] 0o
airjhk ’ ahrijk ’ ajrhik - ajrihk - airhjk - ahrjik -

airﬂzo ' ahrijo ’ ajrlu'o - ajriho - airhjo — oL jio 0,

which is equivalent to ii). m|
Then, we can state a first result.

PROPOSITION I.4.2.1. The first field equation implies that the space-time
connection 1s metrical, 1.e.

Vg = 0.

PROOF. 1t follows from i) = ii). a

In order to complete the geometrical interpretation of the first field equa-
tion in terms of the curvature R of K, we need further technical lemmas.
Let K be any metrical space-time connection.

LEMMA 1.4.2.2. The coordinate expression of

b .— ob _ /TS B Y
B = gh(B) =B, d dPedd

can be written as

a) °R =oT =-or. +T 1©r"-r 1",
ALY APy b Ay ruopov Jht  n v

Proor. We have

_ _ _ J J h _ h
=B =9, 1 o1 a'Agij rg v ’ ap.gij rx v ’ F'A v pih wov il

YNVILY AopIv U AV
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Then, the condition Vg = 0 ylelds the result. a

REMARK 1.4.2.1. The fact that K is torsion free yields the standard first
Bianchi identity

h) B +B_ _+RB _ =0. O

PNVIRY vALU TR

LEMMA 1.4.2.3. The following algebraic identity holds
)

.= —R .
ALY AL

Proor. Formula a) gives

2(R. . +R )=2T -d2T. +3T -2T

NV NIJI nouly VRN Y) nooUJl wooagi’
Hence, the condition Vg = 0 implies

2(R.  +R ,4)=—aM

N1y AL J

gij + aNJ g’ﬁ = 0. o

LEMMA 1.4.2.4. The following conditions are equivalent:

i) 2T -2T . +2T . -oT =230I -20T .
AoLjU A Jiy U At J ALy UoPjA ] A
TN _ _ _
i) By ju ™ Biin) * By = B) = 0
Proor. The result follows from the above expression a) of Bxpiv' a

We observe that the vertical restriction (for A = h, gy = k) of condition it
turns out to be a consequence of the metricity condition only, according to a
standard argument of Riemannian geometry.

LEMMA 1.4.2.5. The following conditions are equivalent:

- ~ITT _ _ _ _
H) airjh% ’ ahrij'A ’ ajrhi'/\ airhﬁ\ ahrji'/\ ajrih% =0

NTT
R..+R. .. +K . =0
111) 1jhn higa Jhin

Proor. The result follows from the above expression a) of Bxpiv' a
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We observe that the vertical restriction (for A = h) of condition iii)", turns
out to be a consequence of the metricity condition only, according to a stan-
dard argument of Riemannian geometry.

.. N | LooNTT
The above conditions iii) and 1ii)  on the curvature tensor can bhe expressed

together in the following compact way.
For this purpose we need some preliminary results.

REMARK 1.4.2.2. The condition
i)™ B _+B _+RB__=0
Ljhn hija Jhin
implies the condition

CNIT
111 B . +RK ..+K _.
) N jh Ny rjhi

Proor. Condition iii)" yields
d) Biiny = " B ™ By

Then, d), ¢) and iii)’, respectively, yield

— + + - -
Bhij% Bﬂzi)\ B"Aihj B'}\jih Bhij'f thi)\ injh Jrhi

Bl‘jhk ’ B%l’llj ’ B}\ Jih -
Eventually, by adding term by term the circular permutation of the space-

like indices in the above result

E. . +EK . .+R =0 E..+RK . +R .= E. .. +R .+K =0
tjhn nhy rjth hija rJth T Jhin NIYL nhy

. . . NI
we obtain, in virtue of iii)

2(B._ +R _+R _)=0. =

nhyj rJjih At

LEMMA 1.4.2.6. The conditions

i) B +B -R -R =
ihk ikhj hjik hkij

ii)" B _+R__+R =

1jhn hi jx Jhin

are equivalent to
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i) B . =R. .
1AJy JUIA
Proor. Let us prove that i)', ii)" = iii)®. 1dentities iii)"", ¢) and b), respec-
tively, yield

E. .. =-RK .= - o - o B .. =R, .
irjh rjh N rjha NIy Jhih hjin Jjhin’

hence

injh U jhin
Moreover, iii)' implies
R . =R . .
1070 7010
Now, let us prove that i = i)', ii)". We can see immediately that i)k
= iii)". Next, condition iii)® and identities ¢) and b), respectively, yield

= 0. a

...*R . +R . =R .. +R.___+R . = . ..+t R .
1jhn higa Jhin hniy Jnha Jhin rhiy Jnth hjin

Then, we can state a second result.

PROPOSITION 1.4.2.2. The first field equation implies the identity

R/
IS

A

gt
U g

PROOF. Tt follows from i) = i)™, i)', a

The two above results can be joined to provide a first geometrical inter-
pretation of the first field equation.

THEOREM 1.4.2.1. The first field equation is equivalent to the system

. i pii
Vg =0 B =R’

nou e

Proor. Tt follows from i) < i)', i)',
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1.4.3. First field equation interpreted through an observer

We can exhibit another interesting interpretation of the first field equa-
tion 1n terms of the vertical restriction of the total connection and the
total symmetric 2-tensor and 2-form associated with an observer.

We have a first immediate result.

PROPOSITION I.4.3.1. The first field equation implies that the vertical
restriction of K is just the vertical Riemannian connection (see Rem. 1.1.2.2)

<

= A .

ProoF. The condition ii)' yields

I e -

~ : —r - _1 _ _
iv) I‘m’k o I‘m‘k— T2 (ahgik i akgih aighk) = i =

Now, we refer to the tensors X and ® related to a given observer o and to
adapted coordinates (see § 1.2.2).
Then, we have a second immediate result.

PROPOSITION 1.4.3.2. The first field equation implies that the vertical
restriction of the tensor X 1s determined by the metric, according to the
equation (see formula iii)" in Prop. 1.2.5.1)

S by oo
=g Log,
where L 1s the Lie derivative with respect to the observer o, 1.e. In adapted
coordinates
NI _
iv) Zz‘j = aogl.j.
PROOF. 1t follows from ii)'. a

In order to complete our interpretation, we need some technical lemmas.

LEMMA 1.4.3.1. If iv)" and iv)" hold, then, the two following conditions are
equivalent:



62 A. ADCZYK, M. MODUGNO

i)™ 2T =d9T +3T -2l =20 -203T
0 ijh 0 Jih h 01 h 01y t 0jh J 0ih

RN _
iv) ahq>l,j + adim. + al,d).,,h = 0. a

LEMMA 1.4.3.2. If iv)” holds, then the two following conditions are
equivalent:

iii)*" DT 43T +3T
1 0jh h 01y J Ohi

r -ofl .-ol =
1 0hy h 01 ] Oih

N _
1v) ahCDiJ + ajCDm + al.CDjh =0. a

LEMMA 1.4.3.3. If iV)II holds, then the two following conditions are
equivalent:

i) DI -l =0l -0oT
0 0y 0 Ouy 1 Qyo ] 0o

i)Y 20 =00 -2 . =

Then we have a third result.

PROPOSITION 1.4.3.3. The first field equation implies that the form @ is
closed

dd = 0.

111 v
, .

PrOOF. Tt follows from i) = iv)", iv)™, iv) a

The three above results can be joined to provide a second geometrical in-
terpretation of the first field equation.

THEOREM [.4.3.1. Given an observer o, the first field equation is equiva-
lent to the following conditions:

- the (observer independent) vertical restriction of K coincides with the
vertical Riemannian connection

K =,
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1.e. In coordinates

, _ 1 _ .
Lhik ) (ahgik " akgih aighk)’

- the vertical restriction of the tensor X is determined by the metric, ac-
cording to the equation (see formula iii)" in Prop. 1.2.5.1)

*=g"L g,
where L 1s the Lie derivative with respect to the observer, l.e. In adapted
coordinates
Ko ¥ Kgji = 7 981y
- the form O is closed
dd =0,

l.e. In adapted coordinates

(Dd..-200 ) drd'rd’ + > . d"ndrd =
0 1 o0y hoij
=2(0Gr +or Yd'sd'ra' +d ® d'~d'rd') =0,
00y 0 0j0 hoij

PROOF. 1t follows from i) = iv)', iv)", iv)™ i)', ;

Of course, we might have deduced immediately d® = 0 from dQ2 = 0 because

the pullback o' commutes with d; but 1n order to prove the rest, it Is neces-
sary to consider the above lemmas dealing with coordinate formulas.

We recall that any space-time connection K 1s characterised by its vertical

restriction K and the tensors I and ® related to a given observer (see Prop.
1.2.2.1). Hence, we have proved that K is determined by the first jet of the
metric g and by an observer dependent closed 2-form .

The above result can be re-formulated as follows.

THEOREM 1.4.3.2. Let

a:E—(T*QA)OT*E
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be a local potential of the closed 2-form @, 1.e. a local solution of the equa-
tion

O =2 da,

with coordinate expression

A A d b

where
a=a u'ed .
3
Then, the coordinate expression of the total connection can be written as

- - _ 1 _
I&Np 2 (a}\giu ' ap.gi'}\ aig}\p.)’

where we have set

Thus, as in the Einstein theory, the space-time connection is obtained lo-
cally from 10 scalar potentials; in the Galilel theory, only 6 potentials are the
components of the metric g and we have 4 additional potentials. This differ-
ence between the Galilel and the Finsteiln theories is related to the fact that,
in the Galilel case, g 1s degenerate.

We stress that the total potential ¢ Involves both the gravitational and
electromagnetic fields.

1.4.4. First field equation interpreted through the fields

On the other hand, in virtue of the arbitrariness of the coupling constant
¢, the above results split into their gravitational and electromagnetic com-
ponents, respectively.

PROPOSITION I.4.4.1. The first field equation 1s equivalent to the system

dQ% = 0 dF = 0.

Proor. Tt follows from the arbitrariness of the coupling constant e. a
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REMARK 1.4.4.1. The equation dF = 0 1s nothing but the first Maxwell
equation.
If o 1s an observer, then, the first Maxwell equation reads

dB =0 curl F = >, B,

where 0 denotes the time derivative with respect to the observer. a

PROPOSITION [.4.4.2. The first field equation i1s equivalent to the system

bo — 4iod_ pul 1 _
Vig =0 BA 1 - RA T =0

J J

F'l+ Flh =0 dF =0,
where B‘q 1s the curvature of K‘ﬂ.

PRoOOF. 1t follows from Theor. 1.4.2.1, In virtue of the arbitrariness of the
mass and the charge. a

PROPOSITION 1.4.4.3. Given an observer o, the first field equation 1s
equivalent to the following conditions:

- the (observer independent) vertical restriction of K% is just the vertical
Riemannian connection (see Rem. 1.1.2.2)

Kﬂ =K = W,
1.e. In coordinates

W —x =-1 _ .
K hik Ahik 2 (ahgik i aIcgih aighk)J

- the vertical restriction of the tensor % is determined by the metric, ac-
cording to the equation (see formula iii)" in Prop. 1.2.5.1)

%:é:g"’Log’,

where L 1s the Lie derivative with respect to the observer, l.e. In adapted

coordinates

- the forms CDﬂ and F are closed
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dd% = 0 dF = 0.

PRoOOF. 1t follows from Theor. 1.4.5.1, In virtue of the arbitrariness of the
coupling constant e. a

Thus, K and I are completely determined by the first jet of the metric,
while the closed 2-form ® splits into a gravitational component, which is not
related to the metric, and an electromagnetic component, which is just the
electromagnetic field F.

1.4.5. Second gravitational equation

The second gravitational equation expresses the coupling of the gravita-
tional field with the matter and electromagnetic sources, by comparing the
gravitational Ricci tensor with the energy tensor of the matter and the
electromagnetic field. We restrict our study to the case of the matter
source constituted by an incoherent fluid, just as an example.

We define the energy tensor of the electromagnetic field F to be the sec-

12

tion
TG:E%T*E?T*E,
given by
7= Lk Fdtedt.
We have the coordinate expression

: .
T¢ = LK Fi/' Frded”.

We define a mass density to be a section
LE—-ATY2OM.

We define the energy tensor of the mass density y to be the section

% 1 is the Cyrillic character corresponding to “t”.
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T E->T*FQT*E,
E
given by
T = K u dtedt.
We have the coordinate expression

™=k p d’od’.

DEFINITION [.4.5.1. The energy tensor of the electromagnetic field F and
of the mass density y 1s defined to be the section

T4:= 1%+ 1% ESTYEQT *E. *
F

Just as example, we assume the source of the gravitational field to be
constituted by the electromagnetic field F and a mass density p. Accordingly,
we make the following assumption.

ASSUMPTION C7. We assume the gravitational field K% to fulfill the second
gravitational equation

rd =14, >

PROPOSITION 1.4.5.1. The coordinate expression of the second gravita-
tional equation is

"ﬂ = "ﬂ = "ﬂ = "ﬂ = N
! 00 K ! 0Oh ! ho 0 ! hk 0;

l.e.

Y G AR < FA SN LA < KR
1 00 0 10 10 0y 00 [

PSRN G G SR C A G
it 0h 0 1h i h 0y 0 h 1]

<A <L SN A N .
aik hk ahAikJrA i kkhj Ah klxij 0. -

The particular form of the source of the gravitational field implies that the
fibres of ¢:E—T are flat.
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PROPOSITION 1.4.5.2. We have (see § 1.2.4)

v

B4 =0.

ProOF. The fibres of t:E—T are Ricci flat because T% = 0.
Hence they are flat, because they are 3-dimensional (see [GHL]). a

REMARK [.4.5.1. If we take into account the Blanchi identities and try to
obtain a compatibility condition for the second gravitational equation, by re-
peating a standard procedure in a way appropriate to our Galilelan case, we
obtain just a trivial identity. So, In this way, we do not obtain any informa-
tion of the state equation of the source. a

REMARK [.4.5.2. As far as we know, our second gravitational equation
seems to be the most reasonable equation appropriate to the Galilelan
framework and inspired by the Einstein equation. The problem of finding the
appropriate coupling between the gravitational field and the matter source
has been Investigated by several authors, but we do not know a really defi-
nite answer. In fact, we are not able to derive such an equation from a fully
satisfactory unifying principle (for instance a variational principle). On the
other hand, we could guess several further proposals of stress tensors as-
sociated with the source, but we cannot couple them appropriately with the
Riccl tensor because we do not dispose of a non degenerate metric and of
appropriate coupling constants. a

REMARK [.4.5.3. Our second gravitational equation does not imply any di-
rect effect of the electric field and of the movement of masses on the gravi-
tational field. This 1s a weaker feature of the Galilel theory with respect to
the Einstein one.

In principle, we could partially overcome this deficiency of the above
Galilel theory, by Introducing an energy-momentum tensor, with non-vanish-
ing vertical component and coupling it with the Riceil tensor. However, such
an energy-momentum tensor would be a primitive object, which could not be
related to the movement of matter. We do not develop such a theory in de-
tail. .
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1.4.6. Second electromagnetic equation

The second electromagnetic equation expresses the coupling of the
electromagnetic field with the charge source.

We define a charge density to be a section
o E-THreA* oM.
Moreover, given LzOETT+, we set
o= p(uo) e A oM.
We define the time-like current of the charge density p to be the section
JiE— (A oM ?)OT *E,
given by
] = pdt.
We have the coordinate expression
J=e d.
Just as example, we assume the source of the electromagnetic field to be

constituted by the charge density p. Accordingly, we make the following as-
sumption.

ASSUMPTION C8. We assume the electromagnetic field F to fulfill the sec-
ond electromagnetic equation

div/ F = j. >

PROPOSITION 1.4.6.1. The coordinate expression of the second electro-
magnetic equation is

i -y h _ i -y I _
g (aiFj0 - KA F o )=¢ g (aI,FJ.k L KA F.)=0. O

PROPOSITION 1.4.6.2. We have

divi F =0, a
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REMARK 1.4.6.1. Both hand sides of the second electromagnetic equation
are identically divergence free. So, application of the divergence operator
does not yield any information of the state equation of the source. a

REMARK [.4.5.2. We can assume that the mass and charge densities are
carried by the same charged incoherent fluid, which can be described in the
following way.

We assume the charge density to be proportional to the mass density

e=¢cyu with € € QOM™*.

We assume a velocity field v in the domain where y 1s non vanishing and
define the contravariant momentum, current and stress tensors and the
Lorentz force density

p=Jv Cc:=pU e = JUov

f=-p g~ (vaiF).
Then, we assume the equation
divie = f,

which splits into the mass continuity equation and the Newton's equation of
motion

divh p = 0 J V%UU = [

as a consequence of the proportionality between mass and charge densities,
we obtain also the charge continuity equation

divi ¢ = 0 a

REMARK 1.4.5.3. As far as we know, our second electromagnetic equation
seems to be the most reasonable equation appropriate to the Galilelan
framework and inspired by the Maxwell equation. We can define the con-
travariant current involving the charge density and velocity, but we cannot
couple 1t with the divergence of the electromagnetic field because we do not
dispose of a non degenerate metric. a

REMARK [.4.5.4. Our second electromagnetic equation does not imply any
direct effect of the space-like current on the electromagnetic field. This is a
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weaker feature of the Galilel theory with respect to the Maxwell one.

In principle, we could partially overcome this deficiency of the above
Galilel theory, by introducing a current, with non-vanishing vertical compo-
nent and coupling 1t with the divergence of the electromagnetic field.
However, such a current would be a primitive object, which could not be re-
lated to the movement of charges. We do not develop such a theory in detail.o

1.4.7. Second field equation

The second gravitational and electromagnetic equations can be coupled In
a natural way through the gravitational coupling constant. In this way we
obtain the second field equation for the total space-time connection asso-
ciated with the gravitational coupling constant. The corresponding matter
source turns out to be constituted just by the mass and charge densities,
as the contribution of the electromagnetic field is incorporated in the total
Riccl tensor.

We define the energy tensor of the charge density p to be the section

T®:E>T*EQT*E,
E

given by
18 := VK p dtodt.
We have the coordinate expression
1= vk g d’ed".
DEFINITION I.4.7.1. The energy tensor of the mass density p and charge
density g 1s defined to be the section

T:=1"+71°: EF>T*EQT*E. *
F

THEOREM 1.4.7.1. The second gravitational and electromagnetic equations
1mply the following second field equation

r=r,

where r is the Riccl tensor of the total space-time connection K induced by
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the coupling of the gravitational connection K% and the electromagnetic field
F, through the coupling constant vk (see § 1.5.2).

Proor. In fact, we have (see Cor. 1.3.2.4, Ass. C7, Ass. C8)

ro=rb e A = A é VK (dtediv’ F + divi Fedt) - iﬁz K dtedt =

=~k [P dtedt + x g dtedt + VK p dtedt - - Pk dtedt =

I
~
U
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|.5 - Particle mechanics

Now, we study the dynamics of classical charged particles in the given
gravitational and electromagnetic field.

1.5.1. The equation of motion

The only observer independent approach to classical mechanics can be
achieved In terms of the total connection y .

Then, we introduce the fundamental law of particle dynamics.

ASSUMPTION C9. (Generalised Newton law of motion) We assume the law
of motion for a particle, with mass meM and charge ge®, whose motion is
s:T —E, to be the equation

V js=0. >
v o1

REMARK [.5.1.1. We obtain
V\C, LI1S—V(ijlS QYRR

Hence, the Newton law of motion can be written as
= O
VKH ]S =7 Cls,
1.e., In coordinates,

. 73 h k bl h g1 _
0,8 — (7" os)o st o st -2 (17 os)o s" - (11 os)
=9 (F os + F os o s™). O
m 0 h 0

The Newton law of motion can be expressed in a dual way, In terms of the
differential of functions.
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REMARK 1.5.1.2. If fESF(J1E), then, for each solution of the Newton law of

motion se#(E—T ), we can write
d(fejs) = (. flogs.
In particular, f turns out to be a constant of motion if and only If

v.-f=0.

Proor. We have

d(fejs)=<df)ejs, Tjs>=<(df)ojs, j,s>=<df)ojs, vojs>=
= (v-fleJs. =]

REMARK [.5.1.3. In a sense, the Newton law of motion can be expressed
by a Hamiltonian approach (in terms of a contact structure). In fact, we re-
call (see Cor. 1.2.5.2) that y is the unique second order connection which
fulfills the equation

Hence, the flow of solutions of the Newton law of motion preserves the
total contact 2-form and the induced volume form, 1.e.

LQ=0 L (dtrQrQnQ2) = 0. O
0

1.5.2. Observer dependent formulations of the Newton law of motion

By choosing an observer, we can re-formulate the Newton law of motion
in terms of Fuler-TLagrange, or Hamilton, or Poisson equations.

However, the choice of the observer turns out to be essential. So, ex-
plicitly general relativistic Lagrangian, Hamiltonian and Poissonian formu-
lations of classical mechanics do not exist.

The basic maps of classical particle mechanics related to an observer
will be extensively used in quantum mechanics (see Theor. II.1.4.1 and
Cor. 11.1.4.1).

First, we recall the following maps.
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Let o be an observer and consider the induced translation fibred morphisms
over E (see Rem. 1.1.1.3)

V :J E-T'OVE
and a local potential (which is defined up to a gauge)
a:E->T*OAQT*E
of the 2-form @ := 2 0*Q (see Rem. 1.2.2.2 and Prop. 1.2.5.1).
Then, we define the following classical objects In a coordinate free way.

DEFINITION [.5.2.1. We define the kinetic energy, kinetic momentum,
Lagrangian, momentum and Hamiltonian to be, respectively, the maps

G = ém go(V .V ):JE— T'OT*OAOM
P:=mghov :JE > T*OAOMOV*E
L:=G +m n-a: J1E - T*OT* @AM
p=mgteV +ma-a:JE— T'OAOMOV'E
H =<V, p>-1L: JE— T*OT*@AOM. *

We can write

REMARK 1.5.2.1. By considering the natural inclusion ExT* C T*E, we can
regard the kinetic energy, Lagrangian and Hamiltonian maps as time-like
forms

G:J1Eﬂr*®A®M®T*E L:J1E%T*®A®MI®T*E H:J,lEaI*@)A@M@T*E.

By considering the natural fibred inclusion 8*:J1E§\~”’*E C T*E (see Rem.

[.1.1.2), we obtain the forms
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P:=$*.P:JE > T*OAOMOT *E p=S*ip:JE > T*OAOMOT *E,

which will be said to be the kinetic momentum form and momentum form ,
a

respectively.

Moreover, if uOE"IF, then we set

G = G(uo,uo) 1 J E—~ AOMOR I = L(uo,uo) J E > AOMOR

H = H(uo,uo) 1 J E > AOMOR

p = ls(uo) : J E— AOMOV*E

p=Pu):JE > AOMOV*E

p = P(uo) D JE— AOMOT *E p = p(uo) D JE— AOM®OT *E.

[.5.2.2. With reference to a space-time chart adapted to the

REMARK
frame of reference (uo, 0), we have the following coordinate expressions

1 U] 1 ] ] ]
G =—-m .. Ve L =-m .. yio+mila. v +td
2 gl'] y() <0 2 gl'] y() <0 ( 170 0)

- G - ; »
P=mg, yid p=(m g, Yot m a)d

. P40 U _ i 0 i i
P = mgijyoyod +mgij)0d p mg“ijyo)od +(mgij)0+mai)d.

REMARK 1.5.2.3. Let 0 and o' be two observers and set
vi=0'-0:F— T*OVE.
Then, we obtain the following relation between the respective kinetic

forms
1 1 1
G'=G+_ mgo(ww)-mV b P =P -m $Fovb,

hence (see Remark 1.1.1.3)
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. . 1
G'+P' =G +P+_ m go(v,v) - m VO*JU",
where

vb = ghov 1t E-TH*QAQVHE.

