An important and less trivial consequence of the rank formula is the following.

1.28 Theorem (Rank of the transpose). Let $\mathbf{A} \in M_{m,n}$. Then we have

(i) the maximum number of linearly independent columns and the maximum number of linearly independent rows are equal, i.e.,

$$\operatorname{Rank} \mathbf{A} = \operatorname{Rank} \mathbf{A}^T,$$

(ii) let $p := \operatorname{Rank} \mathbf{A}$. Then there exists a nonsingular $p \times p$ square submatrix of \mathbf{A} .

Proof. (i) Let $\mathbf{A} = [a_i^i]$, let $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ be the columns of \mathbf{A} and let $p := \text{Rank } \mathbf{A}$. We assume without loss of generality that the first p columns of \mathbf{A} are linearly independent and we define **B** as the $m \times p$ submatrix formed by these columns, $\mathbf{B} := [\mathbf{a}_1 \mid \mathbf{a}_2 \mid \dots \mid \mathbf{a}_p]$. Since the remaining columns of \mathbf{A} depend linearly on the columns of \mathbf{B} , we have

$$a_j^k = \sum_{i=1}^p r_j^i a_i^k \qquad \forall k = 1, \dots, m, \ \forall j = p+1, \dots, n$$

for some $\mathbf{R} = [r_i^i] \in M_{p,n-p}(\mathbb{K})$. In terms of matrices,

$$\begin{bmatrix} \mathbf{a}_{p+1} \mid \mathbf{a}_{p+2} \mid \dots \mid \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 \mid \dots \mid \mathbf{a}_p \end{bmatrix} \mathbf{R} = \mathbf{B}\mathbf{R},$$

hence

$$\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{BR} \end{bmatrix} = \mathbf{B} \begin{bmatrix} \mathrm{Id}_p & \mathbf{R} \end{bmatrix}.$$

Taking the transposes, we have $\mathbf{A}^T \in M_{n,m}(\mathbb{K}), \mathbf{B}^T \in M_{p,m}(\mathbb{K})$ and

$$\mathbf{A}^{T} = \begin{pmatrix} \mathbf{Id}_{p} \\ \mathbf{R}^{T} \end{pmatrix} \mathbf{B}^{T}.$$
 (1.6)

Since $[\operatorname{Id}_p | \mathbf{R}]^T$ is trivially injective, we infer that ker $\mathbf{A}^T = \ker \mathbf{B}^T$, hence by the rank formula R

ank
$$\mathbf{A}^T = m - \dim \ker \mathbf{A}^T = m - \dim \ker \mathbf{B}^T = \operatorname{Rank} \mathbf{B}^T$$
,

and we conclude that

$$\operatorname{Rank} \mathbf{A}^T = \operatorname{Rank} \mathbf{B}^T \le \min(m, p) = p = \operatorname{Rank} \mathbf{A}$$

Finally, by applying the above to the matrix \mathbf{A}^T , we get the opposite inequality Rank $\mathbf{A} = \operatorname{Rank}(\mathbf{A}^T)^T \leq \operatorname{Rank}\mathbf{A}^T$, hence the conclusion.

(ii) With the previous notation, we have Rank $\mathbf{B}^T = \text{Rank } \mathbf{B} = p$. Thus **B** has a set of p independent rows. The submatrix **S** of **B** made by these rows is a square $p \times p$ matrix with Rank $\mathbf{S} = \text{Rank } \mathbf{S}^T = p$, hence nonsingular.

1.29 ¶. Let $\mathbf{A} \in M_{m,n}(\mathbb{K})$, let $A(\mathbf{x}) := \mathbf{A}\mathbf{x}$ and let $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ be a basis of \mathbb{K}^n . Show the following:

- (i) A is injective if and only if the vectors $A(\mathbf{v}_1), A(\mathbf{v}_2), \ldots, A(\mathbf{v}_n)$ of \mathbb{K}^m are linearly independent,
- (ii) A is surjective if and only if $\{A(\mathbf{v}_1), A(\mathbf{v}_2), \dots, A(\mathbf{v}_n)\}$ spans \mathbb{K}^m ,
- (iii) A is bijective iff $\{A(\mathbf{v}_1), A(\mathbf{v}_2), \dots, A(\mathbf{v}_n)\}$ is a basis of \mathbb{K}^m .