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5.2.5 Canonical Markov chains

Example 5.12 A typical example which may help intuition is that ofrandom walks.
A person is at a random positionk, k ∈ Z, and at each step moves either to the
positionk − 1 or to the positionk + 1 according to a Bernoulli trial of parameterp,
for example by tossing a coin. LetXn be the position occupied at thenth step and let
{ζn} be a sequence ofindependentrandom variables that followB(1, p) and such
thatζn decides if the person moves backward or foward at stepn. Then

Xn+1 = Xn + 2ζn − 1

so that{Xn} is a Markov chain, see Theorem 5.13 below, whose transition matrix is

P =





























. . . . . . . . . . . . . . . . . . . . .
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Matrix P is represented as a graph in Figure 5.2.
Example 5.12 is indeed a standard way to construct Markov chains. The following

holds.

Theorem 5.13 Let S be a finite or denumerable set, and letX0 : Ω → S be
a random variable on(Ω, E ,P). Let {ξn}, ξn : Ω → R

N be a sequence of
independent, identically distributed random variables on(Ω, E ,P) that are also
independent ofX0 and letf : S × R

N → S be a Borel function. Then the sequence
{Xn}, Xn : Ω → S defined by

Xn+1(x) := f(Xn(x), ξn(x)), ∀n ≥ 0, (5.17)

is a homogeneous Markov chain with state spaceS and transition matrix

P
i
j := P(f(i, ξk) = j) ∀i, j ∈ S.

Proof. From the definition, it is clear that for any integerk, the random variable
Xk is a function ofX0 and ξ1, . . . , ξk−1. Consequently, for any integern, the
random variableξn, which is by definition independent of(X0, ξ1, . . . , ξn−1), is
also independent of(X0, . . . ,Xn). Therefore,

P

(

Xn+1 = j

∣

∣

∣
Xn = i, . . . , X0 = i0

)

= P

(

f(i, ξn) = j

∣

∣

∣Xn = i, . . . , X0 = i0

)

= P(f(i, ξn) = j);

(5.18)
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the last equality holds since the random variable(X0, . . . ,Xn) is independent ofξn,
hence off(i, ξn). Since the right hand side of (5.18) is independent of the values of
Xn−1, . . . ,X0, we conclude that

P

(

Xn+1 = j

∣

∣

∣
Xn = i, . . . , X0 = i0

)

= P

(

Xn+1 = j

∣

∣

∣
Xn = i

)

,

i.e., {Xn} is a Markov chain. The transition matrix is thenP = (Pi
j), P

i
j :=

P(f(i, ξn) = j) and is independent ofn since the random variablesξn are
identically distributed.

Theorem 5.14 LetS be a finite or denumerable set, and letP be a stochastic matrix.
LetX0 : Ω → S be a random variable on(Ω, E ,P) and let{ξn}, ξn : Ω → [0, 1] be
a sequence of independent, uniformly distributed random variables that are also
independent ofX0. Define

f(i, s) := min

{

j

∣

∣

∣

j
∑

h=1

P
i
h ≥ s

}

∀i > 0, s ∈ R.

Then the sequence{Xn}, Xn : Ω → S defined by

Xn+1(x) = f(Xn(x), ξn(x)), x ∈ Ω, n ≥ 0,

is a homogeneous Markov chain with state-spaceS and transition matrixP.

Proof. By Theorem 5.13, the sequence{Xn} is a Markov chain. Moreover,
f(i, ξn(x)) = j if and only if

j−1
∑

h=1

P
i
h < ξn(x) ≤

j
∑

h=1

P
i
h

hence

P(f(i, ξn(x)) = j) =

j
∑

h=1

P
i
h −

j−1
∑

h=1

P
i
h = P

i
j .

The previous theorem constructs in fact a homogeneous Markov chain{Xn} with
a given transition matrix and a given initial dataX0. In particular, Theorem 5.14
reduces the problem of the existence of a Markov chain with a given transition matrix
P on a probability space(Ω, E ,P) and a given initial dataX0 to the existence of a
sequence of independent random variables that are uniformly distributed on[0, 1],
see Section 2.2.5 and Section 4.4.4.


