15. Forme chiuse e campi irrotazionali

15.a Forme chiuse

Vi è anche una ulteriore condizione necessaria per l'esattezza di forme differenziali di classe C^1 . Infatti se $\omega = df$ in un aperto Ω e f è di classe $C^2(\Omega)$, allora per il teorema di Schwarz

$$\frac{\partial \omega_i}{\partial x^j} = \frac{\partial}{\partial x^j} \frac{\partial f}{\partial x^i} = \frac{\partial}{\partial x^i} \frac{\partial f}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$$

per ogni i, j = 1, n. Motivati da questo poniamo

15.1 Definizione. Una forma $\omega:\Omega\to\mathcal{L}(\mathbb{R}^n,\mathbb{R})$ di classe C^1 su un aperto Ω di \mathbb{R}^n si dice chiusa se

$$\frac{\partial \omega_i}{\partial x^j}(x) = \frac{\partial \omega_j}{\partial x^i}(x) \qquad \forall i, j = 1, n, \ \forall x \in \Omega.$$

Un campo $F:\Omega\to\mathbb{R}^n$ di classe C^1 si dice irrotazionale in Ω se

$$\frac{\partial F^{i}}{\partial x^{j}}(x) = \frac{\partial F^{j}}{\partial x^{i}}(x) \qquad \forall i, j = 1, n, \ \forall x \in \Omega.$$

La ragione del nome "irrotazionale" sta nel fatto che per n=3, il rotore di F è appunto

$$\operatorname{rot} F := \Big(\frac{\partial F^3}{\partial y} - \frac{\partial F^2}{\partial z}, \frac{\partial F^1}{\partial z} - \frac{\partial F^3}{\partial x}, \frac{\partial F^2}{\partial x} - \frac{\partial F^1}{\partial y}\Big).$$

F è dunque irrotazionale se e solo se rotF=0. Si noti che se F è il campo associato ad una forma differenziale ω , F è irrotazionale se e solo se ω è chiusa.

15.2 Proposizione. Sia $\Omega \subset \mathbb{R}^n$ aperto. Ogni forma differenziale esatta di classe $C^1(\Omega)$ è chiusa in Ω e ogni campo di classe $C^1(\Omega)$ conservativo è irrotazionale, equivalentemente

$$rot \nabla f = 0 \qquad \forall f \in C^2(\Omega).$$

15.3 Esercizio. Mostrare che esistono forme chiuse che non sono esatte. Soluzione. La forma angolo

$$\omega(x,y) := -\frac{y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy$$

è chiusa in $\Omega:=\mathbb{R}^2\setminus\{0\}$, come si verifica derivando, ma non è esatta in $\mathbb{R}^2\setminus\{0\}$ in quanto il lavoro fatto sulla curva chiusa $t\to\gamma(t)=(\cos t,\sin t),\,t\in[0,2\pi]$, vale

$$\int_{\gamma} \omega = \int_{0}^{2\pi} (\sin^2 t + \cos^2 t) \, dt = 2\pi \neq 0.$$

Si noti che ω è invece esatta in $\Omega:=\{(x,y)\,|\,y>0\}:\,f(x,y):=-\arctan(x/y),\,(x,y)\in\Omega,$ è infatti una primitiva di ω .

15.4 Esercizio. Sia Γ una semiretta in \mathbb{R}^2 uscente dall'origine. Trovare una primitiva della forma ω dell'Esercizio 15.3 in $\mathbb{R}^2 \setminus \Gamma$.

 ${\bf 15.5}$. Ogni matrice ${\bf A}\in M_{n,n}(\mathbb{R}),$ si può sempre dividere in parte simmetrica e parte antisimmetrica scrivendo

$$\mathbf{A} = \frac{1}{2}(\mathbf{A} + \mathbf{A}^T) + \frac{1}{2}(\mathbf{A} - \mathbf{A}^T).$$

In particolare si scompone la matrice jacobiana $\mathbf{D}F$ di F, nella sua parte simmetrica $\epsilon(F)$ detta gradiente di deformazione di F e parte antisimmetrica o di rotazione di F,

$$\begin{cases} \mathbf{D}F = \epsilon(F) + W(F) \\ \epsilon(F) = [\epsilon(F)^i_j], & \epsilon(F)^i_j := \frac{1}{2} \left(\frac{\partial F^i}{\partial x^j} + \frac{\partial F^j}{\partial x^i} \right), \\ \mathbf{W}(F) = [\mathbf{W}(F)^i_j], & \mathbf{W}(F)^i_j := \frac{1}{2} \left(\frac{\partial F^i}{\partial x^j} - \frac{\partial F^j}{\partial x^i} \right) \end{cases}$$

