5.2.5 Canonical Markov chains

Example 5.12 A typical example which may help intuition is that of *random walks*. A person is at a random position $k, k \in \mathbb{Z}$, and at each step moves either to the position k - 1 or to the position k + 1 according to a Bernoulli trial of parameter p, for example by tossing a coin. Let X_n be the position occupied at the *n*th step and let $\{\zeta_n\}$ be a sequence of *independent* random variables that follow B(1, p) and such that ζ_n decides if the person moves backward or foward at step n. Then

$$X_{n+1} = X_n + 2\zeta_n - 1$$

so that $\{X_n\}$ is a Markov chain, see Theorem 5.13 below, whose transition matrix is

	1)
		p	0	0	0	0	
		0	p	0	0	0	
		q	0	p	0	0	
$\mathbf{P} =$		0	q	0	p	0	
		0	0	q	0	p	
		0	0	0	q	0	
		0	0	0	0	q	
	$\left\langle \ldots \right\rangle$)

Matrix **P** is represented as a graph in Figure 5.2.

Example 5.12 is indeed a standard way to construct Markov chains. The following holds.

Theorem 5.13 Let S be a finite or denumerable set, and let $X_0 : \Omega \to S$ be a random variable on $(\Omega, \mathcal{E}, \mathbb{P})$. Let $\{\xi_n\}, \xi_n : \Omega \to \mathbb{R}^N$ be a sequence of independent, identically distributed random variables on $(\Omega, \mathcal{E}, \mathbb{P})$ that are also independent of X_0 and let $f : S \times \mathbb{R}^N \to S$ be a Borel function. Then the sequence $\{X_n\}, X_n : \Omega \to S$ defined by

$$X_{n+1}(x) := f(X_n(x), \xi_n(x)), \qquad \forall n \ge 0,$$
(5.17)

is a homogeneous Markov chain with state space S and transition matrix

$$\mathbf{P}_{i}^{i} := \mathbb{P}(f(i,\xi_{k}) = j) \qquad \forall i, j \in S.$$

Proof. From the definition, it is clear that for any integer k, the random variable X_k is a function of X_0 and ξ_1, \ldots, ξ_{k-1} . Consequently, for any integer n, the random variable ξ_n , which is by definition independent of $(X_0, \xi_1, \ldots, \xi_{n-1})$, is also independent of (X_0, \ldots, X_n) . Therefore,

$$\mathbb{P}\left(X_{n+1} = j \mid X_n = i, \dots, X_0 = i_0\right)$$

= $\mathbb{P}\left(f(i,\xi_n) = j \mid X_n = i, \dots, X_0 = i_0\right) = \mathbb{P}(f(i,\xi_n) = j);$
(5.18)

the last equality holds since the random variable (X_0, \ldots, X_n) is independent of ξ_n , hence of $f(i, \xi_n)$. Since the right hand side of (5.18) is independent of the values of X_{n-1}, \ldots, X_0 , we conclude that

$$\mathbb{P}\left(X_{n+1} = j \mid X_n = i, \dots, X_0 = i_0\right) = \mathbb{P}\left(X_{n+1} = j \mid X_n = i\right),$$

i.e., $\{X_n\}$ is a Markov chain. The transition matrix is then $\mathbf{P} = (\mathbf{P}_j^i)$, $\mathbf{P}_j^i := \mathbb{P}(f(i,\xi_n) = j)$ and is independent of n since the random variables ξ_n are identically distributed.

Theorem 5.14 Let S be a finite or denumerable set, and let \mathbf{P} be a stochastic matrix. Let $X_0 : \Omega \to S$ be a random variable on $(\Omega, \mathcal{E}, \mathbb{P})$ and let $\{\xi_n\}, \xi_n : \Omega \to [0, 1]$ be a sequence of independent, uniformly distributed random variables that are also independent of X_0 . Define

$$f(i,s) := \min\left\{j \mid \sum_{h=1}^{j} \mathbf{P}_{h}^{i} \ge s\right\} \qquad \forall i > 0, \ s \in \mathbb{R}.$$

Then the sequence $\{X_n\}, X_n : \Omega \to S$ defined by

$$X_{n+1}(x) = f(X_n(x), \xi_n(x)), \quad x \in \Omega, \ n \ge 0,$$

is a homogeneous Markov chain with state-space S and transition matrix \mathbf{P} .

Proof. By Theorem 5.13, the sequence $\{X_n\}$ is a Markov chain. Moreover, $f(i, \xi_n(x)) = j$ if and only if

$$\sum_{h=1}^{j-1} \mathbf{P}_h^i < \xi_n(x) \le \sum_{h=1}^j \mathbf{P}_h^i$$

hence

$$\mathbb{P}(f(i,\xi_n(x)) = j) = \sum_{h=1}^{j} \mathbf{P}_h^i - \sum_{h=1}^{j-1} \mathbf{P}_h^i = \mathbf{P}_j^i.$$

The previous theorem constructs in fact a homogeneous Markov chain $\{X_n\}$ with a given transition matrix and a given initial data X_0 . In particular, Theorem 5.14 reduces the problem of the existence of a Markov chain with a given transition matrix **P** on a probability space $(\Omega, \mathcal{E}, \mathbb{P})$ and a given initial data X_0 to the existence of a sequence of independent random variables that are uniformly distributed on [0, 1], see Section 2.2.5 and Section 4.4.4.