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INTRODUCTION

Starting from the famous papers by Nijenhuis, [15], [16], geometrical objects and
invariant operations with geometrical objects have been studied by using the concepts
of natural bundles and natural differential operators.

In physical theories another sort of invariance plays an important role, the so
called ”gauge-invariance”. Its geometrical description is the following, Drechsler and
Mayer [2]. Let # : P — B be a G-principal bundle over a space-time manifold
B and £ — B be a bundle associated with P. An automorphism of P, over B,
induces a fibred automorphism of £, over B, which is said to be a change of gauge. A
physical theory is said to be gauge-invariant if it 1s invariant with respect to changes of
gauge. Gauge-invariant theories can be described geometrically by using the concepts
of gauge-natural bundle functors and natural or gauge-natural operators between
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gauge-natural bundles; Eck [1]. The aim of this paper is to express naturality and
gauge-naturality at infinitesimal level by using the concept of systems introduced by
the second author, [14]. The main idea is to replace the action of a Lie group on
the standard fibre by the action of a Lie algebra on the space of vector fields on the
standard fibre of the bundle. We consider a system of projectable vector fields on a
fibred manifold which induces a structure of infinitesimal natural lift on the fibred
manifold. A similar result is obtained for gauge-natural lifts.

In the classical theory, if a differential operator i1s natural or gauge-natural, then
it commutes with the Lie derivatives associated with any vector field. We use this
fact for our definition of (infinitesimally) natural and gauge-natural operators and we
express the naturality of differential operators by using the distinguished vector fields
of the given systems.

Throughout the paper we use the following notation from jet theory. If M N are
two differentiable manifolds then the space of k-jets from M to N with source x € M
and target y € N will be denoted by J¥(M,N),. If E — B is a fibred manifold
then the space of k-jets of local sections of £ is J*E and 7le CJPE = JUE k>
is the canonical projection. The k-jet prolongation of a fibred manifold morphism
¢ : B — E (covering a diffeomorphism f : B — B of base spaces) is J*¢ : J*E —
JFE. If 0 : B — E is a section then j*o : B — J*FE is its k-jet prolongation. If
Z: F — TF is aprojectable vector field of F| then its k-jet prolongation is the vector
field j*Z : JFE — TJRE of J*E defined by j*Z = r*oJ*=Z, where r* : JKTE — TJFE
is the fibred morphism defined by Mangiarotti and Modugno, [13]. The sheaf of local
sections of £ will be denoted by U™ FE.

All manifolds and mappings are assumed to be in the category C°.

1. NATURAL LIFT FUNCTORS

We recall here definitions and basic properties from the theory of natural lift func-

tors, [10], [16], [19].

Let M be the category of smooth manifolds and smooth manifold mappings and
M, be the category of C'*° n-dimensional manifolds and smooth embeddings. Let
F M be the category of smooth fibred manifolds and smooth fibred manifold mappings
and FM,, be the category of smooth fibred manifolds over n-dimensional base spaces
and smooth fibred manifold morphisms over embeddings of base spaces.

Definition 1.1. A natural lift functor is a covariant functor F from M, to FM,
satisfying
i) for each manifold B €ObM,,,

pp: FB— B

is a fibred manifold! over B,
ii) for each embedding f €MorM,,, F'f is a fibred manifold morphism over f,
which maps fibres diffeomorphically onto fibres. O

A natural bundle is then a triplet (F B, pp, B).

I1We shall see that F'B is actually a bundle.
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In the definition of natural lift functors sometimes a further continuity condition is
added by saying that a smoothly parametrized family of diffeomorphisms is prolonged
into a smoothly parametrized family of diffeomorphisms. But this condition turns out
to be a consequence of i) and ii), [3].

The concept of natural lift functor was generalized, [4], [8], [10], to the concept of
natural bundle functor.

Definition 1.2. A natural bundle functor? on a subcategory C of M is a covariant
functor F' from C to the category FM satisfying

i) for each manifold B €ObC, pg : FB — B is a fibred manifold! over B,

ii’) for each f €MorC, F' f is a fibred manifold map covering f such that F¢(U) =
((F'U) for any open subset ¢ : U — B. O

A natural bundle functor on the subcategory M,, of M, for a certain n, is a natural
lift functor.

We say that a natural lift functor F' is of order r if, for any f éMorM,,, the map
F f depends pointwisely only on the r-jet of f.

Let F' be an r-order natural lift functor and let Fy = (FR™)g be the standard fibre
of F'. We obtain a canonical action on Fy of the Lie group

Gy

=invJj(R"”,R")g

of invertible r-jets (with source and target 0) of diffeomorphisms of R which preserve
0 on Fy. Tt is well known that any natural lift functor has finite order, [10], [17], and
that there 1s a one-to-one, up to equivalence, correspondence of r-order natural lift
functors and left smooth G7-manifolds, [11], [19].

The continuity condition allows us to prolong a vector field ¢ of B to the vector

field F'é of I'B by the rule
(1.1) exp(LFE) = F(exp(t€)).

This flow prolongation defines for an r-order natural lift functor F' the associated
smooth fibred mapping

(1.2) i J"TB x5 FB — TFB
which is linear over F'B, [8], [20]. So, we obtain
F:C®TB— C®(TFB— FB):{— Fé(u)=po (§ ¢ u), u€ I'B,

where we used again F' (by abuse of language). Later (Section 3) we shall meet a
different abstract approach to formula (1.2) in terms of ”systems”.

Local coordinate charts on B and Fy induce a fibred coordinate chart on F'B, which
is said to be natural.

