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Some Variations on the Notion of Connection (*). 

M. MODUGNO - A. M. VINOGRADOV 

Abstract. - Distributions on manifolds are studied in terms of jets of submanifolds and are 
interpreted as ,,pre-connections~, or ~,almost-fibrings,,; the associated differential calculus is 
developed in detail. A comparison with connections on fibred manifolds is analysed. 
Moreover, ~,higher order pre-connections~,, defined as pre-connections dependent on jets of 
arbitrary order, are introduced and studied. It is shown that infinite jets play an essential 
role in the associated differential calculus. 

Introduction. 

Being motivated by some geometrical and physical reasons, we investigate in this 
paper a neighbourhood of the notion of connection. 

One of these reasons arises from the problem of unification of internal and exter- 
nal variables in the basic model of field theory. It is well known that the division of 
variables into internal and external ones is achieved by means of a fibred structure on 
the manifold of all variables. So, as far as connections are concerned, the unification 
problem leads us to the question: what should be the corresponding notion in absence 
of a fibred structure? An answer is proposed in Part I of this paper. Here, connec- 
tions without fibrings, called pre-connections, are treated as m-dimensional distribu- 
tions viewed as a part of the jet theory of m-dimensional submanifolds of the manifold 
of all variables, m being the number of independent variables. 

In Part I we focus our attention mainly on two questions: namely, whether the no- 
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tion of covariant differential and that of curvature can be introduced also for pre-con- 
nections. First, we have shown that no fibred structure is necessary to define the co- 
variant differential. So, this can be associated with any pre-connection as well. This 
results from the interpretation of the standard covariant differential in terms of gen- 
erating functions of (higher order) contact transformations. On the other hand, only a 
weak analogue of the curvature, called deviation, can be defined for pre-connections. 
This ,,deviation, is, in fact, an interpretation of a known construction in the distribu- 
tion theory (see, for instance [11]). However, we go further on and present the grad- 
ed (or, ,,super,, speaking physically) extension of this notion. 

Unfortunately, the FrShlicher-Nijenhuis bracket machinery, which is suitable for 
treating standard connections, cannot be applied directly to pre-connections. This, 
however, can be carried out naturally in presence of an almost-fibring transversal to a 
given pre-connection. In Part  II we show, applying the FrShlicher-Nijenhuis bracket 
that all basic formulas concerning the standard connections are also valid for pre-con- 
nections with respect to a chosen aimost-fibring. 

In Parts I and II we re-expose also some standard facts of the standard connection 
theory in a way suitable to prepare the passage to infinite jets, which is made in 
Part III. The last one is the most important point of the whole paper. In doing it we 
were motivated by a ,,general, principle of geometry of partial differential equations 
claiming that things become much more simple and transparent after being appropri- 
ately lifted to infinite jets ([17], [19]). In particular, we show that a lifting of the mod- 
ule of infinite order contact transformations can be associated with a given connec- 
tion. This enables us to discover higher order analogues of standard connections by 
going the back direction, i.e. from splittings to connections. The concept of k-th order 
connection we are led this way is quite different from the commonly adopted one (see, 
for instance, ([7], [8])) under the same name. Namely, the latter is a standard connec- 
tion defined on the fibring Jk7~-. j k - l =  of jets associated with a given fibring. On the 
contrary, our k-th order connections are defined on ~ itself. In particular, the corre- 
sponding covariant differential acts on sections of ~ and is a k-th order differential 
operator. 

We note that every fibring =: E--~ B possesses a canonical k-th order connection 
for k i> 1. The infinite lift of this connection coincides with the canonical flat connec- 
tion in the fibring J ~ = -~ B whose horizontal distribution is the standard infinite or- 
der contact structure on J | =. This example indicates possible applications of higher 
order connections in geometry of partial differential equations. Very interesting ap- 
plications of this kind one can find in the forthcoming paper by I. KRASIL'SHCHIK in 
which the FrSlicher-Niejenhuis machinery applied to the mentioned canonical con- 
nection produces new important cohomological invariant of partial differential equa- 
tions (super-symmetries, deformations, etc.). 

Moreover, in Part  III  we deduce all basic formulas concerning the covariant dif- 
ferential and the curvature (deviation) of higher order (pre-)connection with respect 
to a given higher order almost-fibring. All these results are new to our knowl- 
edge. 
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In this paper we restrict ourselves only to a motivated presentation of the above 
mentioned new conceptions, leaving aforementioned applications to field theory and 
geometry of differential equations to the future. 

Below, everything is supposed to be smooth. 

P a r t  I. - P r e - c o n n e c t i o n s .  

1. - J e t s  o f  s u b m a n i f o l d s .  

Here necessary notion and formulas from the jet  theory are collected; for details 
see [5]. 

Throughout the paper we consider a manifold E and submanifolds N c E of a fixed 
dimension, say m, with 

d i m E = r e + l ,  dim N = m , m~>l ,  l~>l .  

By definition, for 0 < k, a k-jet of m-dimensional submanffolds of E at e e E is an 
equivalence class [N]~ of m-dimensional submanifolds N r E, passing through e and 
touching each other at e with contact of order k. 

The set of all k-jets of m-dimensional submanifolds of E can be supplied, in a natu- 
ral way, with a smooth structure. The corresponding manifold is denoted by 
jk  (E, m), or simply by jk .  

For p >I q I> 0, the natural projection 

r~p, q : JP (E, m) --> Jq (E, m): [N]~ ~ [N]~ 

makes JP a bundle over Jq. Obviously, 

7~q, rOT~p,q~---7~p,r, r~q<<.p.  

Moreover, for a given m-dimensional submanifold N r E and an integer k I> 0, we 
have the map 

jkN:  N--> j k ,  e ~ [N]~, 

which is called the k-th prolongation of N. The map j k N  is an embedding. So, 

N (k) := ( jkN)(N)  

is an m-dimensional submanifold of jk .  Obviously, 

(1) 7:p, q o f f N = j q N ,  p>~q>~O. 

We identify J~ m) with E. Next, we can identify [N]~ with T~N; in fact, m-di- 
mensional submanifolds of E touch each other at e with first order contact if and only 
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if they have the same tangent space at e. By this reason, the manifold j1 (E, m) can be 
identified with the manifold Grass (E, m) consisting of all m-dimensional subspaces 
of the tangent bundle ZE: TE---) E. The m-dimensional subspace corresponding to 

e J1, under this identification, will be denoted by L~. In other words, 

L ~ = T ~ N c T ~ E ,  if ~ = [N]~, e==l,o(~) .  

For ~ e jk ,  we adopt the notation 

~--Tvk, O(~)eE ,  ~ - = k , l ( ~ ) e E .  

Coordinates. 

A local chart on E is said to be divided if the set of its coordinate functions is divid- 
ed into two parts, consisting of m and l elements, respectively. The coordinate func- 
tions belonging to the first of them are interpreted as ,,independent variables)~ and 
the others as ,,dependent variables,~. Our typical notation for a divided chart will be 

(2) (x ~',y~), l < ) , ~ < m ,  l~<i~<l .  

A divided chart (2) and an m-dimensional submaniibld N c E are said to be concor- 
dant if x ~ IN, 1 ~< ~ < m, are (local) coordinates on N. If so, the submanifold N r E can 
be expressed (locally) by formulas of the type 

(3) yi = f i ( x l  ' ' ' ' '  xm), 1 ~< i ~< l. 

Every divided chart, say (2), on E determines canonically a local chart 

(4) (x ~ i , y~) ,  l<<.~<<.m, l<<.i<~l, 0 <<. I~] ~<k, 

on jk ,  which will be said to be special. Here, 6 = (zl, ..., am) denotes a multi-in- 
dex(1) and 161 - ~1 + ... + am. The coordinate functions y~ are completely character- 
ized by the equalities 

y io j k  N = al~lfi 
ax a 

for every submanifold N concordant with the chart (2); here we have used the short 

notation 

al~lf i _ Olalf i 

ax ~ axe1... Ox'm 

For 1 ~< ~ ~< m, we shall identify the index ~ with the multi-index (0, ..., 1, ..., 0), 
with the unit at the ~-th place. According to this notation, the special chart on J1 cor- 

(1) Multi-indices will be denoted by boldfaces greek letters. 
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responding to (2) looks as follows: 

(5) (x ~, yi ,  y~), 

Moreover, we put 

l<~)~<~m, l<~i<~l .  

a a 
a~ - a~ = 

ax ~ , ayi �9 

If  ~ e J~, then the subspace L~ c T~E is the span of the vectors 

a~+E y~(~)a~, 1 ~ < 2 < m ,  

where we refer to a special chart. 

Inf ini te  jets. 

All above considerations hold also for k = :r of course, under the necessary cau- 
tions. First ,  we note that  the above definition of k-jets remains meaningful for k = ~ .  
So, the set J ~ (E, m) is well-defined. I t  can be easily identified with the inverse limit 
of the sequence 

7~2,1 ~k,  k - 1 ~k  + 1, k 

E = J ~ 1 7 6  j I ( E  ' m )  < ... < J k ( E , m )  < . . . .  

Next, we define the ,(algebra of smooth functions, on J ~ (E, m) to be the direct 
limit of the sequence 

C ~ ( E  ) C ~ ( j o )  1.o C~ .2.~ k.k-1 k+l,~ = > ( j 1 )  > . . .  ~ .  C ~ ( j k )  ~ . . . .  

i.e. C ~ (J  ~ ) = lira dir C ~ (jk). In other words, smooth functions on J ~ are of the form 
k---) r 

7:*, k (~) = ? o r~ ~, k, where 0 ~< k < :r and ~ e C ~ (jk). 
The special local chart on J ~ corresponding to (2) is given by 

(6) ( x ~ , y ~ ) ,  l<~)~<~m, l<~i<~l,  0<~ lal < o0. 

