IV. Funzioni olomorfe

La teoria delle funzioni di una variabile complessa è un capitolo centrale e pieno di fascino della matematica. Ha la sua preistoria nelle opere di Leonhard Euler (1707–1783), Joseph-Louis Lagrange (1736–1813) e Carl Friedrich Gauss (1777–1855), il suo periodo aureo con Augustin-Louis Cauchy (1789–1857), G. F. Bernhard Riemann (1826–1866), Hermann Schwarz (1843–1921) e Karl Weierstrass (1815–1897), ed è il risultato del contributo di molti matematici tral il 1800 e il 1950. Le idee, i metodi e i risultati della teoria delle funzioni olomorfe, al di là della loro bellezza estetica giocano un ruolo fondamentale in molte branche della matematica sia pura che applicata. Noi qui ci limiteremo a darne solo una introduzione, ad un livello elementare.

1 Funzioni da $\mathbb C$ in $\mathbb C$

Numeri complessi

Ricordiamo che, se si associa ad ogni $z=a+ib\in\mathbb{C}$ il punto $(a,b)\in\mathbb{R}^2$, si ottiene una identificazione tra l'insieme dei numeri complessi \mathbb{C} e \mathbb{R}^2 , che rispetta le strutture di spazio vettoriale in \mathbb{C} e \mathbb{R}^2 . La struttura di prodotto di numeri complessi da' inoltre un modo semplice di descrivere le rotazioni orientate del piano della geometria. Infatti se z=a+ib, w=c+id sono due numeri complessi, si ha

$$z\overline{w} = (a+ib)(c-id) = (ac+bd) + i(bc-ad) = (z|w)_{\mathbb{R}^2} + i\det(w,z)$$

$$\tag{1.1}$$

e dunque, se θ è l'angolo formato dai vettori z=(a,b) e w=(c,d), misurato da w a z,

$$w\overline{z} = |z||w|(\cos\theta + i\sin\theta).$$

In particolare si ritrova che iz, la moltiplicazione di z=a+ib per i, corrisponde al vettore ottenuto ruotando di $\pi/2$ in senso antiorario il vettore z: infatti $iz\overline{z}=i|z|^2=|z|^2(0+i1)$.

Derivata complessa

Ricordiamo, cfr. Vol. III, Cap. 7, che in analogia con la derivata delle funzioni di una variabile si pone

1.1 DEFINIZIONE. Sia $f: \Omega \subset \mathbb{C} \to \mathbb{C}$, Ω aperto, $z_0 \in \Omega$. Si dice che f è derivabile in senso complesso in z_0 con derivata $f'(z_0)$ se esiste finito (in \mathbb{C})

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

 $f'(z_0)$ è detta la derivata complessa di f in z_0 . Se f ha derivata complessa in ogni punto di Ω , si dice che f è olomorfa in Ω . La classe delle funzioni olomorfe su Ω si denota con $\mathcal{H}(\Omega)$.

- 1.2¶ Mostrare che, come nel caso delle funzioni di una variabile reale.
- (i) Se f ha derivata complessa in z_0 , allora f è continua in z_0 .
- (ii) Se f, g hanno derivata complessa in z_0 , allora f + g, fg hanno derivata complessa in z_0 e

$$(f+g)'(z_0) = f'(z_0) + g'(z_0),$$
 $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0).$

In particolare $\mathcal{H}(\Omega)$ è un anello su \mathbb{C} .

(iii) Se f, g hanno derivata complessa e $g(z_0) \neq 0$, allora f/g ha derivata complessa in z_0 e

$$\left(\frac{f}{g}\right)'(z_0) = \frac{f'(z_0)g(z_0) - g'(z_0)f(z_0)}{g^2(z_0)}.$$

- (iv) Siano $\Omega \subset \mathbb{C}$ aperto, $z_0 \in \Omega$, $f: \Omega \to \mathbb{C}$, A un aperto in \mathbb{C} con $f(z_0) \in A$ e $g: A \to \mathbb{C}$. Se f ha derivata complessa in z_0 e g ha derivata complessa in $f(z_0)$, allora $g \circ f$ ha derivata complessa in z_0 e $(g \circ f)'(z_0) = g'(f(z_0))f'(z_0)$.
- (v) se F ha derivata complessa in Ω , e $\gamma:[0,1]\to\Omega$ è di classe C^1 , allora $t\to F(\gamma(t))$ è derivabile in [0,1] e

$$\frac{d}{dt}F(\gamma(t)) = F'(\gamma(t))\gamma'(t) \qquad \forall t \in [0,1].$$

1.3 ¶ Siano $f \in \mathcal{H}(\Omega)$, $g \in \mathcal{H}(\Delta)$ con Ω, Δ aperti e f = g in $\Omega \cap \Delta$. Allora la funzione

$$F(z) := \begin{cases} f(z) & \text{se } z \in \Omega, \\ g(z) & \text{se } z \in \Delta \end{cases}$$

è olomorfa in $\Omega \cup \Delta$.

- 1.4 ¶ Mostrare che
- (i) I polinomi in $z \in \mathbb{C}$ sono funzioni olomorfe su \mathbb{C} .
- (ii) La funzione R(z):=P(z)/Q(z) quoziente di due polinomi $P\in Q$ è olomorfa in $\Omega:=\{z\in\mathbb{C}\,|\,Q(z)\neq 0\}.$

Le equazioni di Cauchy-Riemann

Cominiciamo con qualche notazione. Sia f una funzione differentiabile a valori complessi, f(z) = f(x,y) = u(x,y) + iv(x,y) se z := x + iy. Indichiamo rispettivamente con f_x e f_y la prima e la seconda colonna della matrice jacobiana di f(x,y):

$$\mathbf{D}f(z) = [f_x|f_y] = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}.$$

Definiamo

$$\frac{\partial f}{\partial z} = f_z := \frac{1}{2}(f_x - if_y), \qquad \frac{\partial f}{\partial \overline{z}} = f_{\overline{z}} := \frac{1}{2}(f_x + if_y),$$

in modo che

$$f_x = f_z + f_{\overline{z}}, \qquad f_y = i(f_z - f_{\overline{z}}).$$

17 giugno 2004

file = cauchy.ps

file = riemann.ps

file = weierstrass.ps

Figura 1.1.

Poniamo quindi

$$dz := dx + i \, dy, \qquad d\overline{z} := dx - i \, dy,$$

in modo che $dx=\frac{1}{2}(dz+d\overline{z}),\,dy=\frac{1}{2i}(dz-d\overline{z})$ e

$$df = f_x dx + f_y dy = f_z dz + f_{\overline{z}} d\overline{z}.$$

Ora, $f:\Omega\subset\mathbb{C}\to\mathbb{C},\,\Omega$ aperto, ha derivata complessa in $z_0:=x_0+iy_0$ se e solo se

$$f(z_0 + w) = f(z_0) + f'(z_0) w + o(|w|)$$
 per $w \to 0$. (1.2)

D'altra parte f = u + iv è differentiabile (in senso reale) in (x_0, y_0) se

$$\begin{cases} u(x_0 + x, y_0 + y) = u(x_0, y_0) + u_x(x_0, y_0) x + u_y(x_0, y_0) y + o(|w|), \\ v(x_0 + x, y_0 + y) = v(x_0, y_0) + v_x(x_0, y_0) x + v_y(x_0, y_0) y + o(|w|) \end{cases}$$

per $w=x+iy\to 0$, che possiamo riscrivere, moltiplicando la seconda relazione per i e sommandola alla prima, come

$$f(z_0 + w) = f(z_0) + f_x(z_0)x + f_y(z_0)y + o(|w|) \quad \text{per } w \to 0.$$
 (1.3)

Confrontando le (1.2) (1.3) si ottiene subito

1.5 PROPOSIZIONE. $f: \Omega \subset \mathbb{C} \to \mathbb{C}$ ha derivata complessa in $z_0 \in \Omega$ se e solo se f è differenziabile (in senso reale) in z_0 e per qualche $\lambda \in \mathbb{C}$

$$\frac{\partial f}{\partial w}(z_0) = \mathbf{D}f(z_0)(w) = \lambda w. \tag{1.4}$$

In questo caso $\lambda = f'(z_0)$.

