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5.2.5 Canonical Markov chains

Example5.12 A typical example which may help intuition is that@hdom walks

A person is at a random positidhy k£ € Z, and at each step moves either to the
positionk — 1 or to the positiork + 1 according to a Bernoulli trial of parameter
for example by tossing a coin. L&t,, be the position occupied at thh step and let
{¢,} be a sequence afidependentandom variables that followB(1, p) and such
that(,, decides if the person moves backward or foward at stéfhen

XnJrl = Xn + 2Cn -1

so that{ X, } is a Markov chain, see Theorem 5.13 below, whose transitiatnixris
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Matrix P is represented as a graph in Figure 5.2.
Example 5.12 is indeed a standard way to construct Markowshaéhe following
holds.

Theorem 5.13 Let S be a finite or denumerable set, and l&f, : 2 — S be

a random variable on(Q,&,P). Let {¢,}, &, :Q — RY be a sequence of
independent, identically distributed random variables (&h £, P) that are also
independent ok, and letf : S x RY — S be a Borel function. Then the sequence
{X,n}, X, : Q — S defined by

Xnt1(z) := f(Xn(2),&n(x)), YR 20, (5.17)
is a homogeneous Markov chain with state spS@nd transition matrix
P, =P(f(i,&) =7)  Vi,jeS.

Proof. From the definition, it is clear that for any integerthe random variable
X} is a function of Xy and &y, ...,&:_1. Consequently, for any integer, the
random variable,,, which is by definition independent ¢fX,&;,...,&—1), IS
also independent dfXy, ..., X,,). Therefore,

IP(XnH:j‘Xn:i, ...,onio)

=P (f(.60) = | Xa =i, Xo=i0) = P(f(i.6) = j);
(5.18)
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the last equality holds since the random varig¥e, . . . , X,,) is independent of,,,
hence off (i, &,,). Since the right hand side of (5.18) is independent of theesbf
X,—1,...,Xo, we conclude that

P<X7z+1:j‘Xn:i7 ---7X0:i0):P<X7L+1:j‘Xn:i>7

i.e., {X,} is a Markov chain. The transition matrix is thdh= (P}), P} :=
P(f(i,&,) = j) and is independent ofi since the random variableg, are
identically distributed.

Theorem 5.14 LetS be afinite or denumerable set, andRbe a stochastic matrix.
Let X, : Q — S be arandom variable off2, £, P) and let{¢,, }, &, : © — [0, 1] be
a sequence of independent, uniformly distributed randorfablkes that are also
independent ok . Define

J
f(i,s) :zmin{j‘ZPZEs} Vi >0, seR.
h=1

Then the sequendeX,, }, X, : @ — S defined by
X7L+1(m) = f(X’VL(m)7§’VL(m))7 T e Qa n >0,
is a homogeneous Markov chain with state-sp8@nd transition matrixP.

Proof. By Theorem 5.13, the sequeng&, } is a Markov chain. Moreover,
f(i,&.(xz)) = jifand only if

j—1 j
Y P <&ulz) <) P,
h=1 h=1
hence
P(f(i,én(2)) =j) =Y P~ ) P, =Pj
h=1 h=1

The previous theorem constructs in fact a homogeneous Markain { X, } with

a given transition matrix and a given initial dak,. In particular, Theorem 5.14
reduces the problem of the existence of a Markov chain wiiliengransition matrix
P on a probability spac&?, £, P) and a given initial dat&X, to the existence of a
sequence of independent random variables that are unifatisiributed on[0, 1],
see Section 2.2.5 and Section 4.4.4.



