5.2.5 Canonical Markov chains

Example 5.12 A typical example which may help intuition is that of random walks. A person is at a random position $k, k \in \mathbb{Z}$, and at each step moves either to the position $k-1$ or to the position $k+1$ according to a Bernoulli trial of parameter p, for example by tossing a coin. Let X_{n} be the position occupied at the nth step and let $\left\{\zeta_{n}\right\}$ be a sequence of independent random variables that follow $B(1, p)$ and such that ζ_{n} decides if the person moves backward or foward at step n. Then

$$
X_{n+1}=X_{n}+2 \zeta_{n}-1
$$

so that $\left\{X_{n}\right\}$ is a Markov chain, see Theorem 5.13 below, whose transition matrix is

$$
\mathbf{P}=\left(\begin{array}{ccccccc}
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & p & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & p & 0 & 0 & 0 & \cdots \\
\cdots & q & 0 & p & 0 & 0 & \cdots \\
\cdots & 0 & q & 0 & p & 0 & \cdots \\
\cdots & 0 & 0 & q & 0 & p & \cdots \\
\cdots & 0 & 0 & 0 & q & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & q & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

Matrix \mathbf{P} is represented as a graph in Figure 5.2.
Example 5.12 is indeed a standard way to construct Markov chains. The following holds.

Theorem 5.13 Let S be a finite or denumerable set, and let $X_{0}: \Omega \rightarrow S$ be a random variable on $(\Omega, \mathcal{E}, \mathbb{P})$. Let $\left\{\xi_{n}\right\}, \xi_{n}: \Omega \rightarrow \mathbb{R}^{N}$ be a sequence of independent, identically distributed random variables on $(\Omega, \mathcal{E}, \mathbb{P})$ that are also independent of X_{0} and let $f: S \times \mathbb{R}^{N} \rightarrow S$ be a Borel function. Then the sequence $\left\{X_{n}\right\}, X_{n}: \Omega \rightarrow S$ defined by

$$
\begin{equation*}
X_{n+1}(x):=f\left(X_{n}(x), \xi_{n}(x)\right), \quad \forall n \geq 0 \tag{5.17}
\end{equation*}
$$

is a homogeneous Markov chain with state space S and transition matrix

$$
\mathbf{P}_{j}^{i}:=\mathbb{P}\left(f\left(i, \xi_{k}\right)=j\right) \quad \forall i, j \in S
$$

Proof. From the definition, it is clear that for any integer k, the random variable X_{k} is a function of X_{0} and $\xi_{1}, \ldots, \xi_{k-1}$. Consequently, for any integer n, the random variable ξ_{n}, which is by definition independent of $\left(X_{0}, \xi_{1}, \ldots, \xi_{n-1}\right)$, is also independent of $\left(X_{0}, \ldots, X_{n}\right)$. Therefore,

$$
\begin{align*}
\mathbb{P}\left(X_{n+1}\right. & \left.=j \mid X_{n}=i, \ldots, X_{0}=i_{0}\right) \\
& =\mathbb{P}\left(f\left(i, \xi_{n}\right)=j \mid X_{n}=i, \ldots, X_{0}=i_{0}\right)=\mathbb{P}\left(f\left(i, \xi_{n}\right)=j\right) \tag{5.18}
\end{align*}
$$

the last equality holds since the random variable $\left(X_{0}, \ldots, X_{n}\right)$ is independent of ξ_{n}, hence of $f\left(i, \xi_{n}\right)$. Since the right hand side of (5.18) is independent of the values of X_{n-1}, \ldots, X_{0}, we conclude that

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i, \ldots, X_{0}=i_{0}\right)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)
$$

i.e., $\left\{X_{n}\right\}$ is a Markov chain. The transition matrix is then $\mathbf{P}=\left(\mathbf{P}_{j}^{i}\right), \mathbf{P}_{j}^{i}:=$ $\mathbb{P}\left(f\left(i, \xi_{n}\right)=j\right)$ and is independent of n since the random variables ξ_{n} are identically distributed.

Theorem 5.14 Let S be a finite or denumerable set, and let \mathbf{P} be a stochastic matrix. Let $X_{0}: \Omega \rightarrow S$ be a random variable on $(\Omega, \mathcal{E}, \mathbb{P})$ and let $\left\{\xi_{n}\right\}, \xi_{n}: \Omega \rightarrow[0,1]$ be a sequence of independent, uniformly distributed random variables that are also independent of X_{0}. Define

$$
f(i, s):=\min \left\{j \mid \sum_{h=1}^{j} \mathbf{P}_{h}^{i} \geq s\right\} \quad \forall i>0, s \in \mathbb{R} .
$$

Then the sequence $\left\{X_{n}\right\}, X_{n}: \Omega \rightarrow S$ defined by

$$
X_{n+1}(x)=f\left(X_{n}(x), \xi_{n}(x)\right), \quad x \in \Omega, n \geq 0
$$

is a homogeneous Markov chain with state-space S and transition matrix \mathbf{P}.
Proof. By Theorem 5.13, the sequence $\left\{X_{n}\right\}$ is a Markov chain. Moreover, $f\left(i, \xi_{n}(x)\right)=j$ if and only if

$$
\sum_{h=1}^{j-1} \mathbf{P}_{h}^{i}<\xi_{n}(x) \leq \sum_{h=1}^{j} \mathbf{P}_{h}^{i}
$$

hence

$$
\mathbb{P}\left(f\left(i, \xi_{n}(x)\right)=j\right)=\sum_{h=1}^{j} \mathbf{P}_{h}^{i}-\sum_{h=1}^{j-1} \mathbf{P}_{h}^{i}=\mathbf{P}_{j}^{i} .
$$

The previous theorem constructs in fact a homogeneous Markov chain $\left\{X_{n}\right\}$ with a given transition matrix and a given initial data X_{0}. In particular, Theorem 5.14 reduces the problem of the existence of a Markov chain with a given transition matrix \mathbf{P} on a probability space $(\Omega, \mathcal{E}, \mathbb{P})$ and a given initial data X_{0} to the existence of a sequence of independent random variables that are uniformly distributed on $[0,1]$, see Section 2.2.5 and Section 4.4.4.