Per analogia, se ω è una forma differenziale, chiameremo $matrice~di~rotazione~della forma <math display="inline">\omega$ la matrice

$$\mathbf{W}(\omega) := [\mathbf{W}(\omega)_{ij}], \qquad \mathbf{W}(\omega)_{ij} := \frac{\partial \omega_i}{\partial x^j} - \frac{\partial \omega_j}{\partial x^i}.$$

Perciò ω è chiusa se e solo se la sua matrice di rotazione $\mathbf{W}(\omega)$ è nulla.

15.b Rimontata di una forma differenziale

Siano Δ un aperto in \mathbb{R}^r e Ω un aperto in \mathbb{R}^n . È chiaro che, se $\phi: \Delta \to \Omega$ è continua e $f \in C^0(\Omega)$, allora $f \circ \phi$ è continua e dal teorema di differenziazione della composta $f \circ \phi \in C^1(\Delta)$ se ϕ è di classe C^1 e $f \in C^1(\Delta)$. In formula, guardando alla composizione con ϕ come ad una operazione, $\phi^\#(f) := f \circ \phi$, si ha

$$\phi^{\#}: C^{0}(\Omega) \to C^{0}(\Delta) \qquad \text{se } \phi \in C^{0},$$

$$\phi^{\#}: C^{1}(\Omega) \to C^{1}(\Delta) \qquad \text{se } \phi \in C^{1},$$

e per induzione

$$\phi^{\#}: C^k(\Omega) \to C^k(\Delta)$$
 se $\phi \in C^k$.

Analogamente, si possono "rimontare" forme differenziali su Ω a forme differenziali su $\Delta.$

15.6 Definizione. Sia $\phi \in C^1(\Delta, \Omega)$ da un aperto $\Delta \subset \mathbb{R}^r$ a valori in un aperto $\Omega \subset \mathbb{R}^n$. Si chiama immagine inversa di una forma ω a coefficienti continui in Ω la forma differenziale a coefficienti continui in Δ definita per ogni $x \in \Delta$ da

$$<\phi^{\#}\omega(x), h> := <\omega(\phi(x)), \mathbf{D}\phi(x)h> \qquad \forall h \in \mathbb{R}^{r}.$$
 (15.1)

15.7 Esercizio (Campo di forze rimontato). Rimontare un campo di forze $F:\Omega\to\mathbb{R}^n$ è meno intuitivo. Mostrare che se $\phi:\Delta\to\Omega,$ e $F:\Delta\subset\mathbb{R}^r\to\mathbb{R}^n$ è un campo di forze, l'unica definizione di rimontato compatibile con la definizione data di immagine inversa di una forma differenziale è

$$\phi^{\#}F(x) := \mathbf{D}\phi(x)^*F(\phi(x)),$$

 $\mathbf{D}\phi(x)^*$ è l'operatore aggiunto di $\mathbf{D}\phi(x)$.

15.8 . Si può scrivere $\phi^{\#}\omega$ in vari modi. Ad esempio:

• Se $\omega = \sum_{i=1}^n \omega_i(y) dy^i$ e se $y = \phi(x) = (\phi(x)^1, \phi(x)^2, \dots, \phi(x)^n)^T$, allora

$$\phi^{\#}\omega(x) = \sum_{i=1}^{n} \omega_i(\phi(x)) d\phi^i(x),$$

essendo per ogni $h \in \mathbb{R}^n$

$$<\phi^{\#}\omega(x), h>=<\omega(\phi(x)), \mathbf{D}\phi(x)h>=\sum_{i=1}^{n}\omega_{i}(\phi(x))\mathbf{D}\phi^{i}(x)h$$
$$=\sum_{i=1}^{n}\omega_{i}(\phi(x))< d\phi^{i}(x), h>.$$

 $\phi^{\#}\omega$ si calcola quindi sostituendo nella espressione in coordinate di ω la y con $\phi(x)$ e la base dei differenziali (dy^1, \ldots, dy^n) con i differenziali delle componenti di ϕ .