Proor. It follows from

REMARK 1.5.2.4. We can achleve a Hamiltonlan formulation of the New ton
law of motion in three different ways, by considering the symplectic struc-
tures naturally induced by the total contact 2-form 2 on the even dimen-
sional vector bundles

VJ E—JE VVE—-VE VVF*E-V*E

and the observer dependent Hamiltonlan and momentum functions.

Moreover, the Newton law of motion, in the version quoted in Rem. 1.5.1.2,
can be expressed in terms of the Poisson bracket (see, later, Prop. II.5.2. 1)
between the function fESf(J1E) and the observer dependent Hamiltonian

function.

Furthermore, the Newton law of motion turns out to be the Euler-Lagrange
equation associated with the observer dependent Lagrangian function.

We omit here the details. a



78 A. ADCZYK, M. MODUGNO

1.6 - Special relativistic case

Under reasonable hypothesis, there exist distinguished metrical space-
time connections, which yield an affine structure on space-time. In such a
case, we avalil of this structure to simplify several formulas; in particular,
we prove that the Einstein equation turns out to be just the Newton law of
gravitation.

In the special case when the energy tensor vanishes, possibly the same
gravitational connection ylelds an affine structure on space-time. Such a
distinguished solution of the field equations is referred to as special rela-
tivistic and constitutes the background for the standard classical New-
tonlan mechanics.

1.6.1. Affine structure of space-time

Let us start with preliminary observations on a possible background con-
nection inducing an affine structure on space-time.

REMARK [.6.1.1. Let A be an affine space associated with the vector
space A and the translation map f:AxA—A.
Then, the affine structure yields a linear connection on A

Vo TTA =(A<A)<(AxA) > VT A = (AxA)<(0<A) : (a,u;v,w) — (a,u;0,w),

which is geodesically complete and whose curvature vanishes.
Conversely, the above connection K" characterises naturally the affine
structure (A, f) on A in a unique way. m|

DEFINITION 1.6.1.1. A background connection 1s defined to be a space-
time connection K", such that

- K" is metrical (see 8 1.2.3), i.e. V'g = 0;

- K" induces an affine structure on the space-time manifold E, such that
the time function t 1s an affine map. *

LEMMA 1.6.1.1. Let K" be a background connection.
Then, t:E—T turns out to be an affine bundle associated with a trivial
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vector bundle

t . E=Tx8 — T,

where S 1s a three dimensional vector space. Thus, ¢:E—T turns out to be a
principal bundle.
Moreover, the vertical metric can be regarded as a constant element

gEAQSTOST.

PRroor. Set
S := ker Dt C DE,

where DE denotes the vector space associated with the affine space E.
Then, for each T€T, we obtain

p(t (<)) =8,

In virtue of the fact that ¢ is affine. a

REMARK 1.6.1.2. Not all space-times ¢:F—T admit background connections
KII

If the space-time t:E—T admits a background connection K", then we can
easily see that it admits many background connections. a

REMARK 1.6.1.3. Let K" be a background connection. If o and o' are global
observers such that

V.o=0=V_o,
K K
then we have

0 =0 +v v ETY®S. a

REMARK 1.6.1.4. Let K" be a background connection. Then, each global

space-time chart (,X'O,')rf'i) adapted to the induced affine structure of space-
time yields

K'' =0 g, €A

AW
Of course, the observer o associated with such a chart is of the above
type. a



80 A. ADCZYK, M. MODUGNO

1.6.2. Newtonian connections and the Newton law of gravitation

Next, we consider the interesting case of a background connection which
is “tangent” to the gravitational connections on the fibres of space-time.

By considering such a connection, we can write the first and second
gravitational equations in an interesting way.

If the source of the gravitational connection K* is an incoherent fluid, then
the gravitational Finstein equation implies that the vertical gravitational
connection K% is flat (see Prop. [.4.5.2). Then, under further reasonable hy-
pothesis, K" may induce an affine structure on the fibres of space-time. Of
course, If the mass density of the source does not vanish, K% cannot induce
an affine structure on the whole space-time. However, under further reason-
able hypothesis, K* may be extended to a background connection K" (in a non
unique way). So, we introduce the following notion.

DEFINITION [.6.2.1. A Newtonian connection is defined to be a space-
time connection K" which fulfills the following properties:
i) the restrictions of K" and K* to the vertical subspace coincide

- — Y v * -
K p= KAy VE = TTEOTVE;

ii) K" induces an affine structure on the space-time manifold E, such that
the time function ¢ 1s an affine map. *
If K" is a Newtonian connection, then a New tonian observer is defined to
be a global observer o such that VK,,O = 0 and a Newtonian chart 1s defined to
be a global space-time chart (,X'U,)f'i) adapted to the induced affine structure

of space-time.

Now on, In this section, we assume that a Newtonian connection K" exist
and we refer to such a connection K" and to New tonian observers and charts.

Accordingly, some formulas of the classical field theory and particle me-
chanics assume a simplified expression.

REMARK 1.6.2.1. Condition i) implies
g -

But we stress that condition i) is stronger than the above equality. a
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LEMMA 1.6.2.1. The connection K" is metrical, hence it is a background
connection.

PROOF. Condition i) and the first gravitational equation (see Prop. 1.4.4.2)
yield

V'g = Vig = 0. 0

LEMMA 1.6.2.2. Condition 1) reads in coordinates as

Kbt o=o. 0

nJ

LEMMA 1.6.2.3. The gravitational connection can be uniquely written as
K% = K" + dtodteN*
where N Is a section
NEE—(T*OT*)OVE
whose coordinate expression is of the type

1= nN%' W eu’ Wl eg
N = N* ' ueu e, N OOEJ(E).D

We say that N% is the Newton vector field associated with the New tonian
connection K".

Let us discuss at which extent the Newtonian connection is uniquely de-
termined by the gravitational connection (provided at least one New tonian
connection exists).

PROPOSITION 1.6.2.1. Let us suppose that K" and K"' be two New tonian
connections.

Then, the two affine structures induced by K" and K"' on the space-time
manifold E yield the same affine structure on the bundle t:E—~T . Hence, we

obtain the same vector bundle

t . E=Tx8 — T,

with respect to the two Newtonian connections.
Moreover, the New tonian vector fields associated with K" and K"' differ by
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a time-dependent vector field:
(%) N4 - N4: T - (T*QT*)O®S.

Furthermore, let o and o' be two New tonian observers with respect to K"

and K"', respectively. Then, the two observers perform mutually a rigid

. 13
translation °:

(*%) 0'-0:T - T*®S.

PROOF. The affine structures induced on the fibres of space-time by K" and
K"' coincide because

~

KII — IE% — IE”I.

In other words, K" and K"' induce on the space-time fibred manifold the

same structure of affine bundle, associated with the vector bundle
V—-T.
Hence, K" and K" induce the same vertical parallelisation

VE = EEV'

Moreover, we have

V(o' -0) = Vio' - Vbo = (V"0 - dtedteN?) - (V'o - dtedteN%) =

= dtedte(N% - N1,
which yields
(i) Vi(o' - 0) = dtedte (N4 - N7).
The vertical restriction of (i) gives
Vi(o' -0) =0,
l.e. 0' - 0 can be regarded as a section

(%) o'-0o:T - T*QV.

' As usual, the difference o' - o is taken with respect to the affine

structure of the bundle JlE%E.
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Furthermore, formula () implies that Vﬂ(()' - 0) can be regarded as a sec-
tion

(ii) Vio'-0): T - T*OT*OV.

Then, formulas (i) and (ii) yield (*).
Additionally, formula (#+*) implies that o and o' yield the same linear split-

ting over T

V—-TxS. a
Next, let us show that the first and second gravitational equation imply
that N fulfills the Newton law of gravitation.

REMARK 1.6.2.2. The 2-form Q% becomes
QfF = Q" - (dt ,N9>=G.
Let o be a Newtonian observer. Then the 2-form dDH becomes

O4 = 2 N adt. o

PROPOSITION 1.6.2.2. The first gravitational field equation reduces to

AN = 0.

PRoOF. Let o be a Newtonian observer. Then, we obtain

N

Kf=K"=x Sh=3"=0 D" = 0.

Hence, the first field equation (see Theorem [.4.3.1) reduces to dAN% = 0. u
COROLLARY I.6.2.1. The first gravitational field equation reduces to

N% = grad U,

where U 1s a map

ULE-T*QT @A O

LEMMA 1.6.2.4. The Ricci tensor of the gravitational connection turns out
to be
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rb = div¥ N% dtedt : E — T*EQT *E. O
E

Next, let us assume that the source of the gravitational connection K% is
an incoherent fluid with density mass y, as in § 1.4.5. This hypothesis does
not conflict with the above lemma, as both r4and T4 turn out to be time-like
tensors.

Then, we can re-interpret the second gravitational field equation as fol-
lows.

THEOREM 1.6.2.1. The second gravitational field equation reduces to
divi N% = xoy

l.e. to

AU =Koy, a

REMAEK 1.6.2.2. Let 0 be a Newtonian observer. The potential of ®% be-
comes

a’ = Uadt. a

We can express the curvature through the gravitational potential.

REMARK [.6.2.3. Let us regard dtedtoN"% as a vertical valued 1-form on
the vector bundle TE—FE

dtedte N4 TE—-T*EQVE.
E

Then, the gravitational curvature turns out to be the covariant exterior
differential (see § II1.5) of NH) with respect to the background connection
K”)

RY = d_(dtedteNY),
with coordinate expression

Ri=u ou eg"d udid®eded.
0 0 hy 1

Pgoor. We have (see Rem. 1.1.1.3)
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Ri = J[K#, KA = J[K" + dtedteNt, K"+ dtedtoNA] = [K", dtodtoNY] =

= dK,,(dteadt@Nﬂ) . O

Finally, we study the law of motion of a classical test particle in the and
show that it reduces exactly to the classical Newton law of gravitation.

LEMMA 1.6.2.5. The gravitational second order connection can be written
as

b/% = b/” + N%,
where y" is the second order connection associated with I'". =]

PROPOSITION [.6.2.3. The Newton law of motion reads as

VKHS = Nﬂo'js. |

Therefore, N% can be interpreted as the gravitational force with respect to
the background connection K".

REMARK 1.6.2.4. Two different Newtonian connections K" and K"' yield
two different accelerations and gravitational forces
Vs VK,,‘S NHOJS NH'OJS. o
0

REMARK [.6.2.5. Neither the two fields equations, nor the law of motion
yield any distinguished choice among New tonian connections admitted by K*
(if they exist). a

1.6.3. The special relativistic space-time

Eventually, we consider the case when the source of the gravitational
field vanishes. In this case, the gravitational connection is Riccl flat;
hence 1t 1s possibly flat and, under reasonable hypothesis, the gravitational
connection itself is a Newtonian connection. So, in this case, we have a
distinguished choice of the Newtonian background connection.

Therefore, we are led to introduce the following notion.
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DEFINITION I.6.3.1. A space-time is sald to be special 1f the gravitational
connection K% induces an affine structure on the space-time manifold E, such
that the time function ¢ is an affine map. *

Of course, If the space-time is special, then we can apply all above results
with the identifications

K" = K* N%=0.

This case will be referred to as the special relativistic Galilei case. The
corresponding field theory and mechanics are just the standard classical
theories.
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.7 - Classical two-body mechanics

So far, space-time has been regarded as the manifold of possible events
“touched” by a classical particle. Moreover, the source of gravitational and
electromagnetic fields has been a given external incoherent charged fluid
(as an example). Furthermore, we have described the mechanics of a clas-
sical particle.

Now, we modify slightly our model in order to describe a closed system
constituted by n classical particles interacting through the gravitational
and electromagnetic fields. Thus, we no longer consider an external source
of the fields, but the source 1s constituted by the particles themselves.
Then, we are led to consider the fibred product over time of n 1dentical
copies of the “pattern” space-time as the framework of the system; each
component is referred to one of the n particles. In order to describe the
singularities corresponding to the possible collisions, we could describe
the fields in terms of distributions. However, we follow a simpler way: we
just cut the multi-events corresponding to possible collisions and consider
smooth filelds. It 1s a striking fact that the fields and the mechanics of
particles can be formulated in terms of this multi-space-time in strong
analogy with the case of a single particle. Actually, in the one particle
theory, the dimension 3 of the space-time fibre has never played an es-
sential role. So, the basic change from the case n = 1 to the casen » 1
consists in the increase of the dimension of the fibre of space-time (along
with the addition of n projections on the components).

This scheme can be developed for any n » 1. However, we do 1t explicitly
only for the case n = 2. The reader can generalise 1t without any difficulty.

We do not find the most general solution of field equations, but we just
exhibit the simplest solution whose symmetries and boundary conditions
are physically sensible. Then, the classical dynamics follows easily. This
solution 1s nothing but a Galilel general relativistic formulation of the well
known standard classical two body problem. We stress that the field
equations and solutions can be formulated independently of the explicit
motion of the particles.

Many concepts and results of this chapter are quite simple and standard.
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However, 1t Is necessary to spend some words for fixing the notation and
showing how standard notions arise very well in our general formalism.

1.7.1. Two body space-time and equations

We start by introducing the multi-space-time associated with two clas-
sical particles. We consider the associated basic multi-objects such as the
metric, gravitational and electromagnetic fields and we write the multi-
field equations.

We label the objects related to the two particles by the indices 1 and 2,

respectively.

ASSUMPTION CTB1. We assume a space-time fibred manifold
t:E—T

as in Assumption C1, which will be referred to as the pattern space-time.

More generally, the adjective pattern will be used for all objects associ-
ated with the pattern space-time.

Then, we define the multi-space-time to be the fibred manifold
t-F 1=
t:E (E1);(E2) — T

where E and E_ are two ldentical copies of the pattern space-time E:

E =E=E._.

1 2

We denote the projections on the two components by

=5
5]

P, %E1 P, %Ez.

Of course, we can write

TE = (TE1),1XT(TE2) VE = (\~"E1);(VE2) JE = (J1E1);(J1E2)-

Moreover, we consider the reduced multi-space-time obtained by sub-
tracting the diagonal from the multi-space-time:

={(y,.

t' . E

yz) € E | y, y,b—T.
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Then, we can define multi-objects related to multi-space-time analogously
to the one body theory. Let us analyse a few concepts as an example.

A multi-motion 1s defined to be a section
S:T—FE

and 1ts velocity 1s defined to be its first jet prolongation

Of course, we can write
s = (s,s,) = (8opr ,sopr)) Js =0 s .08, = (i (sopr),j (sopr)),
where

s .:T—E s .T—E ] s :T—JE ] s.:T—JEF_.
1 1 2 2 S171 171 7172 172

A multi-observer 1s defined to be a section

Of course, we can write
@ = (01,02) = (@OJ1pr1,@OJ1pr2),

where

need not to be pattern observers in the standard sense because they may de-
pend on the two-body events. In particular, let

0:E%J1E

be a pattern observer and let 0, and o_ be two 1dentical copies of o on E1 and

E,, respectively; then, o ylelds the multi-observer

@ = (01,09).

A pattern space-time chart (,X’O,')rf'i) yields the multi-space-time chart
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0 . . 0 . .
(“Xﬁ ] )/115 )”’21) = (X k] )"’Ioprl, )"’Iopl’1).

Next, we pursue by assuming further structures on the multi-space-time
analogously to the one body case.

A SSUMPTION TB2. We assume the reduced multi-space-time to be
equipped with a multi-metric

@ F—AQ(V*EQV*E),

&=

a multi-gravitational connection

and a multi-electromagnetic field

2
F.E'-BOAT*E'". >

Analogously to the one body case, the above fields yield several objects,
which fulfill several relations. In particular, we obtain the multi-gravita-
tional connection (see Prop. 1.2.1.1)

T4J E—T*E ©@TJ E'
1 (]1E' 1

the multi-second order gravitational connection (see Prop. 1.2.5.1)

¥hJ E'—-T* @TJ B,
1 ']1EI 1

the multi-gravitational contact 2-form (see Prop. 1.2.5.2)
@ﬂ:JIE'a(I*@@A)@AT*AE'

the multi-gravitational curvature tensor (see Rem. 1.2.1.4)

]

2
“E'— NT*E'QV*E'.

EI

and the multi-gravitational Ricci tensor (see Rem. 1.2.1.4)
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ASSUMPTION TB3. We assume two masses and charges
€ e @.
m, m, M 9,9, (0]
We set
m an)
= — = + = —=
T are= T m, Yo T
q

—_
<Q

Then, we obtain the multi-total objects by coupling the gravitational and
electromagnetic fields (see § 1.5.2), analogously to the case of one particle,
both with reference to the above mass me€M and charge ge@ and to the
square root of the universal gravitational constant K.

In particular, we have the following total objects (with respect to both
couplings)

e

:]_—r‘%+

=
=

e@legﬂ+‘@”e @:@%+@e‘

Moreover, we obtain the following splittings

R =R+ B + B° F =i+ P+ pe,

The one body fleld theory suggests the following field equations.

ASSUMPTION TB4. We assume the metric, gravitational and electromag-

netic field to fulfill the following field equations on the reduced multi-space-
time

dQ%=0 d

F=0
P4 =0 diviF = 0

The one body mechanics suggests the following dynamical equation.

ASSUMPTION TBS5. (Generalised Newton law of motion) We assume the
law of motion for two particles, with masses m , m_€M and charges q,

91
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q,€®0, whose multi-motion is §:T—E, to be the equation

V@; ]88 =0. >

Later, in the two body quantum mechanics (see § I1.7.2), we shall be in-
volved with the following classical objects.

Let us consider a multi-observer @ and the associated map

Then, we define the multi-kinetic energy and multi-kinetic momentum to
be the maps (see Def. 1.5.2.1)

€= ,mgo(V,, vV ):JE— T'OT*OAOM

3

P=m gbov@ 1S E— T"QAQMOV *E.

Moreover, we obtain the kinetic energy form and kinetic momentum form
(seeRem. 1.5.2.1)

G :JlE%T*(@A@M@T*E

P=§*_p - JE T OAOMOT *E.

1.7.2. The standard two-body solution

Next, we exhibit a distinguished solution of the field equations whose
symmetries and boundary values are physically appropriate.

The background space-time structure

First, we introduce a multi-metric and a background affine structure of
the multi-space-time in the following way.
We consider a vertical metric (see § 1.1.2)

g:E—~AQ(V*EQV*E)
E

and a background connection (see Def. 1.6.1.1)
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K" TE-T*E®TTE
E

on the pattern space-time.
Then, we denote by g and g, two 1dentical copies of g on E and E,, re-

spectively, and consider the multi-metric
g E—~AQ(VYEQV*E)
E
given by

P VEOVE — A (X,7) =y g (X V) +p g (X V).

Analogously, we denote by K" and K", two identical copies of K" on E and

E,, respectively, and consider the multi-background connection

5]

K" = K”1XK” TE—TYEQTT

2

5
=@

Hence, the background affine structure on the multi-space-time ylelds the
splittings (see Lemma 1.6.1.1)

E=T-S VE = E<S,
where 8§ is the 6-dimensional vector space
fg =
S S,

where § and S, denote two identical copies of S related to E and E,, re-

spectively.
We consider also the reduced subset

S':=8 - {0}
Moreover, the multi-metric turns out to be an element

€ AO((8 *08 *)(s,7 08 1))

Before pursuing with the construction of the standard solution of the field
equations, we analyse some important consequences of the above structures
on the multi-space-time.



94 A. ADCZYK, M. MODUGNO

We define the space of the centre of mass to be the diagonal fibred sub-

manifold over T
E, {(81’82) € E| e, ez} CE—~T
and the centre of mass projection to be the fibred morphism over T

S N . 8
pr, L@

5]

(epe) 8 = (e ),

=5

where e € E 1s the unique element such that

U (81 - ec) TPy (82 - ec) = 0.

t(e1) = t(ec) = t(ez)

Moreover, we define the relative space to be the vector subspace

S =X, X)eS|p X +p, X, =0}CS

and the c-relative projection to be the map
S L m = — — _ _
pr . E _>'§g .@_(91,82)HS —(81,82) (e1 e e, ec).
Furthermore, we define the relative projections to be the map14
) . F . . a8 = ) ) = ) — ) ) - H
pr.: E-S e (el,ez) > (rl,rz) ((—:’1 e, e, 91).
We set also
0: 8~ AYPOR 1 v — il = Vg(v,v)
L — w 1/2
ri=gor = gor, E— A "OR
s lsll = VE(8.8).
Hence, we can write
! e ro=-—s
oo 2 £11 2

Therefore, besides the natural fibred splitting over T

" 0or course, these maps should not be confused with the Ricel tensor.
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- - . T8 .
(pr Nz 2) 'E—~E JE e~ (6’1, 6’2),

we obtain the further splittings induced by the affine background structure

(prc,prs) E— E XSS C@ (eg, (81’82)) = (ec, (6’1 —e e, - ec))

(&

The above splitting 1s naturally prolonged by the tangent and jet functors,
hence it yields analogous splittings of structures and equations.

If o is a pattern Newtonian observer and (xo,yi) an adapted Cartesian
chart, then we obtain the two distinguished multi-charts

0 ] ] 0 ] ] 0 ] ] 0 ] ] ]

The gravitational and electromagnetic fields
Next, we exhibit the multi-gravitational connection.
We consider the map

x m,m,
gh = - — 28 S TH*OT*OAOM,

m p

which yields
(U]ﬂ = U%or1 = Uﬂoro CTEHE-oT*QT *QA.

Then, we obtain the section

N%:= grad U% : E'>(T*QT*)OVE,

which can be expressed as

B - (o ]\m)__5m1m2 Cor )
A - 1) ) - m I"S ul r1) u{) rg .
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Eventually, we exhibit the multi-electromagnetic field.
We consider the map

9,9,

U= (17 18 - TreA oM
2

which yields
U" =Uor =Ur,: E-T oA 'oM'*.
Then, we obtain the section

2
F:=-2dtrdU° : E' > BOAT*E",

2 2 2
Fi=(y, F,1,F): E — BO(ATYE )Z(ATYE,) C BOAT*E".

Moreover, we obtain the section

~

N°=ZgradU®: F'—(T*OT*)OVE',

m

which can be expressed as

1 q1q2 1 1
E 5 (Tr' 71’_).

N°=(N" N°) =
1 2 -
! 1 T2

PROPOSITION 1.7.2.1. The sections

K4 = K" + dteodtoN4 - TE' — T*E'QTrTE'
i
and
Fi=-2dtrdU°: E — BOAT *E'

are a multi-gravitational connection and a multi-electromagnetic field and
fulfill the two-body field equations (see Ass. TB4). a

REMARK 1.7.2.1. The Newtonian vector field and the potential factorise
through the following commutative diagrams
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Y (rrewmt)os Y e
l Sr?%(ﬁ*@jﬂ*)(@Sr o S a
REMARK [.7.2.2. We obtain
QF = Q" -2dtrdU Q°=-2lataur
¥h=g"+dtedtoN* v = dtodtoN°.

Hence, with reference to any New tonian multi-observer (see § 1.6.2), the
form (see Theor. 1.4.3.2))

1 Km1m2—q1qn

m I

is a potential of the 2-form @ := 2 @*Q. u|

REMARK 1.7.2.3. With reference to any multi-space-time chart, we have
the following coordinate expression

0 0 1 Kmln’lﬂ_q1q0 0 0
@ =@ uood =-— = = ued. o
0 m r

The two body mechanics

The dynamics of the two classical particles follows from the above solu-
tion of the fleld equations analogously to the one body dynamics, without any
problem, in full accordance with well known standard results.