Locally, smooth functions on J ~ look as smooth functions of a finite number of vari- 
ables (6). 

The algebra C ~ (J  ~) is filtered by the images of algebras C ~ (jk), 0 ~< k < ~ ,  un- 
der the maps 7:*~,k: C ~ ( J ~ ) - - ~ C ~ ( J  ~) which are, evidently, monomorphisms. 
Speaking below on vector fields, differential operators, forms, etc., we refer to the 
corresponding objects of the differential calculus over this filtered commutative alge- 
bra as it is understood, say, in [5]. 

2. - Infinite order contact transformations and their generating functions. 

In this section we recall necessary facts on generating functions of infinitesimal 
contact transformations (i.e. contact vector fields) of J ~. Later,  we shall use them 



38 M. MODUGNO - A. M. VINOGRADOV: Some  variat ions on the notion, etc. 

twice: first, for defining the covariant differential of a connection and, secondly, for 
interpreting the notion of a connection from the viewpoint of infinite je t  theory. For  
details and motivations see [5] and [18]. 

Le t  WE: TE----) E be the tangent  vector bundle of E and 

~ : T (k) - T (k) (E,  m)  --> j k ,  0 ~< k ~< ~ ,  

be its pullback via the map 7:k, o. Thus, T (k) is the submanifold of j k  • TE 

T (k) := {(~, u ) c J  k • T E l u � 9  T~E} c J  k • TE.  

Moreover, we can define the vector subbundle of v~ 

c k: C k-=C k ( E , m ) - - ) J k ,  l~<k~< ~ ,  

by putting 

C k := {(~, u) �9 T (~) lu �9 L~} r T (k) . 

Furthermore,  we consider the quotient bundle 

wk: W k - W k ( E , m ) - ~ J  k, l <~k<~ oo, 

of v~ with respect to c k . By definition, we have the following short exact sequence of 
vector bundles over jk  

(7) 0 -~ C k ~k rk T (k) -o W k -o 0 

where r k denotes the quotient map. 
Thus, the ffores of the bundles v~, c ~ and w k over a point ~ e j k  are identified with 

T~_E, L~ and ~ E / L ~ ,  respectively, and the map r k reads 

rk(~, u) = u modL~,  (~, u) e T (k). 

If  k i> s, then the bundles z~, c k and w k are the pullbacks via 7:k, ~ of the bundles 
z~, c * and w ~ , respectively. Therefore, 7:k, ~ induces the conclusions 

=~,~:/~(~) ~ r ( ~ k ) ,  

where a i is one of the bundles z~, c k or w k and F(~) stands for the set of all sections of 
the bundle ~. In particular, we have the sequence of embeddings 

... ,--) F(~k) ~ P(~ k+1) ~ ... ,-, P ( ~ ) .  

In other words, the C ~ (J~)-module F(~ ~) is filtered by the C ~ (Jk)-submodules 
F( a  k) and 

(8) F(~ ~) = lim d i r / ~ ( k ) .  ,, 
k---~ co 

The bundle w ~: W ~ --~ J ~ is called the generating functions bundle. Its sections 
are called generating functions of infinitesimal contact transformations (i.e. of con- 
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tact vector fields) of J ~ (see below and also [5]). We put 

K k = F ( w k ) ,  l~<k~< ~ .  

Then, according to (8), 

~ = lhn dir K k . 
k- - - )  ~ 

Denote by 0~(M) the C ~ (M)-module of (local) vector fields on a manifold M. 
A canonical homomorphism of C ~ (Jk)-modules 

gk: d)(jk) __, tck, 1 ~< k ~< oo, 

is generated by the following morphism of linear bundles over J~: 

gk : TJk-.o W k, l <~ k <~ ~ , 

where, for S e T~J k, 

g k ( ~ ) : = r k ( ~ , U ) ,  u - d ~ l l k ,  o(~). 

In virtue of (8), we have 

g~ = lira dir gk. 
k---~ r162 

Moreover, by considering the natural lift ~ ( E ) ~  0~(j1), we obtain the canonical 
homomorphism of C ~ (Jk)-modules 

go: ~ ( E )  __.K~, 

which is the composition 0 ~ ( E ) ~ ( ~ ( J  1) ~ K1; namely, we can write 

g ~  ~ e J  1, u - X ~ .  

REMARK. - Sometimes it is useful to interpret r k as a section of the bundle 
(z~)* | w k = 7:*k. o ~EJ~-*~ | w k. In other words, r ~ can be regarded as a Kk-valued first 
order differential form on E. 

Now we are ready to explain how all these constructions are connected with the 
theory of contact transformations of J ~ [5]. 

Recall that the manifold J ~ is canonically equipped with an m-dimensional inte- 
grable distribution, which is called the Caf tan  distribution, or the inf ini te contact 
structure. 

Namely, this is the distribution $ ~ C.~ r T~ (J  ~), where 

C~ = T~(N(~)),  for ~ = [ N ] e .  

The C ~ ( J  ~)-module of all vector fields belonging to the Cartan distribution is denot- 
ed by e0~(J~), or, simply, by e6~. We can easily prove that C(~ is a Lie subalgebra of 
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(b(J ~ ). So, the Cartan distribution is integrable in the sense it satisfies the conditions 
of the Frobenius theorem. 

We say that  a vector field X �9 (b(J~)  preserves (infinitesimally) the Cartan distri- 
bution iff [X, Y] �9 C(b, for any Y �9 C(b; in such a case, X is said to be a C-field or an in- 
finitesimal contact transformation of infinite order. C-fields form a Lie subalgebra of 
(b(J ~), which is denoted by 0~c(J ~ ), or, simply, by (be. Because of integrability of the 
Cartan distribution we have C(b c (be. In fact, C(b is an ideal of (be and we have the fol- 
lowing result which is central for our purposes. 

PROPOSITION. - The quotient Lie algebra (be/C(b is canonically isomorphic to the 
C ~ (J~)-module K. 

The module K inherits a Lie algebra structure via this isomorphism. Its explicit 
construction is given by the map 

(9) X(mod C(b) ~ gO (X) = X -] r ~ 

where X �9 09r Here r ~ is regarded as a ~:-valued differential 1-form. 
Every vector field X �9 (b(E) can be canonically prolonged to a C-field X ~ �9 (be. 

Then 

g ~ (X ~) = go (X). 

The fibred case. 

Now, let us consider a submanifold N r E.  In virtue of (1), pullbacks of the fibre 
bundles w k via j kN ,  1 <~ k <~ oo, are canonically isomorphic each other. The corre- 
sponding bundle over N is denoted by 

WN : WN ----> N . 

This bundle can be easily identified with the co-normal bundle of the submanifold 
N e E ,  i.e. with the quotient bundle of ~:E/N by rN. 

The above considerations allow us to interpret pullbacks (jkN)* 9, ~ �9 •k, as ele- 
ments of/c y : =  F(WN). 

Suppose now that  E is equipped with a fibred structure rr: E -o B, where dim B = 
= m. The k-th jet  [s]~ of a local section s: U ~ E,  U c B, of zr at the point x �9 U can be de- 

fined as 

(10) [s]~ = [s(U)]~(x) e Jk(E, m),  0 ~< k ~< o0. 

The manifold of all k-th order jets of local sections of 7: is denoted by jk  re. Definition 
(10) shows Jkz: to be an open and every where dense subset of Jk(E,  m), as it can be 
easily seen. By this reason, all above definitions and constructions are valid for the 
manifolds j k =  as well. And, moreover, the fibred structure on E produces some addi- 
tional useful identifications. 
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In particular, let 

=k:=7:o,-:k.o:Jk~---)B, O<<.k<~ 

Then, the bundle ck: Ck---)Jkr: is identified with the pullback =~(z~), 1 ~< k ~< ~ .  
This identification is given by means of the isomorphisms 

d ~ :  L~-~ T~(~)B, ~EJkrc,  

taking into consideration that ~k (~) = r:(~) and that L~ and T,~(.~)B are fibres over .$ of 
c k and 7:~" (~S), respectively. 

Similarly, let 

'~: V , - ~ E  

be the vertical subbundle of rE consisting of all vectors tangent to the fibres of 7:. 
Then, w k is identified with the pullback =~ (u~'). This results from the decomposi- 
tion 

T~E = ~ 1  (~_) @ L:~, 

because of the identifications u [ l ( ~ ) =  (the fibre of r:* o(~=) over ~EJkr:)  and 
T~E/L:~ = (the fibre of w k over ~). 

Below, the pullback of u~ via =k, 0 is denoted by 

: V(.k) J k  = . 

Coordinates. 

The local chart of c k naturally associated with the special chart (4) on jk  is 

(x~,Y~,Z~'), z ~ ( ~ , u ) - u  ~, l<<-~<<-m, l<<-i<<-l, 0<~ t~I <<.k. 

Moreover, the vector fields 

b~ := ~ + yi~i ,  1 ~< ~ ~< m,  

constitute the local basis of c~: C~--, J~, which is naturally associated with the local 
chart (5) of j1 .  

Then, we obtain the following coordinate expression of ~ 

�9 ~ i (x, y~, z ~) ~ (x, y~; z ~, z y~,) 

i.e. 

~a ;i k = dz~| (a~ + y~ i). 

The local chart of w k naturally associated with the special chart (4) on jk  is 

(x ~, y~, z~), zi(rk(~, u)) =- u i - u)'y~(~). 
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The associated local basis of sections of w k consists of the generating functions 

~ i - g ~  k, l < i < ~ l ,  

of the vector fields a~ -= ~ / ~ y i .  
By interpreting r k as a section of the bundle = *  o (v$) | w k , we obtain the follow- 

ing coordinate expression of rk: 

(11) r k = (dy  i - y~ dx  ~) | ~i . 