?In literature it is currently denoted simply as ”prolongation functor”.
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Example 1.1. The tangent functor 7 1s a natural bundle functor of order 1 on
the category M. In dimension n the corresponding standard fibre is R™ on which
Gl = Gl(n,R) acts in the standard way. The tangent prolongation of a vector field
&= &’A% of B is

0
dar’

where (z*,2%) is the natural coordinate chart on T'B.

d .
T = €Aa? + 249,

Example 1.2. The cotangent functor 7™ is a natural lift functor of order 1 with the
standard fibre R™* and the standard action of G. The cotangent prolongation of a
vector field £ = &’A% of B is

0 0
TE = 5>‘6? - l‘u@Ag“%,

where (z*,zy) is the natural coordinate chart on T* B.

Example 1.3. The functor 7 of (r,s) tensors is a natural lift functor of order
1. The standard fibre is (" R™) @ (2*R"™*) on which G} acts in the standard tensor
way. The tensor prolongation of a vector field ¢ of B is
T = 5*% (20 0™ e 0,8 -
0
ot

) is the natural coordinate chart on T(rs) B,

A1 A P AL Ay P
tmliz...usaulg tu;..us_lp 6“85 )

pA
Example 1.4. The functor of metrics Met is a natural lift functor of order 1. Its
standard fibre (M et)g is the subspace in ®?R"™* of non-degenerate symmetric matrices
with the coordinate chart (gx,) and the tensor action of G}.

where (

Example 1.5. The functor of k"-velocities 7}, is a natural bundle functor of order
7 on the category M. For any B €ObM, we define T} B = J;(R*, B) and, for any
f €EMorM, f: B — B, we define T} f(J5a) = J5(f o @), where Jia € TF B. The
standard fibre of T in dimension n is JJ(R*,R")y and the action of G, on the
standard fibre is given by the composition of jets.

Example 1.6. The functor of r-order frames F” is a natural lift functor of order r.
For any B €ObM,,, we define F"B = invJj(R"™, B) and, for any f eMorM,,, F" f is
defined as in Example 1.5. The values of the functor F" are in the category PB, (G%,)
of smooth principal bundles with n-dimensional base spaces, the structure group G7,
and smooth principal bundle mappings.

Example 1.7. The bundle of linear connections C' on a given manifold is a natural
lift functor of order 2. Its standard fibre is R" @ (@?R"™) on which G2 acts via the
well known transformation relations of the Christoffel symbols. The flow prolongation
of a vector field £ = &’A% of B is

0

d —
O =8 g + (U080 = 10,008 = T8 + ) v

where (2*,I),) is the natural coordinate chart on C'B.
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Remark 1.1. Let F be a natural lift functor of order r. For any f €MorM,,
f: B — B, by using the standard jet prolongation, we get the commutative diagram

JFB L gspp

ﬂil lwz
Ff

FB —— FB

" Jpe

B — . B

which implies that J*F = J*® o F is a natural lift functor of order (r+s). If Fy is the
standard fibre of F' then the standard fibre of J*F is J*Fy = T Fyy and the action of
GIT¢ on J®Fy is obtained by the jet prolongation of the action of G, on Fy.

Remark 1.2. In the theory of natural lift functors, the functor of r-order frames
defined in Example 1.6 plays a fundamental role. Namely, any natural lift functor F
of order r, with standard fibre Fj, is canonically represented by

(1.3) FB=[F"B,Fy], Ff=[F"fid],

where B €ObM,,, f eMorM,,, and [F"B, Fy] = (F" B, Fy) /G, is the bundle associ-
ated with F" B, [10], [11], [19].

Example 1.8. With respect to the adjoint action of G, on its Lie algebra G, we
can define the r-order natural lift functor

(1.4) Gn(B) = [F"B,G}],  G,(f) = [F"f,id].

So Gl can be viewed as a natural r-order lift functor and we shall call it the adjoint
r-order natural lift functor.

Let F be a natural lift functor, f : B — B be a mapping in MorM,, and ¢ : B —
FB be a section. Then we define the section f*c: B — FB by f*c = Ffooo f!.

Definition 1.3. A natural differential operator D from a natural lift functor F; to
a natural 1ift functor F5 is a family of differential operators

{D(B) : C*F\ B — C*FyB}gcobm,

such that D(B)(f*o) = f*D(B)(o) for all sections ¢ : B — FyB and all f: B — B
in MorM,,. O

A natural differential operator is of a finite order k if all D(B), B €ObM,,, depend
pointwisely on k-order jets of sections. Thus, a k-order natural differential operator
D from Fy to Fy is characterized by the associated fibred manifold morphisms D(B) :
JEFI B — F3B, over B, according to the formula D(B)(j¥0) = D(B)(c)(z). The
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family D = {D(B)}Beobm, defines a natural transformation of the functors JRF
and F5.

Let D be a natural operator of order k£ from Fi to F5 and D be its associated
natural transformation. Then we can define the tangent prolongation T'D of D as
the k-order operator T'D from T'Fy to T'F5 defined by the associated transformation
TD : J*TF, — TF,, where TD =TD or*F and #* : J*TF, — TJ*Fy is the natural
transformation defined in [13]. Tt is easy to see that 7D is a natural transformation
of covariant functors and it implies that T'D defined by TD(B)(X) = TD(B) o (j*X),
for any section ¥ : B — TFy B, is the natural operator such that ¢p,5(TD(X)) =
D(qp,p(X)), where qg : TE — FE is the canonical projection.

Definition 1.4. Let F' be a natural lift functor, £ be a vector field of B and exp(t€)
its flow. Then the Lie derivative of a section o : B — F'B with respect to the vector
field € is defined by

(1.5) Leo = %b{exp(—tg)*a}. O

In [5], [9], [18] it was proved that the Lie derivative can be expressed geometrically
as the mapping

(1.6) Leo=Tool—Foo.