We Just give explicitly a few further details about objects we shall be In-
volved with later in the quantum theory (see 8§ 11.7.2).

REMARK [.7.2.4. L.et us consider a multi-observer @ of the standard type
@ = (0,0), where 0:E~J E is a pattern observer.

Then, we obtain the standard formulas

. ! ot .
G = G +G,=_m, g’O(VO, V0)0J1p11 rom, gO(VO, VO)OJ1p12
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1 1
h Gc ’ Gr . Enl g’O(VO, V0)0J1p}0 ’ Ern ul HQ go(vo’ VO)OJ1PI r

D _ D D ._ b . b .
P =P +P, = (m grov JoJ pr +(m, groV )od pr,

=P _+P =(mgtoV JoJ pr +(myp p, gV )od pr

P=P +P = 8*le31 + S*JIVJz

—p +P =&*ip + $*ip |
C r C r

With reference to a Cartesian chart (,X'O,)f'i) adapted to o, we obtain the
following coordinate expressions

1 D D
G=-5(m v'v!i+m yv'y!
2 % M M0 Mo 2 7 20 7 20

1 ] ] ] J
=-8.m((y vi+ y oy
2y ( cO“ c0 El1 UZ < rg v r'())

O C o o
g yiviem y!'y ) Yd +(m y'd'+m_ y'd ))
i 17107 10 2 V207 20 1210 1 2 220 “o

. . 4 0 P P
=-8. . m ( y Ly dos vivIO)yd +(ylad'+ v !d ) a
Iy ( c0 v c0 u1 HZ < ro r[)) ( cO0 ¢ u1 HZ “ro r )

r

We conclude this chapter with the observation that, in most respects, the
system of two particles with masses (m1,m2) and charges (q1,q2) can bhe

treated just as a system consisting of one particle with mass m and charge ¢q
moving in the multi-space-time.
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Il - THE QUANTUM THEORY

The second part of the paper is devoted to a model of general relativistic
quantum mechanics for a spin-less charged particle, interacting with given
classical gravitational and electromagnetic fields in a given classical
Galilel general relativistic curved space-time with absolute time.

So, we consider a classical curved space-time t:E—T (8 1.1.1) equipped
with a vertical metric g (8 I.1.2), a gravitational connection I'% and an
electromagnetic field F (8 1.5.1) fulfilling the field equations (8 1.4.1, §
[.4.3). Moreover, we consider a mass meM, a charge g€@ and the related
total objects, which involve both the gravitational and electromagnetic
fields (8 1.3.2); in particular, we are involved with the total contact 2-
form Q (8§ 1.2.5).

Next, we introduce the quantum framework: it is constituted by a line
bundle, over the classical space-time, equipped with a system of connec-
tions, parametrised by the observers, whose universal curvature is pro-
portional (through the Planck constant) to the classical contact 2-form.
Then, a criterion of projectability expressing the principle of general rela-
tivity, yields the dynamics for the sections of the quantum bundle.
Moreover, pure geometrical constructions produce the quantum operators.

The above theory 1s referred to the quantum bundle, which 1s based on
space-time. We can re-formulate this theory, in terms of infinite dimen-
sional systems, by taking time as base space. In this context, we achieve
the Hilbert bundle and related quantum operators.

The standard probabilistic interpretation of quantum mechanics is as-
sumed without any essential change.
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II.1 - The quantum framework

This chapter 1s devoted to the study of the quantum bundle and the
quantum connection.

[1.1.1. The quantum bundle

We start by introducing the quantum bundle, which is the fundamental
space of the quantum theory.

A SSUMPTION Q1. We assume the gquantum bundle to be a Hermitian line
bundle over space-time

T:Q—F. S

Thus, we assume the quantum bundle to be a 2-dimensional (real) vector
bundle 1t:Q —E equipped with a linear fibred morphism over E

L:Q—a
such that v” = - 1 and a Hermitian fibred product

h:QEQ—ME.

As usual, t:Q ~E becomes a 1-dimensional complex vector bundle, by set-
ting

iq:=1u(qg), vqeq.

We shall be involved with the real and imaginary Liouville vector rields"
Q- ve=a:q- (g q) in Q- Va=q@a:q9—( iq)
and we shall often make the identifications

1=id_ =u:E— (QTOQ) i=iid =in:E— (Q*3Q).
Q E Q E

We denote the tube-like (real) linear charts and dual bases, respectively,

1 “i”.

° i is the Cyrillic character corresponding to
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by
(w™):Q > R” (b ):E—Q.Q 1<a<2.

Moreover, we denote the associated (real) linear bundle trivialisation and
(real) linear complex valued coordinate, respectively, by

© = (TC, W“l + 1 W“Z) :Q—E<C 7 = W“1 + wﬂz ‘Q — C.

The above four objects (w®), (ba), ¢ and 7 characterise each other in an

obvious way.
Of course, the tube-like vector field

b := b1 cE—-Q

turns out to be a complex basis.

The above four objects (w), (ba), ¢ and 7 are said to be normal if

b, =ib, h(b1,b1)= 1.
Normality is characterised by each of the following equivalent conditions:
1) 7:Q—C

1S a complex linear coordinate,

b:E—Q
1s the complex dual basis and
h(b,b) = 1;
i = Wl@bsv - W2®b1 h = (WI@W‘1 + W2®W2) + 1 (W1®W2 - w2®w1)3
111) l=2z0b=>2z0 =mu z'zz'z®b=izazzz'1/1
h=z3z;

iv) ¢ is a tube-like Hermitian complex fibred isomorphism.

The normal bases and trivialisations will be refereed to as quantum
gauges.

[t can be proved that the bundle 1:Q —~F admits a bundle atlas constituted



102 A. ADCZYK, M. MODUGNO

by normal charts. The associated cocycle takes its values in the group U(1).
Now on, we will always refer to such an atlas, without any explicit mention.

If (xo,)rr'l’,w”) 1s a fibred chart m:Q@ —E, then the induced linear fibred chart
of the vector bundle J1Q —FE will be denoted by

0 .1  a . a
(7 whw

5/

The sections V:E—@Q are interpreted physically as the possible quantum
histories.
For each v e€#(Q—FE), we shall write locally

¥ =qg b, @ = zoW € JL(E,C).

[1.1.2. Quantum densities

The sections of the quantum bundle are sufficient for our starting pur-
poses. However, in several contexts it Is useful or necessary to multiply
them by the space-time or space-like half-volume forms. For this reason,
we introduce the notion of quantum half-densities. We have a natural bi-
jection between quantum sections and quantum half-densities.

Let us consider the bundles

- 4 - 3
TV*0A> 'O VAT *E—E AT O VAV HESE,

where v denotes the square root of the 1-dimensional positive semi-vector
bundle induced by the positive orientation (see § 111.1.53).
Thus, we have the sections (see § 1.1.2)

- o 4 B 5
VO E-T"?0A "0 VAT *E VE—AY 'OV AVFE
and, by definition, we obtain

VOBV = v Ve VI = .

The space-time half-densities quantum bundle and the space-like half-
densities quantum bundle are defined to be, respectively, the bundles

/6 - 4
w0 QY = TV*0A'@(Q@VAT*E) - E
E



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS 103

Q= A"'eQOVAVFE) — E,
E

The above bundles turn out to be 2-dimensional real vector bundles and in-
herit the complex and Hermitian structures from the Hermitian complex bun-
dle Q—F.

If Ye£(Q), then we obtain the local sections

U” = veovo: E—Q° "= vevn t E - Q"
with coordinate expressions
= g e ¢(uo®d°Ad1Ad2Ad5) ¢ = gM e V(d'hdPad?),
where we have set
"= Vgl w.
Of course, we have the natural linear sheaf isomorphisms

£(Q) — #(Q°) : v — ¢ £(Q) — +(@Q") : ¥ TN,

[1.1.3. Systems of connections

In view of the introduction of the quantum connection, we need a few
recalls on systems of connections (see [ MM], [Mo1]).

Let p:F—B be a fibred manifold.

A system of connections 1s defined to be a fibred morphism over F
£:C<F > JF CT*BOTF,
B 1 F
where ¢:C—B 1s a fibred manifold.

The system § maps in a natural way sections of ¢:C¢—B into connections of
p:F—B

E:c%{c: goe',

where ¢! denotes the pullback of ¢ (see § I111.1).
In other words, a system of connections is a smooth family of connections
parametrised by the sections of the bundle €. The connections of the fibred
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manifold p:F— B, which are of the type §,, are the distinguished connections

of the system.

Let (x",7) and (x”,a") be fibred charts of F and ¢, whose domains project
over the same open subset of B. Then, the coordinate expression of £ 1s of
the type

_ [ (e
g=d'®d +5 d oo, g, €5(C4F).

Given a system of connections £, we obtain the “universal connection” in
the following way.
Let us consider the pullback bundle over €

p' . F' =CF — C.

REMARK II.1.3.1. We can easily exhibit a natural inclusion
Lo (J1F)T = CoJ F— J1(FT).
with coordinate expression
(.,\"}\,CII'I,ZZ';Z}i,ZIli)OL, _ (.xx,a”,zi;zki,o).
Next, we can easily see that the map
AE = Lot I Fl — J1(FT)
is a section. Thus, A _is a connection of the fibred manifold p':F'—C, with
S
coordinate expression
A =ded +d'ed +5'ded.
g A u A 1
The connection AE 1s said to be the universal connection of the system £

because every connection E(, of the system can be obtained from A _ by pull-

back:

— o¥
EC—C AE' a

We can characterise the universal connection in the following way.
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REMARK I1.1.3.2. i) Let £ be a system of connections. Then the coordinate
expression of the universal connection AE of the system £ shows that the

linear fibred morphism over F' —F

A
' V& F ' IC N —I(F ')—— TF

vanishes, 1. e., for each vertical vector field X:B—V(C,

X2A_ =X
g

In coordinates, this condition reads

ii) Conversely, let ¢:€C—B be a fibred manifold and
ANF'>T*COT(F")
7

a connection, which fulfills the above condition. Then, we can prove that
there Is a unique system of connections

CxF—J F
E/\ B 1 ’
whose universal connection is A. a

Next, let us go back to the system §. The curvature of the connection A _1s

the vertical valued 2-form (see § I11.5 and [MM2], [Mo2])

Q =

=4
S

Lo | —

[AE,A?] :F' — AT*COVF,
S F
with coordinate expression
- i J iy gh g TRt
Q = ((a,}\gu r5,008 Dd'dt <05 Nd'a )eo.

The curvature Q_is said to be the universal curvature of the system g,

because the curvature

! . 2 *BOV
B, =, [5,8 ] F~ AT*BOVF

-
£
SC

of every connection E(, of the system can be obtained from QE by pullback:
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R =c¢*Q .
e g

Next, let p:F—B be a Hermitian line bundle. Then, a connection'®

4y:F—T*BOTF
B

is said to be Hermitian if it is (real) linear and preserves the Hermitian
product h. A Hermitian connection turns out to be also complex linear. The
coordinate expression of a Hermitian connection u is of the type

y = d}\®(a,}\ + 1 v, n) q,}\E&”(B).

The curvature of a Hermitian connection u can be regarded as an imaginary
2-form

2
Bq: B—AT*BOC
with coordinate expression

R =idu drd*on.
q !

REMARK I1.1.3.3. Let p:F—B be a Hermitian complex vector bundle and § a
system of connections. Then also p':F' —C turns out to be a Hermitian com-
plex vector bundle.

Moreover, £ 1s a system of Hermitian connections if an only 1If A_1s a
g

Hermitian connection. a

[I.1.4. The quantum connection

Now, we are in the position to introduce the quantum connection, which
constitutes our basically unique assumption of the quantum theory.

We observe that the quantum bundle lives on the space-time E. However, E
does not carry sufficient information of the classical structure; for in-
stance, T', ¥ and Q live on J1E. Therefore, we are led to consider the pull-

back bundle

% 4 is the Cyrillic character corresponding to “ch”.
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P
T o Q -—JlEEQ%J1E

of the quantum bundle @ ~F, with respect to J1E%E. In the present context,
this bundle J E—E has to be Interpreted as the target space of classical ob-

servers (see § 1.1.1).
Then, we make the following main assumptions.

ASSUMPTION Q2. We assume the Planck constant to be an element

AheT T OAQM. >

Moreover, given LzOETT+, we set

h = h(uo) € AOM.

ASSUMPTION Q3. We assume the quantum connection to be a connection
on the bundle Q' —~J E

uQ' ST*JEQTQ',
Uy E

with the following properties:
1) u is Hermitian
11) u is universal,
1i1) the curvature

2
R:JE-AT*JE®(Q*®Q)
4 1 1 J1E F
of u is given by
_;m
(Bq) R =1 Qon. >
We stress that our assumption on the closure of the classical contact 2-

form © turns out to be an essential integrability condition for the existence
of the quantum connection. In fact, the equality

dQ2 =20

can be regarded as the Bilanchi identity for the connection u.
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PROPOSITION II.1.4.1. Our assumption Q3) on the quantum connection can
be re-formulated by saying that we assume a system of Hermitian connec-
tions, parametrised by the observers 0:E—J E,

=:J E-Q >T *EQTQ,
1"E E

whose curvature is given, for each observer o, by

~

B =-12pou.
So

DY | =
B |

PROOF. 1t follows immediately from the properties of universal connection
and curvature of a system of connections (see 8§ 11.1.3). a

COROLLARY II.1.4.1. For each obhserver o, we obtain the connection
£ :Q—T* EQTQ
o E
whose coordinate expression, In adapted coordinates, Is
g = d'©d +ia doun,
o A A

where a is a distinguished (see, later, Rem I1.1.4.1) choice of the potential of
D.

Proor. Tt follows immediately from the coordinate expression of the curva-
ture of a Hermitian connection and the definition of «. a

LEMMA II.1.4.1. Let b be a quantum gauge. Then, in the tube of the triv-
1alisation, there is a unique flat Hermitian and universal connection

y'Q'=>T*JEQTQ",
U JE
such that for each section W:EF—@, which 1s constant with respect to o, we

have V' = 0. a

We say that u" is the background connection associated with b. We stress
that 4" is not a quantum connection because its curvature vanishes (and it is
local).

THEOREM I1.1.4.1. let b be a quantum gauge and o an observer. Then, In
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the tube of the trivialisation, the quantum connection can be uniquely written
as

(Qc) lqu”+l'ﬁl(G+P+ma)y1,

where G and P are the classical kinetic energy and momentum forms associ-
ated with the observer o (see Rem. 1.5.2.1) and « is a potential of the 2-form
O =2 0"Q (see Prop. 1.2.5.1 and Theor. 1.4.5.2), which depends on b and,
obviously, on o.

Thus, with reference to the normal chart associated with b and to any
space-time chart adapted to o, we obtain the following coordinate expression

| _ g { 0 -m 1 Ao 40 R n
(Qc) u=d ©0, +d ©d 1 ( 28 Y0 Y d’ + 8y d +a, d )ou,

hence (see Rem. 1.5.2.2)

qoz—H/h q}.zpi/h u. = 0.

PROOF. Let us refer to the normal chart associated with b and to any
space-time chart adapted to o.

Condition 1i) reads in coordinates as

Moreover, in virtue of condition i), the coordinate expression of the con-
nection u can be written (without loosing in generality) as

n ] 0 . m 1 i ] 40 i 4 Py
= ® + o3¢} + — - — 4 o + 4 + [
y=d a,}\ d0 ai L ( 5 gij YoV d gij Y d a, d" )on,

where
a=a, Wed JE— T*®T*E

I1s a sultable fibred morphism over E, which depends on ¢ and the space-time
chart.

Eventually, a computation in coordinates shows that condition iii) implies
that a depends on J E only through E and that 1t 1s a potential of @.

Moreover, we can easily see that a change of space-time chart adapted to
the same observer o leaves the term
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m I

n ) 0. 1 I 40 U ogl
d"©@o. +d ®0, +1 - ooy d o+ vy d')ewn
A0 T 1z ( 2810 Y0 ij Yo )

unchanged. Hence, a depends on the space-time chart only through the ob-
server o. g

COROLLARY II.1.4.1. The composition of the connections y and u
v1u:Q'-T*eTq’

is a connection on the fibred manifold " —T .
Let b be a quantum gauge and o an observer. Then, in the tube of the triv-
1alisation, we can write

_ I lL
G S A B el A

where L is the classical Lagrangian form associated with the observer o (see
Rem. 1.5.2.1) and with the potential a of ® fixed by the above theorem.

Thus, with reference to the normal chart associated with b and to any
space-time chart adapted to o, we obtain the following coordinate expression

-4 = uo®(ao + yé 0.+ ‘! a? +iL/fin),
hence

(buq)o = L/h. a

PROPOSITION II.1.4.2. I.et 0 be an observer. IL.et b and b' be two quantum
gauges and set

'Y= b'/b € M(E,T).

Let a and a' be the potentials of the form ® := 20*Q which appear in the
expressions of the quantum connection u related to the quantum gauges b and
b', respectively, according to formula (QC).

Then, we obtain

a'=a—£d8.

m

PROOF. Let (,X'U,)f'i,z) and (,X‘U‘,)f'il,z') be charts of @ associated with (o,b) and
(0,b"), respectively. Then, we can write
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d oo +d @3 =d’ed +d @’ -idsen.
A 0 ! IS 0 1

111

Hence, the comparison of formula (QC) in the two charts yields the result.o

PROPOSITION II.1.4.3. L.et b be a quantum gauge. L.et 0 and o' be two ob-

servers and set

vi=0-0:F > TY®VE.

Let a and a' be the potentials of the forms ® = 20%Q and ®' := 20'*Q which
appear in the expressions of the quantum connection u related to the quantum
gauge b and the two observers o and o', respectively, according to formula

(Qc).
Then, we obtain

(%) al =a- égo(l’,)u) + VO%_‘UI)J

where vb := gbop, v *:VFE-ST*F is the transpose of v (see Rem. [.1.1.3) and
g o] p o]

go(v,v) is regarded as a form
go(v,v) : E— T*OQAQT*E.
In particular, by vertical restriction, we obtain

pay|

a' =a + vb.

Hence, if (,X‘U,')rf'i) and (.X'O,w)rf"i) are space-time charts '’ adapted to o and o',

respectively, then we can write

— 1 I
ao‘—a0+( 2vl.+al.)v

a.,=2yv"(a +v),
I J J
where we have set
0_ 0_ 4n 0_ 4n
a' = a',A, ued a' = a'} uod a=a,u @d

with

' For the sake of simplicity, we take X' =x.

10
v=uvou ®ai,
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a ,d' ., a. €.(EA) v' € 5(E).

Proor. Formula (#) follows from formula (QC) and Rem. 1.5.2.3.
Then, we can write

C 1 o]
a =a --g.v v
0 0 2954

1 l'
a. =a + g v
i ! gl(l

In the space-time chart (,X'U,')rf'i). On the other hand, we have

| _ 1 ] 1 o J
a_ =a _+90 a . a.=9Jd.v a.
0' 0 O‘y i i 1‘) J

Moreover, by taking the composition of the transition map

i ! ]
yvi =0y ‘,J T+ 0y
<0 J° -0 0

with o' = 0 + v, we obtain

The above results have delicate aspects which deserve an explanation.

REMARK II.1.4.1. In the above expressions of the quantum connection we
deal with two different kinds of observers. First, in order to write an ex-
plicit expression of 4y, we have chosen an observer o. Then, In order to
parametrise the connections of the system &, we deal with all observers

(including o itself). These observers are spanned by the coordinates \('], n

particular, the observer o itself is characterised by yéoo = 0.

We stress that a does not depend on the family of observers of the sys-
tem, but 1t depends only on the chosen observer o. a

REMARK II.1.4.2. In the classical context, we can refer to any local po-
tential a of the observer dependent form ®. Conversely, In the quantum con-
text, u is a global and intrinsic object. Hence, formula (QC) determines, for
each quantum gauge, the choice of the local potential a related to the ob-
server o. Now on, we shall refer to the above choice of a and we say that it
1S quantistically gauged . a
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REMARK II.1.4.3. We stress that locally a quantum connection always ex-
ists; on the other hand, our assumption of a global existence of a quantum
connection may imply global conditions on the quantum bundle.

We do not discuss here these conditions and just assume, as a postulate,
that the compatibility of our assumptions is fulfilled. The special relativistic
space-time (see § 1.6.3) and the two-body space-time provide important ex-
amples. a

The requirement of universality of the quantum connection is very impor-
tant, because 1t allows us to skip the well known problem of the choice of
polarisations.

[1.1.5. Quantum covariant differentials

Next, we study the covariant differentials of the quantum sections, with
respect to the quantum connection.

Let us consider a section ¥e€#(Q—F) and its pullback \IfTEaD(QT%JyE).

PROPOSITION II.1.5.1. The quantum covariant differential of &' is a 1-
form

VIV . JE-T*JE®Q".
Y 1 1 J1E

However, as the section &' :JlE%QT 1s the pull-back of a section V:E—Q

and the connection u is universal, we can write
VUy'JE-T*EQQ.
Y 1 F
Moreover, for each observer O:E%JlE, we have (see § 11.1.3)

vqwoo:v v F > TYEQ®Q. a
) E

g(o)

Then, we introduce the following notions.

DEFINITION II1.1.5.1. We define the covariant differential of ¥ as the
fibred morphism over E
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VU =V V' : JE - T*EQQ,
Y 1 E
and the time-like and space-like covariant differentials of ¥ as the fibred

morphisms over E

VI = 12V JE > THOQ VU JE - VFEOQ. *
E

REMARK II.1.5.1. We have the coordinate expressions

Vi =V gd'ob= (0 i Hmg)d v (00 -ip/he)d)eb
Vi - (ﬂ'O"'P i (L) @) u'eb A (aqu -1 (pl,/h) qg) d'eb. o

DEFINITION II.1.5.2. If o 1s an observer, then we define the observed co-
variant differential of ¥ as the section

VU := VWoo : E > TYEQQ,
the observed time-like and observed space-like differentials as the sections

VoI := Voo = 02VF : E > THOQ VOl := Voo - E > VYEQQ. &
E

REMARK II.1.5.2. In any space-time chart adapted to the observer o, we
have the coordinate expressions

Vo = v7 g d'ob = (0, ¢ -1 %a}\ w) d"ob
Vow = v o u'eb V= VO adob. o

With reference to a quantum chart (#), we shall use the standard notation
for the local complex conjugation of the covariant differential and write

o0 _ 0 - o0 ._ - m
Vi:.p—Vi:.p Vi~—al.+lhal,.
PROPOSITION I1.1.5.2. The classical connection K (see Rem. 1.2.1.3) and

the quantum connection u yield the covariant differentials of VT and VU
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V VU :J E-VFEQVFEQQ VOVl E-V*EQVFEQQ.
E E E E

Hence, we obtain the Laplacian and the observed Laplacian
AW = g, VVU)> JE > A*OQ AW = (g, VOVOUS  E - ATOQ,

with coordinate expressions

AV =gl (ViviLP " Kihj V/»ﬁp) b A% =gt (VoiVUiLP ' Kihj VO/’ILP) .

where

2
] 0 O _ _ . m eem m
g’ Vv =8 (al_']_q_) 21 q, ajs.p (i . al_a']_ s aj) w). 0

Analogously, we can define the covariant differential of the space-time
half-density ¥'° and the vertical covariant differential of the space-like half-

density ', Moreover, we obtain the vertical covariant Laplacians.
In particular, we shall be involved (see Cor. I1.2.3.1) with the equality

(AN = A%(0 M),
Therefore, we shall write locally, without ambiguity,

(A% = A%" = A%(LM).