Now, by joining together (10) and (11), we get the coordinate expression of gk: 

gk (X)  = ( X  i - X~y~)  ~i , 

where X = X i ai + X ~ ~ + X~ ~ / a y ~ .  
The pullback r~ of r k via j k N  (which does not depend on k) looks as 

(12) r y  = (jkN)* rk = ( dY i - d f  ~) | ~i, g , 

assuming that N is given by (3) and ~, Y - -  ( J k N )  * ~i. Here, dy  i should be regarded as 

a section of z$1 y. 
The coordinate description of the Cartan distribution on J ~  can be given by 

means of the so-called full derivatives 

(13) D~ a ~ + ~  i a = y~+~ , ) ~ = l , . . . , m .  

Namely, the subspace C~ r T~ (J~)  for ~ e J ~  is the span of vectors D~, .~, ~ = 

= 1, ..., m, where 

D ~ = ~ + ~ y ~ + ~  i �9 
' i, ~ ay~ 

Now, we can see that (locally): 

C0) ( J=)~y  r Y = ~ ; ~ D ~ ,  for some a ~ e C ~ ( J |  

The dual way to give the Cartan distribution is by means of the infinite Pfaff 

system 

i : = d y ~  _i  dx~ y~+~ = 0  for a l l i ,  a 0 9 0 .  - -  , �9 

Every X e ~e can be presented uniquely in term form 

(14) X =  D v + Y, Ye  ~0~, 

where ~ = (~z, ..., ~),  ~ e C ~ (J~),  is the generating function of X and 

(15) D~ = ~ D ~ ( v  ~) a 
~, 0. ~ y ~  

Here, D~ --- D~ ~ ~ i~). o... o D ~ ,  supposing that ~ - ( i l ,  . . . ,  
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Finally, if Z = ~ a ~  + /~a i ,  ~ ,  ~ ie  C ~ (E), is a vector field on E, then its infinite 
prolongation Z ~ e 0)(J ~) looks as 

Z ~ = ~ + ~D~,, 

where ~ - (~t, ..., ~m) and ~i _ fli _ ~ y ~ .  Then, finite prolongations Z k e 0~(J k) of Z 
are projections of Z ~ onto jk ,  k = 1, 2, ..., via =~,k- 

3.  - P r e - c o n n e c t i o n s .  

B y  taking in mind the well-known definition of connection on fibred manifolds, we 
adopt the following 

DEFINITION. - A pre-connection (on the space of all m-dimensional submanifolds of 
E) is a section 

y: E -~ j I  (E, m) 

of the bundle r:l, o : j1 ___> E. 
The distribution 

E ~ e ~ Lr(~) a T~ E 

on E is naturally associated with 7. The corresponding m-dimensional vector sub- 
bundle of TE will be denoted by 

hv : Hy ---) E 

and said to be horizontal with respect to 7. Obviously, y is uniquely characterized by 
this subbundle. Moreover, we have 

hr = y*(c l ) .  

The subspace h~-l(e)= Ly(e) of TeE is said to be horizontal with respect to 7 at 
e E E .  

REMARK. - An arbitrary m-distribution on E can be, evidently, interpreted as a 
section of the bundle r:l, o : J~ (E, m) ~ E, i.e. as a pre-connection. So, it seems to be 
no difference between distributions and pre-connections. In fact, the notion of distri- 
bution is used below in its ,,relative meaning,,, i.e. with relation to the role it plays in 
the study of the ,,manifold, of all m-dimensional submanffolds of a given manifold E. 
To underline this polarization of mind, we use the term ,,pre-connection- instead of 
,,distribution,. The subsequent exposition with clarify our terminology. 
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We define the vert ical  bundle 

,%: Vr -~  E 

of y, to be quotient vector bundle of zE by h~,. By definition, the fibre of ~ over e �9 E 
is T~E/Lr(e ). From the definitions it follows directly that  

~ = ~,* ( w l ) .  

Moreover, we have the following exact sequence of vector bundles over E 

l~, v.y 
(16) O ---> H r --+ T E  ~ V~ ~ O, 

where .,r and v r are the natural inclusion and quotient maps, respectively. Obviously, 
(16) is the pullback of (7), for k = 1, via ],*. 

The f ibred  case. 

A fibred structure 7:: E ~ B, dim B = m, is said to be t ransversa l  to y if the hori- 
zontal subspaces of 7 are transversal to the corresponding fibres of 7:. In this case, 
~,(E) r j17: r j1 (E, m) and y can be considered as a section y: E --. j17: of the bundle 

7:1, 0: j17: __~ E,  i.e. as a connection on r:. In other words, a pre-connection 1" on E be- 
comes a connection with respect to any transversal fibred structure on E (see [8]). 
Moreover, such a structure allows us to identify: 

the vertical bundle % of ,f with the vertical subbundle u~: V, - - - )B  of 7:; 

the horizontal bundle hy of ), with 7:*(rB). 

This results from the identification of w 1 with 7:~' o (~)  and of c I with 7:T(~8), 
which have been introduced in the previous section: 

% = y* (w 1) = Y* (7:~, 0 (~.)) = (7:1, o ~ Y)* (u~) = id~ (u~) ~- ,J=, 

h r = ~'* (c 1) = Y* (7:T (zB)) = (7:1 ~ Y)* (zB) = 7:* (rS). 

Moreover, the bundle WN : WN ~ W is identified with the bundle ,~ IN: V~ IN "-~ Y 
in a similar way. 

The above identification map of vertical bundles can be regarded as a splitting of 
the short exact sequence (16). We shall see that  the only point in which the theory of 
pre-connections differs from that  of connections is the absence of a natural splitting 

of (16). 

Coordinates .  

A section 7: E-- )  j1  of 7:1, 0 is described, in terms of an admissible divided chart 
(2) on E and the corresponding coordinates (5) on j r ,  by means of the local functions 

on E 
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Here, ,,admissible, means that Hy is transversal to the coordinate submanifolds 
x = const of the considered local chart. 

The Pfaff equations determining the horizontal distribution h r are 

d y i - ~ , ~ d x ~ = O ,  l <~)~ <~m. 

The local vector fields 

(17) B~ := ~;, + ~ 5i, 

constitute a local basis of I'(h~.). 
The loca] sections 

l <~)~<~m, 

(18) Q i : = y * ( ~ ) = ~ i m o d H r ,  l ~ < ~ < m ,  

constitute a local basis of F(%). 
By interpreting the C ~ (E)-module homomorphism vy: 6~(E)---~P(%) as an ele- 

ment of F(~$ | %), we obtain the following coordinate expression 

(19) vr = (dy ~ - ~,~ dx ~) | Qi . 

4. - C o a v a r i a n t  d i f ferent ia l  o f  a pre -connec t ion .  

Now we shall show that the basic notions of covariant differential and curvature 
can be defined just at the level of pre-connections. 

Let 

k. V(k) _~ jk  hl :  Hr(k) __~ jk  and %.  

and of ,% via =k, 0r respectively. Then, we have the canonical be the pullbacks of h r 
maps 

k := r:~,,o(~)__~ T(k)E ty 

constituting the exact sequence 

and ~ := ~,o(v.i): T(k)E---)V.~ k) 

0 --* H(r k) ---) T(k)E L~ V(k) ___) 0 

which is the pullback of (16) via r:k, 0. 
The case k = 1 will be of particular interest for us. 

DEFINITION. - The covariant differential of a pre-connection ~, is the composi- 
tion 

~7 1. g ( 1 )  ~ w 1 :~  F 1 o .p~.. 
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or, passing to sections, the corresponding homomorphism of C ~ (J  ~)-modules 

Vr: F(hr 1 . 

Sometimes, it is useful to interpret V r as a section of the bundle (hl)* | w 1 . 
From the above considerations it follows that the covariant differential can be re- 

garded as a xl-valued differential form defined on the distribution Hy. Therefore, the 
insertion operation 0)(E) ~ F(hr) ---) x 1 

X ~  Vr, x := X J V r 

is well defined. This gives another interpretation of V r as the operation which assigns 
to every vector field on E, belonging to the distribution H~, its generating 
function. 

Moreover, we can associate with Vr, x the first order differential operator, denoted 
by the same symbol, 

(20) Vr, x: N ~-> ( j l  N)* V~, x e F(WN), 

which acts on m-dimensional submanifolds of E. 

The fibred case. 

As we have already seen in the previous section, a pre-connection y becomes a 
connection in presence of a fibring =: E - ,  B transversal to y. 

P R O P O S I T I O N .  - In this case, the covariant differential of ~, as defined above, can be 
identified with the standard covariant differential of y regarded as a connection. 

PROOF. - To do it, one has: 

i) to identify WN with ~:lY for N = s(B), s eF(7:); 

ii) to pass from submanifolds of E to sections of = and from vector fields belong- 
ing to H r to horizontal lifts of vector fields on B. 

These changes transform definition (20) into 

(21) ~Ty: S ~ ( j l  s)* (Vr, ?) e F(s* (us)) 

where s ~/'(7@ Y ~ 6~(B) and Y is horizontal lift of Y with respect to y. Now, it is easy 
to see that the operator Vr defined by (21) coincides with the standard covariant 
derivative operator along the vector field Y on B assigned to the connection y 
(see [8]). It can be also seen coordinate-wisely from the local expression of y present- 
ed below. �9 
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Observe, also, the identification of h i with =~' (ZB): 

h l  = ~ ,  o ( h~.) = ~ ,  o (re* ( Z B) ) = (7: o =k, o)* (Z B) = ~ (Z B) . 

