
Introduction

The analysis of algorithms often requires us to draw upon a body of mathematical

tools. Some of these tools are as simple as high-school algebra, but others may

be new to you. In Part I, we saw how to manipulate asymptotic notations and

solve recurrences. This Appendix is a compendium of several other concepts and

methods we use to analyze algorithms. As noted in the introduction to Part I, you

may have seen much of the material in this Appendix before having read this book

(although the specific notational conventions we use might occasionally differ from

those you saw in other books). Hence, you should treat this Appendix as reference

material. As in the rest of this book, however, we have included exercises and

problems, in order for you to improve your skills in these areas.

Appendix A offers methods for evaluating and bounding summations, which

occur frequently in the analysis of algorithms. Many of the formulas in this chapter

can be found in any calculus text, but you will find it convenient to have these

methods compiled in one place.

Appendix B contains basic definitions and notations for sets, relations, func-

tions, graphs, and trees. This chapter also gives some basic properties of these

mathematical objects.

Appendix C begins with elementary principles of counting: permutations, com-

binations, and the like. The remainder of the chapter contains definitions and prop-

erties of basic probability. Most of the algorithms in this book require no probabil-

ity for their analysis, and thus you can easily omit the latter sections of the chapter

on a first reading, even without skimming them. Later, when you encounter a prob-

abilistic analysis that you want to understand better, you will find Appendix C well

organized for reference purposes.



A Summations

When an algorithm contains an iterative control construct such as a while or for

loop, its running time can be expressed as the sum of the times spent on each

execution of the body of the loop. For example, we found in Section 2.2 that

the j th iteration of insertion sort took time proportional to j in the worst case. By

adding up the time spent on each iteration, we obtained the summation (or series)

n∑

j=2

j .

Evaluating this summation yielded a bound of 2(n2) on the worst-case running

time of the algorithm. This example indicates the general importance of under-

standing how to manipulate and bound summations.

Section A.1 lists several basic formulas involving summations. Section A.2 of-

fers useful techniques for bounding summations. The formulas in Section A.1 are

given without proof, though proofs for some of them are presented in Section A.2

to illustrate the methods of that section. Most of the other proofs can be found in

any calculus text.

A.1 Summation formulas and properties

Given a sequence a1, a2, . . . of numbers, the finite sum a1 + a2 +· · ·+ an , where n

is an nonnegative integer, can be written

n∑

k=1

ak .

If n = 0, the value of the summation is defined to be 0. The value of a finite series

is always well defined, and its terms can be added in any order.

Given a sequence a1, a2, . . . of numbers, the infinite sum a1 + a2 + · · · can be

written
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∞
∑

k=1

ak ,

which is interpreted to mean

lim
n→∞

n
∑

k=1

ak .

If the limit does not exist, the series diverges; otherwise, it converges. The terms

of a convergent series cannot always be added in any order. We can, however,

rearrange the terms of an absolutely convergent series, that is, a series
∑∞

k=1 ak for

which the series
∑∞

k=1 |ak | also converges.

Linearity

For any real number c and any finite sequences a1, a2, . . . , an and b1, b2, . . . , bn ,

n
∑

k=1

(cak + bk) = c

n
∑

k=1

ak +

n
∑

k=1

bk .

The linearity property is also obeyed by infinite convergent series.

The linearity property can be exploited to manipulate summations incorporating

asymptotic notation. For example,

n
∑

k=1

2( f (k)) = 2

(

n
∑

k=1

f (k)

)

.

In this equation, the 2-notation on the left-hand side applies to the variable k, but

on the right-hand side, it applies to n. Such manipulations can also be applied to

infinite convergent series.

Arithmetic series

The summation

n
∑

k=1

k = 1 + 2 + · · · + n ,

is an arithmetic series and has the value

n
∑

k=1

k =
1

2
n(n + 1) (A.1)

= 2(n2) . (A.2)
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Sums of squares and cubes

We have the following summations of squares and cubes:

n∑

k=0

k2 =
n(n + 1)(2n + 1)

6
, (A.3)

n∑

k=0

k3 =
n2(n + 1)2

4
. (A.4)

Geometric series

For real x 6= 1, the summation

n∑

k=0

xk = 1+ x + x2 + · · · + xn

is a geometric or exponential series and has the value

n∑

k=0

xk =
xn+1 − 1

x − 1
. (A.5)

When the summation is infinite and |x| < 1, we have the infinite decreasing geo-

metric series

∞∑

k=0

xk =
1

1− x
. (A.6)

Harmonic series

For positive integers n, the nth harmonic number is

Hn = 1+
1

2
+

1

3
+

1

4
+ · · · +

1

n

=

n∑

k=1

1

k

= ln n + O(1) . (A.7)

(We shall prove this bound in Section A.2.)

Integrating and differentiating series

Additional formulas can be obtained by integrating or differentiating the formulas

above. For example, by differentiating both sides of the infinite geometric series

(A.6) and multiplying by x , we get
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∞
∑

k=0

kxk =
x

(1− x)2
(A.8)

for |x| < 1.

Telescoping series

For any sequence a0, a1, . . . , an ,

n
∑

k=1

(ak − ak−1) = an − a0 , (A.9)

since each of the terms a1, a2, . . . , an−1 is added in exactly once and subtracted out

exactly once. We say that the sum telescopes. Similarly,

n−1
∑

k=0

(ak − ak+1) = a0 − an .

As an example of a telescoping sum, consider the series

n−1
∑

k=1

1

k(k + 1)
.

Since we can rewrite each term as

1

k(k + 1)
=

1

k
−

1

k + 1
,

we get

n−1
∑

k=1

1

k(k + 1)
=

n−1
∑

k=1

(

1

k
−

1

k + 1

)

= 1−
1

n
.

Products

The finite product a1a2 · · · an can be written

n
∏

k=1

ak .

If n = 0, the value of the product is defined to be 1. We can convert a formula with

a product to a formula with a summation by using the identity

lg

(

n
∏

k=1

ak

)

=

n
∑

k=1

lg ak .
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Exercises

A.1-1

Find a simple formula for
∑n

k=1(2k − 1).

A.1-2 ⋆

Show that
∑n

k=1 1/(2k−1) = ln(
√

n)+O(1) by manipulating the harmonic series.

A.1-3

Show that
∑∞

k=0 k2xk = x(1+ x)/(1− x)3 for 0 < |x| < 1.

A.1-4 ⋆

Show that
∑∞

k=0(k − 1)/2k = 0.

A.1-5 ⋆

Evaluate the sum
∑∞

k=1(2k + 1)x2k .

A.1-6

Prove that
∑n

k=1 O( fk(n)) = O (
∑n

k=1 fk(n)) by using the linearity property of

summations.

A.1-7

Evaluate the product
∏n

k=1 2 · 4k .

A.1-8 ⋆

Evaluate the product
∏n

k=2(1− 1/k2).

A.2 Bounding summations

There are many techniques available for bounding the summations that describe the

running times of algorithms. Here are some of the most frequently used methods.

Mathematical induction

The most basic way to evaluate a series is to use mathematical induction. As an

example, let us prove that the arithmetic series
∑n

k=1 k evaluates to 1
2
n(n + 1). We

can easily verify this for n = 1, so we make the inductive assumption that it holds

for n and prove that it holds for n + 1. We have

n+1∑

k=1

k =
n∑

k=1

k + (n + 1)
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=
1

2
n(n + 1) + (n + 1)

=
1

2
(n + 1)(n + 2) .

One need not guess the exact value of a summation in order to use mathematical

induction. Induction can be used to show a bound as well. As an example, let us

prove that the geometric series
∑n

k=0 3k is O(3n). More specifically, let us prove

that
∑n

k=0 3k
≤ c3n for some constant c. For the initial condition n = 0, we have

∑0
k=0 3k

= 1 ≤ c · 1 as long as c ≥ 1. Assuming that the bound holds for n, let us

prove that it holds for n + 1. We have

n+1
∑

k=0

3k
=

n
∑

k=0

3k
+ 3n+1

≤ c3n
+ 3n+1

=

(

1

3
+

1

c

)

c3n+1

≤ c3n+1

as long as (1/3 + 1/c) ≤ 1 or, equivalently, c ≥ 3/2. Thus,
∑n

k=0 3k
= O(3n), as

we wished to show.

We have to be careful when we use asymptotic notation to prove bounds by

induction. Consider the following fallacious proof that
∑n

k=1 k = O(n). Certainly,
∑1

k=1 k = O(1). Assuming the bound for n, we now prove it for n + 1:

n+1
∑

k=1

k =

n
∑

k=1

k + (n + 1)

= O(n) + (n + 1) ⇐H wrong!!

= O(n + 1) .

The bug in the argument is that the “constant” hidden by the “big-oh” grows with n

and thus is not constant. We have not shown that the same constant works for all n.