Versione Preliminare

17 giugno 2004

La condizione (1.4) afferma che il differenziale (reale) di una funzione f con derivata complessa in z_0 esiste ed agisce sui vettori di \mathbb{R}^2 con una moltiplicazione complessa

$$w \longrightarrow \frac{\partial f}{\partial w}(z_0) = df(z_0)(w) = \lambda w.$$

E' una condizione particolarmente stringente. Infatti due vettori $w_1, w_2 \in \mathbb{C}$ vengono mappati dal differenziale nei vettori $\lambda w_1, \lambda w_2$, i.e. in vettori ruotati dello stesso angolo e amplificati allo stesso modo di $|\lambda|$. In particolare vettori w_1 e w_2 perpendicolari e di lunghezza uguale hanno immagini $\lambda\,w_1$ e $\lambda\,w_2$ perpendicolari e di lunghezza uguale. Se poi $w_2=iw_1$, i.e., w_2 è il ruotato di w_1 di $\pi/2$ in senso antiorario, allora banalmente $\lambda w_2 = i \lambda w_1$, i.e., l'immagine di w_2 è il ruotato di $\pi/2$ in senso antiorario dell'immagine di w_1 .

Se f è differenziabile in z_0 , la (1.4) è equivalente a

$$f_y(z_0) = i f_x(z_0).$$
 (1.5)

e quindi $f'(z_0) = f_x(z_0) = f_z(z_0)$. A parole la (1.4) esprime il fatto che il vettore f_y si ottiene ruotando di $\pi/2$ in senso antiorario il vettore f_x . La (1.4) si puo' anche riscrivere come

$$\frac{\partial f}{\partial \overline{z}}(z_0) = 0, \tag{1.6}$$

oppure come le identità

$$\begin{cases}
\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0), \\
\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)
\end{cases}$$
(1.7)

nelle componenti di f, f =: u + iv. Infine la (1.5) è anche equivalente alle condizioni

$$\begin{cases} |f_x(z_0)| = |f_y(z_0)|, \\ (f_x(z_0)|f_y(z_0)) = 0, \\ \det \mathbf{D}f(z_0) \ge 0. \end{cases}$$
 (1.8)

Pertanto

- 1.6 Proposizione. Sia Ω aperto. $f \in \mathcal{H}(\Omega)$ se e solo se f è differenziabile (in senso reale) in Ω e una delle condizioni seguenti è verificata
- (i) $f_y(z) = i f_x(z) \ \forall z \in \Omega$,
- (ii) $\frac{\partial f}{\partial \overline{z}}(z) = 0 \ \forall z \in \Omega$, (iii) f := u + iv soddisfa le equazioni di Cauchy–Riemann dette equazioni di Cauchy– Riemann.

$$\begin{cases} \frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y), \\ \frac{\partial u}{\partial y}(x,y) = -\frac{\partial v}{\partial x}(x,y) \end{cases} \forall z = x + iy \in \Omega,$$

(iv) f verifica le condizioni di conformalità

$$\begin{cases} |f_x(z)| = |f_y(z)|, \\ (f_x(z)|f_y(z)) = 0, \end{cases}$$

$$e \det \mathbf{D}f(z) \ge 0 \ \forall z \in \Omega.$$

In questo caso $f'(z) = \frac{\partial f}{\partial z}(z) = \frac{\partial f}{\partial x}(z) \ \forall z \in \Omega$.

17 giugno 2004

2 Il teorema fondamentale del calcolo in $\mathbb C$

Integrale di linea

Sia $f: \Omega \to \mathbb{C}$, $\Omega \subset \mathbb{C}$ aperto, una funzione continua e sia $\gamma: [0,1] \to \Omega \subset \mathbb{C}$ una curva C^1 in Ω . L'integrale di f(z) dz lungo la curva γ è definito da

$$\int_{\gamma} f(z) dz := \int_0^1 f(\gamma(t)) \gamma'(t) dt = \int_0^1 \Re \Big(f(\gamma(t)) \gamma'(t) \Big) dt + i \int_0^1 \Im \Big(f(\gamma(t)) \gamma'(t) \Big) dt.$$

L'integrale di f(z) dz lungo una linea γ è dunque la versione complessa dell'integrale di una 1-forma differenziale lungo una curva, cfr. Cap. 3. Ricordiamo rapidamente alcune proprietà. E' presto visto, usando la formula di cambiamento di variabili per integrali unidimensionali che, se $\delta: [a,b] \to \Omega$ è una riparametrizzazione di γ , i.e. se $\delta = \gamma \circ h$ essendo $h: [a,b] \to [0,1]$ di classe C^1 e con $h' \geq 0$, allora

$$\int_{\delta} f(z) \, dz = \int_{\gamma} f(z) \, dz$$

Ricordiamo infine che se $\gamma:[0,1]\to\Omega$ e $\delta:[a,b]\to\Omega$ sono due curve semplici di classe C^1 con la stessa immagine e $\gamma(0)=\delta(a),\,\gamma(1)=\delta(b),\,$ allora γ e δ sono ciascuna la riparametrizzazione dell'altra e dunque

$$\int_{\gamma} f(z) \, dz$$

dipende in realtà solo dalla traiettoria $\gamma(A)$ di γ . Ricordiamo infine le stime, che seguono direttamente dalla definizione,

$$\left| \int_{\gamma} f(z) \, dz \right| \le \int_{\gamma} |f(z)| \, ds \le ||f||_{\infty,\Omega} L(\gamma)$$

avendo denotato con ds l'elemento d'arco e con $L(\gamma)$ la lunghezza della curva γ .

Primitive olomorfe e integrali

2.1 DEFINIZIONE. Siano Ω un aperto $e f : \Omega \to \mathbb{C}$. Si dice che $F \in \mathcal{H}(\Omega)$ è una primitiva olomorfa di f in Ω se $F'(z) = f(z) \ \forall z \in \Omega$.

Contrariamente al caso di funzioni di una variabile reale, non è detto che una funzione $f:\Omega\to\mathbb{C}$ continua, o anche olomorfa in Ω , abbia una primitiva olomorfa F in Ω .

2.2 ESEMPIO Sia $f(z)=\frac{1}{z}, z\neq 0$ e $\gamma(t):=e^{it}, t\in [0,2\pi]$. Evidentemente $f\in \mathcal{H}(\mathbb{C}\setminus\{0\})$. Se esistesse una primitiva olomorfa F di f(z) dz su $\mathbb{C}\setminus\{0\}$, allora

$$0 = F(1) - F(1) = F(\gamma(2\pi)) - F(\gamma(0)) = \int_{\gamma} \frac{dz}{z} = \int_{0}^{2\pi} \frac{ie^{it}}{e^{it}} dt = 2\pi i$$
 (2.1)

un assurdo.