Hence Lo turns out to be a section Ls0 : B = V B projectable onto the section .

Lemma 1.1. If a k-order differential operator D from a natural lift functor F to a
natural lift functor I is natural, then

(1.7) LeD(B)(o) =TD(B)(Leo)

B € ObM,,, for any section ¢ : B — F1 B and any vector field ¢ of B.

Proof. From the infinitesimal expression (1.5) for L0 we get

TD(B)(Leo) =TD(B)or* o jk%b{exp(—tg)*o-} =
= TD(B) o | loli* (exp(16)"0)}| = Tlo{D(B) o (¥ (exp(—16)"0))) =
= Llofexp(~1€) (D(B) o (*0))) = L D(B) (o).
which proves our Lemma 1.1. O

For the case of linear operators on natural vector bundles Lemma 1.1 was used by

Kirillov, [6].
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Remark 1.3. Since the values of the Lie derivative are in VF B it is sufficient to
consider in (1.7) only the vertical prolongation VD of the operator D instead of
the tangent prolongation 7'D. The vertical prolongation VD can be defined as the
restriction of T'D on V F} or equivalently by

VD(B) (%bat) = %|0D(3)(Ut)’

where o, : B — F1 B is a smoothly parametrized family of sections.

Definition 1.5. A differential operator D from a natural lift functor F; to a natural
lift functor Fs is said to be infinitesimally natural if (1.7) holds for any section o :
B — F1B and any vector field £ of B. O

Many geometrical constructions are in fact natural differential operators between
natural lift functors. The study of natural differential operators is based on relations
between natural differential operators and equivariant mappings. The basic tool is

the following theorem, [10], [12], [19].

Theorem 1.1. There is a bijective correspondence between the set of k-order natural
differential operators from a natural lift functor I, to a natural lift functor Fs and
equivariant mappings from the standard fibre of J* F to the standard fibre of ;. O

Example 1.9. The exterior derivative d is a first order natural operator from APT™,
p > 1, to APTIT*. The corresponding G2-equivariant mapping from J1(APT*)y =
THAPR™) to (APFIT=)y = APTIR™ is given in the canonical coordinate chart
(Wiy.ip), 1 <y < .o <ip <n, on (APR™) by

Wiy gy ©d = Wiy il
where [...] denotes the antisymmetrization. It can be proved that the naturality

determines d up to a constant.

Example 1.10. The Levi-Civita connection is a first order natural differential oper-
ator from Met to C. The corresponding (G2-equivariant mapping from J*(Met)q to
Cy is given by

1
A A
L = 99 "(Gpup + Govn = Juvp);

where (g**) is the inverse matrix of (gx,).

Example 1.11. The curvature tensor is a first order natural differential operator
from C to T @ (@3T™*). The corresponding G2-equivariant mapping from J1Cy to
(T @ (@3T*))o = R™ @ (@3R™) is given by

t;un = FZV,R - F:K,V + F;\KFZV - F;\VFZK
Example 1.12. The Nijenhuis tensor is a first order natural differential opera-
tor from T'® T to T'® (A*T*). The corresponding G2-equivariant mapping from
Jl(T(l’l))o to (T @ (A?T*))g is given by

A gAyp g Agp A 4P A gp
tl“’ - tptlhl’ tptl/,u + tl/,ptu tlhptl"
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2. (GAUGE-NATURAL BUNDLE FUNCTORS

In this section we recall some basic definitions and properties of gauge-natural
bundle functors, Eck [1], Kolaf [7].

Let PB,(G) be the category of smooth principal G-bundles, whose base manifolds
are n-dimensional, and smooth G-bundle morphisms (¢, f), where f eMorM,,.

Definition 2.1. A gauge-natural bundle functor is a covariant functor F from the
category PB,(G) to the category F.M,, satisfying

i) for each 7 : P — B in PB,(G), np : FP — B is a fibred manifold® over B,

ii) for each embedding (¢, f) in PB,(G), Fe = F(p, f) is a fibred manifold mor-
phism covering f.

iii) for any open subset U C B, the immersion ¢ : 7= (U) < P is transformed into
the immersion F¢ : 75 (U) < FP. O

A gauge-natural bundle is then a quadruple (FP,wp, B,m: P — B).

In the original definition, [1], there is one more continuity condition which says
that a smoothly parametrized family of diffeomorphisms of P is ”prolonged” into
a smoothly parametrized family of isomorphisms of F'P. But this condition is a
consequence of 1), ii) and iii), Kolaf, Michor, Slovék [10].

Example 2.1. Let (r : P = B) €0ObPB,(G), let W"P be the space of all r-jets
J10,6)# where ¢ : R” x G — P is in MorPB,(G), 06 R” and e is the unity in
G. The space W' P is a principal fibre bundle over B with structure group WG =
J(To,e) (R?x G, R"x () of all r-jets of principal fibre bundle isomorphisms ¥ : R" xG —
R"™ x G covering the diffecomorphisms ¢ : R” — R” such that ¢(0) = 0. The group
WG is the semidirect product of G}, and 7] G with respect to the action of G}, on
Tr G given by jet composition. Let (¢ : P — P) €MorPB,(G), then we can define
the principal bundle morphism W"¢ : W"P — W"P by jet composition. The rule
transforming any P €ObP B, (G) into W™ P cObP B, (W) G) and any ¢ eMorP B, (G)
into W"g eMorPB, (W () is a gauge-natural bundle functor, [7].

The gauge-natural bundle functor described in Example 2.1 plays a fundamental
role in the theory of gauge-natural bundle functors. We have, [1], [7],

Theorem 2.1. Every gauge-natural bundle F'P is a fibred bundle associated with
the gauge-natural bundle W" P for a certain order r. O

The number r from Theorem 2.1 is called the order of the gauge-natural bundle
functor F'. Soif F'is an r-order gauge-natural bundle functor then

(2.1) FP=[W'P Fy), Fo=[W'e,idg],

where Iy is a W] G-manifold called the standard fibre of F.