Bounding the terms

Sometimes, a good upper bound on a series can be obtained by bounding each term

of the series, and it often suffices to use the largest term to bound the others. For

example, a quick upper bound on the arithmetic series (A.1) is

n
∑

k=1

k ≤

n
∑

k=1

n

= n2 .
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In general, for a series
∑n

k=1 ak , if we let amax = max1≤k≤n ak , then

n∑

k=1

ak ≤ namax .

The technique of bounding each term in a series by the largest term is a weak

method when the series can in fact be bounded by a geometric series. Given the

series
∑n

k=0 ak , suppose that ak+1/ak ≤ r for all k ≥ 0, where 0 < r < 1 is

a constant. The sum can be bounded by an infinite decreasing geometric series,

since ak ≤ a0r k , and thus

n∑

k=0

ak ≤

∞∑

k=0

a0r k

= a0

∞∑

k=0

r k

= a0

1

1− r
.

We can apply this method to bound the summation
∑
∞

k=1(k/3k). In order to start

the summation at k = 0, we rewrite it as
∑
∞

k=0((k + 1)/3k+1). The first term (a0)

is 1/3, and the ratio (r) of consecutive terms is

(k + 2)/3k+2

(k + 1)/3k+1
=

1

3
·

k + 2

k + 1

≤
2

3

for all k ≥ 0. Thus, we have

∞∑

k=1

k

3k
=

∞∑

k=0

k + 1

3k+1

≤
1

3
·

1

1− 2/3

= 1 .

A common bug in applying this method is to show that the ratio of consecu-

tive terms is less than 1 and then to assume that the summation is bounded by a

geometric series. An example is the infinite harmonic series, which diverges since

∞∑

k=1

1

k
= lim

n→∞

n∑

k=1

1

k

= lim
n→∞

2(lg n)

= ∞ .
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The ratio of the (k+1)st and kth terms in this series is k/(k+1) < 1, but the series

is not bounded by a decreasing geometric series. To bound a series by a geometric

series, one must show that there is an r < 1, which is a constant, such that the ratio

of all pairs of consecutive terms never exceeds r . In the harmonic series, no such r

exists because the ratio becomes arbitrarily close to 1.

Splitting summations

One way to obtain bounds on a difficult summation is to express the series as the

sum of two or more series by partitioning the range of the index and then to bound

each of the resulting series. For example, suppose we try to find a lower bound on

the arithmetic series
∑n

k=1 k, which has already been shown to have an upper bound

of n2. We might attempt to bound each term in the summation by the smallest term,

but since that term is 1, we get a lower bound of n for the summation—far off from

our upper bound of n2.

We can obtain a better lower bound by first splitting the summation. Assume for

convenience that n is even. We have

n∑

k=1

k =

n/2∑

k=1

k +
n∑

k=n/2+1

k

≥

n/2∑

k=1

0+

n∑

k=n/2+1

(n/2)

= (n/2)2

= �(n2) ,

which is an asymptotically tight bound, since
∑n

k=1 k = O(n2).

For a summation arising from the analysis of an algorithm, we can often split

the summation and ignore a constant number of the initial terms. Generally, this

technique applies when each term ak in a summation
∑n

k=0 ak is independent of n.

Then for any constant k0 > 0, we can write

n∑

k=0

ak =

k0−1∑

k=0

ak +

n∑

k=k0

ak

= 2(1)+

n∑

k=k0

ak ,

since the initial terms of the summation are all constant and there are a constant

number of them. We can then use other methods to bound
∑n

k=k0
ak . This tech-

nique applies to infinite summations as well. For example, to find an asymptotic

upper bound on
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∞
∑

k=0

k2

2k
,

we observe that the ratio of consecutive terms is

(k + 1)2/2k+1

k2/2k
=

(k + 1)2

2k2

≤
8

9

if k ≥ 3. Thus, the summation can be split into

∞
∑

k=0

k2

2k
=

2
∑

k=0

k2

2k
+

∞
∑

k=3

k2

2k

≤

2
∑

k=0

k2

2k
+

9

8

∞
∑

k=0

(

8

9

)k

= O(1) ,

since the first summation has a constant number of terms and the second summation

is a decreasing geometric series.

The technique of splitting summations can be used to determine asymptotic

bounds in much more difficult situations. For example, we can obtain a bound

of O(lg n) on the harmonic series (A.7):

Hn =

n
∑

k=1

1

k
.

The idea is to split the range 1 to n into ⌊lg n⌋ pieces and upper-bound the con-

tribution of each piece by 1. Each piece consists of the terms starting at 1/2i and

going up to but not including 1/2i+1, giving

n
∑

k=1

1

k
≤

⌊lg n⌋
∑

i=0

2i−1
∑

j=0

1

2i + j

≤

⌊lg n⌋
∑

i=0

2i−1
∑

j=0

1

2i

≤

⌊lg n⌋
∑

i=0

1

≤ lg n + 1 . (A.10)



A.2 Bounding summations 1067

Approximation by integrals

When a summation can be expressed as
∑n

k=m f (k), where f (k) is a monotonically

increasing function, we can approximate it by integrals:

∫ n

m−1

f (x) dx ≤
n∑

k=m

f (k) ≤

∫ n+1

m

f (x) dx . (A.11)

The justification for this approximation is shown in Figure A.1. The summation is

represented as the area of the rectangles in the figure, and the integral is the shaded

region under the curve. When f (k) is a monotonically decreasing function, we can

use a similar method to provide the bounds

∫ n+1

m

f (x) dx ≤
n∑

k=m

f (k) ≤

∫ n

m−1

f (x) dx . (A.12)

The integral approximation (A.12) gives a tight estimate for the nth harmonic

number. For a lower bound, we obtain

n∑
k=1

1

k
≥

∫ n+1

1

dx

x

= ln(n + 1) . (A.13)

For the upper bound, we derive the inequality

n∑
k=2

1

k
≤

∫ n

1

dx

x

= ln n ,

which yields the bound

n∑
k=1

1

k
≤ ln n + 1 . (A.14)

Exercises

A.2-1

Show that
∑n

k=1 1/k2 is bounded above by a constant.

A.2-2

Find an asymptotic upper bound on the summation

⌊lg n⌋∑
k=0

⌈n/2k⌉ .
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n+1n–1n–2m+2mm –1

f ( m
)

f (m
+

1
)

f ( m
+

2
)

f (n
–
2
)

f (n
–

1
)

f (n
)

f (x)

x
… … n

… …

(a)

m+1

n+1n–1n–2m+2mm –1

f ( m
)

f (m
+

1
)

f (m
+

2
)

f (n
–

2
)

f (n
–

1
)

f (n
)

f (x)

x
… … n

… …

(b)

m+1

Figure A.1 Approximation of
∑n

k=m f (k) by integrals. The area of each rectangle is shown

within the rectangle, and the total rectangle area represents the value of the summation. The in-

tegral is represented by the shaded area under the curve. By comparing areas in (a), we get∫ n
m−1 f (x) dx ≤

∑n
k=m f (k), and then by shifting the rectangles one unit to the right, we get

∑n
k=m f (k) ≤

∫ n+1
m f (x) dx in (b).
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A.2-3

Show that the nth harmonic number is �(lg n) by splitting the summation.

A.2-4

Approximate
∑n

k=1 k3 with an integral.

A.2-5

Why didn’t we use the integral approximation (A.12) directly on
∑n

k=1 1/k to ob-

tain an upper bound on the nth harmonic number?

Problems

A-1 Bounding summations

Give asymptotically tight bounds on the following summations. Assume that r ≥ 0

and s ≥ 0 are constants.

a.

n∑

k=1

kr .

b.

n∑

k=1

lgs k.

c.

n∑

k=1

kr lgs k.

Chapter notes

Knuth [182] is an excellent reference for the material presented in this chapter.

Basic properties of series can be found in any good calculus book, such as Apostol

[18] or Thomas and Finney [296].



C Counting and Probability

This chapter reviews elementary combinatorics and probability theory. If you have

a good background in these areas, you may want to skim the beginning of the

chapter lightly and concentrate on the later sections. Most of the chapters do not

require probability, but for some chapters it is essential.

Section C.1 reviews elementary results in counting theory, including standard

formulas for counting permutations and combinations. The axioms of probability

and basic facts concerning probability distributions are presented in Section C.2.

Random variables are introduced in Section C.3, along with the properties of ex-

pectation and variance. Section C.4 investigates the geometric and binomial dis-

tributions that arise from studying Bernoulli trials. The study of the binomial dis-

tribution is continued in Section C.5, an advanced discussion of the “tails” of the

distribution.

