Corso di Analisi Matematica I, Ingegneria Informatica Esercitazione del 15 novembre 2006 - Compito A

Cognome Nome Matricola

- 1. Siano $A \subset \mathbb{R}$ non vuoto limitato inferiormente e $L \in \mathbb{R}$. Che vuol dire che $L = \inf A$?
- 2. Dire per quali $x \in \mathbb{R}$ è verificata la disequazione $\left(\frac{2x+1}{x-2}\right)^2 < 1$.
- 3. Siano $f:]a, b[\to \mathbb{R} \text{ e } x_0 \in]a, b[$. Che vuol dire che $f(x) \to -\infty$ per $x \to x_0$?
- 4. Sia $f:[a,b]\to\mathbb{R}$. Dimostrare che, se $f'(x)>0\ \forall x\in[a,b]$, allora f è strettamente crescente in [a,b].
- 5. Dimostrare che arctan $\left(\frac{x}{\sqrt{1-x^2}}\right) = \arcsin x \ \forall x \in]-1,1[.$
- 6. Calcolare, se possibile, $\lim_{x\to 0^+} x^{1+x}$.
- 7. Dire, giustificando la risposta. quante soluzioni x > 0 ha l'equazione $x + \log x = 1$.
- 8. Enunciare il teorema fondamentale del calcolo integrale.
- 9. Calcolare, se possibile, la derivata della funzione $F(x) = \int_0^{2^x} \frac{\sin t}{1+t} dt, x \in \mathbb{R}$.
- 10. Siano $x \in \mathbb{R}$ e $y \in [-1, 1]$. Risolvere in x l'equazione $y = \arcsin x$.
- 11. Calcolare la derivata di $f(x) := \log(4 + \arctan x), x \in]-1,1[$.

Corso di Analisi Matematica I, Ingegneria Informatica Esercitazione del 15 novembre 2006 - Compito B

Cognome Nome Matricola

- 1. Sia $A \subset \mathbb{R}$ non vuoto. Che vuol dire che sup $A = +\infty$?
- 2. Dire per quali $x \in \mathbb{R}$ è verificata la disequazione $\left(\frac{2x+1}{x-1}\right)^2 < 1$.
- 3. Siano $f:]a, b[\to \mathbb{R}, x_0 \in]a, b[$ e $L \in \mathbb{R}$. Che vuol dire che $f(x) \to L$ per $x \to x_0$?
- 4. Cosa vuol dire " $f:]a, b[\to \mathbb{R} \ non$ è continua in $x_0 \in]a.b[$ "?.
- 5. Sia $f:[a,b]\to\mathbb{R}$. Dimostrare che, se $f'(x)=0\ \forall x\in[a,b]$, allora f è costante in [a,b].
- 6. Calcolare, se possibile, $\lim_{x\to+\infty} \left(1+\frac{1}{x}\right)^x$.
- 7. Dire, giustificando la risposta, quante soluzioni $x \in \mathbb{R}$ ha l'equazione $x \arctan x = \frac{x^3}{3}$.
- 8. Enunciare il teorema di Lagrange. Perché è utile?
- 9. Calcolare, se possibile, la derivata della funzione $F(x) = \int_0^{2^x} \frac{\cos t}{1+t} dt$, $x \in \mathbb{R}$.
- 10. Siano $x \in \mathbb{R}$ e $y \in [-1, 1]$. Risolvere in x l'equazione $y = \arccos x$.
- 11. Calcolare la derivata di $f(x) := \log(4 + \arcsin x), x \in]-1,1[$.