[1.1.6. The principle of projectability

We conclude this chapter with a criterion, which will be our heuristic
guideline for the following developments.

Our only essential assumption for quantum mechanics is the quantum con-
nection. This will be the source of all other quantum structures, including
the quantum Lagrangian, total equation and operators.

But, the quantum connection lives on the bundle Q' over J1E, while we re-

quire that the physically significant objects live on the bundle @ over E. In
fact, in a sense, Q' involves all observers, while our quantum theory must be
explicitly independent of any observer.

We shall solve this problem by means of a projectability criterion. Namely,
each time we are looking for a physical object on @, we shall meet two
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canonical analogous objects on @' and we shall prove that there is a unique
(up to a scalar factor) combination of them, which projects on €. Then, we
shall assume such a combination as the searched physical object.

This procedure works pretty well in all cases and yields an effective
heuristic method. Thus, it can be regarded as a new way for implementing
the principle of general relativity.
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11.2 - The generalised Schrddinger equation

This chapter 1s devoted to the study of the quantum total equation and
related objects.

The main observer independent objects will be achieved by means of the
projectability criterion. We shall follow two independent ways: the Lagran-
gian approach and a geometrical approach based on the quantum covariant
differential.

[1.2.1. The quantum Lagrangian

First, we look for the quantum Lagrangian by means of the projectability
criterion.

The time-like and space-like differentials of a quantum section yield natu-
rally two real valued functions.

LEMMA I1.2.1.1. If ¥€+(Q), then we obtain the following natural fibred
morphisms over FE

o) o) 9 4
Bo= o (R, i V) + h(E VT, 1)) v J E— AP POATHE

p U (e (V. X . 326 A ¥
=g ((gen)(Vw, Vw)) v : JE — A" SOATHE,

with coordinate expressions

5094, :é(i (o Ag-d - ﬂ.o.qi w)+2(L/A) g q_)) uleu

i

“:9@ = (ai@ aj:.p -1 (p/h) (ajqi Q- P aj:.p) + (p/n) (pj/h) o o)u’ev. o

THEOREM I1.2.1.1. If ¥ €4(Q), then, there is a unique combination £ (up

to a scalar factor) of “%7\1/ and ;jﬁ‘p, which projects on E; namely
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with coordinate expression
£ o= (-2g" 0504 -i0Ey -5 g)ria BOF¢-¢Ig)+
T 2 m i J 0 0 { ]

m
4+ —

~(2a, -a a) o o) uleu.

PROOF. This 1s the unique combination which makes the coordinates \[') dis-

appear In 1ts coordinate expression. u

Thus, we denote by18

5/2 o 4
4.7 QA" "OATYE,
the fibred morphism over E, which 1s characterised by
£ =Lo] ¥,
T 1
for each section v e€#(Q). Its coordinate expression is

1 ho - C _
;%Z:f(—f tzz -1z z2-Z7 )+
2 mg [ ((] 0)

vid (Ei z -z zl_) + % (2 a, - a a) z z) Vgl d°rd' nd*rd’,
l.e.

(T i1 22 12 12
£_( ng (wi w(/+wi WJ‘)Jr(WOw ww0)+

- w! wl.z) + % (aU - %al. a) (whw!+ w? wz)) Vgl d’rd'nd*rd’.

_ ai (W“il W’z

Moreover, we set

£ = 0d°rd' ndPrd® { € du(J1Q,A5’”2).

'® Here and later, we denote the jet space of order r of the fibred manifold
T:Q—FE by JrQ.
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We stress that £ is a real map.

ASSUMPTION Q4. We assume # to be the quantum lLagrangian responsible
of the quantum total equation. >

Before analysing the consequences of this assumptions, we conclude this
section with a digression.

We prefer to develop the Lagrangian formalism directly on the quantum
bundle. However, the reader may wish to develop an equivalent theory on the
quantum principal bundle. Here, we just give a hint to find a distinguished
Lagranglan on the quantum principal bundle.

Let P—FE be the quantum principal bundle, 1.e. the principal bundle with
structure group U(1), whose associated bundle is the quantum bundle @ —E.
Let $:P—R be the normal chart assoclated with the quantum gauge b.

LEMMA II.2.1.2. The form assoclated with the quantum connection on the
quantum principal bundle is the fibred morphism

v :J ExP—>T*P
u 1 F
with coordinate expression

m )

= . _ 1 ol g0 I 3
v =ab - (g vy d gy dira, dh.

Then, we obtain the fibred morphism over E
G”:JIEEPﬂr@(T*P%T*P)
defined as
Gq = vq@dt + dt®vq,
with coordinate expression

¢ =u o(dsed” + d’ods +
y 0

. m
-1 —

_ ’,i ’,j 0 0 s ] J 0 0 ] A 0 0 IS
- ( g, Yy yyded g vy (ed” + d’ed’) + a, (d"ed” + d'od )). 0

LEMMA I1.2.1.3. The pullback of the vertical metric 1s the fibred mor-
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phisms over E

S*g:JlE%A(@M@(T*E(?T*E)
with coordinate expression
$*g=m 8 (d' - \E) dMe(d' - \[’) a’).
Then, we obtain the fibred morphism over E
el :J1E%T®(T*E(§T*E)
defined as
Gl o= ;l Stg,

with coordinate expression

m

G' = n 8 uo®(di - yé dMe(d' - \é a°). O

The two above objects live on J E, 1.e. they are observer dependent. Next,

we show that there i1s a unique minimal coupling of them, which 1s pro-
jectable on P, i.e. observer independent.

THEOREM I1.2.1.2. There is a unique combination of G and G", which pro-

jects on P; namely

G:=G -iG :P>TO(T POT*P),
E

with coordinate expression

G =u o(dsod + dody - i g, dod +2a, dod" +a (ded +d’sd)).
Thus, G 1s a non-degenerate T-valued metric on the quantum principal

bundle. a

The above metric ¢ ylelds naturally a Lagrangian on the quantum principal
bundle, which is equivalent to the above Lagrangian #.
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[1.2.2. The quantum momentum

Next, we study the (observer independent) four dimensional quantum
momentum. We follow two independent ways: we deduce 1t from the
Lagrangian formalism and from another geometrical construction based on
the differential of the quantum section.

DEFINITION II.2.2.1. The quantum momentum 1s defined to be the vertical
derivative of £

,
V £ J QA" "OTEQAT*EQQ*. *
Q 1 E E

PROPOSITION II.2.2.1. The quantum momentum can be naturally regarded
as a fibred morphism over E

p:J AT *OTEQQ.
1 E
Then, for each v'€#(Q), we obtain the observer independent section
i ~ . *
P, =poy W E—-T ®TE(EX]Q,
with coordinate expression

0 . h 7 .
}J‘I, . ®(‘-P ao oy Eglj (ajq_) - %aj r.p) ai)®b.

PROOF. 1t follows by using the natural fibred isomorphisms19
4 ,
i re(h):@*—Q O ATHE-T*QA* *OTE. a
We can recover geometrically the quantum momentum in the following
way.

LEMMA 11.2.2.1. If T e€#(Q), then we have the following natural fibred
morphisms over E

" The conventional multiplicative factor ¢ in the isomorphism @ *—@ has been
chosen In such a way to obtain an expression of momentum In agreement with
Prop. I1.4.2.1.
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P, = AW : JE > T*OTEOQ B, =LNVEW i JE - TTOTEOQ,
B\ E ) )

N4

with coordinate expressions

o v

0 / h :
p, = yu ®(an + \8 ai)®b P, = Eglj (aj"P -1 (pj/h) ;p) al@b.

THEOREM I1.2.2.1. If e€4(Q), then P, is the unique combination (up to a

scalar factor) of i)\p and i)\p, which projects over E; namely,

~

—ipw:EA%T*®TE?Q.

o

pq; =

G

ProoF. This 1s the unique combination which makes the coordinates \;) dis-

appear In 1ts coordinate expression. a

We stress that the quantum momentum i1s an observer independent four
dimensional object.

The time component of the quantum momentum 1s defined without refer-
ence to any observer; actually, it coincides with the quantum section itself.
On the other hand, the choice of an observer allows us to define the space-
like component of the quantum momentum.

COROLLARY I1.2.2.1. For each ¥ €#(Q), we obtain the observer indepen-
dent section

v =re h(\If,pq/_) :E— T*QTE.
Moreover, in the domain where ¥ does not vanish, the section
0, = Uqf/h(\lf,\lf) :E— T*QTE
projects over 1, hence 1t 1s an observer, with coordinate expression

_ .m
80 -iva )
h(¥,0)

0 . h
= ® -—reitr— .
0, =u (ao ret g al.) a

Thus, we have obtained a distinguished observer assoclated with ¥. It iIs
possible to interpret the physical meaning of this observer in agreement with
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the uncertainty principle; in fact, we can assume that o, 1s determined ex-

perimentally only by means of a statistical procedure which involves many
particles (see [Me]).
[1.2.3. The generalised Schrodinger equation

Next, we study the (observer independent) quantum total equation. We
follow two independent ways: we deduce it from the Lagrangian formalism
and from another geometrical construction based on the differentials of
the quantum section and momentum.

For this purpose, we need an intrinsic construction of the Fuler-lLagrange
operator. We shall follow the procedure of [Co].

REMARK [1.2.3.1. The quantum momentum can be regarded as a fibred
morphism over E

4
2.0 Q> AT*Q.

PROOF. Tt follows by applying to V,# the natural linear fibred morphisms
, >:TE(§/1\T*E%/\5T*E SQ*:JlQEQ*%T*Q
over E and JlE%Q, respectively. a
REMARK I1.2.3.2. We obtain the fibred morphism over E
£=ds v dpJQ APPOAT G,

where d 1s the exterior differential and dh the contact horizontal exterior

differential (see [Co]). a

REMARK 11.2.3.3. By considering the linear epimorphism 7*Q—V *Q over
Q, & can be characterised by a fibred morphism over E

. - 4
£:J,Q — A’ POATHEQQ™.
F

Moreover, by taking into account the real component of the Hermitian met-
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ric and the space-time volume form v, £ is characterised by the fibred mor-

phism over E

+£% :JQ — THOQ,

with coordinate expression

Sz B b b oAUy AA 0
(FL) e ¢Igl (a (-, +w" 0, + W, ab).aaf) u'ob . =

Eventually, we can prove (see [Co]) that €7 is nothing but the intrinsic
expression of the standard Euler-Lagrange operator assoclated with the
Lagrangian #£.

So, we obtain the following important result.

THEOREM 11.2.3.1. (Generalised Schrodinger equation) The coordinate
expression of the Fuler-Lagrange equation, in the unknown Ve£(Q), is

a\/lg’l
0=+ o;\If—Z(za:.p —a:.p \/| Qo+

(g”(a :.p—sza a:.p—(zfaa +?aa):.p)+

9m

2,(8" Vg
Vgl

+

- m 0
(aj:.p —1, c.p))) U @b.

Proor. Formula (FL) yields

2 Vgl 3 . o.(g" Vgl
%8#22(—1&“2—1 0 |g| W‘Z n ooy +CZIW‘Z+T MW’1+
0 2 / 2m i { 2m / | g| 7
m 1 1 lai(al\/|g|) 2 0
(a—faa W+ = — )u®b+
2 2 ~/|g’|
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, L a,(ai\/lgl)
s -tagdywr -t 2~ wl) u’eb . a
0 2 i 2 Vgl 2

Thus, the above formula expresses the total equation for a spinless quan-
tum particle with a given mass and charge, in a curved space-time, with ab-
solute time, under the action of a given gravitational and electromagnetic
field.

In order to interpret the above equation correctly, we must take into ac-
count that here a¢ includes both the gravitational and electromagnetic poten-
tials (see Theor. 1.4.3.2).

In the special relativistic Galilel case, the above equation reduces exactly
to the standard Schrodinger equation referred to a given quantum gauge.

We can write the Schrodinger equation in a more compact way.
For this purpose, we introduce the following natural derivation.

REMARK I1.2.3.4. Let 0:E—>T*®TE be an observer.
Then, by functorial prolongation (see § III.3 and [MM2]), we obtain the
section

o' =roJo:JE— I*@TJ1E,

with coordinate expression in adapted coordinates
o' =u's 9,
Next, the quantum connection yields the vector field
2(0"):@—T*0TQ,

with coordinate expression in adapted coordinates
£(0') = uo®(a0 + [ %ao u).

Hence, for each ve#(Q), we set (see BRem. 1.1.2.1)

DW= (WO, I (revy) : E - T*RQ

£(0")

and we obtain the coordinate expression
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D’V =0 w-"4a +180\/i ) ueb a
oF Ta 9T Vgl ¢ '

We could achieve D°¥, in a simpler but less elegant way, by means of the
observed covariant differential of ¥ and the Lie derivative of vv.

COROLLARY II1.2.3.1. If 0 1s an observer, then the Fuler-lLagrange equa-
tion, in the unknown Ve#(Q), can be written as (see Prop. 11.1.5.2)

o (i D + 2 A°W) = 0.
2m

PROOF. We have

2

(0w = (ol oM _am m- & _m
AT = (g (aib],:.p 210 q, aj:.p (i . aiaj taa aj) Q) + K j (ath s ah:.p)) b
and (see formula #+%) in Cor. 1.2.53.2)

~-h al'(ghj |g|)

i o

4 i‘i_W. ]

We stress that both terms of the left hand side of the above equation de-
pend essentially on the observer o; however, their sum turns out to be ob-
server independent.

Warning: we might be tempted to write the coordinate expression of the
Schrodinger equation as
SR VAU "~ -
2 Ve + g VI.VJ_q.J ) =0;
but, unfortunately, we cannot find a serious and consistent interpretation of
the symbols ylelding the above formula.

We can recover geometrically the generalised Schrodinger equation in the
following way.

LEMMA 11.2.3.1. If v €#(Q), then we have the following natural fibred
morphisms over E
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o

- : * = (T : *
V& = g2VW¥: J1E — TTRQ S P, = <V, d<u,p\y>> : J1E - TT®Q,
where d and § are the covariant differential and codifferentials induced by u.no

THEOREM 11.2.3.2. If W e4(Q), then *# ’z‘\p is the unique combination (up to

(o]
a scalar factor) of V¥ and Spw, which projects over E; namely,
N o
z . *
*€ \I/‘—V\If+8p‘p.E%1T ©a.

PROOF. This 1s the unique combination which makes the coordinates y; dis-

appear in its coordinate expression. a

In view of later developments, i1t Is convenient to rescale the Euler-
Lagrange fibred morphism in such a way that 1t can be interpreted as a con-
nection in the infinite dimensional setting of the quantum theory (see, later,
S 11.6.2).

DEFINITION I1.2.3.1. The Schrodinger operator 1s defined to be the sheaf
morphism

8" #(Q"—F) — #(T*0Q"~E) : ¥" > —i [ (+£7 ) v, +

We obtain the coordinate expression

SN W) = (0,00 —i o A% =i T a @M ulebeVa'id

where (see § 11.1.5)

28" =0, (M (A% = A% = A%,

11.2.4. The quantum probability current

We conclude this chapter by studying the quantum probability current.
As usual, its conservation is an essential requirement of the probabilistic
Interpretation of quantum mechanics.

First we introduce the Poincaré-Cartan form associated with the quantum
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Lagrangian (see [GS], [Ga], [Co]).

REMAERK II.2.4.1. According to the general Lagrangian theory, the Poin-
caré-Cartan form associated with ¢ is the form

5/200 &
@:JlQ%A QAT *Q
defined as
= & "
C) + SW\/Q s
with coordinate expression
O@=2£+0108 “ro,
a Q A
where

o' = law —witd) e, =0 (d nd nd nd”).

So, if e£(Q), then we obtain the section
5/2c ¥ ox
@q/IE%A QAT *Q
defined as
@ = 00j .
v Iy

with coordinate expression

— Jlol L((E Sy~ m, 1 9y 0 A 2 .5
®\L‘_\/|g|2((mg al,q.]a.,.r.p+h(a0 2a)°PLP)dAdAdAd ’

v i (D dz - @ dz)rd' nd*nd’ +

m

- (-1) %gi‘/ ((a,[p + [ %a, Q) dz + (aqu -1 n W) dé))AdOAd1...AEZi...Ad5). a

Then, by considering the invariance of the Lagranglan under the action of
the group U(1), the Nother theorem yields a conserved current (see [GS],
[Ga], [Co]), which will be interpreted as probability current.

REMARK II.2.4.2. The quantum Lagrangian # is invariant under the action
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of the group U(1), hence it is invariant with respect to its infinitesimal gen-

erator, namely with respect to the vertical vector field™’

- Jl(z' M):J1Q%\~“"J1Q,
with coordinate expression

- Jl(i n) = w ow - w!ow.

2 by 1 y
+ W ow - w. ow'.
2 n 1 n 2

Proor. The complex coordinate expression of ¢ is invariant with respect to
the jet prolongation of a constant change of phase of @. The infinitesimal
generator of constant changes of phase 1s 1 u. So, £ Is Invarlant with respect
to the jet prolongation of i u. On the other hand, this last fact can be checked
directly by means of the real coordinate expression of #. a

PROPOSITION II.2.4.1. The Nother theorem ylelds the following conserved
current

jiT @A POATHE
defined as

Ji=-1120.

If Ye€£(Q) is a solution of the Schrodinger equation, then the form

' ! . 5/2.0 0
Joo= 5 o h(Wop ) - h(p W) E— AV OATTE,

with coordinate expression
o = Vgl (39 d'sd*d -

P g (o 2.4 -0 P ¢)- d" 3 ¢)dhd' nd" nd),

2m

1s closed

*% we recall the canonical fibred 1Isomorphism \rr“"J,lQ%Jﬂﬂ"Q over J1Q5VQ,

where V' i1s taken with respect to the base space E.
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11.3 - Quantum vector fields

Now, we Introduce the quantum vector fields, in view of quantum opera-
tors (see, later, § 11.4.2 and § 11.6.3).

11.3.1. The Lie algebra of quantisable functions

Quantum vector fields require some preliminary facts. Accordingly, we
present a few further important results of classical mechanics.

Let us consider the sheaves of local functions, of local vector fields and of
local forms of J1E, respectively,

5(J E) = {f:J E-R}

fC(JylE) = {X:J1E%TJ1E} f*(J,lE) = {@:J1E%T*J1E}.
Moreover, let
”Ct(J1E) C ”C(J,lE) ‘C?;(JVIE) C ?f*(J1E)

be the subsheaves of local vector fields whose time component 1s a given
map ‘C:J1E%1T (which will be referred to as a time scale ) and of local forms

which vanish on y, respectively.

The coordinate expressions of Xe¢ _(J E) and QpEFCﬁ;(ﬁE) are of the type
S0 R N i 40 _ L0 i ;0
X=X (ao + \é 2, v al,) + X' 2, + 1\6 2, ¢ =0, g+ P, (dé -yt d),
with

X'=rc=a" € SF(J1E).

LEMMA 11.3.1.1. The contact 2-form

m

" JESAT*JE
h 1 1
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maps each vector field of J1E into a 1-form orthogonal to y .

PROOF. It follows immediately from y-Q = 0 (see Cor. 1.2.5.1). m|

PROPOSITION II.3.1.1. For each time scale ‘c:JlE%"lF, we obtain the sheaf
1Isomorphism

Qb "c(‘]1E) — c.K(JlE) PX o 1 Q

<

with coordinate expression
biv)—~ ™ v/ _ iy of i (g _ i g0
Qb(x) = 7 ((g’ij X!+ (rl_']_ rﬂ) XS g, X (d) - ' d )).
The inverse isomorphism Q’f has coordinate expression

hk

20N _ K i0N T i 0 B 0y 0
Q‘E(CP) - T (a() Y ai T ai) T8 ( Cp,,l' ai : ((P.,. T8 (r,ﬂ? rh.f) ka) al'). -

We recall that (see Theor. 1.4.3.2)

— — — ,v[ —
1ﬁjl’z 1ﬁlzj B (ajgl’zl al’zgjl ) Y 0 q)jl’z'

Then, we obtain the following Hamiltonian lift of functions.
LEMMA I1.3.1.2. For each fESF(J1E), we obtain naturally the form
de =df - yadf € fcj((]g?)
with coordinate expression

da,f:aif8i+a?f (d! - d”). o

COROLLARY II.3.1.1. For each time scale ‘t:JlE%T, we obtaln the follow -

ing sheaf morphism
F(JE)—C (JE): f— fZ:=Q7(d [f).
1 T 1 T T s
with coordinate expression

z _ N 140 no iy S0 kK  +k 0 0
o7 (ao Yot Y ai) "8 ( ajf 2t (a.,if+ (r./‘ . ./) akf) al‘)'

T
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We have the following properties

fo=v(+ [}
(f == A N A A A o e

The Hamiltonian lift yields the generalised Poisson Lie bracket.

PROPOSITION II.3.1.1. The sheaf morphism

5 E)5(JE) = 5 E): (f, [ = Af, frh="1 sl =92
0 0

1s a Lie bracket.
[ts coordinate expression iIs

vy _ B 150 pn 50 p TR 15 3 0,1 50 pu
oy =8"0r B N R S T 4 V).

PROOF. The proof can be achieved analogously to the standard case, but
with more difficulties, because we have to replace the standard d withd . 0O

¢

This bracket has some Interesting properties. In particular, we have
{fl,fll},ﬁ‘ — [fvlﬁ‘)fll,ﬁ‘]‘

However, this bracket has no relativistically covariant role in classical
mechanics.

On the other hand, we can prove the following important result based on a
criterion of projectability for classical Hamiltonian lift, which later will play
an essential role in quantum mechanics.

Let us consider the subsheaf of tube-like functions with respect to the
fibring JEE

5,(J E) S 5(J E).

PROPOSITION I1.3.1.2. If fESft(J1E), then the following conditions are

equivalent:
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i) the vector field ff I1s projectable over E;
ii) the function f is, with respect to the fibres of JE—E, a polynomial of

degree 2, whose second derivative 1s of the form

f'ogE— (TOMOVEOV'E,

where
f” = T
iii) the coordinate expression of f is of the following type
_ pno m R ,/ i I
r=r 2hg.l'j"‘0)0+fiy0+fo f’fo’figg(E)’
where
f” =T

ProOF. The vector field ff 1s projectable if and only if

't =0 Tolyl - gl agf;f =0
1.e., 1If and only if
821—0 ?f;f—t%glj
l.e. if and only if
T:E—R f=t%gﬁ)r’é}/#f,‘y&fo- -

Then, we introduce the following definition, for a reason which will be
clear soon.

DEFINITION II.3.1.1. We define the quantisable functions to be the func-
tions of the above type. *

If f 1s a quantisable function, then the assoclated time scale
T=f":E—~T

1s sald to be its time component.
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If f 1s a quantisable function, then the corresponding projectable Hamilton-
lan lift and the associated projection are denoted by

oL pF e oo H .
ST=rTE c.T(J1E) fle c.t(E).
Thus, given u’€T**, we have implicitly set

fll — <uojf||>‘

We stress that we have assumed no relation between f" := t and f.

REMARK II.3.1.2. If f Is a quantisable function, then we obtain the coor-
dinate expression

Bty s

m 1

f,zz‘ :f” ao_

k.

i l Il "/l , 71 Ti
g (2 ajf g/’zk‘ "‘0 S 0 ’ (m ajfl’l i

m

k I h
(08 in 28 w) I 08 J'/l) Yo ©

h h h I 0
+—9f +—0 . + O, . )o
m ./f o m  hj ! ! jo/ i’

hence

h
m

f"a‘. g

]

fH:fII ao_

The quantisable functions constitute a sheaf, which 1s denoted by
2(J E) < 5 ,(J E).