A local fibred coordinate chart on P and a coordinate chart on Fy induce a fibred
coordinate chart on F'P, which is said to be gauge-natural.

3We shall see that F'B is actually a bundle.
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Let s < r be the minimum number such that the action of W) G = G}, xg 1} G on
Iy can be factorized through the canonical projection 7} : 17 G — 1:G, r > s, via
the commutative diagram

(GZ X5 T;L‘G) X FO E— FO

l

(GT x5 T2G) x Fy

Then s is called the gauge-order of F' and we say that F is of order (r, s).

The regularity condition allows us to ”prolong” any G-invariant vector field = of
P to the vector field FZ of FP. Namely, exp(tFE) = F(exp(tZ)). The vector fields
= and F'Z are projected on the same vector field of B. The flow prolongation of a
G-invariant vector field of P defines the linear mapping

(2.2) J'(TP/G) xg FP — TFP

over FP, where TP/G is the space of G-invariant vector fields of P. Later (Section
3) we shall meet a different abstract approach to formula (2.2) in terms of ”systems”.

Example 2.2. Any r-order natural lift functor in the sense of Definition 1.1 is the
(r,0)-order gauge-natural bundle functor with the trivial gauge action, i.e. the action

(G;XG)XFO—>F0

does not depend on G.

Example 2.3. Let (1 : P - B) €ObPB,(G) and let us denote by CP — B the
bundle of principal connections on P. Then C'is a (1,1)-order gauge-natural bundle
functor with the standard fibre ¢ ® R™*. In particular, let G = G, then C'P can be
viewed as the bundle of linear connections on an associated vector bundle with m-
dimensional fibres. The standard fibre of C'is Cp = R @ R™* @ R™* with coordinates
(F;A), i,j=1,..,m,A=1,..,n,and the action of W} = GL x5 T}GL on Cjy is given,
in the canonical coordinates (az, az», a%) on GL xg TIGL by

72" — LITP 795P 7 =P P
U5\ = a,1,a;a) +a,,a;a;,

where tilde denotes the inverse element.
Example 2.4. With respect to the adjoint action of WG on its Lie algebra WG
we can define the r-order gauge-natural bundle functor

(2.3) WhG(P) = [W"P, WG], W G(p) = [Wp,id].

So Wr'G can be viewed as a gauge-natural bundle functor which will be called the
adjoint r-order gauge-natural bundle functor. In particular, G is the adjoint 0-order
gauge-natural bundle functor.
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Example 2.5. If F is a gauge-natural bundle functor of order (r,s) then J*F is a
gauge-natural bundle functor of order at most (r + k, s + k). The number (r + &) is
exact, but (s + k) may be too big, for instance if F' is an r-order natural lift functor,
i.e. an (r,0)-order gauge-natural bundle functor, then J*F is an (r + k)-order natural
lift functor, i.e. an (r 4+ k,0)-order gauge-natural bundle functor.

Example 2.6. G ® (APT*) is a (1,0)-order gauge-natural bundle functor.

Let (¢, f) EMorPB,(G), ¢ : P = P, f: B — B, F be a gauge-natural bundle
functor and o : B — F'P be a section. Then we define the section ¢*¢ : B — F P by
pco=Fpooof !

Definition 2.4. A natural differential operator D from a gauge-natural bundle func-
tor Fy to a gauge-natural bundle functor F5 is a family of differential operators

{D(P): C*FP = C*F3P}peobps, ()

such that D(P)(¢*c) = ¢*D(P)(0) for all sections ¢ : B — F1P and all (¢, f) €
MorPB,(G), ¢ : P— Pover f: B—B. O

Definition 2.5. A differential operator D from a gauge-natural bundle functor F
to a gauge-natural bundle functor F is said to be gauge-natural if

D(P)(Flgo o 0') = Fhpo D(P)(O')

for any ¢ € MorPB,(G), over the identity, and any section ¢ : B - ,P. O

A natural differential operator D from Fy to Fs is of a finite order k if all D(P),
(rm: P —= B) €ObPB,(G), depend on k-order jets of sections of Fy P. Thus, a k-order
natural operator from Fj to I 1s characterized by the associated fibred manifold mor-
phism D(P) : J*F| P — F2 P, over B, such that the family D = {D(P)}peovrs. ()
is a natural transformation of J*Fy to Fy. The following fundamental theorem is due

to Eck, [1].

Theorem 2.2. Let Fy and F» be gauge-natural bundle functors of order < r. Then
we have a one-to-one correspondence between natural differential operators of order
k from Fy to Fy and W/ t*G-equivariant mappings from (J* Fy)q to (Fs)o. O

For the case of gauge-natural operators of order & we obtain that the correspond-
ing equivariant mappings are equivariant with respect to the actions of the group
TG {J5 TR x TG

Example 2.7. The curvature operator is a 1-order natural operator from C' to G ®
(A2T™).

Definition 2.6. Let = be a G-invariant vector field of P over a vector field € of B
and o : B — F'P be a section. The Lie derivative of o with respect to = is defined by

(2.4) Lzo = %|0{exp(—t3)*a}. O
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This derivation can be expressed by
Lzc=Too&—FZoo.
Thus Lzo : B = VFP is a section projectable onto the section o.

Analogously to the case of natural lift functors, we can define the tangent prolon-
gation T'D of a k-order natural operator D from a gauge-natural bundle functor Fy
to a gauge-natural bundle functor Fs and the following lemma can be proved in the
same way as Lemma 1.1.