Versione Preliminare

17 giugno 2004

2.3 TEOREMA (FONDAMENTALE DEL CALCOLO). Siano $\Omega \subset \mathbb{C}$ un aperto connesso e $f:\Omega \to \mathbb{C}$ una funzione continua. $F \in \mathcal{H}(\Omega)$ è una primitiva olomorfa per f in Ω se e solo se per ogni $z,w \in \Omega$ e ogni curva $\gamma:[0,1] \to \Omega$ di classe C^1 a tratti con $\gamma(0)=w$, $\gamma(1)=z$ si ha

$$F(z) - F(w) = \int_{\gamma} f(z) dz.$$

Dimostrazione. Supponiamo che F sia una primitiva olomorfa di f. Allora $f(\gamma(t))\gamma'(t) = F'(\gamma(t))\gamma'(t) = \frac{d}{dt}(F(\gamma(t)))$, cfr. Esercizio 1.2. Segue dal teorema fondamentale del calcolo per funzioni di variabile reale,

$$\int_{\gamma} f(z) \, dz = \int_{0}^{1} F'(\gamma(t)) \gamma'(t) \, dt = \int_{0}^{1} \frac{d}{dt} (F(\gamma(t))) \, dt = F(\gamma(1)) - F(\gamma(0)).$$

Viceversa sia $z \in \Omega$ e $\delta > 0$ tale che $B(z, \delta) \subset \Omega$. Per ogni $h, |h| < \delta$, segue dall'ipotesi che

$$F(z+h) - F(z) = \int_{\gamma} f(w) \, dw$$

essendo γ la spezzata che congiunge z con z+h muovendo prima in orizzontale e quindi in verticale, cfr. Figura 2.3. Si noti che la lunghezza di γ non supera $\sqrt{2}|h|$ e che l'immagine di γ è contenuta in $\overline{B(z,|h|)}$. Essendo

$$\int_{\gamma} dw = h,$$

si ha

$$\left| F(z+h) - F(z) - hf(z) \right| = \left| \int_{\gamma} \left(f(\zeta) - f(z) \right) d\zeta \right| \le \sup_{\zeta \in \overline{B(z,|h|)}} \left| f(\zeta) - f(z) \right| \sqrt{2} |h|$$

e quindi

$$\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| \le \sqrt{2} \sup_{\zeta \in \overline{B(z,|h|)}} |f(\zeta) - f(z)|$$

Essendo f continua in z, per $h \to 0$, si ottiene che F ha derivata complessa in z con F'(z) = f(z). \square

 $2.4 \ \P \ \mathrm{Sia} \ \Omega \subset \mathbb{C} \ \mathrm{un} \ \mathrm{aperto} \ \mathrm{connesso} \ \mathrm{e} \ F : \Omega \to \mathbb{C} \ \mathrm{tale} \ \mathrm{che} \ F'(z) = 0 \ \forall z \in \Omega, \ \mathrm{allora} \ F \ \mathrm{\grave{e}} \ \mathrm{costante} \ \mathrm{in} \ \Omega.$

2.5 Teorema. Sia Ω un dominio di \mathbb{C} . $f:\Omega\to\mathbb{C}$ ha una primitiva olomorfa in Ω se e solo se

$$\int_{\gamma} f(z) \, dz = 0 \tag{2.2}$$

per ogni curva chiusa γ di classe C^1 a tratti con immagine in Ω .

Dimostrazione. Se f ha una primitiva olomorfa in $\Omega,$ allora la (2.2) segue dal teorema fondamentale del calcolo.

Viceversa, assumiamo la (2.2). Siano $z_0,z\in\Omega$ e $\delta_z:[0,1]\to\Omega$ una curva di classe C^1 a tratti con $\delta(0)=z_0$ e $\delta(1)=z$. Sia

$$F(z) := \int_{\delta_z} f(\zeta) \, d\zeta$$

Per ipotesi F(z) non dipende dalla scelta di δ_z ma solo da z, dunque $F:\Omega\to\mathbb{C}$ è univocamete definita. Se ora $z,w\in\Omega$ e $\gamma:[0,1]\to\Omega$ è una curva C^1 a tratti con $\gamma(0)=w,\,\gamma(1)=z$, allora

$$F(z) - F(w) = \int_{\delta_z} f(\zeta) \, d\zeta - \int_{\delta_w} f(\zeta) \, d\zeta = \int_{\gamma} f(\zeta) \, d\zeta$$

ancora per la (2.2). F è allora una primitiva olomorfa di f in Ω per il teorema fondamentale del calcolo.

17 giugno 2004

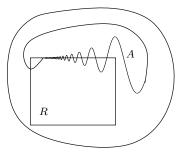


Figura 2.1. A è ammissibile, ma $A \cap R$ non lo è.

Domini regolari

Un aperto connesso di $\mathbb C$ si chiama anche un dominio di $\mathbb C$. Diciamo che A è un dominio regolare se A è un dominio la cui frontiera è l'unione delle immagini di un numero finito di curve semplici chiuse C^1 a tratti che si toccano eventualmente sugli estremi. In particolare per tutti i punti x del bordo ∂A tranne al piu' un numero finito, è definita la normale esterna ad A in x; indicheremo quindi con $\partial^+ A$ una curva C^1 a tratti che percorre il bordo di A in senso antiorario, i.e., lasciando alla sua destra la normale esterna ad A. La curva $\partial^+ A$, pur non essendo univocamente definita, si chiama con un qualche abuso di linguaggio la frontiera orientata in senso antioriario, di A. In ogni caso, se $f: \Omega \to \mathbb{C}$ è continua, l'integrale

$$\int_{\partial^+ A} f(z) \, dz$$

è univocamente definito, non dipendendo dalla parametrizzazione scelta nel percorrere ∂A in senso antiorario.

Sia Ω un aperto e $A \subset \Omega$ un dominio regolare di \mathbb{C} . È falso in generale che se $R \subset \Omega$ è un rettangolo, allora $A \cap R$ sia ancora un dominio regolare di \mathbb{C} , cfr. Figura 2.1. Diremo che $A \subset\subset \Omega$ è un dominio ammissibile per Ω se esiste una quadrettatura di \mathbb{C} tale che per ogni quadrato aperto R della quadrettatura tale che $R \cap A \neq \emptyset$ si abbia

- (i) $R \subset \Omega$,
- (ii) $R \cap A$ sia un dominio regolare di \mathbb{C} .

Non è il caso di discutere questa definizione, anche perche' a posteriori risulterà del tutto superflua. Basterà osservare per quel che segue che i domini piccoli, i rettangoli di Ω , le palle $B(z,r) \subset\subset \Omega$, le corone $A(z,r,R) := \{w \in \mathbb{C} \mid r < |w-z| < R\}$ strettamente contenute in Ω e gli insiemi del tipo $A := B(z_0,r) \setminus \overline{B(z,\delta)}$ con $B(z,\delta) \subset B(z_0,r) \subset\subset \Omega$ sono domini ammissibili.

- 2.6 Proposizione. Sia $f:\Omega\to\mathbb{C}$ una funzione continua definita su un dominio $\Omega\subset\mathbb{C}.$ Sono fatti equivalenti
- (i) per ogni rettangolo $R\subset\Omega$ con i lati paralleli agli assi, si ha $\int_{\partial^+R}f(z)\,dz=0,$
- (ii) per ogni rettangolo $R \subset \Omega$ con i lati paralleli agli assi e, per ogni $z_0 \in R$, la funzione

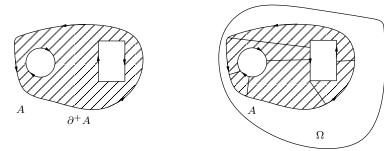


Figura 2.2. (a) Un dominio $A \subset \mathbb{C}$. (b) A è un dominio ammissibile in Ω .

$$F(z) := \int_{\gamma_z} f(\zeta) d\zeta, \qquad z \in R,$$

dove $\gamma_z : [0,1] \to R$ è la spezzata che congiunge $z_0 = x_0 + iy_0$ con $x + iy_0$ e quindi $x + iy_0$ con z = x + iy, è una primitiva olomorfa di f in R,

(iii) per ogni dominio ammissibile A in Ω si ha

$$\int_{\partial^+ A} f(z) \, dz = 0.$$

Dimostrazione. (i) \Rightarrow (ii). Mostriamo che $F'(z)=f(z) \ \forall z\in R.$ Sia $w\neq 0$ tale che $z+w\in R.$ Dalla (i) segue che

$$F(z+w) - F(z) = \int_{\gamma} f(\zeta) \, d\zeta$$

essendo γ la spezzata che congiunge z con z+w muovendo prima in orizzontale e quindi in verticale. Si noti che la lunghezza di γ è $\sqrt{2}\,|w|$ e che l'immagine di γ è contenuta in $\overline{B(z,|w|)}$. Si puo' allora ripetere il ragionamento nella dimostrazione della Proposizione 2.6 e concludere che F ha derivata complessa in z e che F'(z)=f(z).