Moreover, we shall be concerned with the subsheaves of quantisable func-
tions whose time component is constant and of quantisable functions whose
time component vanishes

2 (J E) © 2(J E) 2,(J E) S 2 (JE).

REMARK I1.3.1.1. All functions f€5(E), which depend only on space-time
(for instance, the space-time coordinates), are quantisable functions.
Moreover, all functions fEA(JIE),WhiCh are affine with respect to the fibring

J1E%E (for instance, the components of the classical momentum), are quan-
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tisable functions. The remaining quantisable functions (for instance, the
classical kinetic energy, Hamiltonian and Lagrangian) have a quadratic term
with respect to the fibring JE—E, which 1s proportional to the metric,

through an arbitrary coefficient dependent only on space-time.
Thus, we have the sheaf monomorphisms

F(E) C A(J1E) - 2(J1E). a

THEOREM I1.3.1.2. The sheaf 2(J1E) is a sheaf of Lie algebras with re-
spect to the bracket

[]plJ fll] L= {flj fll} + b/(flll).f” _ b/(f””).fl.
Moreover, the sheaves BC(JlE) and 20(J1E) are subsheaves of Lie algebras.

The coordinate expression of the above Lie bracket is given by

N R I e R e VA L A N )
G (0 = o = o o)
AN A WA A VA WA A WA E
S e

Proor. The explicit expression of the bracket follows from a long computa-
tion in coordinates. Then, this expression shows that 2(J1E) 1s closed under

the above bracket.

The Jacobi property could be checked by a very long direct computation In
coordinates. However, in the next section we can obtain an intrinsic proof as
a corollary of an important result of the quantum theory (Cor. 11.5.2.2). a

COROLLARY II.3.1.2. The subsheaf A(J E) C 2(J E) Is a subsheaf of Lie

algebras. ]

COROLLARY I1.3.1.3. The sheaf morphism
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H:2(J E)~>C(E) : ff"
1s a morphsim of Lie algebras, 1.e.

[f|, fu]H — [le, qu]. 0

EXAMPLE I1.3.1.1. We have the following Hamiltonian lifts

(x"" =0 OH" =0

(py/m)" = -0 (H/m)" =5, (L/m)" =05 -dao. 0

1

EXAMPLE I1.3.1.2. We have the following brackets

A A L By

m

/. p/ml=0 [H/5, p/u] =" o .

[1.3.2. The Lie algebra of quantum vector fields

In this section, we show how the geometrical structure of the quantum
bundle yields naturally a distinguished Lie algebra of vector fields, which
will be called quantum vector fields. Moreover, we exhibit a natural Lie al-
gebra isomorphism between quantisable functions and quantum vector
flelds.

Later, the quantum vector fields will be the source of quantum operators
(see, later, § 11.4.2 and § 11.6.3).

We start by considering the vector fields of @', which preserve the basic
quantum structures. We need to start from this bundle, because the quantum
connection lives on it.

We need the covariant differential of a vector field, which is a particular
case of the differential of tangent valued forms defined in [Mo2], [Mo3] (see
also § 111.5). We stress that this differential cannot be understood neither in
the sense of linear connections on a manifold, nor in the sense of derivation
laws.
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REMARK II.3.2.1. Let p:F—B be a fibred manifold and
c:F>T*BOTF
F
a connection. If X:F—TF 1s a vector field projectable on X:B—T B, then its

covariant differential is defined to be the vertical valued 1-form

d X :=[e,X]: F — T*BOVF,
’ F

where [, | is the Frolicher-Nijenhuis bracket, given by
(d X)(u) = le(u), X| - e(lu, XD, Vuet (B),

and with coordinate expression
dX=(->xX'c'-dec' X'+ X +ec!oX -dec ' X)ded.
c A J UooA n noo JoA I

Moreover, we recall the formula

() d (c(X)) = - 2 X-E,
2 .
where BC:F% AT *B®VF is the curvature of c. o
F

Next, let p:F—B be a line bundle. Then, a projectable vector field X is saild
to be Hermitian if it is (real) linear over its projection X and preserves the
Hermitian product. A Hermitian vector field turns out to be also complex lin-
ear. The coordinate expression of a Hermitian vector field X 1s of the type

X =x" oo+ifn f, X"€5(B).

Then, we introduce the following concept.

DEFINITION II.3.2.1. An upper quantum vector field is defined to be a
(tube-like) vector field™!

xX:@'—-1q’

which

*! Here, the arrow “’” in X' does not refer to any pullback of a possible
section X, but just reminds the pullback bundle @".
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i) projects onto a (local) vector field

X':J E~TJE,

ii) is Hermitian complex linear over X',
111) has a T -horizontal covariant differential, i.e.

dX':Q" —» JE«T*®Q) CT*JE®Q'. *
Yy 1 E 1 J E

1

d X" =yad X', *

Condition iii) can be reformulated in a useful way through i .
REMARK 11.3.2.2. Condition iii) is clearly equivalent to
. o
pi Oqu =0,

where pr:T*JlE%\VV“"*%E 1s the canonical linear epimorphism over JE.

Thus, condition 1ii) reads in coordinates as
. 0+
d X"=0 d X" =0.
i i

Moreover, condition iii) is equivalent to

U o -1
iii) d X' =yad X', =]

The upper quantum vector fields constitute a sheaf and the upper quantum
vector fields, with a given time component ‘C:J1E%1T, constitute a subsheaf,

which are denoted by

2@ cc(@@) 2 (@") < 2@").

The above sheaves are not closed with respect to the Lie bracket.

On the other hand, the upper quantum vector fields can be classified, up to
the choice of an arbitrary time scale, by the functions of the classical jet
space, through the following formula.

THEOREM II.3.2.1. For each time scale ‘C:J1E%1T, we have an RR-linear

sheaf isomorphism
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T g . ¢ T - syl
q . J(JIE) JT(Q ) f— X P
given by

() Xt = q(ff) + 1 fu.

/.t

Proor. 1) Let X' be an upper quantum vector field whose time-component is
T and let us prove that 1t is of the type

XT = q(f’f) +1i f o,

for some function f€5(J E).

Let us decompose X' into its horizontal and vertical components

(W) X1 =X+ v (X1,

Conditions 1) and ii) imply that v (X") is of the type

(v) vq(XT) =1 fu, fESF(J1E).
Therefore, condition iil)' can be written as

i)’ i (df - . en = god (a(X1) - d (a(x1).

Moreover, formulas (R) and (Rq) (see Rem. I1.3.2.1) yield

X' .Qou.

d(a(x))=-2i"X

Hence, condition iii)" can be written as
(df - ¢.f) = 2 (X")
l.e.

h) X' =f7.

T
Thus, formulas (u), (v) and (h) yield
X' =u(f)+ifm

2) Conversely, if fe5(J E), then analogous computations prove that for-

mula (U) yields an upper quantum vector field, whose time-component is T. O
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PROPOSITION II.3.2.1. The coordinate expression of XTI . 1S

= _ R 1 50
X “_t(aowoaﬁg ai)+

ho i 50 hk _ 0 0
g ( ajf al, + (ajf + g (th rhj) akf) al,) +

+ 0 (f+tL/ﬁ—%gi~/(pl./h) a?f) H. u|

Formula (U) clearly recalls a well known formula of geometric quantisation
(see, for instance, [St], [Wo]). However, there are important differences
between our approach and geometric quantisation; they are basically related
to the general covariance and the role of time. In particular, we shall see
that an important difference will arise later in the construction of the quan-
tum operator associated with energy. Indeed, we stress that our upper
quantum vector fields need not to be time-vertical.

The above formula looks nice, but we have got two problems. In fact, we
have been forced to search for distinguished vector fields on @' and not on @,
just because the quantum connection lives on @'. But, these vector fields
map sections of @ into sections of @'. This problem can be solved if, addi-
tionally, the above vector fields are projectable over E. Moreover, the above
1Isomorphism depends on the choice of a time scale and we need a reasonable
criterion to make this choice. Luckily, the two problems can be solved to-
gether. In fact, we can prove the following result.

If X":Q"—T7TQ" is any vector field, then the canonical fibred epimorphism
pr:TQ"—TQ yields the fibred morphism over Q

Xo=proeX' 1 JEQ — TQ.

The vector field X' is said to be projectable over E if X can be written as

XQ—-TQq.

THEOREM I1.3.2.2. 1If XTf . 1s an upper quantum vector field, then the fol-

lowing conditions are equivalent:

i) X' fn is projectable over E;
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ii) fis a quantisable function and its time component is <T.

Proor. 1) = ii). We can prove the assertion directly.
If XTf . 1s projectable over E, then

0 0.0 h _jj .00
9,T =10 Ty, = &' 2 f =0
l.e.
uE=0 Ol =c sy
l.e.
CESR feclg viyiepyleg
2 Q17 070 140 o

On the other hand we obtain the same result as a consequence of the theo-
rem concerning the projectability of the Hamiltonian lift of functions (see
Prop. 11.5.1.2).

ii) = i). We can easily see that all components of Xf o including the imagi-

nary component, do not depend on the coordinates \é a

DEFINITION 11.3.2.2. A quantum vector field 1s defined to be the vector
field

X:Q—-TQ

associated with a projectable upper quantum vector field X'. *

The quantum vector fields constitute a sheaf, which 1s denoted by
2(Q) cc(Q).

Moreover, we shall be concerned with the subsheaves of quantum vector
fields with constant and vanishing time component

2 (@) < 2(a) 2.(@) < 2 ().

So, we are In the position to achieve the following important formula.

COROLLARY II.3.2.1. The coordinate expression of the quantum vector



142 A. ADCZYK, M. MODUGNO

field assoclated with the quantisable function

n m

— pn M Ao 1
f=7 2ﬁgij)'0)0+fi-)0+fo
1S

h
m

r 0.+ (%f" a, - 7 a + f)n.

X, =f"0,-

PROOF. It follows from the coordinate expression of X' and f. a

COROLLARY II.3.2.2. The map

q: 8(J1E) - 20@Q): fr Xf

is a sheaf linear isomorphism. In particular, 20(J1E) and 20(J1E) are isomor-

phic, respectively, to QP(Q) and QO(Q). a

Eventually, we can prove the following important result.

LEMMA I1.3.2.1. The sheaf 2(Q) of quantum vector fields and the sub-
sheaves QP(Q) and QO(Q) of quantum vector fields with constant and vanish-

ing time component are closed under the Lie bracket.
PROOF. Tt follows from a long computation in coordinates. a

THEOREM I1.3.2.3. The map (see Theor. 11.5.1.2)

2 E) - 2@ [ X,

1S an isomorphism of sheaves of Lie algebras.
Namely, for each k€R, f,f',f"E;Q(J1E), we have

kf / g T e Ty

[‘Xf" ‘Xf“] = ‘X[f', I%t
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11.4 - Quantum Lie operators

In this chapter, we show how the quantum vector fields act naturally on
the quantum sections and yield a Lie algebra of operators, which will be
called quantum Lie operators. Moreover, we exhibit a natural Lie algebra
1somorphism between quantisable functions and quantum Lie operators.

This is our first approach to the subject of quantum operators and to the
principle of correspondence; in this step, the classical Hamiltonian corre-
sponds to the time derivative. A further development of the theory will be
achieved later in the framework of the quantum Hilbert bundle (see §
I1.6.53); in this context, the classical Hamiltonian will correspond to the
standard operator, naturally generalised to our curved space-time.

The quantum vector fields act naturally on the quantum sections as Lie
derivatives; so, we might introduce the quantum operators directly in this
way. The result would be quite interesting; but, in order to obtain sym-
metric (possibly self-adjoint) operators (see § 11.6.3), we need a little
more complicated approach. Namely, we have to consider quantum half-
densities. More precisely, in the space-like integration procedure (see S
I1.6.1), we shall be involved with space-like half-densities. On the other
hand, in the construction of operators, we need to consider space-time
half-densities.

I1.4.1. Lie operators

This section 1s devoted to a preliminary discussion about the action of
linear projectable vector fields on quantum densities.

First, we introduce the notion of Lie derivative of sections of a vector
bundle.
Let p:F—B be a vector bundle.

REMARK II1.4.1.1. A vertical vector field Y:F%VF::FEF 1s saild to be basic

iIf it projects over a section s:B—F through the following commutative dia-
gram
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Y
F VF =F+F

B
pl L opr,
F

S

B

Conversely each section s:B—F can be regarded as a basic vertical vector
field Y:F—VF, which is projectable over the section itself. This correspon-
dence between sections and basic vector fields is a bijection. a

LEMMA I1.4.1.1. Let X:F—>TF be a linear projectable vector field and let us
denote its projection by X:B—TB.
For each section s:B—F, the Lie bracket

[X,s]:F>VF
18 a basic vector field, hence determines the section
X.s :=[X,s]: B — F,
with coordinate expression

X.s = (X" a}si - Xil. s!) b.. a

So, iIf X:F—TF is a linear projectable vector field, then we define the as-
soclated Lie operator as the sheaf morphism

X.:#(F)— #L(F):s— X.s.

LEMMA 1II1.4.1.2. The map
X — X.
1s injective. Moreover, the map
(X,s)— X.s
has the following properties

X.(s+s') = X.s + X.s' X.(fs)=f(X.s)+X.fs
(X +X').s = X.s + X'.s (fX).s = f (X.s)

[X., X'.](s) = X.X'.s - X'.X.s = [X,X'].s
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for each linear projectable vector field X,X":F—TF, section s,s":B—F and
function f:B—1R. a

We can re-interpret the above results in terms of connections.
If we assume a linear connection

c:F>T*BOTF
B
on the vector bundle p:F—B, then we have the following result.

LEMMA I1.4.1.3. Let X:B—TB be a vector field and consider its horizontal
prolongation

X =X1c:F —TF,

which is linear over its projection X.
Then, for each section s:B—F, we obtain the formula

X.s = V\,s,
with coordinate expression

Xs=(X"2s-X sHho=x"(Os-¢c' sHb =V_s. a
A b ! A nJ 1 X

Now, let us apply the above results to our quantum framework.

PROPOSITION II.4.1.1. Let X:@—~T7@Q be a linear projectable vector field
and let us denote its projection by X:F—TE. Then, we obtain, via the above
Lie derivative, the sheaf morphism

X.:£0Q) = +£@Q): ¥ — |X, V]

Moreover, we obtain, via a standard Lie derivative, the sheaf morphism

4 4 _ _
X.: P(VAT*E) — P(VATFE) : vu — L(X)Vv,

which depends only on X.
Hence, we can extend, via the Leibnitz rule, the Lie derivative to the
space-time densities and obtain the sheaf morphism

X.:#(Q°) - #(Q°) : v — X.U” = |X, U|Jevo+r TeL(X)vv.

Furthermore, let X:Q -V & be a linear vertical vector field. Then, In an
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analogous way, we obtain, via a vertical Lie derivative, the sheaf morphism

X.: Q") » @) : ¥ XU i= [X, V]evn + ToL(X)Vn. Q

PROPOSITION I1.4.1.2. If X,X":Q@ —>T@Q are linear projectable vector fields,

and we consider their action both on #(Q") and #(Q"), then the standard
identity for the commutator of Lie derivatives yields

[X., X'.] =[x, X']. . a

11.4.2. The general Lie algebras isomorphism

So, we are In the position to introduce the quantum Lie operators and the
Lie algebra isomorphism between quantisable functions and quantum Lie
operators.

DEFINITION 11.4.2.1. Let fE;Q(J1E) be a quantisable function and XfE;Q(Q)

the corresponding quantum vector field. Then, the quantum Lie operator as-
soclated with f 1s defined to be the sheaf morphism

V=i X (@Y - (@) v (Xf.\IfU)@b%@ V. *

We have already explained why we apply X . to #(Q") and not directly to

f
#(Q): we consider ¥" in view of the integration on the fibres of space-time

and of the symmetry of the quantum Lie operator (see § 11.6.3). Moreover,

we are forced to pass through ¥° because, in the general case, the action of

Xf on vn is not defined. Furthermore, the reason of the multiplication by the

imaginary unit will appear later (see § 11.6.3), when we prove the symmetry
of the quantum operators.

REMARK II.4.2.1. In the particular case when the quantisable function f is
affine with respect to the fibres of J E—E, hence the quantum vector field

Xf 1s vertical, we obtain, more directly,

Yf =1 \f Q") — (M) v g Xf.\lf“. 0
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The quantum Lie operators constitute a sheaf, which is denoted by
£(Q").

Moreover, we shall be concerned with the subsheaves of quantum Lie op-

erators corresponding to quantisable functions with constant and vanishing
time component

4 Q") < £(q") £,Q@") < # (@Y.

LEMMA 1II1.4.2.1. The map

2(J1E) - £0Q") : f Yf

1s a sheaf isomorphism. a

LEMMA I1.4.2.2. The sheaf £(Q") is a sheaf of Lie algebras with respect
to the bracket

£(QM)~£(Q" £(Q") : = - ] oY .-V oY .).
@MH-£(Q") — #(@") (Yf.., qu) = [Yf‘, Yf..] l (Yf. Vo=V, Yf.)

Moreover, ;QP(Q“) and ;Qo(Qn) are subsheaves of Lie algebras. a

So, we are In the position to state the following important result.

THEOREM II.4.2.1. The map

2(J1E) - £0Q") : f Yf
1S an isomorphism of sheaves of Lie algebras.

Namely, for each k€R, f,f',f"E;Q(J1E), we have

Y =ky Y. o =Y +Y
- e T e

PROPOSITION II.4.2.1. For each observer o, the action of the quantum Lie
operator Yf on " is given by

Yf(\lfn) =1 (fHJ VO )+ (fo() + %(div fH)) v
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where f":E-TE is the projection of the Hamiltonian lift of f (see § I1.5.1).
In other words, we have the following coordinate expression

Yf.(\lf“) =

h
m

=i (VO S VRN i e ! - o) @) beVd dthd,

where

o N ._ n_;m n
\% S = a}\:.p Looa, a

11.4.3. Main examples

We conclude this chapter by computing the main examples of quantum Lie
operators.

Let us choose a frame of reference (uo, 0) and a related fibred space-time
0 i
chart (x,y").
As usual, we denote by V° the quantum covariant differential associated
with o (see Def. 11.1.5.2).

LEMMA I1.4.3.1. The quantum Lie operator associated with every quantis-
able function of the type

f€5(E) < 2(J F)
1S

Yf(xp“) = fwh O

EXAMPLE 11.4.3.1. We have the following quantum Lie operators

Yoo =t ety () =y

Y v = - o peVd adiad®
pstv) i e

ny _ n 1 52 75
YH/E(\P )—zaos.p bo vVd'rd rd’. a
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EXAMPLE I1.4.3.2. For each quantisable function f, we have
__pn . _h
[Y,xﬁ’ Y f] =-f [Y)”_z, Y f] = f.
Moreover, we have

Y .Y 0]=0 Y Y. jl=-8 Y. Y
¥ Vi) ¥y g Tyl i [ P,/h 111

1

= 0. u
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I1.5 - Systems of double fibred manifolds

In view of further developments of the quantum theory, we need some
preliminary notions and results concerning the system associated with a
double fibred manifold. The theory of finite dimensional systems has been
extensively studied in [ MM], [Mo2 | and has been already used in this paper
(see § I1.1.3). In this chapter, we introduce the infinite dimensional sys-
tem of all smooth sections by means of a functorial construction.

[1.5.1. The system

We start by introducing the notion of system of sections associated with
a double fibred manifold and studying its basic properties.

First we need a few preliminaries about the concept of smoothness due to
Frolicher and the notion of fibred set.

We shall be concerned with some sets constructed geometrically from
some functional spaces. We could define a topology in order to achieve a
structure of infinite dimensional manifold on such sets; but great difficulties
would arise. On the other hand the concept of smoothness due to Frolicher
([Fr]) is very suitable for our purposes, as it allows us to achieve the geo-
metrical constructions that we need, avoiding all troubles related to infinite
dimensionality.

DEFINITION II.5.1.1. A smooth space in the sense of Frolicher (see [Fr],
[S1]), can be defined as a pair

(s,0),
where S 1s a set and
¢ :={c:R—8S}

1s a set of curves which will be called smooth.
If (§,¢) and (S',C') are smooth spaces, then a map f:S—8' is said to be
smooth if, for each smooth curve ¢:IR—8, the curve
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¢ i=foc:R— S

1s smooth. *

In particular, each classical manifold M becomes a smooth space by as-
suming as smooth curves, in the sense of Frolicher, just the smooth curves in
the classical sense. Then, it can be proved (see [CCKM], [Bo]) that a map
between classical manifolds is smooth in the classical sense if and only if it
1s smooth In the sense of Frolicher.

If (S,C) is a smooth space, then by abuse of language we shall also say
that S 1s a smooth space.

If S and S' are smooth spaces, then $xS' becomes a smooth space In a
natural way.

A fibred set is defined to be a set S together with a surjective map
5:S—B
of S onto a set B. When B is a manifold, we denote by
#(S—B)

the sheaf of local sections of the fibred set 5:8—B. Moreover, if S iIs a
smooth space, then we denote by

#(8—B) C #°(S—B)

the subsheaf of smooth local sections of the fibred set 5:S—B.

Now, let us consider a (smooth) double fibred manifold

q P

F E — B —

and denote the typical double fibred charts of F by
(x", yl’, 1) 1<r<m, 1<i<l, 1<asn.
We denote by

ff”(F%E%B) and ff(F%EeB)

the sheaf of tube-sections which are smooth along the fibres but possibly
non-smooth with respect to the base space B and the subsheaf of smooth
tube-sections.
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DEFINITION II.5.1.2. The system assoclated with the double fibred
manifold F—E—B is defined to be the pair

(5:SF—B, ¢),
where
1) SF is the set
sF=115sF,
xXeEB X

where

SXF = {\IfX:EX%FX}

denotes the set of smooth fibre-sections related to x€B;
ii) o is the natural surjective map

GiSF%BZ\If\,HX;

iii) e is the evaluation fibred morphism over E

S USFLE S F (W) W (). .

REMARK II.5.1.1. The evaluation fibred morphism ¢ yields the natural
sheaf 1somorphism

e : #°(SF—>B) — th“(F%E%B) S o= g(W) = g0

w1

where denotes the pullback.
The inverse natural sheaf isomorphism is

e ! th“(F%E%B) — $(SF—B) : ¥ — T,

where

Next, we introduce a smooth structure in the sense of Frolicher on the set
SF by the following definition (see also [Ko]).

DEFINITION II.5.1.3. A curve ¢:IR—SF is said to be smooth, in the sense
of Frolicher, if the induced maps
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5oetR-B e (508) EF 1y —e()(y))
are smooth in the classical sense. *

REMARK II.5.1.2. If M is a manifold, then we can easily prove that a map
¢:M—SF 1s smooth In the sense of Frolicher if and only If the induced maps

506:M—B c:(6o8)*E—F

are smooth in the classical sense.

Moreover, 1If S’ 1s a further smooth space, then we can easily prove that
the map f:SF—S'1s smooth In the sense of Frolicher If and only If, for each
smooth map ¢:M—SF, the map

foc:M—S'
1s smooth in the sense of Frolicher. a

PROPOSITION II.5.1.1. The maps 5 and ¢ turn out to be smooth.
Moreover, a local section

U :B—>SF

of the fibred set SF—B turns out to be smooth if and only if the associated
tube-section

Vv =¢e(¥):E—>F

1s smooth.
Thus, the sheaf isomorphism € restricts to a sheaf isomorphism

e:bD(SF%B)%th(F%E%B). a

The following remark has an important role in the following (see 8§ 11.6.1).