In its turn, this allows us to identify (he)* | w 1 and =T (z~) |  ~.1 So, the covariant 
differential of the pre-connection y can be viewed as an element 

i.e. as a horizontal (with respect to =~) u~-valued differential form of J1 =. Then, the 
C ~ (B)-linear map 

O(B) ~ Y ~  Y -J V~ e/'(u~) 

defines a ~-valued differential 1-form on B, which will be denoted by 

1 
V 7 e F(':B) C ~ B ) F ( ~ ) .  

This gives an alternative description of the covariant differential of the connection ~,. 
Let []y := v I on1: C1--. Vr (1). Collecting now together all basic maps introduced 

above, we get the following commutative diagram 

0 

[-], / 
> 17(1) 

(22) 0 < 0 

o 
\ 

C 1 

[ 
=*~(TB) <---- T(1) E < 

/ 
/1t v, 

V(J) < 

> W ~ 

0 

where the vertical arrows are, by definition, compositions of usual ones belonging to 
the same triangle. If  7:: E --. B is transversal to •, then they coincide, as it is easy to 
see, with the identifications made above: 

CI r ( T B ) c v  H(y 1) and V~I) ~ vrzc~  W 1 . 

Moreover, it is easy to check that, by performing these identifications, we 
have 



48 M. M O D U G N O  - A. M. VINOGRADOV: Some variations on the notion, etc. 

By this reason, D r is an alternative candidate for ,,pre-covariant differential,. But  
the choice we made here seems to be more preferable, in particular, because of its di- 
rect relation to the theory of generating functions. 

Coordinates. 

Below we interpret  V r as an element of F(h~* | wl). Let  (B '~) be the basis of h* 
dual to (B~), (17). Then, using (11) and (17), we get  the coordinate expression of Vr: 

(23) Vr = (~'~ - Yr174 ~i, 

where B ~' s tands for =~.0(B~). 
Let  (b ~') be the local basis of (cl) * dual to (b~,). Then, the following coordinate ex- 

pression of D r results from (19) 

(24) Dr = (Y~-  T~)b~|  

where we interpret  D r as a section of (cl) * | h r . 
In coordinates, the identifications Hy (1)`-* C 1 and W 1 o H~ (~) described above look 

a s  

B), ~ b~ and ~i ~ Qi 

if the initial divided chart (2) on E is coherent with r:, i.e. if x ~' are -base coordinates- 
and y~ are ,f ibre coordinates-. 

5. - D e v i a t i o n  o f  a p r e - c o n n e c t i o n .  

The analogue of the notion of curvature for pre-connections is that  of deviation, 
which will be introduced below. 

For  this purpose, we note  that the map 

(25) ~ r :/ '(h:.) x F(h r) ---)/'(%): (u, ~) ~ ~r ([u, ~]) 

is C ~ (E)-linear and, obviously, skew-symmetric. In fact, for f e  C a (E), 

%([ fu ,  u]) = % ( f [ u ,  u]) - ur(u.fu) =fur ( [u ,  u]), 

because u r is C = (E)-linear and %(r (hr ) )  = 0. 

DEFINITION. - The skew-symmetric and C = (E)-bilinear form 

~'r: F(kr) • P(hr) --~ F(%,) 

is called the deviation of T. 

The integrability condition 

[F(hr), r (hr)]  c F(h r) 
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of the distribution Hy is, obviously, equivalent to the vanishing of ~r" So, 3y measures 
~he deviation of Hr from being a completely integrable distribution. 

We shall regard ~r as an element ofF(A~(hy) | ~r), where A ~ denotes the k-th ex- 
terior power of a vector bundle. 

REMARK. - Let y be a connection of a bundle =: E ---) B. Then, the deviation of the 
pre-connection y is related to the curvature of the connection ~, of r: in the following 
way. 

Let X, Y ~ 0~(B) and u, ~ �9 0)(E) be the horizontal lifts of X and Y, respectively. 
Then, we have 

R~(X, Y) = ~ ( u ,  ~), 

where R~ is the curvature of the connection ~, and v y is identified with the vertical 
bundle of Yr. 

Coordinates. 

By choosing (B~) as a local basis of F(hy), we have 

[a~B~,/~B~] = (a ~,~ - ~ ) ( ~ , ~  + y~ aj~,~) a~ modHr .  

Therefore, 

(25) ~. = (a~y~ + ~ajyi~)B~ A B ~ | Qi. 

This formula becomes the usual coordinate expression of the curvature if we refer 
to fibred coordinates. 

The graded ( ,super,)  extension of deviation. 

The above expression of deviation can be naturally expressed in terms of the fol- 
lowing general machinery. 

Namely, let i . C ~ A :)Cy denote the (E)-module of C ~ (E)-valued and skew-symmet- 
ric forms on H~ and let M r = F(hr), ~ - F(uy). Then, for a given ~., the natural differ- 
ential-like maps 

5y:Ai~C~|174 i = O, 1 , . . . , m ,  

are defined by means of the formula 

1 ~ (--1)k-~vy[Uk, ~(Ul, Uk, ... U~+I)], (Sy?)(Ul . . . .  ,Ui+l)-- i + 1  o.<k-<~+l "" '  ' 

i $ for uk e ~C.r, ~ e A  ~C~ |  

If ida. e ~ *  | :)C r = Homc~ (Z) (~C v , ~ r )  is the identity operator, then 

(26) ~r = 5r (ida), 

as it is easily seen from the definitions. 
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We note that  the C* (E)-module 

(2Aix )| 2 ' *  = = (A :)c, | :)q,) 
\i>~O i>~O 

can be also regarded as a graded A* :)Cy-module, where * * A ~  = ] ~  i , A Mv is viewed as 

a graded algebra, with respect to the standard exterior produ~c~: ~ 

( ~ o , ~ | 1 7 4  o ) ,peA ~C r ,  u e ~ .  

Similarly, the C ~ (E)-module 

A ~C~@Vr ~ i , = (A~C~@V~)  
i~>0 

can be viewed as a graded A* M*-module. Then, it is easy to see that  

i * * * 

In other words, interpreting (iv to be a graded map 

(iv: A* ~ *  | :~v--*A* ~ | V , 

of degree 1, we see that  it is a homomorphism of graded A*:)C*-modules. 
Moreover, we define the -l-product 

(A i ~CT | :)CT) | (A i :)cT* | ~T ) ---> "'A i+j-1 ~T~('* | "~'?V 

by means of the formula 

( ~ J | 1 7 4  = ( ~ A ( u  -J ~ ) ) |  

i , e A NOt*, u, u e OCr and (u  u ~)(ui ,  Uj_l)  := s u~, where ~ e A ~ v  , ~ . . . ,  . . . ,  u j_  ] ) 

Then, we see that, for u e ~ ,  

( IT (U) (Ul )  = O v ( [ U l ,  U])  = ~v(Ul, U) ----- --  (U J ~ T ) ( U l ) ,  

i.e. 

5y(u) = - u  J #~. 

More generally, we have the following 

PROPOSITION. - If  ~ = co | u e A i ~  | 2Cr, then 

(iv (~) = (iv (~o | u) = ( - 1) i ~o A (i r (u) = ( - 1) i- 1 to A (u / ~ ),) ---- ( - -  1) i- 1 ~ / # T' 

i.e. 

(27) (Iy(~) = ( - 1 ) i - 1 7  -J ~r .  

Formula (27) shows that  the deviation ~y determines (iv completely. 
From the point of view of the graded (or ,,super,,) calculus it is natural to define 
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the degree of i , i . A :~y | as well as A :~. | ~ to be equal to i - 1  (see, for 
example, [20]). Then the degree of ~ y is equal to 1 and we see from (26) that the devia- 
tion is the right operator corresponding to the left operator 5r. This allows us to in- 
terpret 5y as the graded (or (,super,) extension of ~r. 

P a r t  II .  - ( P r e ) - c o n n e c t i o n s  o n  a l m o s t - f i b r i n g s .  

1. - Almost  f ibrings.  

As we have already seen, the covariant differential and the deviation of a pre-con- 
nection y on E, in presence of a fibred structure ~: E --* B, turn out to be the covariant 
differential and the curvature of the corresponding connection, respectively. More 
exactly, this is achieved by means of appropriate identifications, the main of which 
are those of Vy and V~, which allow us to realize V r as subbundle of TE. The last one, 
however, can be done with the help of an/-dimensional distribution on E transversal 
to Hy. So, having in mind the role that such a distribution could play in the theory of 
pre-connections, we adopt the following terminology. 

DEFINITION. - An/-dimensional distribution n: Vn ---) E, V. r TE, on E is said to be 
an almost-fibring of E (with respect to the ,,space- of all m-dimensional submanifolds 
of E). 

REMARK. - This notion is of the same ,,relative, nature as that of pre-connection 
and its introduced to keep the necessary polarization in mind. 

It is natural to call almost-sections of an almost-fibring ~ on E all m-dimensional 
submanifolds of E which are transversal to m Jets of a given order k of almost-sec- 
tions of n constitute an open and every where dense set of j k  (E, m) which we denote 
by Jkm In such a way, jet  manifolds are associated with almost-fibrings. It is easy to 
see that the standard generalities of the jet  theory of fibrings can be carried over onto 
jets of almost-iibrings without changing a word. For instance, we have the 
maps 

7 : k , l : J k ~ - ~ J l n  and j k N : N - - - ) J ~ n ,  O<~l<~k <<. ~ ,  

supposing that N r E is an almost-section of n. 

REMARK. - It seems promising to study the geometry of pairs (Jk(E, m), Jkn), 
k > 0, supplied with the Cartan distribution in view of further applications to the 
theory of distributions (i.e. of n). 
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For a given almost-fibring II, we denote by 

h,: H n ~ E  

the quotient bundle of zE by n. Also 

~k : V(k) ~ jk  and h~: H ,  (k) ~ jk  

denote pullbacks of n and hn via =k, 0, respectively. 
A divided chart (2) is concordant with an almost fibring ii if the distribution Vn is 

transversal to the coordinate submanffolds y = const. In this case, V, can be described 
with the aid of functions n~., which define vector fields of the form 

Bi = ~i + ~ia~,, i = 1, . . . ,  I. 