 \circ Calcolando i differenziali delle ϕ^i in coordinate, si trova anche

$$\phi^{\#}\omega(x) = \sum_{i=1}^{n} \omega_i(\phi(x)) d\phi^i(x) = \sum_{i=1}^{r} \left(\sum_{i=1}^{n} \omega_i(\phi(x)) \frac{\partial \phi_i}{\partial x^j} \right) dx^j.$$

o Se scriviamo le componenti di ω in un vettore riga $\omega(x) = (\omega_1, \omega_2, \dots, \omega_n)$ a n componenti, allora le componenti di $\phi^{\#}\omega$ sono il vettore riga a r componenti dato da

$$((\phi^{\#}\omega)_1, (\phi^{\#}\omega)_2, \dots, (\phi^{\#}\omega)_r) = (\omega_1, \omega_2, \dots, \omega_n) \mathbf{D}\phi(x),$$

righe per colonne.

La (15.1) dà in particolare

$$d(\phi^{\#}f)(x) = \phi^{\#}df(x) \tag{15.2}$$

per ogni $f \in C^1(\Omega)$. Inoltre, sempre dalla (15.1) segue che

$$<\phi^{\#}\omega(\gamma(s)), \gamma'(s)>:=<\omega(\phi(\gamma(s))), \mathbf{D}\phi(\gamma(s))\gamma'(s)>$$

= $<\omega(\phi\circ\gamma(s)), (\phi\circ\gamma)'(s)>$

per ogni curva $\gamma:[a,b]\to\Delta$ di classe C^1 . Integrando, si conclude che

$$\mathcal{L}(\gamma, \phi^{\#}\omega) = \mathcal{L}(\phi \circ \gamma, \omega). \tag{15.3}$$

La (15.3) contiene fra l'altro l'invarianza del lavoro per cambiamenti di riferimento in \mathbb{R}^n .

15.9 Esercizio. Scrivere la forma angolo dell'Esercizio 15.3 in coordinate polari, i.e., calcolarne la rimontata tramite la trasformazione $x = \rho \cos \theta$, $y = \rho \sin \theta$.

15.10 Proposizione (Immagine inversa e differenziale di una forma). Sia ω una forma differenziale di classe C^1 in un aperto Ω e $H: \Delta \subset \mathbb{R}^r \to \Omega$ una mappa di classe C^2 . Se (u^1, u^2, \ldots, u^r) sono le coordinate in \mathbb{R}^r e

$$H^{\#}\omega = \sum_{i=1}^{r} P_i(u) du^i,$$

allora

$$\frac{\partial P^h}{\partial u_k} - \frac{\partial P_k}{\partial u^h} = \sum_{i, i=1}^n \left(\frac{\partial \omega_i}{\partial x^j} - \frac{\partial \omega_j}{\partial x^i} \right) \frac{\partial H^i}{\partial u^h} \frac{\partial H^j}{\partial u^k}, \tag{15.4}$$

Naturalmente $\frac{\partial P_h}{\partial u^k}$, $\frac{\partial P_k}{\partial u^h}$, $\frac{\partial H^i}{\partial u^h}$, $\frac{\partial H^j}{\partial u^k}$, sono calcolate in $u \in \Delta$ e $\frac{\partial \omega_i}{\partial x^j}$ e $\frac{\partial \omega_j}{\partial x^i}$ sono calcolate in H(u).

In particolare se ω è chiusa in Ω , allora $H^{\#}\omega$ è chiusa in Δ .

Dimostrazione. Infatti, se si calcolano le derivate di $P_h := \sum_{i=1}^n \omega_i \frac{\partial H^i}{\partial n^h}$, si trova

$$\begin{cases} \frac{\partial P_h}{\partial u^k} = \sum_{i,j=1}^n \frac{\partial \omega_i}{\partial x^j} \frac{\partial H^j}{\partial u^k} \frac{\partial H^i}{\partial u^h} + \sum_{i=1}^n \omega_i \frac{\partial^2 H^i}{\partial u^k \partial u^h} \\ \frac{\partial P_k}{\partial u^h} = \sum_{i,j=1}^n \frac{\partial \omega_i}{\partial x^j} \frac{\partial H^j}{\partial u^h} \frac{\partial H^i}{\partial u^k} + \sum_{i=1}^n \omega_i \frac{\partial^2 H^i}{\partial u^h \partial u^k}, \end{cases}$$

Se si sottraggono le due equazioni, i termini contenenti derivate seconde di H si cancellano essendo la matrice hessiana di H simmetrica. Si ottiene così la (15.4).