REMARK I1.5.1.3. lLet (5':S'F—B, ¢') be the subsystem of (5:SF—B, ¢)
constituted by any subset of smooth-fibre sections of the double fibred
manifold F~E—B. Then, all above constructions can be easily repeated for
this subsystem. Moreover, the inclusion S'F—SF turns out to be a smooth
map In the sense of Frolicher. a



154 A. ADCZYK, M. MODUGNO

[1.5.2. The tangent prolongation of the system

We pursue our presentation of systems by studying the tangent space of
the system and the tangent prolongation of sections. We refer to the dou-
ble fibred manifold and the associated system as in the previous section.

In order to define the tangent space of the smooth space SF let us study
the tangent map of smooth curves R—SF.

LEMMA II.5.2.1. 1) lLet
¢:R—SF

be a smooth curve defined in a neighbourhood of 0€R. IL.et us consider the in-
duced curves

so¢:R—B c:(co¢)*E—F
and set (see § I11.2)

x = (50¢)(0) € B u = 0(co¢) =T(s0¢)(0,1) € I B \ff\ = ¢(0).

Then, the restriction of the tangent map T'c:T(s0¢)*TE—TF to the fibre

over (0,1)ER*R turns out to be an affine fibred morphism over \If\,

® :=02c:= Tec : (TE)“ — (TF)“,

In other words, if UE(TE)U, then we can write
® (TE)U - (TF)U (v +w) e CDU(U) + T(\if,x»)(w) VWE(\""YE)X.
We have the coordinate expression
(,VI'J ZUJ. )‘(}\, "IJ éa)OCD = ("15 \I/' ,a; ux, "1, q) a + a\If A(I \'I)J
“ * u * X * u 1 X T
with

u' =d¢" R ®“=2¢"E_—R.

u
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ii) Conversely, let
X €B ueT B T €S F
X X X

and

CDLI (YﬂjE')llg> (TF)LI

be a map of the above type. Then, we can prove (see [CK]) that there is a
smooth curve ¢:IR—SF, such that

oc = O . a

u

Then, we are led to the following definition.

DEFINITION II.5.2.1. The tangent space of the smooth space SF is de-
fined to be the set

rsF= 11 T, SF,
v €SF

where
T&\SF = {q)l,[}
1s the set of smooth sections of the type
q>I,I . (TE)H_> (TF)IIJ LIET\B’ )&‘:0(\1/"&)63)

such that @ 1s an affine fibred morphism over \ff\, and its fibre derivative is

the linear fibred morphism over lifx

Do = T(\ffx) : (VE)_— (VF) . *

The basic geometrical constructions which hold for the tangent space of
the standard finite dimensional manifolds can be repeated in our “infinite di-
mensional” case.

PROPOSITION II.5.2.1. We have the natural surjective maps

T ! TSF > SF: 0 — W, X = TEB(U),
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and

To :TSF - TB : q)uHu.

For each \if\‘ESF, the tangent space T' SF of SF at \Ifx turns out to be a

vector space in a natural way.
Namely, iIf

D, D ‘,cD”I,,ETA\SF rER,
then

u'+u"

ro' e (T, SF), ', + 0" € (T, SF)

are well defined by

(r®):(TE), — (TF), :(rv+2rw)end ()T )nw)

((D ' o u”) : (TE)I,I'H,I” - (TF)I,I'H,I" :
(vt et w) & CD'U‘(U') + CDHUH(U”) + T(\ffy)(w) VWE(\""YE)\,
where UE(TE)“, U'E(TE)“,, U"E(TE)“,,.
Hence, the map T 5 turns out to be a linear fibred morphism over G. a

REMARK II.5.2.1. We have the natural evaluation fibred morphism over TE

Te:TSFyTE > TF: (CD“, v) e dDu(U).

Thus, (T'c:TSF—TB, T¢) turns out to be a subsystem of the system asso-
clated with the double fibred manifold TF—~TE—TB.
Therefore, all results of the above section apply to this subsystem. a

REMARK I1.5.2.2. The vector structure of the fibred set TSF—SF turns
out to be smooth In the sense that the fibred morphisms over SF

< RxTSF—TSF +: TSF<TSF—TSF

are smooth. a

We can define the tangent map of sections of the space of fibred sections
in the following way.



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS 157

REMARK 11.5.2.3. If ve#(SF—B), then
TV TE—=TF

ylelds the smooth tube-section

TV = (Te)(Tv) : TB — TSF. =

DEFINITION I1.5.2.2. The tangent prolongation of the section Ve€#(SF—B)
is defined to be the section TWe#(TSF—TB) given by

~ AN
TW =TW. *

[1.5.3. Connections on the system

We conclude this chapter by introducing the notion of a connection on our
system. We still refer to the double fibred manifold and the associated
system as in the first section.

Analogously to the finite dimensional case (see § I11.2), we have the exact
sequence over SF

0 — V'SF EHLE%S B—> S

DEFINITION I1.5.3.1. A connection of the fibred set SF— B is defined to

be a smooth splitting22 k of the above sequence, 1.e. a smooth section
IQ‘:SFETB%TSF,

which 1s linear over SF and 1s projectable over 1, TB—TB. *

We can interpret a connection k as an operator which acts on the tube-
sections of the double fibred manifold F—~E— B, in the following way.

PROPOSITION I1.5.3.1. Let k be a connection.
If Ye#(SF—B), then, we obtain the section

9

29 . . . . . . o
k is a Chinese character, whose romanization in Pinyin is “ké”.
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k(W) TE—TF,
given by the composition
! k' Te
E T E SFEM TS% TF,T T

with coordinate expression
(VA0 5 k() = (w8 k) 3o e ),
where
k-u“(xp) € 5(E).

Moreover, we obtain the smooth section

RS

k() =k(WV): TB — TSF.
Therefore, the sheaf morphism
k : bUt(F%E%B) — th(TFHTE%TB) o= k(1)

characterises K itself. u

A connection k induces the covariant differential in the standard way.

LEMMA I1.5.3.1. Let k be a connection and w€#(SF—B). Then, the map
IV - kow' : TB — TSF

takes 1ts values in VSF, 1s projectable over ¥ and is a linear fibred morphism

over V. Hence, 1t can be can regard as a smooth section

VW =TW - koW’ : B~ T*BOVSF,
SF
which is projectable over T g

DEFINITION 11.5.3.2. Let K be a connection. Then, the covariant differen-

tial of VeE#(SF—B) is defined to be the smooth local section

vi_\if =TV - ko' : B — T*BOVSF. *
SF
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We can Interpret the covariant differential Vlzlif in terms of the tube-sec-

tion ¥, 1n the following way.

PROPOSITION 11.5.3.2. Let k be a connection and ve#(SF—B). Then, the
map

TV - k(W) : TE -~ TF

1s a smooth linear tube-fibred morphism over ¥, which factorizes through a
smooth linear tube-fibred morphism over ¥

Vk\If:EETB%VF;

conversely, the map V ¥ characterises TW¥ - k().

Moreover, we have

S

vz}if - TW-k(¥): B~ T*BOVSF.
SF
The coordinate expression of v, IS

_ a 4. ar.g. U
V= (a}\}p K, (v))d @(d_ow). =

A connection K is said to be of order k if, for each smooth tube-section
V:E—F, the map k(%) depends on ¥ through its vertical jet up to order k.

Now, let us consider the case when F—E 1s a vector bundle, hence SF—B
and TSF—TB turn out to be smoothly equipped with a vector structure on
their fibres.

The connection k 1s said to be linear 1if it 1s linear as a fibred morphism
over B. In other words, the connection k is linear if the operator

k : an(F%E%B) — bDf(TF%TE%TB) = k(1)
1S linear.

PROPOSITION I1.5.3.3. Let k be a connection of order k. Then, the coordi-
nate expression of the linear operator k:¥+—k(W¥) is of the type

. a _ 4. a b . aj b Loaj, .. b
k‘J (¥) = kLl , W ku R k‘J e aj.lekllf ,
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where

(c) KOk

g b b

L aj .,
o ku el € F(E).
Thus, In the linear case, the coordinate expression of V. 1s of the type

V=0 v -k ¢ @ gl Wiy wh) gben
k J ub uob oy J b i, a.

Thus, the equation

V=0,

in the unknown section \IfE:Pt(F%E%B), turns out to be a linear differential

equation of order k in the fibre derivatives and of order 1 in the base deriva-
tives of . a

We observe that for any arbitrary choice of the above coefficients (¢), we
obtain a local connection. Hence global connections can be obtained by means
of the partition of unity.

We finish this chapter by observing that all above geometrical construc-
tions are compatible, In a natural way, with restrictions to the subsystem
associated with a subsheaf of the sheaf of smooth tube-sections (see Rem.
I1.5.1.3). In particular, we shall be concerned with the subsystem of com-
pact support tube-sections, on a vector double fibred manifold.
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11.6 - The infinite dimensional quantum system

So far, the quantum theory has been developed on the quantum bundle @,
which is based over the space-time E (except for a temporary extension of
the base space to J1E) and has one dimensional complex fibres.

On the other hand, the theory of systems suggests to translate the main
concepts and results of the above quantum theory in terms of a new bundle
S$Q" which is based over the time T and has infinite dimensional complex
fibres.

Such a geometrical development of our quantum theory yields interesting
physical results and interpretations. In particular, it yields the Hilbert
bundle and the generalisation to a curved space-time of the standard
Hamiltonian quantum operator and commutators.

[1.6.1. The quantum system

We start by introducing the system associated with the double fibred
manifold of quantum space-like densities (see § I1.1.2), according to the
ldeas of the previous chapter.

So, we consider the system
(5:5Q"—T, ¢)

assoclated with the double fibring

n Q E T .

In order to be able to perform integrations over the fibres of SQ"—T, we
need to consider the subsystem of sections with compact support. So doing,
we miss sections of physical interest, but they can be recovered later by
means of a completion procedure. So, we introduce the following definition.

DEFINITION II.6.1.1. The pre-quantum system 1s defined to be the sub-
system
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(59:8°Q"—~T, )

where
sQh= 11 s° Q" C sQ",
<€T T
and
s° Q" < s @ ={v"_:E -Q"}
T T T T T
1s the subset of sections with compact support. *

Let f:E—~C i1s a tube-function such that, for each t€T, its restriction
f_:E_—C, has compact support; then we define the “space-like partial inte-

ffn:T%(E:tH(ffn)(t):J;ftnt.

PROPOSITION II.6.1.1. On the fibres of 5°:8°Q"—=T, we obtain the A° *-
valued Hermitian structure, given by

gral” of f as

h:s’Qh:s’Qt — COA? (o, ¥ ) s o | e :=f h(®d , ¥ )n.. 0
B T T T T E T T T

Hence, 5°:8°Q"—=T turns out to be a pre-Hilbert fibred set. Moreover, by
completion (fibre by fibre), we obtain a Hilbert fibred set

HQ"—T.

By abuse of language, we say that $°Q"—T is the pre-Hilbert quantum bun-
dle and HQ"—T the Hilbert quantum bundle.

11.6.2. The Schrodinger connection on the quantum system

Next, we re-interpret the Schrodinger operator in the present frame-
work (see Def. I1.2.3.1) and study its basic properties.

THEOREM II1.6.2.1. There is a unique linear connection
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L:sQ T *eTsqQ"

on the vector fibred set 5:5Q"—T, such that the Schrodinger operator " can
be written as

- N
vk =3
The coordinate expression of kK 1s given by

.o h 7 m
k‘o(llfn) =1 (- A%"+ —a, o).

2m

Proor. 1t follows immediately from a comparison of coordinate expressions
of V _and 8" 0
We can easlly see that the connection k restricts to the subsystem
57:8°Q"—>T.
REMARK I1.6.2.1. Let o be an observer. Then, the observed vertical
Laplacian can be regarded as a fibred morphism over T
A°:5Q"—5Q".
Moreover, we can easlly see that A° restricts to the subsystem
c7:8°Q"—T. =
LEMMA 11.6.2.1. Let o be an observer. Then, the observed vertical
Laplacian is Hermitian. Namely, for each ", T""e#(S°Q"~T), we have
CAPQM M = <N ] AT,

Proor. We have

1] (o0 <0 = - h
g (V iv j(p P Ai J lzQp i iy

-Gl
-&

I
< |

o
-Gl
ey
-&
+

_ ] (<0 (o0 = h oo

. - . _
SR VIR - e K VO w05 V) =
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_ gl (ai(vo'i(p w) + Kihj VO 5 - vf’j(p dw+ita (V”]fp @)

-9,(3 Vie) - o Kihj VO 08 Ve sita (5 V' e) =

I . ) o
=" (O, (V'3 @)+ K" Vo005 VI a) - K" VO 0)

a0 e Vigh a6 Ve Vg
& Vgl & Vgl '

Moreover, the integral on E_, through a partition of the unity, of each of

the above terms vanishes, in virtue of the Gauss theorem. a

THEOREM I1.6.2.2. The connection k i1s Hermitian. Namely, for each Cf)n,
e (S°QN—T), we have

dCO™ [ W = VN 0 s (N | VoaT

Proor. We have
ao((prl ‘-Pn) — aD(p"l ‘-Pn + (P"l aoq_)\’l —

n
2m

= V0" e e 9TV, el - g (%97 N - gt A7,

Hence, the Lemma I1.6.2.1 ylelds the result. a

11.6.3. Quantum operators on the quantum system

Now we are in a position to translate our quantum Lie operators (see S
I1.4.2) into quantum operators, in the infinite dimensional context of sys-
tems.

REMARK II.6.3.1. A fibred morphism over T
2:5Q"SQ"

can be regarded as a sheaf morphism
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[x]>

U= moph,

[x]>

L P(8Q—T) — #(SQ"—~T) : " —

yields the sheaf morphism

Moreover,
=:4Q"E)-#(Q"E),

characterised by
RS

(v = =",

(1]
[x]>

The map

[1]>
)
[x]

u

1S a bijection.
Henceforth, in order to deal with objects globally defined on the fibres of
t:E—T, we need to restrict our attention to quantisable functions, which are

tube-like with respect to the fibring JE-T.

We shall denote the corresponding sheaves by

2, (J E) S 2 (JE) 2, (J E) S 2 (J E)

;Qf(J1E) - g(JlE)
n c n
;gw(Q ) < ;90(62 ).

@) cx@) o« (@)<2 (@Y

PROPOSITION 11.6.3.1. Let fEBt(J1E) and consider YfEth(Qﬂ).

Then, we obtain the sheaf morphism
A N S
Y. £(8Q"~T) — #(8Q"~T) : v" — fop‘”-. O

f
acts

COROLLARY II.6.3.1. In the particular case when fE;beO(J1E), f’f

pointwisely on the sections of SQ"—T, hence it can be regarded as a local
fibred morphism over T

f/f:SQn'%SQ”. =

If /" # 0, then f’f 1s a differential operator of first order on the sections of

SQ"—T.
However, we are looking for a pointwise operator for all quantisable func-
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tions. We shall solve the problem again by means of a criterion of pro-
jectability, according to the following important result.

THEOREM I1.6.3.1. For any f€2 (J E), the sheaf morphism

[x]>

acts pointwisely on the sections of SQ"—T, hence it can be regarded as a lo-
cal fibred morphism over T

[x]>

;e f/f -i f'ev, i sQ" - sQ™.

[ts coordinate expression Is

= N, n_ iN N _ ;B oo n o IoTo o m 1 52 5
= (£ @iy O - ) et - VOt -t A be V' dPd

In the particular case when fE;QtO(JlE), we recover

f:=Yf. u

[x]>

Of course, the above operator Ef I1s intrinsic, by construction. However,

we stress that its coordinate expression cannot be easily guessed by means
of standard arguments of differential geometry. Actually, this result is a
“miracle” produced by the specific structure of the quantum bundle and its
quantum connection.

Then, we are led to introduce the following definition.

DEFINITION I1.6.3.1. A quantum operator 1s defined to be the local fibred
morphism over T

[1]>

s f/f ~if'av, 5@ - sQ",

associated with a quantisable function fe2 (J E). *

The quantum operators constitute a sheaf (with respect to the tube-topol-
ogy of the fibred set SQ"—T), which is denoted by
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2(s9").

Moreover, we shall be concerned with the subsheaves of quantum opera-

tors corresponding to quantisable functions with constant and vanishing time
component

2 (5@") < 2(sQ") 2 (sQ") < 2 (sQ").

THEOREM II.6.3.2. The map
2(J E) — 2(sQ") : [+ =
1s a sheaf isomorphism.

PrOOF. Tt follows from the coordinate expression of Ef(\lfn). a

Thus, this 1s our implementation of the correspondence principle.

Now, let us compute the main examples of quantum Lie operators.
Let us choose a frame of reference (uo, 0) and a related fibred space-time
chart (anyz)_ We observe that, the definition of the quantum operators as-

sociated with the functions yi and p./h requires that these functions be tube-

like of the fibred manifold E—T ; hence the space-time chart must be defined
on a space-time tube.

EXAMPLE I1.6.3.1. We have

éxﬂ(‘ifn) = X0 o é‘z(\ifn) = ‘,,\V'l’ Nl
=, /T(\If“) =i beVd'rdid’
i1
= Yoo (A0 e n gt g2 58
By (0 (gmA:.p +ﬁa0:.p)b®\/dAdAd. a

In the special relativistic Galilel case, the above operators coincide with
the corresponding operators of standard quantum mechanics.
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11.6.4. Commutators of quantum operators
Next, we study the commutators of quantum operators.
If f)f'EQ(JIE) are quantisable functions, then we define the bracket of the

assoclated quantum operators to be the sheaf morphism

[ ror r
However, we stress that, in general, the bracket of two quantum opera-
tors needs not to be a quantum operator.

[1]>
[x]>

| (.f f

,oéf) - sQ" — sq".

LEMMA 11.6.4.1. let f,f'E;Zf(J1E) be quantisable functions. Then, we ob-

tain

ik
[x]>

f) 3 f»\] =

- ?[f',fﬂ ) (fffo(f'”ﬁk) ) ?f'o(f”ﬁk)) - ((f”ﬁz«)o?f' ) (f'”ﬁk)o?f) i

. ((f”—l%k)o(fm—‘%k) _ (f””—‘%k_)o(f”—‘%k))- a

Henceforth, we shall restrict our attention to quantisable functions with
constant time component. In fact, this hypothesis will yield important re-
sults. On the other hand, this is a reasonable restriction from the viewpoint
of physics, because all functions which are relevant for physics are of the

above type.

THEOREM I1.6.4.1. Let f,f'€2 (J E) be quantisable functions with con-

stant time component. Then, the above commutator reduces to

| 1=

[1]>
[x1>

o r

=Vt (oG ) =7 o (f1aV ) = ((F1aV or = (v )er ). o

COROLLARY I1.6.4.1. Let f,f'€2 (J E) be quantisable functions with van-

1shing time component. Then, we obtain
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: v = i\/ .
o ror L f']

COROLLARY I1.6.4.2. Let fe2 (J E) be a quantisable function with con-

stant time component and f'EQtO(J1E) a quantisable functions with vanishing

time component. Then, we obtain

| Y Y ) ’

A

—
=]

—_—

g =Ty (e

[x]>

EXAMPLE I1.6.4.1. For each quantisable function fE;Qf(J1E), we have

= 0.

1>
=
(x>

7!

[x]>

Jary =t

m

In particular, we obtain

N
P,/ﬁ] =5

[x]~

Eventually, we can state the following important result.
LEMMA 11.6.4.2. For each quantisable function fE;Qt(JlE), the correspond-
Ing quantum operator restricts to the system of tube-sections with constant

support
s@" — s‘@".

[x]>

THEOREM 11.6.4.2. Let f€2 (J E) be a quantisable function with constant
time component. Then, the corresponding quantum operator ﬁf Is symmetric,
e., for each ®", T"Mep(8°Q"—T),

2NN = N E
< r | = (o | r >

Proor. We have
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<éfén|®”>:

m 2m

al(fl\/@) 0 n h V()f
f( 2m ‘/@ +l*faip+(f fa)tp f* Qp)q_)n‘:

Lafeeigh Lo VIgh
:Jbl Vol ‘“ﬂijff*@w”;@f%¢+
gl gl
c(f - fla) s - f";i w) .

In an analogous way, we obtain

<®“|éf®”>:

G WD s e faye e o @ A%E)
2m /|g~| m ‘ I 4o i om )
Hence, the proof follows from the Gauss theorem, Lemma II.6.4.2 and
Lemma II1.6.2.1. m]

Hence, under reasonable hypothesis on the quantisable function f, the as-

A

sociated quantum operator Ef can be extended to a self-adjoint operator on

the quantum Hilbert HQ—T bundle obtained by completion of S°Q—T .

In this way, we can apply the standard probabilistic interpretation of
quantum mechanics to our approach. The only caution to be taken concerns
the fact that we do not deal with a unique Hilbert space, but with a fibred
set of Hilbert spaces equipped with a connection.

11.6.5. The Feynmann path integral

Eventually, we show how the Feynmann path integral principle can be
formulated in the present framework. Of course, we are aware of the se-
rious problems dealing with the existence of an appropriate measure and
we do not offer any help to overcome these difficulties. However, we can
exhibit a nice geometrical interpretation of the Feynmann amplitudes.
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Let us consider the parallel transport on the fibred manifold
nQ'~JE

associated with the quantum connection u (see § I11.1.4).
Namely, let s:T —F be a (smooth) motion. Then, consider the equation

(%) (les)JVq\IfT =0

in the unknown section Wos:T—@Q, projectable on s; its coordinate expression
IS

ao(:.pos) -1 (L/h)obhs (wos) = 0.

Equation (#) can be integrated in any finite interval® ICT . Tts solution is
of the type

(++) () = (pos)(t) = q, exp (+ f (Loj s)), q,€C,

[tovt]

for each ‘CU,‘CET such that S([‘CU,‘C])CE belongs to the domain of a quantum

base b:E—@Q. For greater times, the solution will be obtained by adding the
gauged analogous contributions of the different quantum charts.
Hence, the section s:T —F yields the complex linear isometry

H(S,‘ED_‘:) : QS(‘CO) - Qs(t) : CIO b(t(]) = q(’t) b(’t),

for any <, T€T.

The above map can be easily extended to the case when s:T —F 1s
“broken”, i.e. continuous and almost everywhere smooth.
Each map ]'I(q ) as above is said to be a Feynmann amplitude.
8,7,

The Feynmann integral can be expressed heuristically as follows.
For e ,e€E, one might wish to define the complex linear isometry

H(eo.@) = Z H(S,‘EO,‘E) : Qeo - Qe’

29 According to our assumptions (smooth fields and motions), the integral
f(LOJ'ls) exists on any finite time interval.
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with

T, t(eo) €T te) =1 €T,

where the “sum” (taken with respect to a suitable measure-1) is extended to
all broken motions such that

s(‘co)ze0 s(t) =e.

We set

11 :E<E— 1(Q,Q) : (eo,e) — 11

(eg.e)’

Then, for T ,T€T, one might wish to define the complex linear map
-HQ"  — HQ" U - "
(o 0) T, T T, T

where

We remark that, if II exists and 1s not too singular, then, for each eEEt,

the above integral makes sense because the integrand is a map on E_ with
0

values into the fixed vector space Q..

Moreover, suppose that the Schrodinger equation on the Hilbert bundle can
be Integrated locally. According to the interpretation of this equation as a
connection, it yields, for Tt€T sufficiently close to T,€T, a parallel transport

S HQ" —HQ" .
(Ty.T) T, T

Then, the Feynmann guess can be expressed by saying that

S(to.t) - K(tovt)'

= Unfortunately, such a measure is known not to exist at all!
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11.6 - Quantum two-body mechanics

So far, we have been dealing with the quantum mechanics of a charged
particle; accordingly, the quantum bundle has been based on the classical
space-time assoclated with a classical particle.