(ii) \Rightarrow (iii). Sia R un rettangolo con i lati paralleli agli assi contenuto in Ω e sia F_R una primitiva olomorfa di f in R. Segue dal Teorema 2.3

$$\int_{\gamma} f(z)dz = \int_{0}^{1} f(\gamma(t))\gamma'(t) dt = \int_{0}^{1} \frac{d}{dt} F(\gamma(t)) = F(\gamma(1)) - F(\gamma(0))$$

per ogni curva γ C^1 a tratti contenuta in R, in particolare

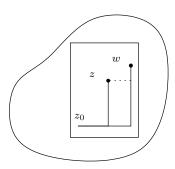


Figura 2.3.

17 giugno 2004

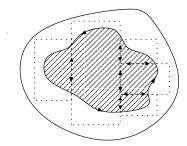


Figura 2.4.

$$\int_{\partial^+ A} f(z) \, dz = 0$$

per ogni dominio $A\subset R$. Se ora $A=\cup_{i=1}^N A_i$ con A_i domini disgiunti contenuti ciascuno in un rettangolo $R_i\subset \Omega$, si osserva che gli archi di curva in comune a piu' di un A_i sono percorsi esattamente due volte con orientazione opposta. Percio' gli integrali sui tratti in comune si elidono e quindi

$$\int_{\partial^+ A} f(z)\,dz = \sum_{i=1}^N \int_{\partial^+ A_i} f(z)\,dz = 0.$$

$$(iii) \Rightarrow (i)$$
. Ovvio.

Conviene evidenziare le differenze tra il Teorema 2.5 e la Proposizione 2.6.

- 2.7 COROLLARIO. Sia Ω un dominio di \mathbb{C} .
- (i) $f:\Omega\to\mathbb{C}$ ha localmente primitive olomorfe se e solo se per ogni dominio $A\subset\Omega$ ammissibile per Ω si ha

$$\int_{\partial^+ A} f(z) \, dz = 0.$$

(ii) f ha una primitiva olomorfa in Ω se e solo se

$$\int_{\gamma} f(z) \, dz = 0.$$

per ogni curva chiusa C^1 a tratti contenuta in Ω .

3 I teoremi fondamentali sulle funzioni olomorfe

In questo paragrafo proviamo i teoremi fondamentali sulle funzioni olomorfe. In particolare proveremo che le funzioni olomorfe sono tutte e sole quelle funzioni che sono localmente la somma di una serie di potenze.

3.1 TEOREMA (GOURSAT). Sia Ω un dominio di \mathbb{C} e $f \in \mathcal{H}(\Omega)$. Allora f ha localmente primitive olomorfe e

$$\int_{\partial^+ A} f(z) \, dz = 0$$

per ogni dominio ammissibile $A \subset \Omega$.

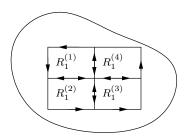


Figura 3.1.

Dimostrazione. Per la Proposizione 2.6, basta provare che per ogni rettangolo $R \subset \Omega$ con i lati paralleli agli assi, si ha $\int_{\partial +R} f(z), dz=0$. Diamo la dimostrazione dovuta a Edouard Goursat (1858–1936).

Sia R un rettangolo con lati paralleli agli assi strettamente contenuto in Ω . L'integrale $\int_{\partial^+ R} f(z) dz$ è allora ben definito (f è continua in Ω). Supponiamo

$$\eta(R) := \int_{\partial_{-R}^{+}} f(z) dz \neq 0. \tag{3.1}$$

Dividiamo R in quattro rettangoli uguali $R_1^{(1)},\dots R_1^{(4)}$. Poiche' i segmenti dei bordi comuni a due rettangoli si elidono, si ha

$$\eta(R) = \sum_{i=1}^{4} \eta(R_1^i).$$

Segue che per almeno uno di essi $R_1 := R_1^{(j)}$

$$|\eta(R_1)| \ge \frac{1}{4} |\eta(R)|$$

Dividendo R_1 in quattro e procedendo per induzione, si costruisce una successione di rettangoli R_n uno dentro l'altro tali che diag $(R_n) = 2^{-n}$ diag (R), Perimetro $(R_n) = 2^{-n}$ Perimetro (R) e

$$|\eta(R_n)| \ge 4^{-n}|\eta(R)|. \tag{3.2}$$

Sia ora $z^* = \bigcap_n \overline{R}_n$. Dalla definizione di olomorfia, per ogni $\epsilon > 0$ esiste $\delta > 0$ e \overline{n} tali che per ogni $n \geq \overline{n}$ si ha $\overline{R}_n \subset B(z^*, \delta)$ e

$$|f(z) - f(z^*) - f'(z^*)(z - z^*)| \le \epsilon |z - z^*|$$
 $\forall z \in B(z^*, \delta)$

da cui per ogni n sufficientemente grande si ha

$$|\eta(R_n)| = \left| \int_{\partial^+ R_n} \left(f(z) - f(z^*) - f'(z^*)(z - z^*) dz \right) \right|$$

$$\leq \epsilon \int_{\partial^+ R_n} |z - z^*| dz \leq \epsilon \operatorname{diag}(R_n) \operatorname{Perimetro}(R_n)$$

$$\leq c 4^{-n} \epsilon.$$

Si ottiene quindi dalla (3.2) che $|\eta(R)| \le c \epsilon$. Essendo ϵ arbitrario, si conclude che $\eta(R) = 0$.

17 giugno 2004

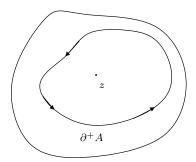


Figura 3.2.