C.1 Counting

Counting theory tries to answer the question “How many?” without actually enu-

merating how many. For example, we might ask, “How many different n-bit num-

bers are there?” or “How many orderings of n distinct elements are there?” In this

section, we review the elements of counting theory. Since some of the material

assumes a basic understanding of sets, the reader is advised to start by reviewing

the material in Section B.1.

Rules of sum and product

A set of items that we wish to count can sometimes be expressed as a union of

disjoint sets or as a Cartesian product of sets.

The rule of sum says that the number of ways to choose an element from one

of two disjoint sets is the sum of the cardinalities of the sets. That is, if A and B

are two finite sets with no members in common, then |A ∪ B| = |A| + |B|, which
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follows from equation (B.3). For example, each position on a car’s license plate

is a letter or a digit. The number of possibilities for each position is therefore

26 + 10 = 36, since there are 26 choices if it is a letter and 10 choices if it is a

digit.

The rule of product says that the number of ways to choose an ordered pair is the

number of ways to choose the first element times the number of ways to choose the

second element. That is, if A and B are two finite sets, then |A × B| = |A| · |B|,

which is simply equation (B.4). For example, if an ice-cream parlor offers 28

flavors of ice cream and 4 toppings, the number of possible sundaes with one scoop

of ice cream and one topping is 28 · 4 = 112.

Strings

A string over a finite set S is a sequence of elements of S. For example, there are

8 binary strings of length 3:

000, 001, 010, 011, 100, 101, 110, 111 .

We sometimes call a string of length k a k-string. A substring s′ of a string s

is an ordered sequence of consecutive elements of s. A k-substring of a string

is a substring of length k. For example, 010 is a 3-substring of 01101001 (the

3-substring that begins in position 4), but 111 is not a substring of 01101001.

A k-string over a set S can be viewed as an element of the Cartesian product Sk

of k-tuples; thus, there are |S|k strings of length k. For example, the number of

binary k-strings is 2k . Intuitively, to construct a k-string over an n-set, we have n

ways to pick the first element; for each of these choices, we have n ways to pick the

second element; and so forth k times. This construction leads to the k-fold product

n · n · · · n = nk as the number of k-strings.

Permutations

A permutation of a finite set S is an ordered sequence of all the elements of S,

with each element appearing exactly once. For example, if S = {a, b, c}, there

are 6 permutations of S:

abc, acb, bac, bca, cab, cba .

There are n! permutations of a set of n elements, since the first element of the

sequence can be chosen in n ways, the second in n − 1 ways, the third in n − 2

ways, and so on.

A k-permutation of S is an ordered sequence of k elements of S, with no element

appearing more than once in the sequence. (Thus, an ordinary permutation is just

an n-permutation of an n-set.) The twelve 2-permutations of the set {a, b, c, d} are

ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc .
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The number of k-permutations of an n-set is

n(n − 1)(n − 2) · · · (n − k + 1) =
n!

(n − k)!
, (C.1)

since there are n ways of choosing the first element, n − 1 ways of choosing the

second element, and so on until k elements are selected, the last being a selection

from n − k + 1 elements.

Combinations

A k-combination of an n-set S is simply a k-subset of S. For example, there are

six 2-combinations of the 4-set {a, b, c, d}:

ab, ac, ad, bc, bd, cd .

(Here we use the shorthand of denoting the 2-set {a, b} by ab, and so on.) We can

construct a k-combination of an n-set by choosing k distinct (different) elements

from the n-set.

The number of k-combinations of an n-set can be expressed in terms of the num-

ber of k-permutations of an n-set. For every k-combination, there are exactly k!

permutations of its elements, each of which is a distinct k-permutation of the n-set.

Thus, the number of k-combinations of an n-set is the number of k-permutations

divided by k!; from equation (C.1), this quantity is

n!

k! (n − k)!
. (C.2)

For k = 0, this formula tells us that the number of ways to choose 0 elements from

an n-set is 1 (not 0), since 0! = 1.

Binomial coefficients

We use the notation
(

n

k

)

(read “n choose k”) to denote the number of k-combinations

of an n-set. From equation (C.2), we have
(

n

k

)

=
n!

k! (n − k)!
.

This formula is symmetric in k and n − k:
(

n

k

)

=

(

n

n − k

)

. (C.3)

These numbers are also known as binomial coefficients, due to their appearance in

the binomial expansion:
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(x + y)n
=

n
∑

k=0

(

n

k

)

xk yn−k . (C.4)

A special case of the binomial expansion occurs when x = y = 1:

2n
=

n
∑

k=0

(

n

k

)

.

This formula corresponds to counting the 2n binary n-strings by the number of 1’s

they contain: there are
(

n

k

)

binary n-strings containing exactly k 1’s, since there

are
(

n

k

)

ways to choose k out of the n positions in which to place the 1’s.

There are many identities involving binomial coefficients. The exercises at the

end of this section give you the opportunity to prove a few.

Binomial bounds

We sometimes need to bound the size of a binomial coefficient. For 1 ≤ k ≤ n, we

have the lower bound
(

n

k

)

=
n(n − 1) · · · (n − k + 1)

k(k − 1) · · · 1

=

(n

k

)

(

n − 1

k − 1

)

· · ·

(

n − k + 1

1

)

≥

(n

k

)k

.

Taking advantage of the inequality k! ≥ (k/e)k derived from Stirling’s approxima-

tion (3.17), we obtain the upper bounds
(

n

k

)

=
n(n − 1) · · · (n − k + 1)

k(k − 1) · · · 1

≤
nk

k!

≤

(en

k

)k

. (C.5)

For all 0 ≤ k ≤ n, we can use induction (see Exercise C.1-12) to prove the bound
(

n

k

)

≤
nn

kk(n − k)n−k
, (C.6)

where for convenience we assume that 00
= 1. For k = λn, where 0 ≤ λ ≤ 1, this

bound can be rewritten as
(

n

λn

)

≤
nn

(λn)λn((1− λ)n)(1−λ)n
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=

((

1

λ

)λ (

1

1− λ

)1−λ)n

= 2n H(λ) ,

where

H (λ) = −λ lg λ− (1− λ) lg(1− λ) (C.7)

is the (binary) entropy function and where, for convenience, we assume that

0 lg 0 = 0, so that H (0) = H (1) = 0.

Exercises

C.1-1

How many k-substrings does an n-string have? (Consider identical k-substrings

at different positions as different.) How many substrings does an n-string have in

total?

C.1-2

An n-input, m-output boolean function is a function from {TRUE, FALSE}n to

{TRUE, FALSE}m . How many n-input, 1-output boolean functions are there? How

many n-input, m-output boolean functions are there?

C.1-3

In how many ways can n professors sit around a circular conference table? Con-

sider two seatings to be the same if one can be rotated to form the other.

C.1-4

How many ways are there to choose from the set {1, 2, . . . , 100} three distinct

numbers so that their sum is even?

C.1-5

Prove the identity
(

n

k

)

=
n

k

(

n − 1

k − 1

)

(C.8)

for 0 < k ≤ n.

C.1-6

Prove the identity
(

n

k

)

=
n

n − k

(

n − 1

k

)

for 0 ≤ k < n.
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C.1-7

To choose k objects from n, you can make one of the objects distinguished and

consider whether the distinguished object is chosen. Use this approach to prove

that
(

n

k

)

=
(

n − 1

k

)

+
(

n − 1

k − 1

)

.

C.1-8

Using the result of Exercise C.1-7, make a table for n = 0, 1, . . . , 6 and 0 ≤ k ≤ n

of the binomial coefficients
(

n

k

)

with
(

0

0

)

at the top,
(

1

0

)

and
(

1

1

)

on the next line, and

so forth. Such a table of binomial coefficients is called Pascal’s triangle.

C.1-9

Prove that
n

∑

i=1

i =
(

n + 1

2

)

.

C.1-10

Show that for any n ≥ 0 and 0 ≤ k ≤ n, the maximum value of
(

n

k

)

is achieved

when k = ⌊n/2⌋ or k = ⌈n/2⌉.

C.1-11 ⋆

Argue that for any n ≥ 0, j ≥ 0, k ≥ 0, and j + k ≤ n,
(

n

j + k

)

≤
(

n

j

)(

n − j

k

)

. (C.9)

Provide both an algebraic proof and an argument based on a method for choosing

j + k items out of n. Give an example in which equality does not hold.

C.1-12 ⋆

Use induction on k ≤ n/2 to prove inequality (C.6), and use equation (C.3) to

extend it to all k ≤ n.

C.1-13 ⋆

Use Stirling’s approximation to prove that
(

2n

n

)

=
22n

√
πn

(1+ O(1/n)) . (C.10)

C.1-14 ⋆

By differentiating the entropy function H (λ), show that it achieves its maximum

value at λ = 1/2. What is H (1/2)?
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C.1-15 ⋆

Show that for any integer n ≥ 0,

n
∑

k=0

(

n

k

)

k = n2n−1
. (C.11)

C.2 Probability

Probability is an essential tool for the design and analysis of probabilistic and ran-

domized algorithms. This section reviews basic probability theory.

