An important and less trivial consequence of the rank formula is the following.
1.28 Theorem (Rank of the transpose). Let $\mathbf{A} \in M_{m, n}$. Then we have
(i) the maximum number of linearly independent columns and the maximum number of linearly independent rows are equal, i.e.,

$$
\operatorname{Rank} \mathbf{A}=\operatorname{Rank} \mathbf{A}^{T}
$$

(ii) let $p:=\operatorname{Rank} \mathbf{A}$. Then there exists a nonsingular $p \times p$ square submatrix of $\mathbf{A}$.

Proof. (i) Let $\mathbf{A}=\left[a_{j}^{i}\right]$, let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ be the columns of $\mathbf{A}$ and let $p:=\operatorname{Rank} \mathbf{A}$. We assume without loss of generality that the first $p$ columns of $\mathbf{A}$ are linearly independent and we define $\mathbf{B}$ as the $m \times p$ submatrix formed by these columns, $\mathbf{B}:=\left[\mathbf{a}_{1}\left|\mathbf{a}_{2}\right| \ldots \mid \mathbf{a}_{p}\right]$. Since the remaining columns of $\mathbf{A}$ depend linearly on the columns of $\mathbf{B}$, we have

$$
a_{j}^{k}=\sum_{i=1}^{p} r_{j}^{i} a_{i}^{k} \quad \forall k=1, \ldots, m, \forall j=p+1, \ldots, n
$$

for some $\mathbf{R}=\left[r_{j}^{i}\right] \in M_{p, n-p}(\mathbb{K})$. In terms of matrices,

$$
\left[\mathbf{a}_{p+1}\left|\mathbf{a}_{p+2}\right| \ldots \mid \mathbf{a}_{n}\right]=\left[\mathbf{a}_{1}|\ldots| \mathbf{a}_{p}\right] \mathbf{R}=\mathbf{B R}
$$

hence

$$
\mathbf{A}=[\mathbf{B} \mid \mathbf{B R}]=\mathbf{B}\left[\operatorname{Id}_{p} \mid \mathbf{R}\right] .
$$

Taking the transposes, we have $\mathbf{A}^{T} \in M_{n, m}(\mathbb{K}), \mathbf{B}^{T} \in M_{p, m}(\mathbb{K})$ and

$$
\mathbf{A}^{T}=\left(\begin{array}{c}
\mathrm{Id}_{p}  \tag{1.6}\\
\left.\begin{array}{|c}
\mathbf{R}^{T} \\
\hline
\end{array}\right) \mathbf{B}^{T} . . . . . . . .
\end{array}\right.
$$

Since $\left[\operatorname{Id}_{p} \mid \mathbf{R}\right]^{T}$ is trivially injective, we infer that $\operatorname{ker} \mathbf{A}^{T}=\operatorname{ker} \mathbf{B}^{T}$, hence by the rank formula

$$
\operatorname{Rank} \mathbf{A}^{T}=m-\operatorname{dim} \operatorname{ker} \mathbf{A}^{T}=m-\operatorname{dim} \operatorname{ker} \mathbf{B}^{T}=\operatorname{Rank} \mathbf{B}^{T},
$$

and we conclude that

$$
\operatorname{Rank} \mathbf{A}^{T}=\operatorname{Rank} \mathbf{B}^{T} \leq \min (m, p)=p=\operatorname{Rank} \mathbf{A} .
$$

Finally, by applying the above to the matrix $\mathbf{A}^{T}$, we get the opposite inequality $\operatorname{Rank} \mathbf{A}=\operatorname{Rank}\left(\mathbf{A}^{T}\right)^{T} \leq \operatorname{Rank} \mathbf{A}^{T}$, hence the conclusion.
(ii) With the previous notation, we have $\operatorname{Rank} \mathbf{B}^{T}=\operatorname{Rank} \mathbf{B}=p$. Thus $\mathbf{B}$ has a set of $p$ independent rows. The submatrix $\mathbf{S}$ of $\mathbf{B}$ made by these rows is a square $p \times p$ matrix with Rank $\mathbf{S}=\operatorname{Rank} \mathbf{S}^{T}=p$, hence nonsingular.
1.29 ๆ. Let $\mathbf{A} \in M_{m, n}(\mathbb{K})$, let $A(\mathbf{x}):=\mathbf{A x}$ and let $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)$ be a basis of $\mathbb{K}^{n}$. Show the following:
(i) $A$ is injective if and only if the vectors $A\left(\mathbf{v}_{1}\right), A\left(\mathbf{v}_{2}\right), \ldots, A\left(\mathbf{v}_{n}\right)$ of $\mathbb{K}^{m}$ are linearly independent,
(ii) $A$ is surjective if and only if $\left\{A\left(\mathbf{v}_{1}\right), A\left(\mathbf{v}_{2}\right), \ldots, A\left(\mathbf{v}_{n}\right)\right\}$ spans $\mathbb{K}^{m}$,
(iii) $A$ is bijective iff $\left\{A\left(\mathbf{v}_{1}\right), A\left(\mathbf{v}_{2}\right), \ldots, A\left(\mathbf{v}_{n}\right)\right\}$ is a basis of $\mathbb{K}^{m}$.