Now, we modify slightly our model in order to describe a closed system
constituted by two quantum particles interacting through the classical
gravitational and electromagnetic fields. Thus, we no longer consider an
external source of the classical filelds, but the source is constituted by the
particles themselves. For this purpose, it suffices to substitute the pat-
tern space-time with the multi-space-time as base of the quantum bundle.

This scheme can be developed for any n » 1. However, we do 1t explicitly
only for the case n = 2. The reader can generalise it without any difficulty.

We do not find the most general solution of field equations, but we just
exhibit the simplest solution whose symmetries and boundary conditions
are physically sensible. Then, the quantum dynamics follows easily. This
solution is nothing but a Galilel general relativistic formulation of the well
known standard quantum two body problem.

[1.6.1. The quantum bundle and connection over the multi-space-time

We start by introducing the quantum bundle and connection over the
multi-space-time assoclated with two classical particles.

ASSUMPTION QTB1. We assume the quantum bundle to be a Hermitian line
bundle over reduced multi-space-time (see §1.7.1and § 11.1.1)

T:Q—F'. S

ASSUMPTION QTB2. We assume the quantum connection to be a connec-
tion on the bundle QTHJ1E' (see 8 11.1.4)

u:Q' T JE @T1Q'
g
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with the following properties:
1) 4 is Hermitian
11) 4 is universal,
1ii) the curvature

of 4 1s given by

(B@) R =i

11.6.2. The two-body solution for the quantum bundle and connection

Next, we exhibit a distinguished realisation of quantum bundle and
quantum connection whose symmetries and boundary values are physically
appropriate.

We consider a quantum bundle :Q—E, which is trivial (but without any
distinguished trivialisation).

PROPOSITION II.6.2.1. Let b be a global quantum gauge and o a pattern
New tonian observer (see § 1.7.1, 1.7.2). Then, the connection

'UIz'UI”+z'Hl(@+P+m @) v,

where 4" is the flat connection associated with the quantum gauge, & and P
are the classical kinetic energy and momentum forms assoclated with the
observer o (see § 1.7.2) and @ is the potential described in Rem. 1.7.2.2., is a

quantum connection. a

COROLLARY II.6.2.1. With reference to the normal chart associated with
b and to a Carteslan space-time chart adapted to o, we obtain the following
coordinate expression (see Rem. 1.7.2.3)

y=d’d +d'®d +d'ed> +d'©d>%+d'ed”
0 1 11 2 21 10

®9 . .
11 20 21

i

- m 1 i 1 49 It il
+ 11— (— —o. y v+ v o yvi)d + g yid o+ v 4 d
n 2 gz(; (El1 Yio Y10 TP Yo ) 20) gz(; (El1 Yio & T Yo 4y )
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Km m_-
1 794, d0)®y1:

m I&

=d’®0 +d'@d +d'@d +d'©d +d'ed"
0 c cl r ri c0 cl ro ri

. m

1 { ] ] / 0 iog 0 J 41
+1] — - = s+ = +(y +
! h gij ( 2 (yCO > c0 u1 u2 ) r0 S rO) d (‘ c0 de u1 u2 > r0 d )

r

Km m_-¢q ¢
1 1772 1112 g

- — d )®M. a
m r

Then, the two body quantum theory can be developed in full analogy to the
one body case and our results fit completely the standard ones. In particular,
just as an example, we get the quantum Hamiltonlan operator.

REMARK II.6.2.1. Let o be a pattern Newtonlan observer and s:T —FE any
motion such that jls = 0os. Moreover, let us consider the affine fibred

morphisms over T

5]

L E—Ere— (e, s(t(e))) L

5]

, B~ E:.e— (s(z’é(@)),e2)

55

Lo
c

—E:e— (ec,ee) LViE—~E:er (s(z’é(@)) rp, s t(e)) + o, rz).

Then, we obtain the following “Laplacian™ operators

A = Aoy (B, C)oll(E, ) A = Aoy dll(E,C) - l(E,T)
A(» = Aou(} - M(E,C)—A(E,T) Ar - Aour CM(E, )= (E,T)

which turn out to be independent of the choice of s.

With reference to any Cartesian space-time chart (Xo,yi) adapted to o, we
have the following coordinate expressions

. i . i
= 171 = 2°2
A mglto ¢ Aypmg¥Ed, e

v B i?j? v _ .
Ag=g70 g Ag=g""0 9,
c’e rr
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where, by abuse of language, the indices 1'1, i, ic, z'r refer to the induced

coordinates yf, yzl, },,,pl" yri (see §1.7.2). a

COROLLARY II.6.2.2. With reference to the normal chart associated with
b and to a Cartesian space-time chart adapted to o, we obtain the standard
operator (see Rem. [.7.2.3)

N O A TR 900 R e L P
“H/h B 2m T ¥ Uy P h r @ !
. . KM m_-q ¢ B
_ _( *h 1 1 12 11719
B ( 2m (Acq') " uou Arq']) - B r "P) b®\/m¢ a
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[l - APPENDIX

This appendix 1s aimed at recalling a few fundamental notions on mani-
folds, fibred manifolds, jets, tangent valued forms and general connec-
tions, 1n order to fix our basic terminology and notation.

Some of these 1deas and results can be found In any standard book of
differential geometry. However, we are concerned with some further geo-
metrical techniques, which can be traced only In a more specialised litera-
ture. Then, we think that the reader will appreciate a brief sketch; further
details can be found, for instance, in [CCKM], [MM1], [MM2], [Mo2], [Mo3].

The non standard techniques are required by some specific subjects of
our theory, hence cannot be avoided. On the other hand, these techniques
are part of a general approach to differential geometry, which is able to
recover in a very compact scheme many standard notions and results. For
this reason the quick summary below has a certain systematic character.

[11.1. Fibred manifolds and bundles

In this section we recall a few basic notions on fibred manifolds. For
further details, the reader could refer to [CCKM], [ MM1], [MM2], [Mo2].

Throughout the paper, we deal with smooth manifolds and maps, unless a
different statement is explicitly mentioned.

III.1.1. Fibred manifolds

Let us start with fibred manifolds and bundles without any additional
structure.

Let M and N be manifolds.
A local map defined on the open subset UCM, is often denoted (by abuse of
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language) by
[ M—N.
The local maps f:M—N constitute a sheaf
AM(M,N) = {f:M—>N}.
In particular, the sheaf of local real valued functions on M is denoted by
F(M) = M(M,R) = {f:M—>R}.

We denote the typical manifold chart of M and N by (x") and (')rf'i).

A fibred manifold 1s defined to be a manifold F together with a surjective
map of maximum rank

pF—B.
Let p:F—B be a fibred manifold, with
n:=dim B [ :=dim F - dim B.
The fibre over x is denoted by
F.=p'(x)CF.

By the rank theorem, F admits a local fibred splitting 1n a neighbourhood
of any ye€F. Namely, there 1s an open neighbourhood VCF of yeF, a manifold
F  and a diffeomorphism

(D:V%p(V)XFV,
such that
pr1O(D =p.

We identify the real functions of F, which are constant along the fibres
with the corresponding functions of B; hence, we have the natural inclusion

F(B) C 5(F).
A fibred chart 1s defined to be a chart
(,x)\,)»»'i) 1<a<n, 1<i<l

of F, adapted to a local fibred splitting.
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A section of p:F—B is defined to be a local map
s:B—F,
such that
pes = idB.
We denote the sheaf of sections of p:F—B by
#(F) = #(F~B) = {s:B—Fj}.

We stress that a section s 1s assumed to be local, 1.e. it 1s defined on an
open subset of the base space; In the particular case when s is defined on the
whole base space, we say that it 1s global.

L %%‘EIE P B be a double fibred makiifold. —

A tube-section is defined to be a section of the type
s:p(U)CTE—~F

where U C B is an open subset.
The tube sections constitute a sheaf (with respect to the tube-topology)

bDT(F%E%B) C #(F—F).

Let p:F—B and q:G6G—B be fibred manifolds over the same base space.
Their fibred product over B is defined to be the fibred manifold

F¢ =11F ¢ — B.
B X

XEB X

If se#(G—B), then we denote the pullback of s by

s' i F > F6: f— (f, s(p(f)).

Let p:F—B and ¢g:G—C be fibred manifolds.
A fibred morphism 1s defined to be a pair of local maps

O.F—G O:B-C,
such that

qod = dop.
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Briefly, we say that @ is a fibred morphism over ®. In particular, if ¢ = B
and @ = idB, then we say that @ is a fibred morphism over B.

Let p:F—B be a fibred manifold.
We say that a local fibred splitting @ is a local bundle splitting if it is of
the type

o:V=p'U) U-F,,

where U = p(V) C B is an open subset.
Then, we say that the fibred manifold p:F—B is a bundle 1if there exists a
trivialising bundle atlas, i.e. a family of local bundle splittings

-1
{(I)a.p (UQ)%UCXXF}

0" ae’

where {Ug}yb{ 1s an open covering of B.

We are concerned with several bundles, whose fibres are smoothly en-
dowed with algebraic structures; moreover, we need to prolong this bundles
and their algebraic structures via the tangent and jet functors. This subject
can be treated In several ways; the most standard approach 1s based on the
technique of principal and associated bundles. However, in this report, we
prefer to follow a more direct and intrinsic way, which is very suitable for
our goals and fits the intrinsic spirit of our viewpoint. Here and in the fol-
lowing sections, we just sketch the main ideas and results; for a more gen-
eral and detailed treatment the reader can refer to [CCKM].

I11.1.2. Structured bundles

Next, we consider bundles whose fibres are equipped with an algebraic
structure.

A vector bundle 1s defined to be a bundle p:F—B smoothly equipped with a
vector structure on its fibres. Thus, by definition, each fibre F\, 1S a vector

space; moreover, there exists a trivialising bundle atlas, whose type-fibre F,
1s a vector space, such that the maps CDax:FxﬁFo’ with XEUJ, €A, are linear.

A fibred morphism between vector bundles is said to be linear i1f it yields
linear maps between the fibres.
If p:F—B 1s a vector bundle, then we obtain the global section and the fi-
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bred morphisms over B

0:B—F +:F§F%F «:RxF—F,

which fulfill the standard algebraic properties and characterise the vector
structure of the bundle.

An affine bundle 1s defined to be a bundle p:F—B smoothly equipped with
an affine structure on its fibres. Thus, by definition, each fibre FY 1S an

affine space assoclated with a vector space FX; moreover, there exists a
trivialising bundle atlas, whose type-fibre F Is an affine space associated
with a vector space Fo’ such that the maps d)o(’x:FX%FO, with xEUO(, x€EA, are
affine.

[t can be proved that
F=I11F - B

Xe€B X
has a natural structure of vector bundle; this is said to be the vector bundle
assoclated with the affine bundle.
A fibred morphism between affine bundles is sald to be affine if it yields
affine maps between the fibres.
If p:F—B is an affine bundle, then we obtain the fibred morphism over B

+:F,F—F,

which fulfills the standard algebraic properties and characterises the affine
structure of the bundle.

Other algebraic structures on bundles can be defined in this way. For in-
stance, the complex structure can be defined by considering a linear endo-

morphism u, such that V= 1.

II1.1.5. Positive semi-vector bundles

Furthermore, In order to describe rigorously the units of measurement
and to introduce the bundles of densities, we need the notions of a positive
semi-vector space and a positive semi-vector bundle.

Let us consider R" = {x€RR | x>0} as a semi-field, i.e. as an abelian semi-
group with respect to the addition and a group with respect to the multipli-
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cation.
Then, we define a semi-vector space to be an abelian semi-group U with a

scalar multiplication by R', which fulfills the standard properties

(r+s)u=ru-+su (rs)u=r(su)
r(u+v)=ru+rv lu=u vr,s€ER”, u,vel.

A vector space V and a basis B yield a semi-vector space in a natural way.
In fact, the subset finitely generated by B over R’ turns out to be a semi-
vector space. In particular, R™, with n-1, is a semi-vector space.

Moreover, any vector space V can be regarded as a semi-vector space in a
natural way. On the other hand, a semi-vector space U is said to be a posi-
tive semi-vector space 1f the scalar multiplication cannot be extended nei-
ther to R'U{0}, nor to R. Hence, a positive semi-vector space contains nei-
ther the zero element, nor the negative of any element. Thus, a semi-vector
space 1s a vector space, or a positive semi-vector space, or a positive semi-
vector space extended by the zero element.

Several concepts and results of standard linear and multi-linear algebra
related to vector spaces (including linear and multi-linear maps, bases, di-
mension, tensor products and duality) can be easily repeated for semi- vec-
tor spaces and positive semi-vector spaces. The main caution to be taken 1s
to avoid the formulations which involve the zero element. We shall use for
semli-vector spaces the standard terminology used for vector spaces.

Let U be a semi-vector space and V a vector space. By regarding V as a

. . .
seml-vector space, we can conslder the tensor product over IR
Uov.

We observe that the semi-vector space U@V turns out to be also a vector
space, according to the formula

R«(UQV) = UOV : (r, uov) — ua(rv).

So, any positive semi-vector space U can be extended to the vector space
U®R, through the natural inclusion U C UG®R.

In particular, we are concerned with 1-dimensional positive semi-vector
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spaces.

If V is an oriented 1-dimensional vector space, then the positively oriented

subset V' CVisa positive space.
Moreover, 1If W 1s a further vector space, then we obtain the following

useful canonical isomorphismsz‘)
VOW =~ VOw
and, In particular,

V'OR =~ VOR =~ V.

Let U and V' be 1-dimensional positive semi-vector spaces.

In order to write formulas In a way apparently equal to the standard one
used by physicists, 1t 1s convenlient to treat the elements of 1-dimensional
positive spaces as they were numbers and introduce some conventions.

So, we can treat the dual element veEU™ of u€U as its “inverse” and write
u'=0* V==,

Moreover, 1If uelU and v€V, then we often omit the tensor product @ and
just write

Uuv:=usuv.
Furthermore, we make the canonical identification

UQU* =~ R".

Let U be a 1-dimensional positive semi-vector space.

A square root of U 1s defined to be a 1-dimensional positive semi-vector
space VU together with a quadratic map ¢g:v U —U, such that, for each 1-
dimensional positive semi-vector space v U' and each quadratic map
q':v'U '—U, there is a unique linear map [:vU — v U ', which yields ¢'ol = q.

By a standard argument related to universal properties, the square root is
unique up to a canonical isomorphism. Moreover, we can easily prove the ex-

% The first tensor product is taken over R" and the second one over R.
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istence of a square root. So, in the following, we shall refer to “the” square
root vU of U.

The universal property implies that the quadratic map g 1s a bijection. So,
we obtain the inverse bijection v:U—vU u—vu.

Moreover, the universal property of the tensor product implies that there
is a unique linear isomorphism i:v U @+vU —U, which yields io8 = g, where
S:vU —vU @vVU is the canonical map.

In an analogous way, for every natural number g, we can define the g-root
u''loru.

Therefore, for every pair of natural numbers p and g, we write

't =u"le . ou'l U’ =R g ri-pgttie . our'i,

p times p times
If V is an oriented 1-dimensional vector space, then we set vV = vV,
In particular, if W is an oriented n-dimensional vector space, then we ob-

tain the square root positive semi-vector space v A"W.

The above algebrailc constructions on positive semi-vector spaces can be
easlly extended to bundles.

So, a semi-vector bundle and a positive semi-vector bundle can be de-
fined analogously to a vector bundle. Moreover, If p:F—B is a 1-dimensional
oriented vector bundle, then we obtain in a natural way the positive semi-

vector bundle p: v F —B and the canonical fibred isomorphism v F ©vF ~F"
B

over B.
We observe that these constructions lead naturally to a generalisation of
the half-densities due to de Rham (see [dR]).

l11.2. Tangent prolongation of fibored manifolds

In this section we recall a few basic notions on the tangent prolongation
of fibred manifolds. For further details, the reader could refer to [CCKM],
[ MM 1], [MM2], [Mo2].

I11.2.1 Tangent prolongation of manifolds

We start by considering just simple manifolds.

We denote the tangent functor from the category of manifolds to the cat-
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egory of vector bundles by T'.
So, iIf M is a manifold, then we have the vector bundle

anM%M
and if feAdt(M,N), then we have the linear fibred morphism over f
Tf:TM—TN,
or, equivalently, the section
df : M — T*MM@NTN x> T f
We set
(M) =9(TM—M) Cr*(M) = (T M—M).
We denote the induced linear fibred charts of TM and T *M by
(X", &) (x", .ic,}\)
and the induced bases of (M) and ¢*(M) by
0,)=0x) (@)= (@),
Then, we obtain the coordinate expressions

L 3T f = (0, f1 X7 df =0 f'd"o0of).

If c:IR—M is a local map, then we set
de:R = TM : » v Te(n,1).

If c:RxM—N is a map defined in a neighbourhood of {0}xM C RxM, then we
set

d¢c : M — TN : x — d(cy)(o).

I11.2.1 Tangent prolongation of fibred manifolds

Next, we consider fibred manifolds.

Let p:F—B be a fibred manifold.
We have the vector bundle



186 A. ADCZYK, M. MODUGNO

nfTFHF
and the fibred manifold
Tp:TF—TB.

If p:F—B is a bundle, then also Tp:TF—TB is a bundle.
The induced fibred chart of TF 1s

('Xﬁ;x\ ) ,‘,l ) \x 3 “,l) .

A vector field Xe¢ (F) is said to be projectable if it projects over a vector
field Xe¢ (B). The coordinate expression of a projectable vector field is of
the type

X=x"'0 « X >, XYex(B), X'eF(F).
The projectable vector fields constitute the subsheaf

P(F) C C(F).

We denote the vertical functor from the category of fibred manifolds to
the category of vector bundles by V.

So, If p:F—B is a fibred manifold, then we have the vertical subbundle over
F

V'F := k‘erFTp CTF,
and the exact sequence of vector bundles over F

0 Vo F BT B T —&F—

The induced fibred chart of VF i1s

('Xﬁ}\ 3 ,,‘",ij _,.‘."’ I.) .

A vector field X€¢ (F) is said to be vertical if it is vertical valued, i.e. if
it projects over a zero vector field Xe¢ (B). The coordinate expression of a
vertical vector field is of the type

X=x02 X'e5(F).

2

The vertical vector fields constitute the subsheaf
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V(F) T 9(F) C ¢(F).

If p:F—B 1s a vector bundle, then the tangent prolongation of the distin-
guished section and fibred morphisms

TO:TB—TF T+:TFTXBTF%TF T RxTF—TF

makes
I'p:TF—TB

a vector bundle.

If p:F—B is an affine bundle associated with the vector bundle, p:F—B,
then the tangent prolongation of the distinguished fibred morphism

T+:TFTXBTF%TF
makes
Tp:TF~TB
an affine bundle associated with the vector bundle

Tp:TF-TB.

The tangent prolongation of other algebraic structures on bundles can be
obtained in this way. For instance, the complex structure can be prolonged by
consldering the linear endomorphism 7 v, which fulfills (TL,)2 =-1.

In fact, the algebraic constructions of previous sections concerning posi-
tive semi-vector spaces and positive spaces can be easily extended In a
smooth way to any vector bundle (see [CCKM]).

The tangent prolongation and the related differential operators extend to
semi-vector and positive bundles in a natural way. Here, we add a few obser-
vations, which are useful for a clear understanding of our procedures.

The tangent space of a positive space U turns out to be TU = Ux(RaU).

Hence, the vertical bundle of a positive bundle U—B turns out to be the
vector bundle VU = UE(IR@@U).

The differential operations such as exterior differential, covariant differ-
ential, Lie derivative and so on, commute with the tensor product with a
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vector space or a positive semi-vector space. So, In our differential calcu-
lus, we extend the standard notation, such as d, V, L\' and so on, to the cor-

responding operators acting on the appropriate objects tensorialised with a
scale factor.

111.3. Jet prolongation of fibred manifolds

In this section we recall a few basic notions on the tangent prolongation
of fibred manifolds. For further details, the reader could refer to [CCKM],
[ MM 1], [MM2], [Mo2].

Let p:F—B be a fibred manifold.
The k-jet space 1s defined to be the fibred manifold

p,:JF = % J_F B,

where
i

1s the set of equivalence classes of sections whose partial derivatives at x
coincide up to order k, in any chart, according to the formula

J_ Fo={[s]

k x'seL(F)

s - 8 o 5 s'(x) =0 s"(x),
kx < <

for all multi-indices of length between 0 and k

o=(a, o, o) O0<lo)=a + . . +uo <k
1 m 1 m
If s:#(F), then we obtain the section
s B> JF x> [s] .
We have the following natural fibred epimorphisms
h Py p
FJ — F J—FJ B.=—F

Accordingly, we obtain the following sequence of natural linear fibred
monomorphisms over Jk_F

v J F—» J F “— .V J F
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where \rf""thF, 0<h<k-1, and \rf""JkF denote the vertical bundles of the fibrings
J F—J FandJ F—B, respectively.

Moreover, the fibring
JkF—>Jk_71F

turns out to be naturally an affine bundle associated with the pullback over
J_F of the vector bundle

S*T*BOVE,
E
where S¥ denotes the symmetrised tensor product.

Let p:F—B and ¢:6— B be fibred manifolds over the same base space and
f:F—G a fibred morphism over B.
There exists a unique fibred morphism over f:F—G

J f:J F~JG,

which makes the following diagram commutative, for each section s€#(F),

JJ
F J, JG———

ls\/i(fOS)

Thus, J_ Is a contravariant functor from the category of fibred manifolds

over a given base space into itself.
There 1s a unique fibred monomorphism over F

Ak:JkFETB%TJk_qF,

which makes commutative the following diagram for each section s€#(F),

A
L,.
B J F.T TJ —F—
(J, S)T S T s
TB

Moreover, A, I1s a linear fibred monomorphism over JF—d F, projectable
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over 1.:TB—TB and a fibred monomorphism over J, F:TB.
Hence, in virtue of the rank theorem, J F—J _F turns out to be an affine

subbundle over quF of the affine bundle
‘]1Jk—1F%Jk—1F
associated with the vector subbundle

ST*B ® VF - T*B @ VJ F.
k J.F J. F k-l

k-1 k-1

Furthermore, we obtain the complementary surjective linear fibred mor-
phism over J F—J F

S JF x TJ F—=>VJ F.
c k-1 k-1

s F
k-1
Thus, A, and S yield a splitting over J F of the exact sequence

0 Hk \1/ J Fk —J r
Additionally, there is a natural fibred morphism over JFyJ TB—J F:TB
r.J TF=TJF,
which yields the prolongation of a vector field X:F—TF into the vector field
rkOJkX:JkF%TJkF.
It fESF(Jk_lF), then we can write, for each se#(F—B),

d(fej_s)=(a_f)oj_f:B—=T"B,

We denote the induced fibred chart of J F by
('X)\J ."O(Z) = (X}J )",I.J ,,.V { ,,V 3 e )

Then, we obtain the coordinate expressions

= " = A / l <
Ay d SR d ®(a>\ *D )

—d"e(d +y o vy o4+
oarn 0 7 0<al<k—1 ( A | ) ] )

FsT B —B R
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— L gl g N A U
Sk 1= Sk g@@i = (d )X d )®a[ + (du ) ‘o d )®ai +

(o Deds = )y Ly, s = (V0 sD) = (st s

P ] _ A ! ! . h
(X" 2,z e f=(" Lo f+y "o,

gl

£ = ZL}\.fi, ).

If p:F—B 1s a vector bundle, then the k-jet prolongation of the distin-
guished section and fibred morphisms

JkO:B%JkF Jk+:JkF§JkF%JkF Jk-:IRXJkF%JkF
makes
pk:JkF%B
a vector bundle.