3.2 ¶ Siano Ω un dominio di \mathbb{C} e $z_0 \in A \subset B \subset \Omega$. Se A e B sono domini ammissibili per Ω , allora

$$\int_{\partial^+ A} f(z) \, dz = \int_{\partial^+ B} f(z) \, dz \qquad \forall f \in \mathcal{H}(\Omega).$$

3.3 TEOREMA (FORMULA DI CAUCHY, I). Se $f \in \mathcal{H}(\Omega)$, vale la formula di Cauchy: per ogni dominio ammissibile $A \subset\subset \Omega$ e ogni $z \in A$ si ha

$$f(z) = \frac{1}{2\pi i} \int_{\partial^+ A} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Dimostrazione. La funzione $f(\zeta)/(\zeta-z)$ è olomorfa in $\Omega\setminus\{z\}$. Se poi δ è sufficientemente piccolo in modo che $B(z,\delta)\subset A$, l'insieme $A\setminus\overline{B(z,\delta)}$ è un dominio ammissibile per $\Omega\setminus\{z\}$. Segue dal Teorema 3.1

$$\int_{\partial^+ B(z,\delta)} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \int_{\partial^+ A} \frac{f(\zeta)}{\zeta - z} \, d\zeta.$$

D'altra parte, essendo f continua in z.

$$\bigg| \int_{\partial^+ B(z,\delta)} \frac{f(\zeta) - f(z)}{\zeta - z} \, d\zeta \bigg| \leq \frac{1}{\delta} (2\pi \, \delta) \, o(1) = o(1) \qquad \text{per } \delta \to 0,$$

Inoltre, parametrizzando $\partial^+ B(z,\delta)$ con $\zeta=z+\delta e^{i\theta},\,\theta\in[0,2\pi[,\,\mathrm{si}\,\,\mathrm{trova}\,\,$

$$\int_{\partial B(z,\delta)} \frac{d\zeta}{\zeta-z} = \int_0^{2\pi} \frac{\delta i e^{i\theta}}{\delta e^{i\theta}} \, d\theta = 2\pi \, i.$$

In conclusione, passando al limite per $\delta \to 0$,

$$\int_{\partial^+ A} \frac{f(\zeta)}{\zeta - z} \, d\zeta = f(z) \int_{\partial^+ B(z,\delta)} \frac{1}{\zeta - z} \, d\zeta + o(1) = 2 \, \pi \, i \, f(z) + o(1) \qquad \text{per } \delta \to 0,$$

Segue che o(1) è identicamente nullo e la tesi è provata.

Segue dalla formula di Cauchy e dal teorema di derivazione sotto il segno di integrale che ogni $f \in \mathcal{H}(\Omega)$ è $C^{\infty}(\Omega)$ e per ogni dominio ammissibile $A \subset \Omega$ e ogni $z \in A$

$$f^{(k)}(z) = \frac{1}{2\pi i} \int_{\partial^+ A} f(\zeta) \frac{d^k}{dz^k} \frac{1}{(\zeta - z)} dz = \frac{k!}{2\pi i} \int_{\partial^+ A} \frac{f(\zeta)}{(\zeta - z)^{k+1}} dz.$$
 (3.3)

Di piu', si ha

Versione Preliminare

17 giugno 2004

3.4 TEOREMA. Sia $\Omega \subset \mathbb{C}$ un dominio. Ogni funzione $f \in \mathcal{H}(\Omega)$ è localmente la somma di una serie di potenze. Precisamente per ogni $z_0 \in \Omega$

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k, \qquad z \in B(z_0, \rho),$$

dove $\rho := \operatorname{dist}(z_0, \partial \Omega)$ e per ogni k

$$a_k := \frac{1}{2\pi i} \int_{\partial^+ A} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} d\zeta, \tag{3.4}$$

essendo A un arbitrario dominio ammissibile per Ω contenente z_0 .

Proviamo prima il

3.5 LEMMA. Sia $f: \overline{B(z_0,r)} \subset \mathbb{C} \to \mathbb{C}$ una funzione continua su $\overline{B(z_0,r)}$ tale che

$$f(z) = \frac{1}{2\pi i} \int_{\partial^+ B(z_0, r)} \frac{f(\zeta)}{\zeta - z} d\zeta \qquad \forall z \in B(z_0, r).$$

per ogni $z \in B(z_0, r)$. Allora f(z) è la somma della serie di potenze complessa

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k, \quad \forall z \in B(z_0, r)$$

dove per ogni k

$$a_k := \frac{1}{2\pi i} \int_{\partial^+ B(z_0, r)} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} d\zeta$$

Dimostrazione. Per ogni ζ con $|\zeta - z_0| = r$ si ha

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \frac{1}{\zeta - z_0} \sum_{k=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right)^k.$$

e la convergenza è totale (al variare di ζ) essendo $\left|\frac{z-z_0}{\zeta-z_0}\right|=\frac{|z-z_0|}{r}<1$. Percio' integrando termine a termine,

$$f(z) = \frac{1}{2\pi i} \int_{\partial^+ B(z_0, r)} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{k=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial^+ B(z_0, r)} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} d\zeta \right) (z - z_0)^k.$$

Dimostrazione del Teorema 3.4. Se $z \in B(z_0,\rho)$ e r è tale che $|z-z_0| < r < \rho.$ Per la formula di Cauchy

$$f(w) = \frac{1}{2\pi i} \int_{\partial^+ B(z_0, r)} \frac{f(\zeta)}{\zeta - w} d\zeta \qquad \forall w \in B(z_0, r).$$

Segue quindi dal Lemma 3.5 che $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ con

$$a_k := \frac{1}{2\pi i} \int_{\partial^+ B(z_0,r)} \frac{f(\zeta)}{(\zeta-z_0)^{k+1}} \, d\zeta.$$

Si osserva ora che la funzione $g(\zeta):=f(\zeta)/(\zeta-z_0)^{k+1}$ è olomorfa in $\Omega\setminus\{z_0\}$ e dunque se $B(z_0,\epsilon)\subset A$

$$\int_{\partial^+ B(z_0, r)} g(\zeta) \, d\zeta = \int_{\partial^+ B(z_0, \epsilon)} g(\zeta) \, d\zeta = \int_{\partial^+ A} g(\zeta) \, d\zeta.$$

applicando il Teorema 3.1 rispettivamente ai domini ammissibili per $B(z_0,r)\backslash B(z_0,\epsilon)$ e $A\backslash B(z_0,\epsilon)$. \square

17 giugno 2004

Versione preliminare

3.6 TEOREMA. Sia $S(z) = \sum_{k=0}^{\infty} a_k(z-z_0)^k$, $z \in B(z_0,r)$, r > 0, la somma di una serie di potenze. Allora S è di classe $C^{\infty}(B(z_0,r))$ ed ha derivate complesse $S^{(k)}(z)$ di ogni ordine in $B(z_0,r)$. Per ogni $k=0,1,2,\ldots$ $S^{(k)}(z)$ è la somma della serie di potenze,

$$S^{(k)}(z) = \sum_{k=n}^{\infty} n(n-1) \dots (n-k+1) a_n (z-z_0)^{n-k} \qquad \forall z \in B(z_0, \rho).$$

In particolare

$$S^{(k)}(z_0) = k! \, a_k \qquad \forall k \ge 0. \tag{3.5}$$

Il teorema si ottiene applicando induttivamente la Proposizione 3.7 seguente

3.7 Proposizione. Sia $S(z)=\sum_{k=0}^{\infty}a_k(z-z_0)^k,\ z\in B(z_0,r),\ r>0,$ la somma di una serie di potenze. Allora $S\ \grave{e}\ C^1(B(z_0,r))\cap \mathcal{H}(B(z_0,r))\ e$

$$S'(z) = \sum_{k=1}^{\infty} k \, a_k (z - z_0)^{k-1} \qquad \forall z \in B(z_0, r).$$

Dimostrazione. Il raggio di convergenza ρ della serie $\sum_{k=1}^{\infty} k \, a_k \, (z-z_0)^{k-1}$ è il raggio di convergenza della serie $\sum_{k=0}^{\infty} a_k (z-z_0)^k$, percio' $\rho \geq r$. Sia $T(z) := \sum_{k=1}^{\infty} k \, a_k \, (z-z_0)^{k-1}$ la somma. Per ogni $z,w \in B(z_0,r)$, sia $\gamma:[0,1] \to B(z_0,r)$ una curva regolare con $\gamma(0)=w$ e $\gamma(1)=z$, Poiche' per ogni intero $k \geq 1$, la derivata complessa di $(z-z_0)^k$ è $k(z-z_0)^{k-1}$, dal teorema fondamentale del calcolo, Teorema 2.3,, segue

$$\sum_{k=1}^{p} a_k (z - z_0)^k - \sum_{k=1}^{p} a_k (w - z_0)^k = \int_{\gamma} \sum_{k=1}^{p} k \, a_k (\zeta - z_0)^{k-1} \, d\zeta$$

Poiche' le somme parziali delle serie di potenze convergono uniformemente sui compatti strettamente contenuti nel cerchio di convergenza, si ricava passando al limite per $p \to \infty$ che

$$\sum_{k=1}^{p} a_k (z - z_0)^k \to S(z) - a_0,$$

$$\sum_{k=1}^{p} a_k (w - z_0)^k \to S(w) - a_0,$$

$$\int_{\gamma} \sum_{k=1}^{p} k \, a_k (\zeta - z_0)^{k-1} \, d\zeta \to \int_{\gamma} T(\zeta) \, d\zeta,$$

e quindi

$$S(z) - S(w) = \int_{\gamma} T(\zeta) d\zeta.$$

Essendo z, w e γ arbitrari, segue dal teorema fondamentale del calcolo, Teorema 2.3, che S è derivabile in senso complesso e $S'(z) = T(z) \ \forall z \in B(z_0, r)$.