15.11 Esercizio. Essendo la matrice di rotazione di una forma una matrice antisimmetrica, la (15.4) si riscrive anche come

$$\frac{\partial P^h}{\partial u^k} - \frac{\partial P^k}{\partial u^h} = \frac{1}{2} \sum_{i,j=1}^n \left(\frac{\partial \omega_i}{\partial x^j} - \frac{\partial \omega_j}{\partial x^i} \right) \left(\frac{\partial H^i}{\partial u^h} \frac{\partial H^j}{\partial u^k} - \frac{\partial H^j}{\partial u^h} \frac{\partial H^i}{\partial u^k} \right). \tag{15.5}$$

15.c Il teorema di Stokes sul quadrato

Vedremo che l'ostruzione all'esattezza di ogni forma chiusa è nella forma del dominio

Sia $R=[0,1]\times[0,1]$ il quadrato di \mathbb{R}^2 di lato 1. Indichiamo con $\delta_0,\delta_1,\delta_2,\delta_3:[0,1]\to\mathbb{R}^2$ le curve definite da

$$\begin{cases} \delta_0(t) := (0, t), \\ \delta_1(t) := (1, t), \\ \delta_2(t) := (t, 1), \\ \delta_3(t) := (t, 0), \end{cases} t \in [0, 1],$$

le cui traiettorie coprono i quattro lati del quadrato R e sia $\delta:[0,1]\to\mathbb{R}^2$ la curva che percorre ∂R in senso antiorario,

$$\delta = \delta_3 + \delta_1 - \delta_2 - \delta_0, \tag{15.6}$$

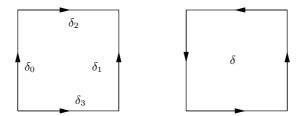


Figura 15.1. δ percorre in senso antiorario ∂R .

seguendo prima δ_0 , quindi δ_2 , quindi δ_1 a ritroso e infine δ_3 a ritroso, cfr. Figura 15.1.

Se $f: R \subset \mathbb{R}^2 \to \mathbb{R}$ è una funzione continua sul rettangolo $R = [a, b] \times [c, d]$, o anche continua a pezzi su una quadrettatura di $[a, b] \times [c, d]$ e limitata, allora si può scambiare l'ordine d'integrazione per integrali semplici nelle due variabili,

$$\int_a^b \left(\int_c^d f(x,y) \, dy \right) dx = \int_c^d \left(\int_a^b f(x,y) \, dx \right) dy =: \int_c^d \int_a^b f(x,y) \, dx \, dy.$$

15.12 Esercizio. Il lettore può dimostrare direttamente, senza usare la teoria dell'integrazione, la formula di cambiamento dell'ordine di integrazione verificandola successivamente per $f(x,y)=\lambda$ costante, (i due integrali valgono entrambi $\lambda(b-a)(d-c)$), per una funzione costante a tratti su una quadrettatura di $[a,b]\times [c,d]$ (si procede come nel caso precedente sui rettangoli della quadrettatura e si somma) e infine per una arbitraria funzione continua (si procede per approssimazione con funzioni costanti a tratti su una quadrettatura).

Usando l'osservazione precedente, si dimostra facilmente

15.13 Proposizione (Stokes). Siano $R:=[0,1]\times[0,1]$ e $\delta:[0,1]\to\mathbb{R}^2$ la curva in (15.6) che percorre ∂R in senso antiorario. Sia $\eta(s,t):=P(s,t)\,ds+Q(s,t)\,dt$ una forma differenziale continua in R di classe C^1 in un intorno di R. Allora

$$\mathcal{L}(\delta, \eta) = \int_0^1 \int_0^1 \left(\frac{\partial Q}{\partial s} - \frac{\partial P}{\partial t} \right) ds dt.$$

Dimostrazione. Siano infatti δ , δ_i , i = 0,3 le parametrizzazioni dei lati di R in (15.6). Si ha

$$\begin{split} \int_{\delta} \eta &= \int_{\delta_1} \eta - \int_{\delta_0} \eta + \int_{\delta_3} \eta - \int_{\delta_2} \eta \\ &= \int_0^1 Q(1,t) \, dt - \int_0^1 Q(0,t) \, dt + \int_0^1 P(s,0) \, ds - \int_0^1 P(s,1) \, ds \\ &= \int_0^1 \left(\int_0^1 \frac{\partial Q}{\partial s}(s,t) \, ds \right) dt - \int_0^1 \left(\int_0^1 \frac{\partial P}{\partial t} \, dt \right) ds \\ &= \int_0^1 \int_0^1 \left(\frac{\partial Q}{\partial s} - \frac{\partial P}{\partial t} \right) ds \, dt. \end{split}$$