If p:F—B is an affine bundle associated with the vector bundle, p:F—B,
then the k-jet prolongation of the distinguished fibred morphism

J+:J Fod F—J F
makes
p.J F—B
an affine bundle associated with the vector bundle

pk:JkFeB.

The k-Jet prolongation of other algebraic structures on bundles can be ob-
tained In this way. For instance, the complex structure can be prolonged by

consldering the linear endomorphism ka, which fulfills (ka)2 =-1.

l1l.4. Tangent valued forms

In this section we recall a few basic notions on the graded lLie algebra of
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tangent valued forms. For further details, the reader could refer to [ MM].

First, let us consider just a manifold, M.
A tangent valued form of M is defined to be a section

@:M%AT*M%TM.

We have the coordinate expression

LR TN dtn.nd ’®ap_ Py €5(M).

In particular, the vector fields are tangent valued forms of degree 0.
The Lie bracket of vector fields can be naturally extended to a graded Lie
bracket of tangent valued forms, which is called the Frolicher-Nijenhuis

bracket .
Namely, there 1s a unique sheaf morphism

r S r+s
[,L]: AC*(M) @ C(M) ~ AN\TT*(M) @ C(M) > ANCT(M) @ ¢(M)
F(M) F(M) F(M)
which on decomposable forms 1s given by
laeu, gov] = arpelu, v] +
*anl, BOV - (—1)|a‘|§|§ALI’O(®Ll + (—1)'71’“omd§®u — (=1)“BI-el [ Brdosv.
We have the coordinate expression

[0, o= (0%, , 297 5 —(DTef | 00! '

r+1 r+s Ag /\S+1“‘AI“+S

—rgt, g0, ¢f rEDTs et 0, of yd' 1nd @)

R 17"s-17 hs o hgi1Ppas
Thus, ACH(M) (®)”C (M), together with the F-N bracket, is a sheaf of
F(M
graded Lie algebras, namely we have

[0+ o', wl=lo, ol + o, o] [o, o +a'l=p, o]+, v]
[k o, ]l =k [p, o] =[p, k ¢]

lo, @] = - (-1 @) o]
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[9, [0, o1l =119, o], «l + 101 [0, [9, w]]

P, w, SEATH(M) E@)@(M); KER.
F(M

Now, let us replace the manifold M with the fibred manifold p:F— B and
conslder the sheaf of tangent valued forms of F

ACH(F) @ C(F).
3(F)
A tangent valued form
0:F— /\T*B%TF,
i1s said to be projectable if it projects over a tangent valued form of B
gp_:B%/\T*B(?TB.
The projectable tangent valued forms constitute the subsheaf
ANC*(B) @ #(F) T ANT*(B) @ C(F).
F(B) F(B)
Their coordinate expression is of the type

= o l n e
? (@%1...'}\,1 au ! @7\\1...}\,, al')®d Aand?
with

u . ] .
@7\1m7\,, € 5(B) prlmx,,, € 5(F).

As a special case, we have the vertical valued forms
¢:F— AT*B%WF,
which project over the zero tangent valued form of B
©=0:B— AT*B%TB.
The vertical valued forms constitute the subsheaf

ANC*(B) ©® V(F) C ANT*(B) © #(F).
F(B) F(B)
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Thelr coordinate expression is of the type

2

_ i . -
¢ = QPMVM' o.ed Ih.Ad'r.

The projectable tangent valued forms constitute a subalgebra of the alge-
bra of tangent valued forms. Moreover, we have

= o, ¢b ) @ |@J¢6Af*(3%$%?(F)

Let p:F—B be a vector bundle. A projectable tangent valued form

©0:F—>AT*BOTF
F

1s sald to be linear 1f it 1s a linear fibred morphism over .
The coordinate expression of a linear projectable tangent valued form is of
the type

v = (Qp S0 P i ,Vj a,‘)®d}\1A...Ad.}\'“

T ST Ay J
with

W
SP,

¢ i,, € 5(B).

r

The linear projectable tangent valued forms constitute a subalgebra of the
algebra of projectable tangent valued forms.

Let p:F—B be an affine bundle. A projectable tangent valued form

0:F—>AT*BOTF
F

1s sald to be affine if it i1s an affine fibred morphism over .
The coordinate expression of an affine projectable tangent valued form 1s
of the type

}“1")\]" ©
with
U ] I
: , € 5(B).
Qp7 1“)\,,, ’ Qp/ 1...7\,,, ']) @}\1}’4 ¢} ( )

The affine projectable tangent valued forms constitute a subalgebra of the
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algebra of projectable tangent valued forms.

[11.5. General connections

In this section we recall a few basic notions on general connections. For
further details, the reader can refer to [ MM].

Let p:F—B be a fibred manifold.
A connection 1s defined to be a section
c:F%JlF,
1.e. a tangent valued 1-form

¢c:F>T*BOTF,
F

which projects onto
g:=1B:B%T*B(§TB,
1.e. a linear fibred morphism over F
c:F}x?TB%TF,
which projects onto
ci= 1B:TB%TB.
[ts coordinate expression is of the type
(¥, )’,,7\1‘)00 - (), sz’)J
l.e.
¢ = d"‘@(a;\ + c%’@ai) c%iEg(F).
A connection ¢ ylelds the linear fibred epimorphism over F
v, TF->VF,
with coordinate expressions

_ i T
v, = (d . d )®ai,
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and the translation fibred isomorphism over F

V :JF->T*BOVF,
c 1 F

with coordinate expression
V.=('-e" d%\@ai.
VA \ l

(&
The maps v _and V_ characterise the connection ¢ itself.
The covariant differential of a section s€#(F) is defined to be the section

Vs=Vojs:B—T"BOVF,
c c ‘1 F

with coordinate expression

P A
Vs (a,}\s c)\\os) d ®(aios).

,
The covariant differential of a tangent valued form p€eAC *(F) ((8)@ (F) is
5 (F

defined to be the tangent valued form

r+1
dp = le,o] : F— A T*F(?TF.

In particular, if ¢ 1s projectable, then its covariant differential turns out
to be vertical valued
d o= le,p]: FH'XT*B%JVF
and its coordinate expression is
do=(-0, v ’ Cgi - au(’)Mi @7\\2...7\,,%1“ '

AT ey

! ! Nd 1. d' 19D
1

N9l

) I
+9 +e. 1o,
Qp)\ . )\1 .]Cp)‘\z..j\rq_l

r
For each ¢,ue AT *(F) ((8)”6 (F), we have the following properties
5(F

d(p+)=do+dy

dlo, ¢l=ld o, o]+ -1 [p, d o]
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dc((ﬁ/\ﬁp) = devc((p) + (_1)\(o| (A)Adp(p w€eC*(B)
and, 1If ¢ 1s a projectable vector field
(d (0))w) = [e(w), o] - e(lu, D), Yuec (B).
The curvature of ¢ is defined to be the vertical valued 2-form
R ='de:F—> AT*BOVF,
c 2 ¢ F
with coordinate expression
B =@0c'+elde)drd*ed .
c AU /N B l
The curvature is characterised by the following property
2R (X.,V) = [e(X),e(M)] - e(IX, YD X, Yec(B).
We have the Bianchi identity
d o = [R o] ©PEATH(F) © ©(F).
C C SZ(F)
In particular, we obtain
dR =0,
¢ ¢

in virtue of

_ Ll g2 _1
[C,BC] =d R = d’c= [BC,C].
Moreover, if
o :=c(p):B— ANT*BOTF
F

1s a horizontal tangent valued form, then we obtain the formula®’

dctp =~ B ro,

with coordinate expression

0 Here ~ denotes the exterior product combined with an interior product.
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do=-28 ‘o o ed e ad

c Cc Ung Nowhpiq

Given a section 5:F—=T *B®@VF, the torsion of ¢ is defined to be the 2-form
F

t =dos:F— AT*BOVF.
C C F

We have the Bianchi identity

Let F—B be a vector bundle. A connection ¢ 1s sald to be linear if, as a fi-
bred morphism c:F—J F over B, it 1s linear. A connection is linear if and only

If, In a linear fibred chart, 1ts coordinate expression 1s of the following type
el=c' y c}\iJESw(B).

The covariant differential of a linear projectable tangent valued form with
respect to a linear connection turns out to be a linear vertical valued form.

Let F—B be an affine bundle. A connection ¢ is sald to be affine 1if, as a
fibred morphism c:F—J F over B, 1t 1s affine. A connection is affine if and
only if, in an affine fibred chart, its coordinate expression is of the following
type

i U l { {
Cy T 6 J Yoo, c\ IS RN oEg(B)'

The covariant differential of an affine projectable tangent valued form
with respect to an affine connection turns out to be an affine vertical valued

form.

Connections adapted to other algebraic structures on bundles can be ob-
tained in a similar way. For instance, a complex connection can be defined as
a real linear fibred morphism c:F—J F over B, which makes the following di-

agram commute
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V.1 - Main symbols

Tangent and jet functors
nMTM%M
Tf:TM—TN
df -M—T*M
df -M—TM
X.f=df,X>=Xdf
TEE2VE%E

A. ADCZYK, M. MODUGNO

IV - INDEXES

tangent bundle of the manifold M

tangent prolongation of the map f:M—N
differential of the function f:M—R
differential of the curve f:R—M

action of the vector fileld X on the function f

vertical bundle of the fibred manifold p:E—B

V. VE->VF vertical prolongation of the fibred morphism f:E—F over B

p,J E—B k-jet fibred manifold of the sections of the fibred manifold p:E—B

thiJk_E%JhE bundle projection between jet spaces, with 0<h<k
ij IB*J1E k-jet prolongation of the section s:B—F
J fiJ E~J F k-jet prolongation of the fibred morphism f:E—F over B

Ak:’jkEﬁTB%T‘jqu

S BT I BV E

contact fibred morphism of order 1<k

contact fibred morphism of order 1<k

r.J TE-TJE exchange fibred morphism between jet and tangent functors
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Sheaves
M(M,N) = {f:M—N} sheaf of local maps between the manifolds M and N
F(M) ={f:M—R} sheaf of local functions of the manifold M
#(F) = #(F—B) = {s:B—F} sheaf of local sections of the fibred manifold F—B
C(M) ={X:M—TM} sheaf of local vector fields of the manifold M
CH*(M) ={op:M—T*"M} sheaf of local 1-forms of the manifold M
SFB(F,G) = {f:F->G} sheaf of local fibred morphisms over B
S?(JlE) = {f:J1E%IR} sheaf of local functions of J E
”C(JlE) = {X:J1E%TJ1E} sheaf of local vector fields of J E
”C*(J1E) = {@:J1E%T*J1E} sheaf of local 1-forms of J E
’C‘E(J1E) - ’C(J1E) subsheaf of local vector fields with time component T
”C?(JlE) - C*(J1E) subsheaf of local forms which vanish on y
S?L(JlE) - §(J1E) subsheaf of tube-like functions with respect to J E~E
Q(JlE) - S”((JlE) subsheaf of quantisable functions
20(J1E) - Q(JlE) subsheaf of (. f. with constant time-component
20(J1E) - 20(J1E) subsheaf of (. f. with vanishing time-component

;QL(JlE) - 2(J1E)subsheaf of q. f., which are tube-like with respect to J E-T

;QLC(J1E) - QC(JIE) subsheaf of (. f. with constant time-component
;QLO(J1E) - QO(JIE) subsheaf of (. f. with vanishing time-component
2@Q")ycc@") subsheaf of upper quantum vector fields
2 (@) C 2" subsheaf of upper (. v. f. with time-component T
2(Q) () subsheaf of quantum vector fields
QC(Q) c 2(Q) subsheaf of (. v. f. with constant time-component
QO(Q) - QC(Q) subsheaf of (. v. f. with vanishing time-component
£(Q") sheaf of quantum Lie operators

£(sQ") sheaf of quantum operators
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;QC(SQ”) c 2(sQ") subsheaf of quantum operators corresponding to 20(J1E)
QO(SQn) - QC(SQW) subsheaf of quantum operators corresponding to :20(,]1E)
ft“(F%E%B) sheaf of tube-sections E—F (non-smooth with respect to B)
ft(F%E%B) sheaf of smooth tube-sections E—~F

#*(A—B) sheaf of (non-smooth) local sections B—A

Units of measurement

T vector space associated with the affine space T
A 1-dimensional positive seml-space of area units
M 1-dimensional positive semi-vector space of masses
0=TreA ‘oM ? 1-dimensional vector space of charges
uOETTJr, ueTtF time unit of measurement
m € M mass
qgeaq charge
q = q(uo) e A tom!* charge (related to uo)
heT " *OAOM Plank constant
h = h(uo) € AOM Plank constant (related to uo)
K € TFOA> *oM* gravitational coupling constant

Space-time

t:E—>T classical space-time fibred over time
JE-E—=T first Jjet space of the space-time fibred manifold
T TE—E tangent bundle of the space-time manifold
T VE-E vertical bundle of the space-time fibred manifold
dt:E—=TOT*E space-time 1-form
A:J1E%1T*®TE contact tangent valued form

8:J1E%T*E®\~"E contact vertical valued form
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s:T—E

j1s:T%J1E
02EHJ1E

(uo, 0)
gEaA@V*E%V*E

g:E~>A*QVEQ®VE
E

0:E—(TOA HOATHE
WE%A52®XV*E
VOE—T' 20N 'O VAT *E
xﬁiE—n&m4®v4iV*E
Space-time connection

K:TE-T*EQTTE
TE

1:JE-T*EQTJE
1 JE 1

v JE-T*®QT*J EQVE
1 g E
v J E-T OTJ E
SIJF¥%T*®A)®KT*%E
O:E—(T*OA)OAT*E
I'%J E-T*EQTJE
1 JE 1

Total objects

2
F:E-BOAT*E

r=r%+71°

classical motion

velocity of the classical motion
observer

frame of reference

vertical metric

contravariant scaled vertical metric
space—time volume form

space-like volume form

space-time half-density

space-like half-density

space-time connection on the bundle TE—FE
space-time connection on the bundle J E—E
vertical valued form assoclated with T’
connection on the fibred manifold J1E%T
contact 2-form

2-form associated with an observer

gravitational connection

electromagnetic field

total contact 2-form

total space-time connection
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b/ = b/‘q + b’e
58:J1EH1T*®(1T*®\~’E)

Fe:J1E%T*E®(T*®\~’E)
E

a:E—(T*QA)QT*E

T::T%+Te

r = rﬁ + M” + p°

V. s T>T*OT*OVE
1

Classical kinematical functions

G:J1E%A®MI®]R
H:J1E6A®MI®]R
L:J1E%A®MI®]R

p:J E-AOMOV'E

Quantum bundle
T:Q—F
h:QEQ% C
v E—Q
v =ugb

, 4
Q° =T"*0A*1'®(QOVAT*E)
F

Q" - A7 (QO VAVHE)
FE

v~ i= eV

U= e vn

u: @ - vaQ = QEQ
T
Q' = J1E§Q — J1E

u: Q' T *JE®TQ'
U g E

total second order space-time connection

Lorentz force

electromagnetic soldering form

potential of @
total energy tensor
total Ricel tensor

covariant differential of the velocity

classical kinetic energy (related to u )
classical Hamiltonian (related to uo)

classical Lagrangian (related to u )

classical momentum (related to uo)

quantum bundle

Hermitian product

quantum section

local expression of a quantum section

space of space-time quantum half-densities

space of space-like quantum densities

space-time quantum half-density

space-like quantum half-density

Liouville vertical vector field

pullback of the quantum bundle

quantum connection
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. m
R =1 _-Q®u
y h

Vi

curvature of the quantum connection

covarilant differential of a quantum section

§#W:J1E%A*®¥’E®Q space-like covariant differential of a quantum section
E

Vi E-TH0Q
Quantum dynamics
320 ¥ g
£\L‘:E—>A ONT™E

. 3/2c ¥ ox
£.J1Q%A QNTTE

V4 17 @A 0 ATHEQQ*
E

p:J1Qa1r*®TE§Q
4

H:JIQ%/\T*Q

£ :JZQ%AS/Z(@/S\T*Q

%é#:J2Q - T*OQ

*é’*‘ojgxp =0

j E—A?QAT*E
\L/'

Quantum operators
Qh:c _(JE)— ”ij(J1E)
S?(JlE)%fCt(ﬁE):fo’f
UL
LF £
f7:J E=TJE
ME-TE
X':@'-rq’

XT/P t:QT%TQT

time-like covariant differential of a quantum section

quantum TLagrangian along a quantum section
quantum TLagrangian
quantum momentum

quantum momentum

quantum momentum

Fuler-Lagrange form
Euler-Lagrange fibred morphism

Schrodinger equation

probability current

Hamiltonian isomorphism
Hamiltonian lift

Poisson bracket
Lie bracket of quantisable functions

Hamiltonian lift of the function fESF(JlE)

Hamiltonian lift of the quantisable function f€2(J E)

upper quantum vector field

upper (. v. f. associated with f and T
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Xf:Q%TQ q. v. I. associated with the quantisable function fe€2(J E)
[Xf‘, Xf] Lie bracket of quantum vector fields
X.s:B—F Lie derivative of the section s with respect to the vector field X
Yf =1 \f quantum Lie operator assoclated with the quantisable function f
[Yf‘, qu] bracket of quantum Lie operators

Quantum system

F g Py
(5:SF—B, ¢)

e:SFEE—>F

€v:B—SF

TSF

T4 :TB>TSF
k:SF—->T*BOTSF
k(V):TE-TF
k‘ua(\lf):E%IR
Vz}if:B%T *BOVSF

(5:8Q"—T, 2)
h:s@.s9Qh — AT For
HQ"—~T
:4(Q)->+(T*0Q)
Shp(@M)—»(THeQ")
k:SQ" T OTSQ"
f:sa“asaﬁsanasa“

<t

= :sQh-sqQ"
fQHQ

double fibred manifold
system of the double fibred manifold F~E—B

evaluation fibred morphism

section associated with v:E—F
tangent space of the set SF
section associated with TV :TE—-TF

connection on the fibred set SF—B

fibred morphism associated with kK and ¥

components of the connection k
covariant differential of ¥ with respect to k

system of space-like quantum half-densities

Hermitian product

Hilbert quantum bundle
Schrodinger operator
Schrodinger operator

Schrodinger connection

operator associated with the q. f. f€2(J E)

quantum operator associated with the q. . fe2(J E)
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Coordinates
(,X'O,')rf'i) fibred chart of E
(xo,)rr*i,.ico,jr"") fibred chart of TE
(,X'O,yi,')rf'é) fibred chart of J E
KU R AR RN A :
(XYL X Y) fibred chart of TJ E
, 0. ocal base o
(ao al) 1 1b f TE
sy .5 oca ase O
(ao 9,59, al) 1 1b f TTE
,0.,0 ocal base o
(9,.0, a?) local b rJE
(d°,d") local base of T*E
(d°,d',d’,d") local base of T*TE
(do,di,dé) local base of T*JlE
A, = ao + \(l) al, component of the contact form
$h=d - \(’) d’ component of the contact form
F(Di = l"djlh g + Fd)io components of the space-time connection I'
K(Di = K(Dih \h + K(pio A0 components of the space-time connection K
vl= Fhik yg )g + 2 Fhio ylg + Foih components of the connection y
4, =- H/h components of the quantum connection
y. = p,,/h components of the quantum connection

u. =10 components of the quantum connection
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V.2 - Analytic index

(absolute) acceleration: § 1.2.6
(absolute) motion: § 1.1.1

(absolute) velocity: § 1.1.1

absolute time: § 1.1.1

absolute time function: § I.1.1

adapted chart: S 1.1.1

background connection: § 1.6.1

charge: S 1.5.1

charge density: § 1.4.5

classical constant of motion: § 1.5.1
classical total objects: §1.5.2

classical total energy tensor: § 1.4.5
classical functions quantistically gauged: § 11.1.4
classical Lagranglan function: § 1.5.2
classical Hamiltonian function: § 1.5.2
classical momentum form: § [.5.2
codifferential: § 1.2.4

connection on a system: § 11.5.5
connection of order k on a system: § I1.5.5
contact 2-form: 8§ [.2.5

contact structure of jets: § 1.1.1
Einstein equation: § 1.4.7

electric field: § 1.5.1

electromagnetic field: § 1.5.1
electromagnetic soldering form: § 1.3.2
Feynmann amplitude: § 11.6.5

fibred set: § 11.5.1

first field equation: § 1.4.1

frame of reference: S 1.1.1

generalised Newton law of motion: § 1.5.1
generalised Schrodinger equation: § 11.2.3
gravitational connection: § 1.5.1
gravitational coupling constant: § 1.1.3
Hamiltonian lift: § I1.3.1

Hermitian connection: § I1.1.3



GALILEI GENERAL RELATIVISTIC QUANTUM MECHANICS

Hermitian vector field: § 11.3.2
Hilbert quantum bundle: § 11.6.1
inertial observer: § 1.2.2

kinetic energy function: § 1.5.2

Lie operator: § 11.4.1

linear connection on a system: § I1.5.3
Liouville vector filelds: § 1I.1.1
Lorentz force: § 1.5.2

mass: §[.5.1
mass density: § 1.4.5

metrical

space-time connection: § 1.2.53

momentum density: § 1.4.5
multi-objects: § 1.7.1

Newton law of gravitation: § 1.6.2
New tonian chart: § 1.6.2

New tonlan connection: § 1.6.2

New tonian observer: § 1.6.2
observed velocity: § 1.1.1

observer: S 1.1.1

Planck constant: S I1.1.4

Poisson Lie bracket: § 11.3.1

positive semi-vector bundle: § II1.1.53
positive semi-vector space: § I11.1.5
pre-Hilbert quantum bundle: § I1.6.1
pre-quantum system: § I1.6.1
projectability criterion: § 11.1.6
quantisable functions: § I1.5.1

quantum
quantum
quantum
quantum
quantum
quantum
quantum
quantum
quantum
quantum
quantum

bundle: § II.1.1

connection: § 11.1.4

covariant differential: § I11.1.5

gauge: S II.1.1

Lagrangian: § 11.2.1

Laplacian: § 11.1.5

Lie operator: § I1.4.2

momentum: § I1.2.2

observed covariant differential: § 11.1.5
observed Laplacian: § I1.1.5

observed space-like differential: § 11.1.5

209
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quantum observed time-like differential: § 11.1.5
quantum operator: 8 I11.6.5

quantum probability current: § 11.2.4

quantum vector field: § I1.3.2

Schrodinger operator: § 11.2.53

second field equation: § 1.4.5

second order connection: § [.2.5

semi-vector bundle: § T11.1.53

semi-vector space: § I11.1.53

smooth space in the sense of Frolicher: § I1.5.1
Space of charges: S [.5.1

space of masses: S [.5.1

space-like volume form: § 1.1.2

space-like quantum covariant differentials: § 11.1.5
space-like half-densities quantum bundle: § I1.1.2
space-time: § 1.1.1

space-time volume form: § 1.1.2

space-time connection: § 1.2.1

space-time half-densities quantum bundle: § I1.1.2
special space-time: § 1.6.53

special relativistic Galilel case: § 1.6.3

system: § I[.5.1

system of connections: § 11.1.53

tangent prolongation of a section: § I1.5.2
tangent space of a system: § I[.5.2

time component of a quantisable function: § I1.5.1
time unit of measurement: S 1.1.1

time-like quantum covariant differential: § 11.1.5
universal connection: § 11.1.53

universal curvature: § I1.1.3

upper quantum vector field: § I1.5.2

vertical Riemannian metric: § 1.1.2
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