Lemma 2.1. If a k-order differential operator D from a gauge-natural bundle functor
Fy to a gauge-natural bundle functor Fs is natural, then

(2.5) L=D(P)(c) =TD(P)(L=0)
for any section o : B — F1 P and any G-invariant vector field = of P. O

The infinitesinal version of the naturality and gauge-naturality of a differential
operator is given by the following definition.

Definition 2.7. A differential operator D from a gauge-natural bundle functor F} to
a gauge-natural bundle functor I is said to be infinitesimally natural (respectively
infinitesimally gauge-natural) if (2.5) holds for any section ¢ : B — F1 P and any
G-invariant vector field (respectively G-invariant vertical vector field) 2 of P. O

3. SYSTEMS OF PROJECTABLE VECTOR FIELDS AND CONNECTIONS

In this section we shall recall basic properties of systems introduced by the second
author, [14], and add the new definition of Lie derivative in the context of systems
and a result on induced systems.

Let p: E — B be a fibred manifold. A projectable, linear, reqular system of vector
fields on a fibred manifold E is a pair (H,7), where

(3.1) gg: H — B
1s a vector bundle, called the space of the system, and
(3.2) n: Hxp b —-TE

is a linear fibred morphism over F, called the evaluation morphism of the system,
which is projectable over a linear fibred morphism over B, of maximum rank,

(3.3) n:H—=TB:h—h
by means of the following commutative diagram
HxpE —— TE

l l

H —rX.,7TB
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Let us set ga: A =kern C H — B. The dimension of the fibre of A is called the
rank of the system. Then we have the exact sequence of vector bundles, over B,

1

(3.4) 0 AT 5 H TB 0

and the following diagram commutes

AxgE s vE
jxidl l
Hxg B —2 5 TE

Any (local) section h: B — H induces the vector field 7(h) on E by

(3.5) (k) (y) = n(h(p(v)),y), yE€E.

These (local) vector fields 77(h) are the distinguished vector fields of the system.

We say that the system is canonical if there exists a fibred atlas, constituted by
linear fibred charts (z*, 2%, 2%), with 1 < @ < r, of H and fibred charts (z*,y') of E,
such that the coordinate expression of 7 is

where 0, € C*(E,R), with dyn}, = 0.

Moreover, we say that the system is monic if the construction of the distinguished
vector fields h — 7j(h) is injective. The monicity is expressed by the equivalence, for
any ¢ € B,

Nzt =0 < 2°=0, forany y € E,.

Let (H,n) be a projectable, linear, regular, canonical and monic system of vec-
tor fields on £. We say that the system is involutive if, for any two local sections
h,k: B — H, the vector field [7(h), 7(k)] is associated with a section of H, which
turns out to be unique, and will be also denoted by [h, k]. Hence

([, k]) = [9(R), (k)]

So [,] is a sheaf (bilinear) mapping (operator) from C*°H x C*°H to C*° H.

A projectable, linear, regular, canonical, monic and involutive system (H,n) is
briefly called strong. Let h = (h*(z), h%(z)), k = (k*(z),k%(x)) be the coordinate

expressions of the sections h, k. Then we obtain the following coordinate expression

[h, k] = (h*0 k> — k"0, h™ R* 0, k® — k"0, h® + CLhbkS),
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where C¢. € R. Hence, we have a unique associated (bilinear) fibred morphism over

B
(3.6) [[]: J'H xp J'H — H,
such that, for any sections h, k: B — H,
[ k] =[]0 (i h, 5'k).
Moreover, it restricts to a bilinear fibred morphism over B
G:Axp A— A,
which endows the bundle ¢g4: A — B with a Lie algebra bundle structure. Further-
more, in the canonical fibred chart on A we obtain
Bpe = Cpe € R
In conclusion, a strong system (H,n) determines a subalgebra of the Lie algebra of
infinitesimal generators of local fibred automorphisms of p : E — B. The assumption

of a strong system is essentially a generalized version of the hypothesis that E is
locally associated with a principal bundle.

Example 3.1. Let p: E — B be a right principal bundle with structure group G.
Then we have the quotient vector bundles gy : H = TE/G — B and ¢4 : A =
VE/G — B and the exact sequence

0>VE/G—TE/G— TB —0.

Moreover, we have a canonical linear fibred isomorphism n : TE/G xg E — TFE, over
E, which restricts to 94 : VE/G xp E — VE. Then the system (H,n) of G-invariant
vector fields on F is strong.

Remark 3.1. If n: H xg £ — TF is a linear, projectable and regular system such
that n4 = 0, then 7 factorizes through a fibred morphism over F

v:TBxpE—=-TE

which turns out to be linear and projectable over id:T'B — T'B. Thus, v is a general
connection on F — B. Additionally, in this case, canonicity of  and integrability of
~ are equivalent.

Remark 3.2. A projectable, linear, regular and canonical system (H,n) of vector
fields of F induces the projectable, linear, regular and canonical system (H® n®) of
tangent valued forms on E, where

(3.7) ¢ H =N"T*B® H— B,

and the linear fibred morphism

(3.8) W H xpE=>NT'BTE: (a®z,y) = a®n(z,y)
is projectable over the linear fibred morphism over B

(3.9) N H = AN"T"BoTB: a®z=a@n(z).

If the system (H,n) is involutive (with respect to the Lie bracket), then the system
(H®,n?) turns out to be involutive with respect to the Frolicher-Nijenhuis bracket
of tangent valued forms on E, [14].
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Remark 3.3. A projectable, linear, regular and canonical system (H,n) of vector
fields of E yields also a ”system” (C,€) of connections on F. Namely, we have the
bundle

(3.10) pc:C — B,

which is defined as the subbundle in 7% B ® H, which projects onto 1g C T*B ®
TB. Hence, pc: C' — B is an affine bundle whose vector bundle is T*B® A — B.
Moreover, £ is the restriction of ' on C' and we obtain the affine fibred morphism
over F

(3.11) E:CxpE—J'ECT*BopTE.