We define probability in terms of a sample space S, which is a set whose el-

ements are called elementary events. Each elementary event can be viewed as a

possible outcome of an experiment. For the experiment of flipping two distinguish-

able coins, we can view the sample space as consisting of the set of all possible

2-strings over {H, T}:

S = {HH, HT, TH, TT} .

An event is a subset1 of the sample space S. For example, in the experiment of

flipping two coins, the event of obtaining one head and one tail is {HT, TH}. The

event S is called the certain event, and the event ∅ is called the null event. We say

that two events A and B are mutually exclusive if A∩ B = ∅. We sometimes treat

an elementary event s ∈ S as the event {s}. By definition, all elementary events are

mutually exclusive.

Axioms of probability

A probability distribution Pr {} on a sample space S is a mapping from events of S

to real numbers such that the following probability axioms are satisfied:

1. Pr {A} ≥ 0 for any event A.

2. Pr {S} = 1.

1For a general probability distribution, there may be some subsets of the sample space S that are not

considered to be events. This situation usually arises when the sample space is uncountably infinite.

The main requirement is that the set of events of a sample space be closed under the operations of

taking the complement of an event, forming the union of a finite or countable number of events, and

taking the intersection of a finite or countable number of events. Most of the probability distributions

we shall see are over finite or countable sample spaces, and we shall generally consider all subsets of

a sample space to be events. A notable exception is the continuous uniform probability distribution,

which will be presented shortly.
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3. Pr {A ∪ B} = Pr {A} + Pr {B} for any two mutually exclusive events A

and B. More generally, for any (finite or countably infinite) sequence of events

A1, A2, . . . that are pairwise mutually exclusive,

Pr

{

⋃

i

Ai

}

=
∑

i

Pr {Ai } .

We call Pr {A} the probability of the event A. We note here that axiom 2 is a

normalization requirement: there is really nothing fundamental about choosing 1

as the probability of the certain event, except that it is natural and convenient.

Several results follow immediately from these axioms and basic set theory (see

Section B.1). The null event ∅ has probability Pr {∅} = 0. If A ⊆ B, then

Pr {A} ≤ Pr {B}. Using A to denote the event S − A (the complement of A),

we have Pr {A} = 1− Pr {A}. For any two events A and B,

Pr {A ∪ B} = Pr {A} + Pr {B} − Pr {A ∩ B} (C.12)

≤ Pr {A} + Pr {B} . (C.13)

In our coin-flipping example, suppose that each of the four elementary events

has probability 1/4. Then the probability of getting at least one head is

Pr {HH, HT, TH} = Pr {HH} + Pr {HT} + Pr {TH}

= 3/4 .

Alternatively, since the probability of getting strictly less than one head is

Pr {TT} = 1/4, the probability of getting at least one head is 1− 1/4 = 3/4.

Discrete probability distributions

A probability distribution is discrete if it is defined over a finite or countably infinite

sample space. Let S be the sample space. Then for any event A,

Pr {A} =
∑

s∈A

Pr {s} ,

since elementary events, specifically those in A, are mutually exclusive. If S is

finite and every elementary event s ∈ S has probability

Pr {s} = 1/ |S| ,

then we have the uniform probability distribution on S. In such a case the experi-

ment is often described as “picking an element of S at random.”

As an example, consider the process of flipping a fair coin, one for which the

probability of obtaining a head is the same as the probability of obtaining a tail, that

is, 1/2. If we flip the coin n times, we have the uniform probability distribution
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defined on the sample space S = {H, T}n , a set of size 2n . Each elementary event

in S can be represented as a string of length n over {H, T}, and each occurs with

probability 1/2n . The event

A = {exactly k heads and exactly n − k tails occur}

is a subset of S of size |A| =
(

n

k

)

, since there are
(

n

k

)

strings of length n over {H, T}

that contain exactly k H’s. The probability of event A is thus Pr {A} =
(

n

k

)

/2n .

Continuous uniform probability distribution

The continuous uniform probability distribution is an example of a probability

distribution in which not all subsets of the sample space are considered to be

events. The continuous uniform probability distribution is defined over a closed

interval [a, b] of the reals, where a < b. Intuitively, we want each point in the

interval [a, b] to be “equally likely.” There is an uncountable number of points,

however, so if we give all points the same finite, positive probability, we cannot

simultaneously satisfy axioms 2 and 3. For this reason, we would like to associate

a probability only with some of the subsets of S in such a way that the axioms are

satisfied for these events.

For any closed interval [c, d], where a ≤ c ≤ d ≤ b, the continuous uniform

probability distribution defines the probability of the event [c, d] to be

Pr {[c, d]} =
d − c

b − a
.

Note that for any point x = [x, x], the probability of x is 0. If we remove the

endpoints of an interval [c, d], we obtain the open interval (c, d). Since [c, d] =

[c, c]∪ (c, d)∪ [d, d], axiom 3 gives us Pr {[c, d]} = Pr {(c, d)}. Generally, the set

of events for the continuous uniform probability distribution is any subset of the

sample space [a, b] that can be obtained by a finite or countable union of open and

closed intervals.

Conditional probability and independence

Sometimes we have some prior partial knowledge about the outcome of an exper-

iment. For example, suppose that a friend has flipped two fair coins and has told

you that at least one of the coins showed a head. What is the probability that both

coins are heads? The information given eliminates the possibility of two tails. The

three remaining elementary events are equally likely, so we infer that each occurs

with probability 1/3. Since only one of these elementary events shows two heads,

the answer to our question is 1/3.
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Conditional probability formalizes the notion of having prior partial knowledge

of the outcome of an experiment. The conditional probability of an event A given

that another event B occurs is defined to be

Pr {A | B} =
Pr {A ∩ B}

Pr {B}
(C.14)

whenever Pr {B} 6= 0. (We read “Pr {A | B}” as “the probability of A given B.”)

Intuitively, since we are given that event B occurs, the event that A also occurs

is A ∩ B. That is, A ∩ B is the set of outcomes in which both A and B occur. Since

the outcome is one of the elementary events in B, we normalize the probabilities

of all the elementary events in B by dividing them by Pr {B}, so that they sum to 1.

The conditional probability of A given B is, therefore, the ratio of the probability

of event A ∩ B to the probability of event B. In the example above, A is the event

that both coins are heads, and B is the event that at least one coin is a head. Thus,

Pr {A | B} = (1/4)/(3/4) = 1/3.

Two events are independent if

Pr {A ∩ B} = Pr {A} Pr {B} , (C.15)

which is equivalent, if Pr {B} 6= 0, to the condition

Pr {A | B} = Pr {A} .

For example, suppose that two fair coins are flipped and that the outcomes are

independent. Then the probability of two heads is (1/2)(1/2) = 1/4. Now suppose

that one event is that the first coin comes up heads and the other event is that

the coins come up differently. Each of these events occurs with probability 1/2,

and the probability that both events occur is 1/4; thus, according to the definition

of independence, the events are independent—even though one might think that

both events depend on the first coin. Finally, suppose that the coins are welded

together so that they both fall heads or both fall tails and that the two possibilities

are equally likely. Then the probability that each coin comes up heads is 1/2, but

the probability that they both come up heads is 1/2 6= (1/2)(1/2). Consequently,

the event that one comes up heads and the event that the other comes up heads are

not independent.

A collection A1, A2, . . . , An of events is said to be pairwise independent if

Pr {Ai ∩ A j } = Pr {Ai } Pr {A j }

for all 1 ≤ i < j ≤ n. We say that the events of the collection are (mutually)

independent if every k-subset Ai1 , Ai2 , . . . , Aik of the collection, where 2 ≤ k ≤ n

and 1 ≤ i1 < i2 < · · · < ik ≤ n, satisfies

Pr {Ai1 ∩ Ai2 ∩ · · · ∩ Aik } = Pr {Ai1 } Pr {Ai2 } · · · Pr {Aik } .
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For example, suppose we flip two fair coins. Let A1 be the event that the first coin

is heads, let A2 be the event that the second coin is heads, and let A3 be the event

that the two coins are different. We have

Pr {A1} = 1/2 ,

Pr {A2} = 1/2 ,

Pr {A3} = 1/2 ,

Pr {A1 ∩ A2} = 1/4 ,

Pr {A1 ∩ A3} = 1/4 ,

Pr {A2 ∩ A3} = 1/4 ,

Pr {A1 ∩ A2 ∩ A3} = 0 .