2. - P r e - c o n n e c t i o n s  o n  a l m o s t - f i b r i n g s .  

Now, we consider two transversal distributions on E,  say y and n, of dimension m 
and l, respectively, and regard the first of them as a pre-connection and the second 
one as an atmost-fibring. The addition of an almost-fibring to a pre-connection en- 
larges algebraic and analytic tools to work with and, in particular, it allows us to use 
the machinery of the FrSlicher-Nijenhuis bracket in the spirit of[10]. 

The compositions 

quotient along V. 
Hy ~ TE ~ H~ 

quotient along Hn 
Vr ~ TE ~ V. 

are, evidently, isomorphisms of vector bundles if ~, and H are transversal and, there- 

fore, lead to the identifications 

h i - h. k and ~y - , 

Let  now Py: TE --~ TE and P~: TE --> TE be the projections of TE onto H r c TE 
and V, cTE,  respectively, which correspond to the direct decomposition TE = 

= H r @ V.. Then, for all ~ e J1N, the linear maps 

TE ~ L.~ ~ h -1 (~_) c TE 

are isomorphisms for all ~ ~ J l n  and generate an isomorphism of the linear bundle~ ~1 

and w 1 . 
The isomorphism obtained in this way leads, via Pk, 0, 1 ~  k ~< ~ ,  to the 

isomorphisms 

c k N h~ and nk N w k " 
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So, in presence of an almost-fibring u transversal to y, we have the following ana- 
logue of diagram (22): 

(28) 

o o 

C ~ - -  > V(n 

0 < Hf, 1) < T(1)E '< Vl(,1) "( 0 

H~ 

0 

> W 1 

0 

Here, all bundles entering in it are supposed to be defined on j l n  and all vertical 
arrows coincide with the corresponding isomorphisms defined above. Moreover, the 
identification ~r - n allows us to interpret ~r as an V~-valued bilinear form on H~., i.e. 
as the curvature tensor of ], with respect to 1i. We denote it by R~: 

Coordinates. 

R~ (u, ~) ~ F(n), u, u e F(hr). 

We suppose the considered divided chart (x ~, yi) on E to be concordant both with 
and n, i.e. that 

B~ = 3~ + y~,Oi, Bi = Oi + n~'G, 

are bases of Hy and 17., respectively. Then, 

(29) O~ = S~B7 + S~Bj, ai = S~B~ + S~Bj, 

where 

(30) - ~ ,~ ,11  -~ IIs~ll = I 1 ~ -  ~ .  ~ /  J,-~ ' ~ l y -  II , 

�9 " ~ = - . ~ s ;  = - s j . ~  s~=-r~s;=-s;~,~, s? 

Consider the basis qi := al modF(n), i = 1, ..., l, of H . .  Then, the above identifi- 
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cations have the following coordinate description: 

- u �9 B i ~ ( ~ { -  ~ y J ) Q . ,  Q y ~ S ] B i  y .  g. J , 

1 1 .  (-.> J t* J n - w  . B i  ( ~ i - n ~ , , ) ~ j ,  

1 1 .  i k ~ k u y - w  . Q s o S J ( ~ i  - ~Iiy~);k,  

(31) hr - h ' :  B ~ ( 8 ~  - y~n~)q~, q ~ S ~ B ~ ,  

c I ~ h~: b ~ o ( ~  - y ~ ) q ~ ,  

1 1 .  ~ ~ i ~ c - h ~ .  b~ ( ' i - y ~ n ~ ) S ~ B ~ .  

Now we obtain from (25) and (31) the coordinate description of the curvature ten- 
sor R~ of ~" with respect to m 

~ = (a~r~ + r{a~rf , )s?  B~ A B '~ | B~. 

In other words, the components of this tensor with respect to the basis (B~, B~) of 
TE are 

" ~  i ' j i 
(R~ )~ = (a~r~ + r'~ ~r,~ - a~r~ - r ,~a~r~)s~.  

We see that this expression coincides with the standard one when Sj ~ = "~ ~ ,  i.e. 

when V, = V: for a suitable fibring n: E--+ B (see [10]). 

3. - Thre  F r S l i c h e r - N i j e n h u i s  mach inery .  

The pair consisting of a pre-connection y and an almost-fibring n transversal to it 
can be given by means of each of the projections P~, P . :  TE ---) TE (see previous sec- 
tion), or by each of the corresponding C ~ (E)-linear maps 

It is evident that 

% ,  (o~ : ~ ( E )  ~ 6~(E). 

2 CO 2 ~ 09~ 

F(hr) = im O~r = ker ~ ,  

Below we interpret these maps as forms on 
E: % ,  con E A I ( E ) |  fig(E), This enables us to apply the machinery of FrSlicher-Ni- 
jenhuis bracket (see [3]) which was found to be rather useful in the context of connec- 
tions (see[l],  [2], [4], [8], [9], [10], [11], [12], [13], [15]). 

From (29), (30) we deduce the coordinate expressions of ~% and ~ ,  : 

= ~*d ~ kdxi  ~ = - S ; d y  ) |  

k i (S~dx),+ = - Si dy ) | 8, + S~dy ~) | 8k. oJ, (S~ dx ~ + Si dy ) | Bk = (S~ n~ dx ~ t, 

~r  + o~, = ida(E), 

F(II) = ker co r = im ~on. 

vector-valued differential 
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We recall that  the FrSlicher-Nijenhuis (F-N) bracket  on E is a set  of pair- 
ings 

[., .]: At (E)  • 0)(E) X AS(E) | d~(E) ~ A ' - ~ ( E )  | @(E) 

which supplies the A* (E)-module 3r A* ( E ) |  d~(~) with a graded Lie algebra- 

structure. Here,  A*(E):= ~ A~(E) stands for the exterior algebra of differential 

forms on E and tensor products are taken over C ~ (E). On decomposable elements of 
J~C(E) the F-N bracket  is given by the formula: 

[ ~ |  f l |  = a A f l |  u] + ~ A L u f l |  ( - 1 ) ~ / ~ A L . ~ a |  + 

+ ( - 1)riga A dfl | u - ( - 1)rs+~ i~fl/~ d~ | u, 

where ~ �9 A~(E), fl �9 As(E), u,  v �9 69(E) and L~ and i~ denote the Lie derivative and 
the insertion operator along w �9 0~(E), respectively. For  an alternative approach, 
see [20]. 

The graded skew-commutativity and the Jacobi identity for F-N bracket looks as 

[~,fl] = _ (_l)l~llzl [fl, ~], 

( - 1 )  I~IIPI [~, [/~, p]] + ( - 1 )  I~ll~l [/~,[p, ~]] + ( - 1 )  Iollz! [~:, [~, fl]] = 0, 

where we put IoJI = s for o �9174  
With any oJ �9 3r we associate a differential-like map 

d~: ~ ( E )  --, 2r d~ (~) := [co, p]. 

Because of the Jacoby identity, dr turns out to be a derivation of degree 1~o I of the 
Lie algebra ~(E) :  

d~[~, ~] = [ d ~ ,  ~] + ( - 1 )  I~tM [a, d ~ ] .  

The Jacobi identity can be also presented in the form 

d~ od~ - ( -  1)l~d I~1 dp od,~ = dI~,~ ~ . 

in particular, for o~ = p, we have 

1 (1 - ( -  1)l~~ = d~ 

where 

1 1 ~o]. % := -s d~ o~ = -~ Bo, 

From the skew-symmetricity of F-N bracket  it follows that 

r~ = 0 if Ico I is even. 
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On the contrary, in general r~, ~ 0 if I~ol is odd. Moreover, if (o �9 A 1 ( E ) |  0~(E) is a 
connection, then r~o is its curvature (see [10]). 

Another consequence of the skew-symmetricity of the F-N bracket  is 

[r~, %] = 0.  

which is valid for arbi trary oJ �9 N(E), but  is non-trivial for odd to)1 only. Further-  
more, the following generalized Bianchi identity results from the Jacobi identity 

(32) d~or~o = 0 ; 

it is non-trivial for odd I o~1. 

4. - Curvature with  respect  to an almost-f ibring.  

To illustrate in which way the FrSlicher-Nijenhuis techniques can be applied to 
(pre-connections), we present  below the expressions of the curvature and the torsion 
in terms of the F -N bracket.  

To start  with, we recall the following general formula, which is valid for arbi trary 
~,/~ e Homc~(E) ((~(E), (~(E)) -- A 1 (E) (~ (~(E) and u, ~ e 6~(E) (see [14], [10]): 

c ~ ( E )  

(33) [a, ill(u, u) = [a(u), fl(u)] + [fl(u), a(u)] - a([u, fl(u)]) - fl([u, ~(u)]) + 

+ ~([~, ~(u)]) + ~([~, ~(u)]) + ~(~([u, ,~])) + ,~(~([u, ~])). 

The immediate consequences of this formula, for a projection operator ~, i.e. such 
that ~2 = ~, are: 

{[ a, a](u, ~) = 2~([u, u]), for u, u e ker  a ,  

(34) [~, ~](u, ~) 2[u, ~] - 2a([u, u]), for u, u �9 i m p .  

Then, by putting 

d~ := d ~ ,  dn := d~o., 

and a = ~ .  or ~r ,  we see from (34) that  

d r (~o ~)(u, u) = d. ((o.)(u, u) = 2co. ([u, u]), u, u �9 F(hr) .  

In other words, we have 

1 1 d,(~n)lHy 

and the Bianchi identity for ], with respect  to n follows from (32) by observing 

that 

I1 

R r  = ro~ r = ?'r �9 
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Let  now ~ be another pre-connection on E,  transversal to the same almost fibring 
n. Then, the difference between y and ~ can be given by means of the so-called solder- 
ing form z e HOmc~(E) (F(hy), F(n)) =- F(hr)* ~ F(n). By definition ~(u) e F(n), for 

c ~ ( E ) .  
u e F(h~), is the unique ,(vertical, vector field such that  u + z(u) e F(h,). 