A coordinate chart (z*,2*,29) on H induces the coordinate chart (z*,v§) on C
and the coordinate expression of £ is

(3.12) £=d* ® 9 + pivide? @

0
Hx* Ayt

Any (local) section ¢ : B — (' induces the connection é(c) on E by

These (local) connections are the distinguished connections of the system.
If (H,n) is strong, then we say that (C,¢) is strong.

The bracket on H? given by the involutivity of the system (H%,n?) with respect
to the Frolicher-Nijenhuis bracket of tangent valued forms on E allows us to define
the differential calculus connected with a given connection ¢: B — C', [14]. Namely,
the strong covariant differential d.: C*°H" — C*° H"t! is defined by

(3.13) d.® = [c, D].
Moreover, the strong curvature form of a given connection ¢ is
(3.14) w=d.c=ec .

The values of the strong curvature form are in C°°A?, where A? = A @ A?T* B, and
the coordinate expression is

a 1 a [ v
(3.15) dee = (v + §Cbcv§\vu)dx>‘ Adz” @ B
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Definition 3.1. Let (H,7) be a projectable, linear and regular system of vector fields
of E. Let h be a section of H — B and ¢ be a section of £ — B. By using the
geometrical interpretation of Lie derivative we can define the Lie derivative of o with
respect to infinitesimal fibred transformation & of £ — B by

(3.16) Lpo =Toon(h)—1q(h)oo. O
Thus
Lho:B—>VE
and is projectable on the section o.
For studying infinitesimal gauge-natural lifts we shall need the following result

Theorem 3.1. Let (H,n) be a strong system on a fibred manifold E — B. Then we
obtain in a natural way a linear, projectable, regular and canonical system

(317) CAZHXBA—)TA.
Its coordinate expression Is
0 0
A a _b-c
(318) CA—Z 8?— beR R 67.

Proof. The fibred morphism (3.6) over B restricts to
[[]: HxpJ'A— A,
and can be viewed as a fibred morphism over A
HxpJ'A—=VA

with coordinate expression
0
Oz’

On the other hand, we have the canonical fibred morphism over A

Cezbze

_za x_Y
[a] = 2\ Hza +
:TBxgJ'A—TA
which extends to the fibred morphism over A
tHxpg J'A—TA
with coordinate expression

0 0
A —a A
=z 3?+Z>‘Z Gaa

Then the fibred difference of above fibred morphisms yields our map (4. O

We remark that if a system (I, n) is non-monic then it does not make sense to
check involutivity, unless we have an extra bracket on the sections of H. Later we
shall use the following
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Definition 3.2. Let (H,n) be a linear, regular, projectable and canonical system of
E — B. Suppose we have an additional bracket [,] which makes C'*° H into a sheaf of
Lie algebras. Then we say that the system is almost involutive if

(3.19) ([, k]) = [9(R), (k)]
where the left bracket is the additional one and the right is the Lie bracket. O

Sometimes the additional bracket is not given on the whole C'°*°H but on a certain
subsheaf; in such a case we shall say that the system is almost involutive with respect
to this subsheaf.

4. INFINITESIMAL NATURAL LIFTS

In this section we shall define infinitesimal natural lifts by using the concept of
systems of vector fields. Our approach will be motivated by the following remark and
lemma.

Remark 4.1. Let J"TB be the sheaf of local integrable sections j7h : B — J"T'B,
where h : B — T'B is a local section. Then J"T' B becomes a sheaf of Lie algebras by
means of the bracket given by

(4.1) [7"h, 5" k] = j"[h, k].

In general the bracket on J"TB will involve the (r + 1)-jet prolongation of vector
fields of B. Namely, we obtain a well defined fibred morphism

(4.2) []:J"TTB xg J'YTB — J'TB.

The restriction of (4.2) to the subbundle J"+'T By = Kerrj ™ factorizes through the
canonical projection J"*'T By — J T B, and defines a structure of Lie algebra bundle
on J"T'By. This Lie algebra bundle is isomorphic to the r-order adjoint natural bundle
Gr (B) defined in Example 1.8.

Lemma 4.1. Let F' be an r-order natural lift functor. The construction of the flow
prolongation of vector fields defines a projectable, linear, regular and canonical system
of 'B, B € M,,

p:J " TBxg FB—TFB,

withn = u, H = J'T'B,E = FB. This system is almost involutive with respect to
the subsheaf of integrable sections of J"T'B.

Proof. The evaluation morphism g of the system is given by the mapping (1.2). Tt
is easy to see that this system is projectable; linear, regular and canonical, [8]. From
the property of natural bundles, [18],

(4.3) Al h,§7K]) = Flh, K = [Ph, FK = [i(h) (k)]

for any local sections h,k of T'B, we get that it is involutive with respect to the
subsheaf of integrable sections of J"T'B. O

By generalization of Lemma 4.1 we introduce the following new notion.
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Definition 4.1. An nfinitesimal natural lift of order r is a fibred manifold p : & —
B together with a system (J"T'B, i) of vector fields of E which is linear, regular,
canonical, projectable over 7, : J"T'B — T'B and almost involutive with respect to
the subsheaf of integrable sections of J"T'B. O

We shall say that a structure of r-order infinitesimal natural lift is given on E.
The system (J"T'B, i) will be said to be a natural r-order system.

We remark that in this definition we do not need that the fibred manifoldp : £ — B
be a bundle.

Remark 4.2. The system (H,n) = (J"TB,p) in the above Definition 4.1 is not
assumed to be monic. For this reason we refer to the extra bracket in the subsheaf

J'TB C C*°(J"TB) defined in Remark 4.1.