Since for 1 ≤ i < j ≤ 3, we have Pr {Ai ∩ A j } = Pr {Ai } Pr {A j } = 1/4, the

events A1, A2, and A3 are pairwise independent. The events are not mutually inde-

pendent, however, because Pr {A1 ∩ A2 ∩ A3} = 0 and Pr {A1} Pr {A2} Pr {A3} =

1/8 6= 0.

Bayes’s theorem

From the definition of conditional probability (C.14) and the commutative law

A ∩ B = B ∩ A, it follows that for two events A and B, each with nonzero proba-

bility,

Pr {A ∩ B} = Pr {B} Pr {A | B} (C.16)

= Pr {A} Pr {B | A} .

Solving for Pr {A | B}, we obtain

Pr {A | B} =
Pr {A} Pr {B | A}

Pr {B}
, (C.17)

which is known as Bayes’s theorem. The denominator Pr {B} is a normalizing

constant that we can reexpress as follows. Since B = (B ∩ A)∪ (B ∩ A) and B ∩ A

and B ∩ A are mutually exclusive events,

Pr {B} = Pr {B ∩ A} + Pr {B ∩ A}

= Pr {A} Pr {B | A} + Pr {A} Pr {B | A} .

Substituting into equation (C.17), we obtain an equivalent form of Bayes’s theo-

rem:

Pr {A | B} =
Pr {A} Pr {B | A}

Pr {A} Pr {B | A} + Pr {A} Pr {B | A}
.
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Bayes’s theorem can simplify the computing of conditional probabilities. For

example, suppose that we have a fair coin and a biased coin that always comes up

heads. We run an experiment consisting of three independent events: one of the

two coins is chosen at random, the coin is flipped once, and then it is flipped again.

Suppose that the chosen coin comes up heads both times. What is the probability

that it is biased?

We solve this problem using Bayes’s theorem. Let A be the event that the bi-

ased coin is chosen, and let B be the event that the coin comes up heads both

times. We wish to determine Pr {A | B}. We have Pr {A} = 1/2, Pr {B | A} = 1,

Pr {A} = 1/2, and Pr {B | A} = 1/4; hence,

Pr {A | B} =
(1/2) · 1

(1/2) · 1+ (1/2) · (1/4)

= 4/5 .

Exercises

C.2-1

Prove Boole’s inequality: For any finite or countably infinite sequence of events

A1, A2, . . .,

Pr {A1 ∪ A2 ∪ · · ·} ≤ Pr {A1} + Pr {A2} + · · · . (C.18)

C.2-2

Professor Rosencrantz flips a fair coin once. Professor Guildenstern flips a fair

coin twice. What is the probability that Professor Rosencrantz obtains more heads

than Professor Guildenstern?

C.2-3

A deck of 10 cards, each bearing a distinct number from 1 to 10, is shuffled to mix

the cards thoroughly. Three cards are removed one at a time from the deck. What

is the probability that the three cards are selected in sorted (increasing) order?

C.2-4 ⋆

Describe a procedure that takes as input two integers a and b such that 0 < a < b

and, using fair coin flips, produces as output heads with probability a/b and tails

with probability (b − a)/b. Give a bound on the expected number of coin flips,

which should be O(1). (Hint: Represent a/b in binary.)

C.2-5

Prove that

Pr {A | B} + Pr {A | B} = 1 .
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C.2-6

Prove that for any collection of events A1, A2, . . . , An ,

Pr {A1 ∩ A2 ∩ · · · ∩ An} = Pr {A1} · Pr {A2 | A1} · Pr {A3 | A1 ∩ A2} · · ·

Pr {An | A1 ∩ A2 ∩ · · · ∩ An−1} .

C.2-7 ⋆

Show how to construct a set of n events that are pairwise independent but such that

no subset of k > 2 of them is mutually independent.

C.2-8 ⋆

Two events A and B are conditionally independent, given C , if

Pr {A ∩ B | C} = Pr {A | C} · Pr {B | C} .

Give a simple but nontrivial example of two events that are not independent but are

conditionally independent given a third event.

C.2-9 ⋆

You are a contestant in a game show in which a prize is hidden behind one of three

curtains. You will win the prize if you select the correct curtain. After you have

picked one curtain but before the curtain is lifted, the emcee lifts one of the other

curtains, knowing that it will reveal an empty stage, and asks if you would like

to switch from your current selection to the remaining curtain. How would your

chances change if you switch?

C.2-10 ⋆

A prison warden has randomly picked one prisoner among three to go free. The

other two will be executed. The guard knows which one will go free but is forbid-

den to give any prisoner information regarding his status. Let us call the prisoners

X , Y , and Z . Prisoner X asks the guard privately which of Y or Z will be executed,

arguing that since he already knows that at least one of them must die, the guard

won’t be revealing any information about his own status. The guard tells X that Y

is to be executed. Prisoner X feels happier now, since he figures that either he or

prisoner Z will go free, which means that his probability of going free is now 1/2.

Is he right, or are his chances still 1/3? Explain.

C.3 Discrete random variables

A (discrete) random variable X is a function from a finite or countably infinite

sample space S to the real numbers. It associates a real number with each possible
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outcome of an experiment, which allows us to work with the probability distribu-

tion induced on the resulting set of numbers. Random variables can also be defined

for uncountably infinite sample spaces, but they raise technical issues that are un-

necessary to address for our purposes. Henceforth, we shall assume that random

variables are discrete.

For a random variable X and a real number x , we define the event X = x to be

{s ∈ S : X (s) = x}; thus,

Pr {X = x} =
∑

{s∈S:X (s)=x}

Pr {s} .

The function

f (x) = Pr {X = x}

is the probability density function of the random variable X . From the probability

axioms, Pr {X = x} ≥ 0 and
∑

x Pr {X = x} = 1.

As an example, consider the experiment of rolling a pair of ordinary, 6-sided

dice. There are 36 possible elementary events in the sample space. We assume

that the probability distribution is uniform, so that each elementary event s ∈ S is

equally likely: Pr {s} = 1/36. Define the random variable X to be the maximum of

the two values showing on the dice. We have Pr {X = 3} = 5/36, since X assigns

a value of 3 to 5 of the 36 possible elementary events, namely, (1, 3), (2, 3), (3, 3),

(3, 2), and (3, 1).

It is common for several random variables to be defined on the same sample

space. If X and Y are random variables, the function

f (x, y) = Pr {X = x and Y = y}

is the joint probability density function of X and Y . For a fixed value y,

Pr {Y = y} =
∑

x

Pr {X = x and Y = y} ,

and similarly, for a fixed value x ,

Pr {X = x} =
∑

y

Pr {X = x and Y = y} .

Using the definition (C.14) of conditional probability, we have

Pr {X = x | Y = y} =
Pr {X = x and Y = y}

Pr {Y = y}
.

We define two random variables X and Y to be independent if for all x and y, the

events X = x and Y = y are independent or, equivalently, if for all x and y, we

have Pr {X = x and Y = y} = Pr {X = x} Pr {Y = y}.

Given a set of random variables defined over the same sample space, one can

define new random variables as sums, products, or other functions of the original

variables.
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Expected value of a random variable

The simplest and most useful summary of the distribution of a random variable is

the “average” of the values it takes on. The expected value (or, synonymously,

expectation or mean) of a discrete random variable X is

E [X ] =
∑

x

x Pr {X = x} , (C.19)

which is well defined if the sum is finite or converges absolutely. Sometimes the

expectation of X is denoted by µX or, when the random variable is apparent from

context, simply by µ.

Consider a game in which you flip two fair coins. You earn $3 for each head but

lose $2 for each tail. The expected value of the random variable X representing

your earnings is

E [X ] = 6 · Pr {2 H’s} + 1 · Pr {1 H, 1 T} − 4 · Pr {2 T’s}

= 6(1/4)+ 1(1/2)− 4(1/4)

= 1 .

The expectation of the sum of two random variables is the sum of their expecta-

tions, that is,

E [X + Y ] = E [X ]+ E [Y ] , (C.20)

whenever E [X ] and E [Y ] are defined. We call this property linearity of expecta-

tion, and it holds even if X and Y are not independent. It also extends to finite and

absolutely convergent summations of expectations. Linearity of expectation is the

key property that enables us to perform probabilistic analyses by using indicator

random variables (see Section 5.2).

If X is any random variable, any function g(x) defines a new random variable

g(X). If the expectation of g(X) is defined, then

E [g(X)] =
∑

x

g(x) Pr {X = x} .

Letting g(x) = ax , we have for any constant a,

E [aX ] = aE [X ] . (C.21)

Consequently, expectations are linear: for any two random variables X and Y and

any constant a,

E [aX + Y ] = aE [X ]+ E [Y ] . (C.22)

When two random variables X and Y are independent and each has a defined

expectation,

E [XY ] =
∑

x

∑

y

xy Pr {X = x and Y = y}
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=
∑

x

∑

y

xy Pr {X = x} Pr {Y = y}

=

(

∑

x

x Pr {X = x}

)(

∑

y

y Pr {Y = y}

)

= E [X ] E [Y ] .