One can regard the composition ~ o ~ y : 6~ (8) --. F(n) to be a map into 0~ (8) because of 
the inclusion F ( = ) c  o~(8) Then, by applying (33) to a = oJy, fl = r  we obtain: 

(35) [oJr, ao cor](u, ~) = oJ.([u, z(u)]) - o~.([u, a(u)]) - a(o)y([u, ~])) 

for u, ~ e F(hr). We denote the right hand side of (35) by z(u, u) = v., : (u ,  u) and inter- 
pret  it as the torsion of ~. with respect to ~ and (n) (see [10], [12]). Now, we can 
rewrite (35) as 

d r ( ~  ~ ~)IH~ = ~ . , : -  

This is the desired expression of the torsion in terms of the F-N bracket. 

P a r t  III.  - H i g h e r  o r d e r  p r e - c o n n e c t i o n s .  

1. - The infinite prolongation of  pre-connections and almost-fibrings. 

In this section the above theory on pre-connections and almost-fibrings is lifted to 
J ~. This is the necessary step in order to interpret connections and their generaliza- 
tions in the framework of the category of differential equations (see [5], [19]). We re- 
call that  objects of this category are (locally) inf'mitely prolonged differential equa- 
tions and, in particular, infinite je t  spaces. 

To s tar t  with, we need some elementary notions from the theory of smooth 
manifolds. 

Let  M, N be manifolds and F:  M --~ N be a smooth map. Then, the algebra C ~ (M) 
can be considered as a C | (N)-module according to the multiplication: 

( f , ~ ) ~ F * ( f ) . ~ ,  f e C ~ ( N ) ,  ~ C ~ ( M ) .  

An M-valued vector field on N along F is by defmition a derivation of the algebra 
C ~ (N) with values in the algebra C ~ (M), regarded as a C ~ (N)-module. The set of all 
such fields will be denoted by 0)(N; M, F). I f  

X: C ~ (N) ---) C ~ (M) 

is an M-valued field on N and f e  C | (M), then the operator fX: C ~ (N) ~ C ~ (M), 
~ f - X ( ? ) ,  ~ e C ~ (N), is also an M-valued field. This fact shows that  the multiplica- 

tion (fi X) ~ f X  supplies O(N; M, F) with a structure of C ~ (M)-module. 
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For X e 0 ) ( N ;  M , F )  and a � 9  we can define the vector X~�9  TF(~)N by the 
rule 

X~(~) -= X(~)(a), V? �9 C ~ (N). 

From this formula it follows that the M-valued vector field X can be interpreted as 
the section a ~ X ~  of the pullback F* (rN) of the tangent bundle z~: TN ---> N along F. 
This gives the identification 

0~(N; M, F) = F(F* ('~N)). 

Let now H be a distribution on N: 

N ~ b ~ H b c T b N .  

An M-valued vector filed is said to belong to H if X~ �9 HF(~), Va �9 M. Obviously, all 
such fields constitute a submodule of @(N; M, F) denoted by O~H(N; M, F). 

For each X �9 0)(N) (resp., Y �9 ~(M)),  we obtain the M-valued vector field F* o X 
(resp., Y o F * )  defined by (F*oX)(~)=F*(X( fo) )  (resp., (YoF*) (? )=X(F*(~ ) ) ,  
where ~ �9 C ~ (N). 

I f x  = (x 1, :.., x m) and y = (yl, ..-, y~) are local coordinated on M and N, respect- 

ively, then the corresponding local expression of X �9 O~(N; M, F) looks as 

(36) X= E Xi(x)( F*~ a. I 
l<~i<~n ~ aY ~ ] ' 

where the X~(x)'s are the components of the vector X~ with respect to the basis 
a/ay 1, ..., a /ay 1 of TF(~)N and the x's are the coordinates of a �9 M. This results direct- 

ly from the above definition of X~. 
Below we will use the simplified notation 

x = E x am 
l<.i<~n ay i ' 

instead of (36). 
A map G: M ' - - ) M  generates the map 

G~ (~(N; M, F ) - o  (D(N; M' ,  FOG),  

where 

G~ X e O ~ ( N ; M , F ) ,  ~ e C ~ ( N ) .  

In particular, in such way, we get the map 

F ~ 0~(N) --) d)(N; M, F) 

by identifying 0)(N) with (~(N; N, idN). Evidently, F ~  * oX, for Xe0~(N). 
Note that G O is injective if G is surjective. 
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Returning to jets, we define the C ~ (J= )-module 

0~(E; J~ ,  =~,o) 

to be the direct limit of the sequence 

n~,o 4 1  n~,k-1 n~+,,k 
d o ( E )  - - - >  d 0 ( E ;  j 1 ,  r~l ,o)  _ _ >  . . .  > d o ( E ;  j k ,  =k, 0) > . . . .  

Then, we have the following fundamental isomorphism 

(37) (De(J = (E, m)) = do(E; J~  (E, m), =| 

realized by means of the map: 

(De(J ~) ~ Y ~ Y ~  e (D(E; J ~ ,  =~,o) 

(see [5]). Below we identify doe (J  = ) and do(E; J ~, = = o ). 
Now we are able to associate a submodule of (De (J ~ ), denoted by (Dy, with a given 

pre-connection ~< on E: 

(D r :=  (DHr (E; jo~, =r162163 doe" 

We need also the quotient C = (J~)-module 

K r = (De / (Dr .  

The following identifications result directly from definitions: 

do~(J~) = 59(E; J= ,  ==,o) -- P(v~) ,  
(38) 

(Dr = F(hr ), ~r = F(% ), 

(see Sec. 2 for the definition o f / ' ( a  = )). 
Because h~ and u~ are pullbacks via = =, 0 of h r and "r, respetively, it is possible to 

lift the notion of deviation to J ~ by applying the pullback operation =*, o to the defini- 
tion of ~r (see sec. 5). This leads us to the following defmtion of the lifted deviation 

r : 

o o  (39) ~" (X, Y):= v r ([X, Y]), X, Ye (~y, 

where v r can be interpreted either as the quotient map(De--->Kr, o~:.. as the 
mapF(h~ ) - - , F ( ~  )which corresponds to the =~,o-pullback of ~-r (see Sec. 3). 

Similarly, the pullback operation =~,o,* applied to the definition of the covariant 
differential of a pre-connection, lifts this notion to J ~. Taking into account the above 
identifications, we can see that this lifted differential V:7 is the composition 

i; 
O3~. �9 > ~ e  > K = G)e/CG3 

I + 
In other words, the lifted covariant differentml V~7 assigns to every C-field belonging 
to Ogy its generating function. 
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Finally, by the same reasons, the = ~, 0-lifting [Z~ of the operator [:]r 
fled with the composition 

CO) �9 > (O c ~ K~, 

I D; { 

can be identi- 

More generally, we can associate with a distribution V c T E  on E the following 
two C = (J  = )-modules: 

O)v := O~v ( E ; j ~s , ==,o) c g9r 

and 

Kv := O e / ~ v .  

As above, we have the natural identifications 

(40) 63v = F(u ~ ),  Xv  =/ ' (5  o~ ), 

where u = rE lY:  V- - - )E  and ~: T E / V - - - ) E  is the quotient bundle. 
By putting together all maps and modules defined previously, we get the follow- 

ing commutative diagram: 

0 o 

C03 > =~, 

(41) 0 < G9r v < 0 

(D~. > K 

0 o 

where i~ : ~ v - ~  0)e and ~ : O~e -~ Kv are the inclusion and the quotient map, respect- 
ively, and the vertical arrows close, by defintion, the corresponding triangles. 

I f  V is a distribution complementary to Hy, then all these vertical arrows are iso- 
morphisms, as it is easily seen from identifications (38), (40). So, in this case we have 

the identifications 

This fact shows (41) to be the lifted variant of (22). 



M .  M O D U G N 0  - A. M. VINOGRADOV: Some variations on the notion, etc. 61 

2. - H i g h e r  order  c o n n e c t i o n s .  

The ,,lifted, point of view on connections presented in the previous section reveals 
one of its advantages in that it leads straightforwardly to the higher order generaliza- 
tion of this concept. One of the possible generalizations of the notion of connection, to 
which ~,higher order,  is applicable, is geometrically evident; this is a sections of a 
fibring =k,k-l: Jkrz-->J~-17:, k > 1 (see Sec. 3 and, for example [7], [8]). But, below, 
these words are used for a different notion, which might be more worthy than the 
standard one. 

The mentioned higher order generalization of the notion of connection results di- 
rectly from the observation that the basic diagram (41) preserves its meaning when 
d)~ is substituted by an arbitrary n-dimensional projective submodule of 0~e. 

To perform this passage geometrically, we need the ,,relative, analogue of the no- 
tion of distribution when an underlying base manifold, say M (absolute case) is re- 
placed by a map, say F: M--~ N (relative case). As we have already seen in the pre- 
vious section, the C ~ (M)-module 0)(N; M, F) is the relative analogue of the C ~ (M)- 
module 0~(M) of all vector fields on M. Moreover, we can treat an ,,absolute, distribu- 
tion on M as the projective submodule of 0~(M) consisting of all vecotr fields belong- 
ing to this distribution. Therefore, from this point of view, it is natural to interpret 
projective submodules of (~(N; M, F) as relative distributions (with respect to F). To 
finish our motivations, it remains to observe that, in virtue of the isomorphism 
0~(N; M, F) = F(F* (ZN)), every projective submodule of 6~(N; M, F) can be realized 
geometrically in the form F(tz), where ~: H~ ~ M is a vector subbundle of the pull- 
back F* (~N). 

Thus, we have motivated the following definition. 