La prima e la seconda uguaglianza derivano dalla definizione di lavoro, la terza dal teorema fondamentale del calcolo e l'ultima uguaglianza segue dallo scambio dell'ordine di integrazione per funzioni continue di due variabili. \qed

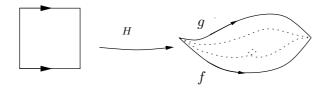


Figura 15.2. Una omotopia tra $f \in q$ con estremi fissi.

15.14 Teorema. Siano Ω un aperto connesso, $R := [0,1] \times [0,1]$ e $\delta : [0,1] \to \partial R$ la curva che percorre ∂R data in (15.6). Sia $H : R \to \Omega$ una applicazione continua tale che $\gamma := H \circ \delta : [0,1] \to \Omega$ è una curva continua e C^1 a tratti. Allora per ogni forma differenziale chiusa ω in Ω

$$\mathcal{L}(\gamma,\omega)=0.$$

Dimostrazione del Teorema 15.14 nel caso in cui $H \in C^2$. Dimostriamo il Teorema 15.14 nel solo caso in cui H sia una mappa di classe C^2 su un aperto Δ contenente R. Infatti in questo caso la forma $H^\#\omega$ è di classe C^1 su Δ e dalla (15.4) $H^\#\omega$ è chiusa in Δ . Segue quindi dalla (15.3) e dalla formula di Stokes, Proposizione 15.13, che

$$\mathcal{L}(\gamma,\omega) = \mathcal{L}(\delta, H^{\#}\omega) = \int_0^1 \int_0^1 0 \, ds \, dt = 0.$$

Il caso generale e' piu' complicato e si puo' ottenere con una procedura di approssimazione, che non esponiamo. $\hfill\Box$

Vediamo ora alcune conseguenze rilevanti del Teorema 15.14.

15.d Curve omotope e lavoro

Sia Ω un aperto connesso di \mathbb{R}^n . Due curve continue $f, g : [0, 1] \to \Omega$ con f(0) = g(0), f(1) = g(1), si dicono omotope in Ω se esiste una applicazione continua

$$H: R = [0,1] \times [0,1] \rightarrow \Omega$$

tale che

$$\begin{cases} H(0,t) = f(t), \ \forall t \in [0,1], \\ H(1,t) = g(t), \ \forall t \in [0,1], \\ H(s,a) = f(0) = g(0), \ \forall s \in [0,1], \\ H(s,b) = f(1) = g(1), \ \forall s \in [0,1], \end{cases}$$

cfr. Figura 15.2. Con le notazioni precedenti, ovviamente si ha $f(t) = H \circ \delta_0(t)$ e $g(t) = H \circ \delta_1(t)$. Inoltre le curve $\gamma_2 := H \circ \delta_2$ e $\gamma_3 := H \circ \delta_3$ sono costanti e quindi $\mathcal{L}(\delta_3, H^\#\omega) = \mathcal{L}(\delta_2, H^\#\omega) = 0$. Si conclude dalla additività del lavoro su curve successive e dalla (15.4)

$$\mathcal{L}(H^{\#}\omega, \delta) = \mathcal{L}(\delta_0, H^{\#}\omega) - \mathcal{L}(\delta_1, H^{\#}\omega) = \mathcal{L}(f, \omega) - \mathcal{L}(g, \omega). \tag{15.7}$$

Il Teorema 15.14 si legge allora come

15.15 Corollario. Se $f, g : [0,1] \to \Omega$ sono curve continue, C^1 a tratti e omotope con estremi iniziali e finali fissi, allora per ogni forma chiusa ω in Ω

$$\mathcal{L}(f,\omega) = \mathcal{L}(g,\omega).$$

Equivalentemente, se $F \in C^1(\Omega)$ è un campo irrotazionale, il lavoro di F non cambia su curve C^1 a tratti omotope con estremi iniziali e finali fissi.

