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97 ↓ 6 hn hn

158 ↓ 17 E [Xn ] E [Tn ] > 0

175 ↓ 13 . . . 15 for any . . . we have for any couple of integers n, k with 1 ≤ n ≤ k, for
any couple of events G,E detected by X0, . . . ,Xn−1

and Xn+1, . . . ,Xn+k, respectively, and for F := {x ∈
Ω |Xn = i}, i ∈ S, we have

176 ↓ 14 {Xn}, r, k, n {Xn}, k, n

176 ↑ 19 . . . 17 and let . . . . Then and let n ∈ N, I ⊂ S and F = ∪iFi be a disjoint
union of events of the type Fi = {x ∈ Ω |Xn = i}∩Hi

where Hi is detected by X0, . . . Xn−1. Then

193 ↓ 11 Therefore, Moreover,

193 ↓ 12 i → j i ↔ j

197 ↓ 11 solution nonnegative solution

197 ↓ 13 further solution further nonnegative solution

197 ↑ 9 a solution a nonnegative solution

207 ↑ 10 Proof. Let Proof. Brouwer theorem is a major result on the
topology of RN spaces. Here we only prove the claim
assuming f is linear. Let

207 ↑ 9 fn(x) fk(x)

223 ↓ 1 i → j. Set i → j with fij = 1. Set

224 ↓ 13 Assume i → j. Let i, j ∈ S. Assume either j is transient or j is
recurrent and fij = 1.

225 ↑ 9 be a function. be a function such that
∑

j∈S |φ(j)| < +∞.

225 ↑ 7 (i) By (i) (i) Since fij = 1 ∀i ∈ S if j is recurrent, by (i)
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226 ↑ 8 that
∑

i∈S that zi ≥ 0,
∑

i∈S

242 ↓ 5 (P1) NI∪J (P1) N{0} = 0 and NI∪J

243 ↓ 16 are pairwise independent. are independent.

244 ↓ 16 P(Xk,n −Xk,n) P(Xk,n 6= Xk,n)

247 ↓ 10 for any 0 ≤ r ≤ s..., we
have

for any couple of integers 0 ≤ r ≤ s, for any t0 ≤ t1 ≤
· · · ≤ ts, for any couple of events G,E detected by
X0, . . . ,Xtr−1

and Xtr+1
, . . . ,Xts , respectively, and

for F := {x ∈ |Xtr = i}, i ∈ S, we have

The proof of (i) of Proposition 5.30 is not complete. Here we provide the
missing piece.

Proof. Let m > 0 be such that p
(m)
ji > 0. From Proposition 5.28
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p
(m)
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∑

k∈S

fkjp
(m)
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Since
∑

k∈S p
(m)
jk = 1, we conclude fkj = 1 if p

(m)
jk > 0.