DEFINITION. - A  vector subbundle of F* (ZN) is said to be a relative distribution on 
N (with respect to F). 

Then, coming back to jets, we get the k-th order analogues of pre-connections on 
E, by passing from absolute m-dimensional distributions on E to the relative ones 
with respet to =k, 0 : 

DEFINITION.- An m-dimensional vector subbundle of z~: T (k) (E, m) --~ jk  (E, m) is 
said to be a k-th order pre-connection on E. 

The fibre /t-l(~) of a k-th order pre-connection t~: H ~ o J k ( E ,  m) at the point 
e Jk(E, m) can be naturally viewed as an m-dimensional subspace of T~E, where 

~- -- ~k, o (~). 

DEFINITION. - A k-th order pre-connection on E is said to be a k-th order connection 
of a fibring 7::E--->B, d imB=m,  if its fibres are transversal to the fibres of ~. 
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It is easy to see that the ,,usual- (pre-)connections are exactly 0-order (pre-)con- 
nections in the sense of this definition. 

Below, we adopt for k-th order (pre-)connections notations previously used for 
,,usual- (pre-)connections. For instance, ~,: H r - *  jk, where Hy is an m-dimensional 
vecotr subbundle of T(k)E, will be the standard notations for k-th (pre-)connec- 
tions. 

EXAMPLE. - There is a unique canonical k-th order pre-connection for k I> 1; name- 
ly, it is given by the subbundle c k : C ~ (E, m) --> jk  (E, m) of ~ .  As being restricted 
on jk=  r j k (E  ' m), where =: E - .  B is a fibring, it gives the canonical k-th order con- 
nection on =. 

The covariant differential of a k-order pre-connection ],: Hy-~J  k, k >1 1, is de- 
fined to be the composition 

Vy := r~oir:  Hr---~W k, 

where i v: Hr ~ T (k) is the natural inclusion. By passing to sections, we can interpret 
V r as an element of the C ~ (jk)_module 

Homc~(jk)(F(],),~ck)=F*(y) ~ 7c ~, 
C| (jk) 

i.e. as a xk-valued C ~ (Jk)-linear form on F(],). Below, we write X~V v for XeF(~') 
instead of Vy (X). This is to stress the interpretation of X as a relative vector field with 
respect to =k, o, which results from the inclusion 

F(r) r = (~(E; jk, ~:k,O). 

The evolution operator corresponding to the generating function X-IVve K k, 
X e F(~,), is called the pre-covariant derivative along X (with respect to y). 

PROPOSITION. - If ? is a k-th order connection of the fibring =: E -~ B, then every 
vector field Y e d)(B) can be lifted to the section Y E r(],). Namely, if ~ E jk, then the 
subspace ],-1 (~)r T~_E is_projected isomorphically onto T,(~)B by means of d~=. We 
define the vector field Y to be the image of Y~)~  T~)B  along this isomor- 

phism. 
The evolution operator corresponding to the generating fucntion 

(42) Vv, y :---- Y-] Vy e K k 

is called the covariant differential along Y (with respect to y). From (42) it follows 
that 

Vv, ]y = fVv. y, for f e C ~ (B). 

This formula reproduces, for k-th order connections, the well-known property of 
the ,,usual- covariant derivatives. 
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Next, the quantity 

Vr, r(s) := (j%)* V~, y, 

for s e F(p), gives the velocity of the parallel transport of s along Y in virtue of,/. This 
is a direct consequence of the theory of higher order contact transformations (see [5], 
[18]). Contrary to the ,,usual- connections, the operator s ~Vr,  yS is, in general, a 
k-th order differential operator if k > 0. So, k-th order connections are characterized 
by the fact that the corresponding covariant derivatives are differential operators of 
k-th order. 

EXAMPLE. - The covarinat differential of the canonical k-th order connection is 
equal to zero. 

3. - I n f i n i t e  l i f t i n g  o f  h i g h e r  order  c o n n e c t i o n s .  

Thus, we see that there is no need to rise to J ~ in order to define covariant differ- 
entials and covariant derivatives of k-th order connections. On the contrary, this is 
absolutely necessary in what concerns the deviation or the curvature. This seems to 
be the reason why k-th order connections as they are defined in this work have not 
been introduced earlier. The lift of k-th order connections on J ~ is carried out as 
follows. 

Let ~: H~--->Jk(E, m) be a vector subbundle of ZkE (not necessarily m-dimen- 
sional). We consider its pullback 

~(I): H(t) ~ j~(E, m),  1 I> k, 

along z:l, k to be a subbundle of VIE. Therefore, 

and 

F(a (1)) cF(z~)  = 0~(E; f ,  =l,0) 

F(a (~)) c fig(E; J~ ,  z:~,0), 

where F(a (~)) =lira dirE(a(1)). Then, by applying the fundamental identification 
1 - - ~  r 

(37), we can identify/'(a(~)) with a submodule of (De(J ~ ), denoted by (D~. It is easy to 
see that 69~ consists of all vecotr fields X E (De (J ~ ) such that, 

L 

T~zr~,0(X~) e~- l (zr~,k(~)) ,  for any ~ e J  ~, 

where the fibre a - l (D ,  ~ e J  k, is viewed as a subspace of T~E. 
Introducing the C ~ (J  ~ )-module ~ = (De/60~, we get the following short exact 

sequence 

0 ) ~ r  > 6~ e ) K~ > O, 

where i~ and v~ are the inclusion and the quotient maps, respectively. 
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DEFINITION. - The C ~ (J| form on ~ 

a f  (X, Y) = v2: ([X, Y]), X, Ye  ff)~ 

is called the deviation ofe .  In particular, if r: Hr-~ J~ is a k-th order pre-connection, 
then the a~ is called its deviation. 

EXAMPLE. - For the canonical k-th order (pre-)connection c~: H~--* J~, we have 
(9~ = e69. Therefore, its deviation (curvature) vanishes identically. 

The graded (or ,,super,,) extension r of a:' can also be defined by following the 
lines of Sec. 5. Namely, let Ai6~ * denote the C ~ (J~)-module of C ~ (J~)-linear, 
skew-symmetric /-forms on ~ and let A*6)* - ~ A i d)*. Consider the map 

i 

~ , ~ A ~ + ~ 0 ~ ,  | ~ ,  5: :A 6)~ |  i = 0 ,  1 , . . . , m ,  

(tensor products are taken over C ~ ( J ~ )  defined by the formula 

(a2 ~ ) ( x 1 ,  ... , z { + ~ )  = - -  

i ~ ( - 1 ) k ~ 2 [ X k , ~ ( & , . . . , 2 k  . . . . .  X~+~)]), 
i + 1 0~<k<~i+l 

where Xk e 6~ and p e A ~ 6)* | ~ .  Then, word by word repetition of the arguments of 
sec. 5 leads us to the formulas 

(43) 
~2 = ~2 (id,(~)) 

~ (p) = ( -  1)i-lp_152, for ? e A i (~* @ (~.  

Here, A-product and other relevant constructions copy the corresponding ones of 
Sec. 5. From (43) it follows that 5~, regarded as the graded map 

~ : A * (~* | ~ - ~  A * 6~* @ ~ ,  

of A* 69~-modules is graded (or ,super--)differential operator of bi-order (0, 1). 
The idea of almost-fibring can be also realized in the high order variant. Namely, 

we say that an /-dimensional subbundle of v~ is a k-th order almost fibring of E. 
Let now a: H~ --~ jk, fl: Hz -~ J~ be some vector subbundles of v~ and z~, respect- 

ively. They are said to be transversal each other if, for any ~ e J ~, the fibres a-1 ($k), 
k = r: | k ($) and fl - 1 (~ ~ ), a ~ ~ r: ~, ~ ($), are transversal as subspaces of T~ E. This is 

equivalent to the fact that 0)~ + ~ is a projective submodule of (De and 50~ A 0~p = 0. 
In particular, we have 

PROPOSITION. - A k-th order connection Y: Hy ---> jk  and an s-th order almost-fibring 
~: H~ -+ J~ are transversal iff (De = ~ G ~ .  
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Now, by putting together the above constructions, we obtain the following dia- 
gram which generalizes (41) 

(44) 

z / 
C@ > K~, 

0 < K= -<------ ~e < ~ 0~= < 0 

(D~, )- K 

o 0 

Here, arrows directed forward or backward of (De are defined previously. The 
others, are, by definition, the composition of these ones. For instance, the lifted 
covariant differential V~ is defined as the composition 

(D r - - - - > y ( D r  ) K .  

As in Sec. 4, we observe that all double arrows in (44) are isomorphisms iff ~, and 
are transversal. In this case we can identify (Dr with CO) and ~r with x. 

PROPOSITION. - Under the above identifications the covariant differential is seen to 
be the map 

co  

V r : C(D--~K 

and the deviation ~.~ to be an element of A2C(D* @ K. 

Next, by applying the isomorphism A~e(D*= ~ i ( j = )  (see [5]), where 

A(J= ) = A~( j  + )/CA~(J ~ ) 

and CA i ( J  + ) consists of differential/-forms vanishing on the Cartan distribution of 
J , we can consider % as an element of ] 2 ( j ~ ) |  ~. So interpreted, ~r is worthy to 
be named the curvature of ~, with respect to the almost fibring ~. Similarly, the graded 
version of the curvature is the map 

5~ - -A  * ( J= ) | C(D-~ ~I * ( J ~  ) | K 
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of A * (J= )-modules which is given by the formula 

~ ( - 1 ) ~ - l ~ _ J ~ ,  

supposing that ~ e A * (J ~ ), ~r e ~z ( j  = ) | x. 
It is natural to look for the higher order generalization of the approach to pre-con- 

nections on almost-fibrings based on the FrSlicher-Nijenhuis calculus as it was pre- 
sented in sec. 6-9. Our final observation is that this cannot be achieved without the 
proper high order generalization of this calculus itself. By this reason, we do not 
touch this problem here. We conclude with the remark that this generalization can be 
extracted more or less straightforwardly from the ,,unification,, technique of the 
work [20] applied to the higher order de Rahm complexes [16]. 