Due curve chiuse continue $f,g:[0,1]\to\Omega$ si dicono omotope in Ω se esiste una mappa $H:R\to\Omega$ continua tale che

$$\begin{cases} H(0,t) = f(t), \ \forall t \in [0,1], \\ H(1,t) = g(t), \ \forall t \in [0,1], \\ H(s,0) = H(s,1), \ \forall s \in [0,1], \end{cases}$$

cfr. Figura 15.3. Si può ridurre questo al caso di omotopia con estremi iniziale e finale fissi perché, se $\gamma(s) := H(s,0)$, allora f e la curva $\gamma + g - \gamma$, ottenuta percorrendo prima γ quindi g e infine γ a ritroso, sono omotope come curve con estremi fissi f(0) = f(1). Se γ è C^1 a tratti segue dalla (15.7) che

$$\mathcal{L}(H^{\#}\omega,\delta) = \mathcal{L}(f,\omega) - \mathcal{L}(\gamma,\omega) - \mathcal{L}(g,\omega) + \mathcal{L}(\gamma,\omega) = \mathcal{L}(f,\omega) - \mathcal{L}(g,\omega) \quad (15.8)$$

per ogni forma ω , e dunque

15.16 Corollario. Se $f,g:[0,1]\to\Omega$ sono curve continue, C^1 a tratti, chiuse e omotope come curve chiuse e se, detta $H:R\to\Omega$ l'omotopia, la funzione $s\to H(s,0),\,s\in[0,1]$ è C^1 a tratti, allora per ogni forma chiusa ω in Ω si ha

$$\mathcal{L}(f,\omega) = \mathcal{L}(g,\omega).$$

15.e Insiemi semplicemente connessi e forme chiuse

15.17 Definizione. Un aperto connesso Ω si dice semplicemente connesso se ogni curva chiusa è omotopa ad una costante.

Si osservi che ogni aperto connesso è connesso per archi. Perciò un aperto Ω è semplicemente connesso se e solo se, per ogni $x_0 \in \Omega$, ogni curva chiusa con punto iniziale e finale x_0 è omotopa alla curva costante x_0 con punti iniziali e finali fissi x_0 .

Dal Corollario 15.15 segue allora

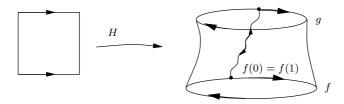


Figura 15.3. Una omotopia tra $f \in g$ come curve chiuse.

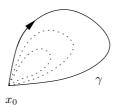


Figura 15.4. f è omotopa a x_0 a estremi fissi

15.18 Corollario. Sia Ω un aperto connesso e semplicemente connesso. Allora ogni forma chiusa in Ω è esatta in Ω e ogni campo irrotazionale in Ω è conservativo in Ω . In formula se rot F = 0 in Ω , allora esiste $f \in C^2(\Omega)$ tale che $F = \nabla f$ in Ω .

Ecco ora qualche situazione rilevante in cui si può utilizzare il Corollario 15.18. Le palle di \mathbb{R}^n sono evidentemente semplicemente connesse. Perciò

15.19 Proposizione. Ogni forma chiusa di classe C^1 è localmente esatta. Ogni campo F irrotazionale e di classe C^1 è localmente conservativo.

15.20 Definizione. Un aperto $\Omega \subset \mathbb{R}^n$ si dice stellato rispetto ad un suo punto x_0 se per ogni altro punto $x \in \Omega$ il segmento congiungente x_0 con x è contenuto in Ω .

Ad esempio \mathbb{R}^n e $\{x \mid |x| \leq 1\}$ sono insiemi stellati rispetto all'origine; $\mathbb{R}^2 \setminus \{(x,0) \mid x \leq 0\}$ è stellato rispetto a (1,0). Invece $\mathbb{R}^n \setminus \{0\}$ e le corone, ad esempio $\{x \in \mathbb{R}^n \mid 1 < |x| < 2\}$, non sono insiemi stellati.

Ci si convince subito che se Ω è stellato rispetto a x_0 , ogni curva $f:[0,1] \to \Omega$ chiusa con $f(1) = f(0) = x_0$ è omotopa a x_0 con punti iniziali e finali x_0 , scegliendo ad esempio come omotopia la funzione $H(t,x) = (1-s)x_0 + sf(t)$, $s \in [0,1]$, $t \in [0,1]$. Perciò ogni aperto stellato è semplicemente connesso. Segue allora dal Corollario 15.18

15.21 Teorema (Lemma di Poincaré). Sia Ω un aperto di \mathbb{R}^n stellato. Ogni forma chiusa in Ω di classe $C^1(\Omega)$ è esatta in Ω . Equivalentemente per ogni campo irrotazionale F in Ω esiste $f \in C^2(\Omega)$ tale che $F = \nabla f$ in Ω .