Essendo ogni funzione olomorfa localmente la somma di una serie di potenze, la sua derivata è anch'essa localmente la somma di una serie di potenze, quindi una funzione olomorfa per la Proposizione 3.7

3.8 COROLLARIO. Sia Ω un dominio di \mathbb{C} . Se $f \in \mathcal{H}(\Omega)$, allora $f' \in \mathcal{H}(\Omega)$.

Segue inoltre

Versione Preliminare

17 giugno 2004

file = liouville.ps

Figura 3.3.

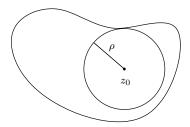


Figura 3.4.

- 3.9 COROLLARIO. Sia $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ una funzione. Sono fatti equivalenti
- (i) $f \in \mathcal{H}(\Omega)$,
- (ii) f ha localmente primitive olomorfe,
- (iii) $\int_{\partial^{+}A}f(z)\,dz=0$ per ogni dominio ammissibile A per $\Omega,$
- (iv) vale la formula di Cauchy: per ogni dominio ammissibile A per Ω si ha

$$f(z) = \frac{1}{2\pi i} \int_{\partial^+ A} \frac{f(\zeta)}{\zeta - z} \, d\zeta \qquad \forall z \in A,$$

 $(\mathbf{v})\ f$ è localmente la somma di una serie di potenze.

Dimostrazione. (i) \Rightarrow (ii) è il Teorema 3.1. L'equivalenza fra (ii) (iii) è contenuta nella Proposizione 2.6. L'implicazione (i) \Rightarrow (iv), (iv) \Rightarrow (v), (v) \Rightarrow (i) sono rispettivamente i Teoremi 3.3, 3.4 and 3.6.

Resta da provare che (iii) \Rightarrow (i). Se vale la (iii) f è localmente la derivata di una funzione olomorfa. È quindi a sua volta una funzione olomorfa per il Corollario 3.8.

3.10 OSSERVAZIONE. L'implicazione f olomorfa $\Rightarrow f \in C^1(\Omega)$ è riferita in letteratura come teorema di Goursat, mentre l'equivalenza tra (i) e (iii) è nota come teorema di Morera.

3.1 Il teorema di Liouville

Sia $f \in \mathcal{H}(\Omega)$. Dalle (3.5) e (3.4) o dalla (3.3) seguono le stime di Cauchy

17 giugno 2004

$$|f^{(k)}(z_0)| \le \frac{k!}{r^k} \max_{\partial B(z_0,r)} |f(z)|$$
 (3.6)

per ogni $z_0 \in \Omega$ e $r < \mathrm{dist}(z_0, \partial \Omega)$ Sono stime particolarmente stringenti. Segue ad esempio il famoso

3.11 Teorema (Liouville). Le uniche funzioni olomorfe e limitate in tutto $\mathbb C$ sono le costanti.

Dimostrazione. Supponiamo che $|f(z)| \leq M \ \forall z \in \mathbb{C}.$ Si ha allora per ognir > 0e ogni $z \in \mathbb{C}$

 $|f'(z)| \le \frac{M}{r}$

e quindi f'(z) = 0 per ogni $z \in \mathbb{C}$. Segue dal teorema fondamentale del calcolo che f è costante.

Una applicazione del teorema d Liouville è una nuova dimostrazione del

3.12 Teorema (fondamentale dell'algebra). Un polinomio complesso di grado $n\ \mathrm{ha}\ n\ \mathrm{radici}.$

Dimostrazione. Basta provare che ogni polinomio complesso non costante ha almeno una radice. Supponiamo dunque per assurdo che P(z) sia un polinomio non costante e che $P(z) \neq 0 \ \forall z$. Allora 1/P(z) è olomorfa su tutto \mathbb{C} . Essendo d'altra parte P non costante, $\lim_{|z| \to \infty} |P(z)| = +\infty$ e 1/P(z) sarebbe limitata. Seguirebbe dal teorema di Liouville che 1/P(z) è costante. Un assurdo.

Abbiamo in realtà provato

3.13 TEOREMA. Sia $f: \mathbb{C} \to \mathbb{C}$ una funzione olomorfa su tutto \mathbb{C} con $|f(z)| \ge M > 0$ per |z| > R. Allora o f(z) è costante o f ha uno zero.

3.2 Principio di identità

Se una funzione olomorfa f in Ω ha in un punto z_0 tutte le derivate nulle, per la (3.5) f è la somma della serie di potenze nulla e quindi è nulla in un intorno di z_0 . L'insieme

$$X := \left\{ z \in \Omega \,|\, f^(k)(z) = 0 \,\,\forall k \right\}$$

è allora aperto. Poiche' d'altra parte X è evidentemente chiuso, si conclude che X è la componente connessa di Ω che contiene z_0 percio' $X = \Omega$. Si è provato che

3.14 TEOREMA (PRINCIPIO DI IDENTITÀ). Se f e g sono funzioni olomorfe in un dominio (connesso) Ω e in un punto $z_0 \in \Omega$ si ha $f^{(k)}(z_0) = g^{(k)}(z_0)$ per ogni k, allora f = g in Ω .

Si ha anche

3.15 TEOREMA. Sia $f \in \mathcal{H}(\Omega)$ non identicamente nulla in un dominio $\Omega \subset \mathbb{C}$. Allora l'insieme $Z(f) = \{z \in \Omega \mid f(z) = 0\}$ degli zeri di f è discreto e senza punti di accumulazione.

Dimostrazione. Essendo Z(f) chiuso, basta provare che Z(f) è discreto. Sia $z_0 \in Z(f)$. Sia k il primo intero non negativo per cui $f^{(k)}(z_0) \neq 0$. Si scrive allora in un intorno U di z_0

$$f(z) = \sum_{i=k}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^j = (z - z_0)^k g(z)$$

con $g(z_0) \neq 0$. Essendo $g(z) \neq 0$ in un intorno U di z_0 , f non ha altri zeri in U.

In conclusione si ha

- 3.16 Teorema (Principio di identità). Siano f e g olomorfe in un dominio $\Omega \subset \mathbb{C}$. Sono fatti equivalenti
- (i) f = g in Ω ,
- (ii) esiste $z_0 \in \Omega$ tale che $\forall k$ si ha $f^{(k)}(z_0) = g^{(k)}(z_0)$,
- (iii) $\{z \in \Omega \mid f(z) = g(z)\}$ ha almeno un punto di accumulazione.

3.3 Funzioni olomorfe e forme chiuse

Le funzioni olomorfe descrivono i campi irrotazionali piani.