In general, when n random variables X1, X2, . . . , Xn are mutually independent,

E [X1 X2 · · · Xn] = E [X1] E [X2] · · · E [Xn] . (C.23)

When a random variable X takes on values from the set of natural numbers

N = {0, 1, 2, . . .}, there is a nice formula for its expectation:

E [X ] =

∞
∑

i=0

i Pr {X = i}

=

∞
∑

i=0

i(Pr {X ≥ i} − Pr {X ≥ i + 1})

=

∞
∑

i=1

Pr {X ≥ i} , (C.24)

since each term Pr {X ≥ i} is added in i times and subtracted out i−1 times (except

Pr {X ≥ 0}, which is added in 0 times and not subtracted out at all).

When we apply a convex function f (x) to a random variable X , Jensen’s in-

equality gives us

E [ f (X)] ≥ f (E [X ]) , (C.25)

provided that the expectations exist and are finite. (A function f (x) is convex if for

all x and y and for all 0 ≤ λ ≤ 1, we have f (λx+(1−λ)y) ≤ λ f (x)+(1−λ) f (y).)

Variance and standard deviation

The expected value of a random variable does not tell us how “spread out” the

variable’s values are. For example, if we have random variables X and Y for which

Pr {X = 1/4} = Pr {X = 3/4} = 1/2 and Pr {Y = 0} = Pr {Y = 1} = 1/2, then

both E [X ] and E [Y ] are 1/2, yet the actual values taken on by Y are farther from

the mean than the actual values taken on by X .

The notion of variance mathematically expresses how far from the mean a ran-

dom variable’s values are likely to be. The variance of a random variable X with

mean E [X ] is
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Var [X ] = E [(X − E [X ])2]

= E [X2
− 2XE [X ]+ E2 [X ]]

= E [X2]− 2E [XE [X ]]+ E2 [X ]

= E [X2]− 2E2 [X ]+ E2 [X ]

= E [X2]− E2 [X ] . (C.26)

The justification for the equalities E [E2 [X ]] = E2 [X ] and E [XE [X ]] = E2 [X ]

is that E [X ] is not a random variable but simply a real number, which means that

equation (C.21) applies (with a = E [X ]). Equation (C.26) can be rewritten to

obtain an expression for the expectation of the square of a random variable:

E [X2] = Var [X ]+ E2 [X ] . (C.27)

The variance of a random variable X and the variance of aX are related (see

Exercise C.3-10):

Var [aX ] = a2Var [X ] .

When X and Y are independent random variables,

Var [X + Y ] = Var [X ]+ Var [Y ] .

In general, if n random variables X1, X2, . . . , Xn are pairwise independent, then

Var

[

n
∑

i=1

X i

]

=

n
∑

i=1

Var [X i ] . (C.28)

The standard deviation of a random variable X is the positive square root of

the variance of X . The standard deviation of a random variable X is sometimes

denoted σX or simply σ when the random variable X is understood from context.

With this notation, the variance of X is denoted σ 2.

Exercises

C.3-1

Two ordinary, 6-sided dice are rolled. What is the expectation of the sum of the

two values showing? What is the expectation of the maximum of the two values

showing?

C.3-2

An array A[1 . . n] contains n distinct numbers that are randomly ordered, with

each permutation of the n numbers being equally likely. What is the expectation

of the index of the maximum element in the array? What is the expectation of the

index of the minimum element in the array?
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C.3-3

A carnival game consists of three dice in a cage. A player can bet a dollar on any

of the numbers 1 through 6. The cage is shaken, and the payoff is as follows. If the

player’s number doesn’t appear on any of the dice, he loses his dollar. Otherwise,

if his number appears on exactly k of the three dice, for k = 1, 2, 3, he keeps his

dollar and wins k more dollars. What is his expected gain from playing the carnival

game once?

C.3-4

Argue that if X and Y are nonnegative random variables, then

E [max(X, Y )] ≤ E [X ]+ E [Y ] .

C.3-5 ⋆

Let X and Y be independent random variables. Prove that f (X) and g(Y ) are

independent for any choice of functions f and g.

C.3-6 ⋆

Let X be a nonnegative random variable, and suppose that E [X ] is well defined.

Prove Markov’s inequality:

Pr {X ≥ t} ≤ E [X ] /t (C.29)

for all t > 0.

C.3-7 ⋆

Let S be a sample space, and let X and X ′ be random variables such that

X (s) ≥ X ′(s) for all s ∈ S. Prove that for any real constant t ,

Pr {X ≥ t} ≥ Pr {X ′ ≥ t} .

C.3-8

Which is larger: the expectation of the square of a random variable, or the square

of its expectation?

C.3-9

Show that for any random variable X that takes on only the values 0 and 1, we have

Var [X ] = E [X ] E [1− X ].

C.3-10

Prove that Var [aX ] = a2Var [X ] from the definition (C.26) of variance.
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C.4 The geometric and binomial distributions

A coin flip is an instance of a Bernoulli trial, which is defined as an experiment

with only two possible outcomes: success, which occurs with probability p, and

failure, which occurs with probability q = 1 − p. When we speak of Bernoulli

trials collectively, we mean that the trials are mutually independent and, unless we

specifically say otherwise, that each has the same probability p for success. Two

important distributions arise from Bernoulli trials: the geometric distribution and

the binomial distribution.

The geometric distribution

Suppose we have a sequence of Bernoulli trials, each with a probability p of suc-

cess and a probability q = 1 − p of failure. How many trials occur before we

obtain a success? Let the random variable X be the number of trials needed to

obtain a success. Then X has values in the range {1, 2, . . .}, and for k ≥ 1,

Pr {X = k} = qk−1 p , (C.30)

since we have k − 1 failures before the one success. A probability distribution sat-

isfying equation (C.30) is said to be a geometric distribution. Figure C.1 illustrates

such a distribution.

Assuming that q < 1, the expectation of a geometric distribution can be calcu-

lated using identity (A.8):

E [X ] =

∞∑

k=1

kqk−1 p

=
p

q

∞∑

k=0

kqk

=
p

q
·

q

(1− q)2

= 1/p . (C.31)

Thus, on average, it takes 1/p trials before we obtain a success, an intuitive result.

The variance, which can be calculated similarly, but using Exercise A.1-3, is

Var [X ] = q/p2 . (C.32)

As an example, suppose we repeatedly roll two dice until we obtain either a

seven or an eleven. Of the 36 possible outcomes, 6 yield a seven and 2 yield an

eleven. Thus, the probability of success is p = 8/36 = 2/9, and we must roll

1/p = 9/2 = 4.5 times on average to obtain a seven or eleven.
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Figure C.1 A geometric distribution with probability p = 1/3 of success and a probability

q = 1− p of failure. The expectation of the distribution is 1/p = 3.

The binomial distribution

How many successes occur during n Bernoulli trials, where a success occurs with

probability p and a failure with probability q = 1 − p? Define the random vari-

able X to be the number of successes in n trials. Then X has values in the range

{0, 1, . . . , n}, and for k = 0, . . . , n,

Pr {X = k} =

(

n

k

)

pkqn−k , (C.33)

since there are
(

n

k

)

ways to pick which k of the n trials are successes, and the prob-

ability that each occurs is pkqn−k . A probability distribution satisfying equation

(C.33) is said to be a binomial distribution. For convenience, we define the family

of binomial distributions using the notation

b(k; n, p) =

(

n

k

)

pk(1− p)n−k . (C.34)

Figure C.2 illustrates a binomial distribution. The name “binomial” comes from

the fact that (C.33) is the kth term of the expansion of (p + q)n . Consequently,

since p + q = 1,
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b (k; 15, 1/3)

Figure C.2 The binomial distribution b(k; 15, 1/3) resulting from n = 15 Bernoulli trials, each

with probability p = 1/3 of success. The expectation of the distribution is np = 5.

n
∑

k=0

b(k; n, p) = 1 , (C.35)

as is required by axiom 2 of the probability axioms.

We can compute the expectation of a random variable having a binomial distri-

bution from equations (C.8) and (C.35). Let X be a random variable that follows

the binomial distribution b(k; n, p), and let q = 1− p. By the definition of expec-

tation, we have

E [X ] =

n
∑

k=0

k Pr {X = k}

=

n
∑

k=0

k b(k; n, p)

=

n
∑

k=1

k

(

n

k

)

pkqn−k

= np

n
∑

k=1

(

n − 1

k − 1

)

pk−1qn−k

= np

n−1
∑

k=0

(

n − 1

k

)

pkq(n−1)−k
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= np

n−1
∑

k=0

b(k; n − 1, p)

= np . (C.36)

By using the linearity of expectation, we can obtain the same result with sub-

stantially less algebra. Let X i be the random variable describing the number of

successes in the i th trial. Then E [X i ] = p · 1 + q · 0 = p, and by linearity of

expectation (equation (C.20)), the expected number of successes for n trials is

E [X ] = E

[

n
∑

i=1

X i

]

=

n
∑

i=1

E [X i ]

=

n
∑

i=1

p

= np . (C.37)

The same approach can be used to calculate the variance of the distribution.