Per comodità del lettore diamo anche una diversa e più diretta dimostrazione.

Un'altra dimostrazione del lemma di Poincaré. A meno di una traslazione non è restrittivo supporre che Ω sia stellato rispetto all'origine. Parametrizziamo il segmento congiungente x con l'origine con $\gamma(t)=tx/|x|,\,t\in[0,|x|]$. C'è da verificare che

$$f(x) := \mathcal{L}(\gamma, \omega) = \int_0^{|x|} \langle \omega(th), h \rangle dt = \int_0^1 \sum_{i=1}^n \omega_i(th) h^i dt$$

è un potenziale per ω in $\Omega.$ Dal teorema di derivazione sotto il segno di integrale si ha

$$\frac{\partial f}{\partial x^j}(x) = \frac{\partial}{\partial x^j} \int_0^1 \sum_{i=1}^n \omega_i(tx) x^i dt = \int_0^1 \frac{\partial}{\partial x^j} \left[\sum_{i=1}^n \omega_i(tx) x^i \right] dt$$

quindi, usando il fatto che ω è chiusa,

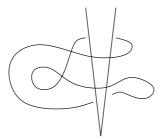


Figura 15.5. $\mathbb{R}^3 \setminus \{x_0\}$ è semplicemente connesso.

$$\begin{split} \frac{\partial f}{\partial x^j}(x) &= \int_0^1 \left(\omega_j(tx) + t \frac{\partial \omega_i}{\partial x^j}(tx) x^i \right) dt = \int_0^1 \left(\omega_j(tx) + t \frac{\partial \omega_j}{\partial x^i}(tx) x^i \right) dt \\ &= \int_0^1 \left(\omega_j(tx) + t \frac{d}{dt} \omega_j(tx) \right) dt = \int_0^1 \frac{d}{dt} (t\omega_j(tx)) dt = \omega_j(x). \end{split}$$

15.22 Esercizio. Ovviamente $\mathbb{R}^2 \setminus \{0\}$ non è semplicemente connesso se non altro perché la forma angolo, cfr. Esercizio 15.3, pur essendo chiusa non è esatta. In contrasto, mostrare che ogni aperto $\Omega \subset \mathbb{R}^3 \setminus \{0\}$ è semplicemente connesso.

Soluzione. Sia γ una curva chiusa in $\mathbb{R}^3 \setminus \{0\}$. Poiché $\gamma([0,1])$ è compatto, esiste $\delta > 0$ per cui la traiettoria di γ non entra in $B(0,\delta)$. La curva $\delta(t) := \gamma(t)/|\gamma(t)|$, $t \in [0,1]$ è allora una curva continua C^1 a tratti sulla sfera S^2 . Essendo δ di lunghezza finita, δ non è surgettiva. Esiste dunque tutto un intorno di un punto, diciamo il polo Nord, che non è attraversato da δ . Ma allora γ non attraversa un cono con asse la semiretta per l'origine e il polo Nord. Si può quindi retrarre δ con una omotopia ad esempio sul polo Sud, cfr. Figura 15.5.

15.f Esercizi

15.23 Esercizio. Sia Ω un aperto di \mathbb{R}^3 . Poiché per ogni $u \in C^2(\Omega)$, div rot u = 0 in Ω , una condizione necessaria per la risoluzione dell'equazione rot u = f è che div f = 0 in Ω . Se Ω è un aperto stellato rispetto a 0, si ha

- (i) due soluzioni di rotu=f differiscono per il gradiente di una arbitraria funzione su $\Omega,$
- (ii) se div f = 0, provare che

$$rot (tf(x) \times x) = \frac{d}{dt}(t^2 f(tx)),$$

e quindi, passando il rotore sotto il segno di integrale, mostrare che

$$u(x) := \int_0^1 t f(tx) \times x \, dt$$

è una soluzione di rotu=f. Qui $a\times b$ denota il prodotto vettore definito da

$$a \times b := (a^2b^3 - a^3b^2, -(a^1b^3 - a^3b^1), a^1b^2 - a^2b^1)$$

se
$$a = (a^1, a^2, a^3)$$
 e $b = (b^1, b^2, b^3)$.