Potenziali e primitive olomorfe

Sia Ω un dominio di \mathbb{C} . Un differenziale olomorfo in Ω è una applicazione $\Omega \to \mathbb{C}^*$, dove \mathbb{C}^* è il duale (complesso) di \mathbb{C} . Poiche' \mathbb{C}^* ha dimensione uno e un generatore (su \mathbb{C}), è il differenziale complesso dz = dx + idy, ogni differenziale olomorfo si scrive come

$$\omega(z) = f(z)dz$$

dove $f:\Omega\to\mathbb{C}$ (non necessariamente olomorfa). Decomponendo f in parte reale e immaginaria f=u+iv

$$f(z) dz = (u+iv)(dx+idy) = (udx - vdy) + i(vdx + udy).$$
(3.7)

i.e., le parti reale e immaginaria di un differenziale olomorfo sono forme differenziali reali in Ω , e le componenti (v,u) della parte immaginaria si ottengono ruotando le componenti (u,-v) della parte reale in senso antiorario di $\pi/2$. Inoltre se $\gamma:[0,1]\to\Omega$ è una curva C^1 a tratti e $\gamma(t)=x(t)+iy(t)$, si ha

$$\int_{\gamma} f(z) dz := \int_{0}^{1} f(\gamma(t)) \gamma'(t) dt = \int_{0}^{1} (ux' - vy') dt + i \int_{0}^{1} (uy' + vx') dt$$
$$= \int_{\gamma} (u dx - v dy) + i \int_{\gamma} (u dy + v dx) = \int_{\gamma} \Re(f(z) dz) + i \int_{\gamma} \Im(f(z) dz.$$

17 giugno 2004

Dato un differenziale olomorfo $f(z)\,dz$ in Ω , scriviamo f=:u+iv, in modo che $f(z)\,dz=(u\,dx-v\,dy)+i(v\,dx-u\,dy)$. Si dice che $F=\alpha+i\beta$ è un potenziale per $f(z)\,dz$ se e solo se $F\in C^1(\Omega)$ e α e β sono potenziali reali in Ω rispettivamente per $u\,dx-v\,dy$ e $u\,dy+v\,dx$, i.e.,

$$\begin{cases} \alpha_x = u, \\ \alpha_y = -v, \end{cases} \begin{cases} \beta_x = v, \\ \beta_y = u. \end{cases}$$

Questo accade se e solo se

$$\begin{cases} F_x = \alpha_x + i\beta_x = u + iv = f, \\ F_y = \alpha_y + i\beta_y = -v + iu = if. \end{cases}$$

Le equazioni precedenti sono appunto le equazioni di Cauchy-Riemann per F. Si conclude allora dal Teorema 2.3

3.17 PROPOSIZIONE. $f = u_i v \in cH(\Omega)$ ha una primitiva olomorfa in Ω se e solo se i campi (u, -v) e (v, u) sono conservativi in Ω . $F \in \mathcal{H}(\Omega)$ e F' = f in Ω se e solo se $\Re(f(z))$ e $\Im(F(z))$ sono rispettivamente potenziali per i campi (u, -v) e (v, u) in Ω .

Funzioni olomorfe e forme chiuse

3.18 DEFINIZIONE. Sia $f = u + iv : \Omega \subset \mathbb{C}$. Un differenziale olomorfo f(z)dz si dice chiuso in Ω e si scrive d(f(z)dz) = 0, se le forme differenziali udx - vdy e vdx + udy sono chiuse in Ω , o equivalentemente, i campi (u, -v) e (v, u) in $\Omega \subset \mathbb{R}^2$ sono irrotazionali.

In altre parole f(z) dz è chiuso se e solo se f è di classe $C^1(\Omega)$ e valgono le

$$\begin{cases} u_y = v_x, \\ u_x = -v_y. \end{cases}$$

i.e., le condizione di Cauchy–Riemann per f. Ricordando il Teorema 2.3 e il fatto che le funzioni olomorfe sono di classe C^1 , cfr. Corollario 3.8, si ha

3.19 PROPOSIZIONE. Sia $f:\Omega\subset\mathbb{C}$ di classe C^1 . Allora f(z)dz è chiusa in Ω se e solo se $f\in\mathcal{H}(\Omega)$.

La teoria delle forme differenziali chiuse si applica quindi al calcolo degli integrali di differenziali olomorfi $f(z)\,dz$ con $f\in\mathcal{H}(\Omega)$. Percio'

3.20 TEOREMA (INVARIANZA PER OMOTOPIA). Siano Ω un dominio di \mathbb{C} e $f \in \mathcal{H}(\Omega)$. Se $\gamma, \delta : [0,1] \to \Omega$ sono due curve C^1 a tratti omotope fra loro in Ω si ha

$$\int_{\gamma} f(z) \, dz = \int_{\delta} f(z) \, dz,$$

Dimostrazione. Essendo f olomorfa, f è C^1 e verifica le equazioni di Cauchy–Riemann, dunque f(z) dz è chiusa. Segue allora dalla teoria delle forme differenziali che gli integrali di linea lungo curve omotope sono uguali.

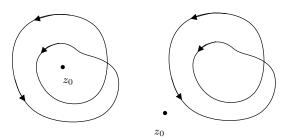


Figura 3.5. (a) $I(\gamma, z_0) = 2$, (b) $I(\gamma, z_0) = 0$.

Indice di allacciamento

Sia $\gamma:[0,1]\to\Omega$ una curva chiusa di classe C^1 a tratti, e sia $z\in\mathbb{C}$ con z non appartenente all'immagine di γ . L'indice di allacciamento di γ rispetto a z, è il numero

$$I(\gamma, z) := \frac{1}{2\pi i} \int_{\gamma} \frac{d\zeta}{\zeta - z}.$$

Ad esempio, se $\gamma(t) := z + e^{ikt}$, $t \in [0, 2\pi]$ e $k \in \mathbb{Z}$, allora

$$I(\gamma, z) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{ike^{ikt}}{e^{ikt}} dt = k.$$

Se ora $\gamma:[0,1]\to\mathbb{C}$ è una curva C^1 che non passa per z, è facile verificare che

$$\gamma(t)$$
 e $\delta(t) := z + \frac{\gamma(t) - z}{|\gamma(t) - z|}$

sono omotope in $\mathbb{C}\setminus\{z\}$, una omotopia essendo data dalla retrazione di $\mathbb{C}\setminus\{z\}$ su $\partial B(z,1)$,

$$h(t,s) = (1-s)\gamma(t) + s\delta(t), t, s \in [0,1].$$

Poiche' il differenziale olomorfo $\frac{d\zeta}{\zeta-z}$ è chiuso in $\mathbb{C}\setminus\{z\}$, segue dal Teorema 3.20 che curve omotope in $\mathbb{C}\setminus\{z\}$ hanno lo stesso indice e quindi

$$I(\gamma, z) = I(\delta, z).$$

Percio' l'indice di γ in z è il grado della curva $t \to \frac{\gamma(t)-z}{|\gamma(t)-z|}$ da $[0,2\pi]$ su $S^1 = \partial B(0,1)$, cfr. Vol. III.