Example 4.1. If I is a natural lift functor of order r in the sense of Definition 1.1,
then from Lemma 4.1 it follows that a structure of infinitesimal r-order lift bundle is
induced on every F'B, B €ObM,,.

Lemma 4.2. If a natural system (J"TB,u) is given on a fibred manifold E, then
the natural system (J"Y*T B, j*u) is induced on J*F.

Proof. This lemma follows from the properties of the jet prolongation and from the
commutative diagram

JSITTB xp J'E —*y J*TE

z’r+s><idT lrs
JHTB g J'E s T E

where r* is the fibred manifold mapping from J*T'E to T'J* E defined in [13] and " **
is the canonical immersion of J™T*T'B into J*J'T'B. O

Definition 4.2. Let Ey, E3 be two fibred manifolds over B and assume that a
structure of infinitesimal r-order natural lift is given on E; by a natural system
(JTTB,p1) and a structure of infinitesimal s-order natural lift is given on F2 by a
natural system (J*T B, pa). A k-order operator D from C*®FE; to C*° Ej is said to be
(infinitesimally) natural if

TD(,erhO') = ,sthD(O'),
for any section o : B — FE; and any section h : B — T'B (see (Definition 3.1)). O

Lemma 4.3. A k-order operator D from C*°Ey to U™ E is natural if and only if

the distinguished vector fields j*u,(j"t*h) of J't*Ey and fiz(j*h) of E5 are related
by the associated fibred morphism D : J* Ey, — FE5, i.e. if the following diagram

T, L2, TR,
ﬁlur“hﬁ Tﬂzusm

Je, — 2 g
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commutes for any section h: B — T'B.

Proof. From Lemma 4.2 we get that the distinguished vector field j*pu, (j"t*h) of
JrtR B is given by 7% o JX[i(j7h). Then our Lemma 4.3 follows from the definition
of the Lie derivative (3.16) and from the fact that TD((T'¢) o (h)) = T'(Do) o (h) for
any section h : B — T B. Indeed, we have

TD(Lyrpo) =TD(To oh— fiy(j"h) o (0)) =
= T(Da) o (h) = TD(ji, (j"h) o (¢)) = T(Da) o (k) — TD o (J*(jir (j"h) o (7)) =
= T(Do) o (h) = TD o (j* iy (" h) o (*0))

and

LjaD(e) = T(Do) o (h) — fiz(j*h) o (Do) =
=T(Da) o (h) — fiz(j*h) o (Do (j%0)). O

5. INFINITESIMAL GAUGE-NATURAL LIFTS

Analogously to the case of infinitesimal natural lift we shall define infinitesimal
gauge-natural lift by using the concept of systems. Our definition will be motivated
by the following remark and lemma.

Remark 5.1. Let (H,n) be a strong system of vector fields on a fibred manifold
E — B. In Section 3 we have defined the bracket [,] in C°°H which makes C*H to
be a sheaf of Lie algebras. This bracket can be prolonged to a bracket in the subsheaf
JTH C C™J" H of integrable sections of J”H — B by

(5.1) U, 57K = 5 h K],

where h, k are local sections of H. From (3.6) we obtain the associated fibred mor-
phism

(5.2) [1: " Hx JHH — JH.

The restriction of (5.2) to the subbundle J"*' Hy = Ker(mh 1 oJ"n) factorizes through
the canonical projection J" ' Hy — J" Hy and defines a structure of Lie algebra bundle

on J"Hy. This Lie algebra bundle is locally a semidirect product of the Lie algebra
bundles J"T By and J"A.

Lemma 5.1. Let F' be an r-order gauge-natural bundle functor in the sense of Defi-
nition 2.1 defined on the category PB,(G). The construction of the flow prolongation
of G-invariant vector fields defines a projectable, linear, regular and canonical system

p:J" (TP/G) xg FP — TFP

of FP,(m : P — B) € ObPB,(G). This system is almost involutive with respect to
the subsheaf of integrable sections of J" (T P/G) — B.

Proof. The evaluation morphism of the system (J"(T'P/G), pt) is given by the mapping
(2.2). This system is projectable (over the mapping Trony), linear, regular, canonical
and almost involutive, [10]. O

The above results suggest the following new notion.
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Definition 5.1. Let (H,7) be a strong system on p : ' — B. An infinitesimal gauge-
natural lift of order r is a fibred manifold p’ : E' — B together with a system (J"H, y)
which is linear, regular, canonical, projectable over (7foJ"y) : J"H — T B and almost
involutive with respect to the subsheaf of integrable sections of J"H — B. 0O

We shall say that the system (J" H, u) defines a structure of an infinitesimal gauge-
natural lift of order v on E. The system (J"H, u) will be called the gauge-natural
system.

Let s < r be the minimum number such that g4 can be factorized through the
canonical projection wf : J"A — J°A. Then we say that the infinitesimal gauge-
natural lift is of order (r, s) and s is called the gauge order of the infinitesimal gauge-
natural lift on E’.

For any section h : B — H the distinguished vector field j(j"h) : B/ — TE' is
induced and similarly for a section h : B — A the distinguished vertical vector field
fa(j™h) : B/ = VE'"is induced. A structure of infinitesimal gauge-natural lift on B’
is said to be gauge trivial if its gauge order is 0 and jis(h) is the zero vector field for
all sections h: B — A.

Example 5.1. Let F' be an r-order gauge-natural bundle functor in the sense of Def-
inition 2.1 defined on the category PB,(G), i.e. I can be represented by its standard
fibre Fy with the action of the group WG = G}, xs I7G on Fy. Then a struc-
ture of infinitesimal gauge-natural r-order lift is given on any FP, P € ObPB,(G),
by means of the system (J"(TP/G), 1) defined in Lemma 5.1. The adjoint bundle
Wl G(B) — B is then isomorphic to J"(T'P/G)y — B.