Using equation (C.26), we have Var [X i ] = E [X2
i ]− E2 [X i ]. Since X i only takes

on the values 0 and 1, we have E [X2
i ] = E [X i ] = p, and hence

Var [X i ] = p − p2
= pq . (C.38)

To compute the variance of X , we take advantage of the independence of the n

trials; thus, by equation (C.28),

Var [X ] = Var

[

n
∑

i=1

X i

]

=

n
∑

i=1

Var [X i ]

=

n
∑

i=1

pq

= npq . (C.39)

As can be seen from Figure C.2, the binomial distribution b(k; n, p) increases

as k runs from 0 to n until it reaches the mean np, and then it decreases. We can

prove that the distribution always behaves in this manner by looking at the ratio of

successive terms:
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b(k; n, p)

b(k − 1; n, p)
=

(

n

k

)

pkqn−k

(

n

k−1

)

pk−1qn−k+1

=
n!(k − 1)!(n − k + 1)!p

k!(n − k)!n!q

=
(n − k + 1)p

kq
(C.40)

= 1+
(n + 1)p − k

kq
.

This ratio is greater than 1 precisely when (n + 1)p − k is positive. Consequently,

b(k; n, p) > b(k − 1; n, p) for k < (n + 1)p (the distribution increases), and

b(k; n, p) < b(k − 1; n, p) for k > (n + 1)p (the distribution decreases). If

k = (n + 1)p is an integer, then b(k; n, p) = b(k − 1; n, p), so the distribution

has two maxima: at k = (n + 1)p and at k − 1 = (n + 1)p − 1 = np − q.

Otherwise, it attains a maximum at the unique integer k that lies in the range

np − q < k < (n + 1)p.

The following lemma provides an upper bound on the binomial distribution.

Lemma C.1

Let n ≥ 0, let 0 < p < 1, let q = 1− p, and let 0 ≤ k ≤ n. Then

b(k; n, p) ≤

(np

k

)k ( nq

n − k

)n−k

.

Proof Using equation (C.6), we have

b(k; n, p) =

(

n

k

)

pkqn−k

≤

(n

k

)k ( n

n − k

)n−k

pkqn−k

=

(np

k

)k ( nq

n − k

)n−k

.

Exercises

C.4-1

Verify axiom 2 of the probability axioms for the geometric distribution.

C.4-2

How many times on average must we flip 6 fair coins before we obtain 3 heads and

3 tails?

C.4-3

Show that b(k; n, p) = b(n − k; n, q), where q = 1− p.
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C.4-4

Show that value of the maximum of the binomial distribution b(k; n, p) is approx-

imately 1/
√

2πnpq, where q = 1− p.

C.4-5 ⋆

Show that the probability of no successes in n Bernoulli trials, each with probability

p = 1/n, is approximately 1/e. Show that the probability of exactly one success

is also approximately 1/e.

C.4-6 ⋆

Professor Rosencrantz flips a fair coin n times, and so does Professor Guildenstern.

Show that the probability that they get the same number of heads is
(

2n

n

)

/4n . (Hint:

For Professor Rosencrantz, call a head a success; for Professor Guildenstern, call

a tail a success.) Use your argument to verify the identity

n
∑

k=0

(

n

k

)2

=
(

2n

n

)

.

C.4-7 ⋆

Show that for 0 ≤ k ≤ n,

b(k; n, 1/2) ≤ 2n H(k/n)−n ,

where H (x) is the entropy function (C.7).

C.4-8 ⋆

Consider n Bernoulli trials, where for i = 1, 2, . . . , n, the i th trial has probabil-

ity pi of success, and let X be the random variable denoting the total number of

successes. Let p ≥ pi for all i = 1, 2, . . . , n. Prove that for 1 ≤ k ≤ n,

Pr {X < k} ≤
k−1
∑

i=0

b(i; n, p) .

C.4-9 ⋆

Let X be the random variable for the total number of successes in a set A of n

Bernoulli trials, where the i th trial has a probability pi of success, and let X ′ be the

random variable for the total number of successes in a second set A′ of n Bernoulli

trials, where the i th trial has a probability p′i ≥ pi of success. Prove that for

0 ≤ k ≤ n,

Pr {X ′ ≥ k} ≥ Pr {X ≥ k} .

(Hint: Show how to obtain the Bernoulli trials in A′ by an experiment involving

the trials of A, and use the result of Exercise C.3-7.)
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⋆ C.5 The tails of the binomial distribution

The probability of having at least, or at most, k successes in n Bernoulli trials,

each with probability p of success, is often of more interest than the probability of

having exactly k successes. In this section, we investigate the tails of the binomial

distribution: the two regions of the distribution b(k; n, p) that are far from the

mean np. We shall prove several important bounds on (the sum of all terms in) a

tail.

We first provide a bound on the right tail of the distribution b(k; n, p). Bounds

on the left tail can be determined by inverting the roles of successes and failures.

Theorem C.2

Consider a sequence of n Bernoulli trials, where success occurs with probability p.

Let X be the random variable denoting the total number of successes. Then for

0 ≤ k ≤ n, the probability of at least k successes is

Pr {X ≥ k} =

n
∑

i=k

b(i; n, p)

≤

(

n

k

)

pk .

Proof For S ⊆ {1, 2, . . . , n}, we let AS denote the event that the i th trial is a

success for every i ∈ S. Clearly Pr {AS} = pk if |S| = k. We have

Pr {X ≥ k} = Pr {there exists S ⊆ {1, 2, . . . , n} : |S| = k and AS}

= Pr
{

⋃

S⊆{1,2,...,n}:|S|=k

AS

}

≤
∑

S⊆{1,2,...,n}:|S|=k

Pr {AS}

=

(

n

k

)

pk ,

where the inequality follows from Boole’s inequality (C.18).

The following corollary restates the theorem for the left tail of the binomial

distribution. In general, we shall leave it to the reader to adapt the proofs from one

tail to the other.

Corollary C.3

Consider a sequence of n Bernoulli trials, where success occurs with probabil-

ity p. If X is the random variable denoting the total number of successes, then for
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0 ≤ k ≤ n, the probability of at most k successes is

Pr {X ≤ k} =

k
∑

i=0

b(i; n, p)

≤

(

n

n − k

)

(1− p)n−k

=

(

n

k

)

(1− p)n−k .

Our next bound concerns the left tail of the binomial distribution. Its corollary

shows that, far from the mean, the left tail diminishes exponentially.

Theorem C.4

Consider a sequence of n Bernoulli trials, where success occurs with probability p

and failure with probability q = 1− p. Let X be the random variable denoting the

total number of successes. Then for 0 < k < np, the probability of fewer than k

successes is

Pr {X < k} =

k−1
∑

i=0

b(i; n, p)

<
kq

np − k
b(k; n, p) .

Proof We bound the series
∑k−1

i=0 b(i; n, p) by a geometric series using the tech-

nique from Section A.2, page 1064. For i = 1, 2, . . . , k, we have from equa-

tion (C.40),

b(i − 1; n, p)

b(i; n, p)
=

iq

(n − i + 1)p

<
iq

(n − i)p

≤
kq

(n − k)p
.

If we let

x =
kq

(n − k)p

<
kq

(n − np)p

=
kq

nqp
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=
k

np

< 1 ,

it follows that

b(i − 1; n, p) < x b(i; n, p)

for 0 < i ≤ k. Iteratively applying this inequality k − i times, we obtain

b(i; n, p) < xk−i b(k; n, p)

for 0 ≤ i < k, and hence

k−1∑

i=0

b(i; n, p) <

k−1∑

i=0

xk−i b(k; n, p)

< b(k; n, p)

∞∑

i=1

x i

=
x

1− x
b(k; n, p)

=
kq

np − k
b(k; n, p) .

Corollary C.5

Consider a sequence of n Bernoulli trials, where success occurs with probability p

and failure with probability q = 1− p. Then for 0 < k ≤ np/2, the probability of

fewer than k successes is less than one half of the probability of fewer than k + 1

successes.