4. - Higher order (pre-)connections coordinate-wisely. 

Here we collect local coordinate expressions of basic objects of the theory of high- 
er order (pre-)connections. Since the basic bundles to work with, say c k, hr h, etc., are 
pullbacks of bundles defined either on E or on j1, we can adopt as their local bases 
pullbacks of the corresponding bases of the original bundles. For simplicity, we de- 
note pullback bases by the same symbols, writing, say, Bz instead of =~ (B~), ~i in- 
stead of =~' (~),  etc. 

Let now r and n be some k-th order connection and s-th order connection and s-th 
order almost-fibring, respectively. A local chart (2) is said to be concordant with ~, 
(resp., with ~) in a point ~ e jk  if the subspace r -x (0) r T~E (resp., n -1 (-$) c T~E) is 
transversal to the y-coordinates (resp., to the x-coordinates). If so, a local basis of 
F(hy) (resp., of F(n)) can be chosen in a neighbourhood U of ~ in the form 

Bz = az + 7~i, )~ = 1, ..., m 

resp., 

Bi = ai + h i+  n~a~, i = 1, ..., l ,  

where ~'~ e C ~ (U) (resp., n~ e C ~ (U)). In other words, for higher order (pre-)connec- 

tions we have 

y~ = ~.~(x ~, yJ, . . . ,  y~, ...), lal ~< k,  

and. also, 

n~(x~, y j, , yJ, .), let{ <. s I I  i = . . . . . .  

So, from this point of view, the theory of higher order (pre-)connections differs from 
the ,(usual,, one by the only fact that quantities ],~ (and, also, n~) can depend on arbit- 
rary high order derivatives. 

Similarly, if the chart (2) is concordant both with ~, and 1I, then formulae (29)-(31) 
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are still valid for higher order connections as well. Also, it is easy to see that the local 
expressions (19) of v r , (23) of V r and (24) of El r remain to be local expressions or v ~o, V~ 

oo and D r , respectivley, if ~. is a higher order (pre-)connection. 
On the contrary, the form of local expression of the deviation and the curvature 

change when passing to higher order (pre-)connections and some preliminaries are to 
be listed before. 

First, we recall the Lie algebra structure {., .} on the space of generating 
functions: 

(45) {~,  ~}i  = a ~ ( ~ i )  _ a~(~), 
where ~ = (~1, ..., ~t), ~ = (~1, ..-, ~ )  and ~i, ~ J e  C r ( j ~ o )  (see Sec. 2) and, also, [5], 
[18]). Then, we can write 

(46) [D~, D~] = D(~, ~}. 

Next, we observe that the equalities 

(47) IDa, Dv]) = 0 and [a~, Dv] = Da~;, 

take place for every 2, ~ and, also, 

D~ = Dy~ + ~ 

where y ~ -  (y~, ..., yz t) (see (14), (15)). 
From (9) and (14) we see that the C-field T~ (see Sec. 2), corresponding to the 

derivation B~ e 0)(E; J ~ (E, m), = ~, 0 ) via fundamental isomorphism (37), is given by 

~F~=D~+D~.~_~=Dr~+a~, ],~ = (y~ .. . .  , ],~), 

since B~-J(dy i i ~ " -yzdx )=  y ~ -  y]. Then, accounting (46)-(47), we get 

[ T ~ ,  T ~  ] = [9~,~, + c~, 9r~ + c3~ ] = 5)(a~, ~ _ a~r~ + (r~, ~:~})" 

Now, the desired local expression of ~ is deduced straightforwardly from its defi- 
nition given in the previous section: 

~r = (~z~'~ - ~,~'~ + {]'z, ~'~}~)S~BZAB~| 

(compare it with (25)). Similarly, the local expression of the curvature of y with re- 
spect to the almost-fibring n is given by 

R~ = (~y~  - ~ . i  + {~%, ~ } i ) S ~ B ~  A B ~ |  

Finally, from (15) and (45) we see that 
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From the last formula we can conclude that the deviation of k-th order connection de- 
pends, in general, on all derivatives of order <~ 2k. 

List of main symbols. 

E 
N e E  
jk  - jk  (E, m) 

=p, q: JP (E, m )  --) Jq (E, m) 
j k N :  N ~ j k ,  e ~ [N]~ 
rE: T E - - )  E 

L~ r T E  

=- ~k, o (~)  

- =k, 1 (~) 
(x~, yi), 1 ~<2 ~<m, 1 ~<i< 1 
(x ~, y~) 

ax ~ ay i 
z~: T (k) - T (k) (E, m) --) jk  
c k : C k =- C k (E,  m )  --) j k  

wk:  W k =_ W k ( E ,  m ) - .  J k 

;~k: C k ~ T(k) 

r k: T (k) ~ W k 

K k := F ( w  k) 

~ M )  
gk: T j k  .._) W k 

gk: do(j~) __> Kk 
go: d0(E) --->K 1 

c do(J ~ ) 
doe c do(J ~ ) 

WN: W N ~  N 
r z : E ~ B  

7V k : =  7: o T: k, o : J k r: ----> B 

~ :  V,---~E 

w ~ -_ ~:~ ( ~ )  
(x)', y~,  z ~ ) 

b~ := ~ + y~ ~ 
~-= ~ ~ 1 6 2  

D~ = ~ + ~ y~+~ ~ 

manifold of dim m + 1 
submanifold of dim m 
space of k-jets of submanifolds of dim m of E 
projection of jet spaces 
k-jet prolongation of the submanifold N 
tangent bundle 
m-dimensional subspace corresponding to ~ e j 1  
projection of $ e jk  on jo  
projection of ~ E jk  on j1 
divided chart of E 
induced chart on jk  

basis of vector fields 

pullback of the tangent bundle on jk  
contact subbundle C k := {(~, u) e T (k) lu e L.~ } 
quotient bundle W ~ := T (k) / C  k 

canonical inclusion 
canonical projection 
space of sections of w k 
space of sections of the bundle 
module of vectors fields of the manifold M 
canonical projection 
canonical projection 
canonical projection 
Cartan distribution 
Lie algebra of infinites, contact transformations 
pullback of the bundle w k via the submanifold N 
fibred manifold 
fibred manifold of jets of sections 
vertical subbundle of the tangent bundle 
pullback of the vertical bundle on jk  
canonical identification 
chart on c k 
basis of c 1 
basis of w k 

full derivatives 
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D ~ = ~ D ~ ( ~  i) 8 

X = D ~ + Y  
y: E --> j1 (E, m) 

hr : Hr--+ E 
~ : V ~ o E  
'* r : T E  --> Vr 
~. ~- u= .h r = r:* (Z B) 
~'i := Y~ o ]" 
B~ := 8~ + ,[~ Oi 

Qi := Y*(~i )  
h kr : g(r k) __+ Sk 

k. V.(k) ....> j k  ~y" y 

V r := r 1 o%.1" H(f f  ____> W 1 
Vr: F(hl)--+ ~ 1 
[~r := v~ ~ "-+ V(rl) 
at: V(hr) • l"(h~) -+ F(, r) 
R r (X, Y )  = ~r (u, u) 
ar : A i :~r | aCr --+ A i + l :~r | "~ r 
n :  V.--+ E 
Jkli 
h.:  H.---> E 
nk: V(k)--+ j k 
h~ : H(~k)--+ J k 

R~ 
% ,  ~o.: (D(E)-+ O~(E) 
~(E) := A* (E) | (~(E) 
[.,.]: 0~(E) x 0~(E) -+ 0~(E) 
A* (E) := y ~ A i ( E )  

i>~0 
d+ : 2r --+ gO(E) 

1 r+ := ~ d ~  

d r :=d+~ d.  : = d ~  

�9 I '(hr)* C~E)I'(~) 

Oa(N; M, F) = F(F* ( z~ ) )  
GO: d)(N; M, F)--~ 6a(N; M ' ,  Fo G) 
F ~ 6a(N) --+ da(N; M, F) 

r (X, Y) := v r ([X, Y]) 
:= (Dv(E; J~ ,  ~| 

~:~ := o ~ e / ~  
~: H= + J~(E, m) 

evolutionary derivative 

decomp, of infinitesimal contact transformations 
pre-connection 
horizontal subbundle ~r:Hr ~ T E  
vertical bundle V r := T E / H  r 
canonical projection 
canonical identifications 
components of ], 
basis of F(h r) 
basis of F(%) 
pullback of the horizontal bundle on jk  
pullback of the vertical bundle on jk  
covariant differential 
covariant differential 
(alternative) covariant differential 
deviation (u, ~)~+%([u, ~]) 
curvature 
graded extension of deviation 
almost-fibring Vn c T E  
jet space of the almost-fibring n 
horizontal bundle Hn := T E / V ,  
pullback of the almost-fibring on jk  
pullback of the horizontal bundle on jk  
basis of V, 
curvature of ), with respect to n 
projections induced by ], and n 
module of tangent valued forms 
FrSlicher-Nijenhui_s bracket 
algebra of differential forms 

differential d+(~):= [oJ, p] 

curvature of ~o 

covariant differentials 
soldering form 
torsion of 7" with respect to 
space of M-valued vector fields on N along F 
map induced by G: M ' - - + M  
canonical map 
lifted deviation 
submodule 

�9 quotient module 
k-order pre-connection H~ r T (k) (E, m) 
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Vy := rk " H~-~ W k o c h :  
Vv, f (s )  := ( j k s )*Vr  y 
{~, r = ~ ( ~ )  - ~(~)  

covariant differential Vy e F* (~-) (~ K k 
covariant derivative ca (jk) 

Lie algebra of generating functions 
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