Example 5.2. Any infinitesimal natural lift of order r is an infinitesimal gauge-
natural lift of the order (r,0) with the gauge trivial structure.

Example 5.3. Let a structure of (r, s)-order infinitesimal gauge-natural lift be given
on F, then a structure of infinitesimal gauge-natural lift of order at most (r+4&, s+ k)
is induced on J*E. The number (r + k) is exact but the gauge order (s + k) may be
too big. For example, if a structure of infinitesimal natural r-order lift is given on F|
i.e. a structure of infinitesimal gauge-natural lift of order (r,0) with the gauge trivial
structure, then a structure of (r + k)-order infinitesimal natural lift, i.e. a structure
of (r + k,0)-order infinitesimal gauge-natural lift with the gauge trivial structure, is
induced on J*F.

Example 5.4. Let (H,7n) be a strong system on p : £ — B. In Theorem 3.1 we
have defined the canonical system (7, 4) of vector fields on A. This system is linear,
projectable, regular, canonical and almost involutive. So, we have the canonical
structure of infinitesimal 0-order gauge-natural lift on A. The coordinate expression
of 4 18
(2,27, 8% 2% o (a = (2,29, 27, —CL.2"2°).

Example 5.5. Let (H,n) be a strong system on p: F — B. Let A" = A@ A"T*B.
On A" there is the (1,0)-order structure of infinitesimal gauge-natural lift induced
from the (0,0)-order infinitesimal gauge natural lift on A and (1,0)-order infinitesimal
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gauge trivial lift on A"7T™ B. The coordinate expression of the evaluation morphism
uois

A a X Fa ro_

(5 3) (l‘ aq)ul...urax aq)ul...ur) O =
. = (2*, ®° A —rd? 2 =R e )
- Y E L) ) plpr prr—1%p,] be 1.y /)

where (2%, ®¢ &, d)zl...ur) is the induced fibred coordinate chart on T'A".

e

Example 5.6. Let (H,7n) be a strong system on p : £ — B. In Section 3 we have
defined the strong system of connections (C, £) induced from a strong system of vector
fields on a fibred manifold. In [14] a fibred morphism

(5.4) (c:J'Hxp C—=TC

is provided. It turns out to be an infinitesimal gauge-natural lift on C'. Let (z*,v§)
be the induced fibred coordinate chart on C'. Then the coordinate expression of (¢ is

(5.5) (2?05, 82 08) o Co = (2, vs, 20, 2% — vozh — Cez5v5).

Definition 5.2. Let E4, E5 be two fibred manifolds over B and let a structure of
r-order infinitesimal gauge-natural lift is given on FE; by a gauge-natural system
(JTH, 1) and a structure of s-order infinitesimal gauge-natural lift is given on Fs
by a gauge-natural system (J®H, pa2). A k-order operator D from C*® E; to C*® Fs is
said to be natural (respectively gauge-natural) if

(56) TD([,jrhO') :[,jshDO',

for any section ¢ : B — F; and any section h : B — H (respectively h : B — A) (see
(Definition 3.1)). O

By using the same methods as in Lemma 4.3 we can prove

Lemma 5.2. A k-order operator D from C®FE, to C* Ey is natural (respectively
gauge-natural) if and only if the distinguished vector fields j*u, (j71* h) (respectively

5 a(G7TRR)) of JKE) and fia(j5h) (respectively fiza(j*h)) of Eq are related by the
associated fibred morphism D : J*Ey — E, i.e. if the following diagrams

TI*E, —22 4 TE, respectively VJ*E, —23 VE,
mluk“hﬁ fwwhﬁ mm(jrwhﬁ M(jshﬁ
JkE, —2 B, J e -2 o,

commute for any section h : B — H (respectively h: B — A). O
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Lemma 5.3. The strong curvature form is a first order natural operator from C'*°C'

to O A2,

Proof. The (1,1)-order infinitesimal gauge-natural structure on C' implies the (2,2)-
order infinitesimal gauge-natural structure on J*C' which is given by the jet prolon-
gation of the evaluation morphism (5.4). In the induced coordinate chart

Aoa .G A G na
(l‘ ,U)\,U)Mu,l‘ av)\av)\,u)

on TJ'C this prolonged evalnation morphism is given by

A a a X ra ca -1 _ A L.a a A a a_p a b .c
(x S USS UN o ® av)\av)\,u)oj Ce=(x S UR VN 275 28 — Vg zy — sty

a _ ,a P _ a4 p _ .a p _ ova b va b,c
Zhp T Vg uBX T VN pZh — Vg2, Coe? V5 4 C’bczuvA).

(5.7)

For any local section h of H we get from (5.7) the vector field jfrcc(jzh) of JIC

iy . a a a a c a
J'Ce(%h) = hA@ + (Onh® —viOxh" — Cbchva)ﬁvi

H(Oauh® = v ONh? — v§ Ok — v Or .k~

_|_

—Ch®5, , — Cp0,h"v5) 7t

Ny
and from (5.3) we get the vector field a?(j1h) of A?

0

o, 15, a a a < _—
NZ(th) — =4 (— NpOuh? — ®L,ONR" — Cbchb r) e
003 5,

dx*
Then the diagram
TIC Ty 742
e | RS
Jlio —25 42

commutes for all sections h : B — H, where Q : J'C' — A? is the induced fibred
manifold morphism corresponding to the strong curvature operator. From (3.15) we
get its coordinate expression

(xA,CI)iu)oQ: (xA,vf\yu—vzyA—l—Cgcvng). |
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