Proof Because k ≤ np/2, we have

kq

np − k
≤

(np/2)q

np − (np/2)

=
(np/2)q

np/2

≤ 1 ,

since q ≤ 1. Letting X be the random variable denoting the number of successes,

Theorem C.4 implies that the probability of fewer than k successes is

Pr {X < k} =
k−1∑

i=0

b(i; n, p) < b(k; n, p) .
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Thus we have

Pr {X < k}

Pr {X < k + 1}
=

∑k−1
i=0 b(i; n, p)

∑k
i=0 b(i; n, p)

=

∑k−1
i=0 b(i; n, p)

∑k−1
i=0 b(i; n, p) + b(k; n, p)

< 1/2 ,

since
∑k−1

i=0 b(i; n, p) < b(k; n, p).

Bounds on the right tail can be determined similarly. Their proofs are left as

Exercise C.5-2.

Corollary C.6

Consider a sequence of n Bernoulli trials, where success occurs with probability p.

Let X be the random variable denoting the total number of successes. Then for

np < k < n, the probability of more than k successes is

Pr {X > k} =

n
∑

i=k+1

b(i; n, p)

<
(n − k)p

k − np
b(k; n, p) .

Corollary C.7

Consider a sequence of n Bernoulli trials, where success occurs with probability p

and failure with probability q = 1 − p. Then for (np + n)/2 < k < n, the

probability of more than k successes is less than one half of the probability of more

than k − 1 successes.

The next theorem considers n Bernoulli trials, each with a probability pi of

success, for i = 1, 2, . . . , n. As the subsequent corollary shows, we can use the

theorem to provide a bound on the right tail of the binomial distribution by setting

pi = p for each trial.

Theorem C.8

Consider a sequence of n Bernoulli trials, where in the i th trial, for i = 1, 2, . . . , n,

success occurs with probability pi and failure occurs with probability qi = 1− pi .

Let X be the random variable describing the total number of successes, and let

µ = E [X ]. Then for r > µ,

Pr {X − µ ≥ r} ≤
(µe

r

)r

.
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Proof Since for any α > 0, the function eαx is strictly increasing in x ,

Pr {X − µ ≥ r} = Pr {eα(X−µ) ≥ eαr } , (C.41)

where α will be determined later. Using Markov’s inequality (C.29), we obtain

Pr {eα(X−µ) ≥ eαr } ≤ E [eα(X−µ)] e−αr . (C.42)

The bulk of the proof consists of bounding E [eα(X−µ)] and substituting a suitable

value for α in inequality (C.42). First, we evaluate E [eα(X−µ)]. Using the notation

of Section 5.2, let X i = I {the i th Bernoulli trial is a success} for i = 1, 2, . . . , n;

that is, X i is the random variable that is 1 if the i th Bernoulli trial is a success and 0

if it is a failure. Thus,

X =

n
∑

i=1

X i ,

and by linearity of expectation,

µ = E [X ] = E

[

n
∑

i=1

X i

]

=

n
∑

i=1

E [X i ] =

n
∑

i=1

pi ,

which implies

X − µ =

n
∑

i=1

(X i − pi ) .

To evaluate E [eα(X−µ)], we substitute for X − µ, obtaining

E [eα(X−µ)] = E
[

eα
∑n

i=1(X i−pi )
]

= E

[

n
∏

i=1

eα(X i−pi )

]

=

n
∏

i=1

E [eα(X i−pi )] ,

which follows from (C.23), since the mutual independence of the random vari-

ables X i implies the mutual independence of the random variables eα(X i−pi ) (see

Exercise C.3-5). By the definition of expectation,

E [eα(X i−pi )] = eα(1−pi ) pi + eα(0−pi )qi

= pi e
αqi + qi e

−αpi

≤ pi e
α + 1 (C.43)

≤ exp(pi e
α) ,
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where exp(x) denotes the exponential function: exp(x) = ex . (Inequality (C.43)

follows from the inequalities α > 0, qi ≤ 1, eαqi ≤ eα , and e−αpi ≤ 1, and the last

line follows from inequality (3.11)). Consequently,

E [eα(X−µ)] =

n
∏

i=1

E [eα(X i−pi )]

≤

n
∏

i=1

exp(pi e
α)

= exp

(

n
∑

i=1

pi e
α

)

= exp(µeα) , (C.44)

since µ =
∑n

i=1 pi . Therefore, from equation (C.41) and inequalities (C.42)

and (C.44), it follows that

Pr {X − µ ≥ r} ≤ exp(µeα − αr) . (C.45)

Choosing α = ln(r/µ) (see Exercise C.5-7), we obtain

Pr {X − µ ≥ r} ≤ exp(µeln(r/µ) − r ln(r/µ))

= exp(r − r ln(r/µ))

=
er

(r/µ)r

=

(µe

r

)r

.

When applied to Bernoulli trials in which each trial has the same probability of

success, Theorem C.8 yields the following corollary bounding the right tail of a

binomial distribution.

Corollary C.9

Consider a sequence of n Bernoulli trials, where in each trial success occurs with

probability p and failure occurs with probability q = 1− p. Then for r > np,

Pr {X − np ≥ r} =

n
∑

k=⌈np+r⌉

b(k; n, p)

≤

(npe

r

)r

.

Proof By equation (C.36), we have µ = E [X ] = np.
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Exercises

C.5-1 ⋆

Which is less likely: obtaining no heads when you flip a fair coin n times, or

obtaining fewer than n heads when you flip the coin 4n times?

C.5-2 ⋆

Prove Corollaries C.6 and C.7.

C.5-3 ⋆

Show that

k−1
∑

i=0

(

n

i

)

ai < (a + 1)n k

na − k(a + 1)
b(k; n, a/(a + 1))

for all a > 0 and all k such that 0 < k < n.

C.5-4 ⋆

Prove that if 0 < k < np, where 0 < p < 1 and q = 1− p, then

k−1
∑

i=0

pi qn−i <
kq

np − k

(np

k

)k ( nq

n − k

)n−k

.

C.5-5 ⋆

Show that the conditions of Theorem C.8 imply that

Pr {µ− X ≥ r} ≤

(

(n − µ)e

r

)r

.

Similarly, show that the conditions of Corollary C.9 imply that

Pr {np − X ≥ r} ≤
(nqe

r

)r

.

C.5-6 ⋆

Consider a sequence of n Bernoulli trials, where in the i th trial, for i = 1, 2, . . . , n,

success occurs with probability pi and failure occurs with probability qi = 1− pi .

Let X be the random variable describing the total number of successes, and let

µ = E [X ]. Show that for r ≥ 0,

Pr {X − µ ≥ r} ≤ e−r2/2n .

(Hint: Prove that pi e
αqi + qi e

−αpi ≤ eα2/2. Then follow the outline of the proof of

Theorem C.8, using this inequality in place of inequality (C.43).)



Problems for Appendix C 1125

C.5-7 ⋆

Show that the right-hand side of inequality (C.45) is minimized by choosing

α = ln(r/µ).

Problems

C-1 Balls and bins

In this problem, we investigate the effect of various assumptions on the number of

ways of placing n balls into b distinct bins.

a. Suppose that the n balls are distinct and that their order within a bin does not

matter. Argue that the number of ways of placing the balls in the bins is bn .

b. Suppose that the balls are distinct and that the balls in each bin are ordered.

Prove that there are exactly (b + n − 1)!/(b − 1)! ways to place the balls in

the bins. (Hint: Consider the number of ways of arranging n distinct balls and

b − 1 indistinguishable sticks in a row.)

c. Suppose that the balls are identical, and hence their order within a bin does not

matter. Show that the number of ways of placing the balls in the bins is
(

b+n−1

n

)

.

(Hint: Of the arrangements in part (b), how many are repeated if the balls are

made identical?)

d. Suppose that the balls are identical and that no bin may contain more than one

ball. Show that the number of ways of placing the balls is
(

b

n

)

.

e. Suppose that the balls are identical and that no bin may be left empty. Show

that the number of ways of placing the balls is
(

n−1

b−1

)

.

Chapter notes

The first general methods for solving probability problems were discussed in a

famous correspondence between B. Pascal and P. de Fermat, which began in 1654,

and in a book by C. Huygens in 1657. Rigorous probability theory began with the

work of J. Bernoulli in 1713 and A. De Moivre in 1730. Further developments of

the theory were provided by P. S. de Laplace, S.-D. Poisson, and C. F. Gauss.

Sums of random variables were originally studied by P. L. Chebyshev and

A. A. Markov. Probability theory was axiomatized by A. N. Kolmogorov in 1933.
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Bounds on the tails of distributions were provided by Chernoff [59] and Hoeffding

[150]. Seminal work in random combinatorial structures was done by P. Erdös.

Knuth [182] and Liu [205] are good references for elementary combinatorics

and counting. Standard textbooks such as Billingsley [42], Chung [60], Drake [80],

Feller [88], and Rozanov [263] offer comprehensive introductions to probability.