Segue, cfr. sempre il Vol. III, che

3.21 PROPOSIZIONE. Siano $z, z_0 \in \mathbb{C}$, $z \neq z_0$. Indichiamo con $\pi_1(\mathbb{C} \setminus \{z\}, z_0)$ il primo gruppo di omotopia di $\mathbb{C} \setminus \{z\}$ con punto base z_0 . Allora l'indice di allacciamento è una applicazione bigettiva

$$I(\cdot,z):\pi_1(\mathbb{C}\setminus\{z\},z_0)\longrightarrow\mathbb{Z}.$$

Si afferma che

(i) l'indice di allacciamento è lo stesso per curve omotope,

17 giugno 2004

- (ii) l'indice è un intero,
- (iii) per ogni intero $k \in \mathbb{Z}$ esiste una curva passante per z_0 con indice di allacciamento intorno a z uguale a k,
- (iv) due curve sono omotope se e solo se hanno lo stesso indice.
- 3.22¶ Mostrare che
- (i) $I(\gamma, z) = 0$ per ogni punto nella componente connessa illimitata di $\mathbb{C} \setminus \gamma([0, 1])$.
- (ii) $I(\gamma, z)$ è localmente costan<u>te in $\mathbb{C} \setminus \text{Supp}(\gamma)$, e quindi costante sulle componenti connesse di $\mathbb{C} \setminus \gamma$.</u>
- (iii) $I(\partial^+ B(0,1), z) = 0$ se $z \notin \overline{B(0,1)}$, e $I(\partial^+ B(0,1), z) = 1$ per ogni $z \in B(0,1)$.
- 3.23 TEOREMA (FORMULA DI CAUCHY,II). Sia Ω un dominio d \mathbb{C} e $f \in \mathcal{H}(\Omega)$. Se $\gamma:[0,1] \to \Omega$ è una curva chiusa C^1 a tratti in Ω allora

$$I(\gamma, z)f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

per ogni $z \notin \gamma([0,1])$.

Dimostrazione. Sia r > 0 tale che $B(z,r) \subset \Omega$. e sia $k := I(\gamma,z)$. Allora γ è omotopa in $\mathbb{C} \setminus \{z\}$ a $\delta(t) := z + re^{ikt}$, $t \in [0,2\pi]$ perche' $I(\gamma,z) = k = I(\delta,z)$. Dalla periodicità di e^{it} e dalla formula di Cauchy, Teorema 3.1, segue che

$$\int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{\delta} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{0}^{2\pi} \frac{f(e^{ikt})}{e^{ikt}} ike^{ikt} dt = ik \int_{0}^{2\pi} f(e^{ikt}) dt$$
$$= k \int_{\partial^{+}B(z,r)} \frac{f(\zeta)}{\zeta - z} d\zeta = 2\pi k i f(z).$$

4 Esempi di funzioni olomorfe

4.1 Qualche funzione di variabile complessa

 $4.1~(f(z)=z^2)$ È una funzione olomorfa $z^2:\mathbb{C}\to\mathbb{C}$ con $D(z^2)=2z.$ In coordinate reali

$$z^2 = (x^2 - y^2) + i2xy$$
 se $z = x + iy$,

e in coordinate polari,

$$z^2 = r^2 e^{2i\theta}$$
 se $z = re^{i\theta}$.

Si vede subito che la trasformazione $z \to z^2$

- (i) manda rette per l'origine in semirette per l'origine.
- (ii) manda cerchi con centro l'origine in cerchi di centro l'origine,
- (iii) manda le iperboli $x_2 y^2 = k$ in rette verticali,
- (iv) manda le iperboli 2xy = k in rette orizzontali.

4.2 (LA FUNZIONE ESPONENZIALE) L'esponenziale complesso e^z è definito come

$$e^z = e^x(\cos y + i\sin y), \qquad z = x + iy \in \mathbb{C}.$$

L'esponenziale complesso è una funzione olomorfa su \mathbb{C} con $De^z=e^z$ perche', ad esempio,

$$\frac{\partial e^z}{\partial x} = e^z, \qquad \frac{\partial e^z}{\partial y} = ie^z.$$

Si vede subito che la trasformazione $z \to e^z$

- (i) manda rette orizzontali in semirette per l'origine,
- (ii) manda rette verticali in cerchi per l'origine,
- (iii) se z = x + iy si ha $|e^z| \le e^x$, in particolare e^z è limitata su gni semipiano $\{z = x + iy \mid x < x_0\}$,
- (iv) $e^z \neq 0 \ \forall z \in \mathbb{C}$
- (v) e^z non è iniettiva. Infatti $e^z = e^w$ se e solo se z e w hanno parti reali uguali e parti immaginarie che differiscono di un multiplo intero di 2π ,

$$e^z = e^w$$
 se e solo se $z - w = 2\pi i k, \ k \in \mathbb{Z}$.

Si dice che e^z è periodica di periodo $2\pi i$.

Infine, come abbiamo visto nel Vol. II, l'esponenziale complesso è la somma di una serie di potenze convergente in tutto $\mathbb C$

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \qquad z \in \mathbb{C}.$$

4.3 (Seno e coseno, seno e coseno iperbolico) Si definiscono le funzioni $\sin z$ e $\cos z, z \in \mathbb{C}$, e le funzioni iperboliche $\sinh z$, $\cosh z, z \in \mathbb{C}$ con le formule di Eulero

$$\begin{split} \cos z &:= \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin z = \frac{e^{iz} - e^{-iz}}{2i}, \\ \cosh z &:= \frac{e^z + e^{-z}}{2}, \qquad \sinh z = \frac{e^z - e^{-z}}{2}. \end{split}$$

Sono tutte funzioni olomorfe in \mathbb{C} , e

$$D\sin z = \cos z,$$
 $D\sin z = -\cos z,$
 $D\sinh z = \cosh z,$ $D\sinh z = \cosh z.$

La funzione $\cos z$ si annulla nei soli punti dell'asse reale $z=\pi/2+k\pi, \ k\in\mathbb{Z}$ e la funzione $\sin z$ si annulla nei soli punti dell'asse reale $z=k\pi, \ k\in\mathbb{Z}$. Si noti esplicitamente che le funzioni $\sin z$ e $\cos z$ non sono limitate. Dalla definizione se $z=x+iy, \ x,y\in\mathbb{R}$,

$$\frac{e^{|y|} - e^{-|y|}}{2} \leq |\cos z| = \frac{|e^{ix}e^{-y} + e^{-ix}e^y|}{2} \leq \frac{e^y + e^{-y}}{2} = \cosh y$$

e analogamente

$$\frac{e^{|y|} - e^{-|y|}}{2} \le |\sin z| = \frac{|e^{ix}e^{-y} - e^{-ix}e^{y}|}{2} \le \frac{e^{y} + e^{-y}}{2} = \cosh y.$$

Le funzioni $\cosh z$ e $\sinh z$ sono ottenute dal coseno e dal seno con una rotazione di $\pi/2$,

$$\cosh z = \cos(iz), \qquad \sinh z = -i\sin(iz),$$

in particolare la funzione $\cosh hz$ si annulla nei punti $z=i(\pi/2+k\pi),\,k\in\mathbb{Z}$, sull'asse immaginario e la funzione $\sinh hz$ si annulla nei punti $z=ik\pi,\,k\in\mathbb{Z}$, sempre sull'asse immaginario.

Infine le funzioni trigonometriche sono anche la somma delle rispettive serie di potenze centrate in zero, convergenti su tutto \mathbb{C} . cfr. Vol. II,

$$\cos z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}, \qquad \sin z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}.$$

$$\cosh z = \sum_{k=0}^{\infty} \frac{z^{2k}}{(2k)!}, \qquad \sinh z = \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!}.$$

17 giugno 2004

4.4 (Tangente e cotangente, tangente e cotangente iperboliche) La funzione tan $z:=\frac{\sin z}{\cos z}$ è dunque ben definita e olomorfa in $\mathbb{C}\setminus\{z=\pi/2+k\pi\,|\,k\in\mathbb{Z}\}$. Si noti anche che tan z è limitata e lontana da zero lontano dall'asse reale. Infatti se z = x + iy, si ha

$$\text{olo.z1}|\tan z| = \frac{|e^{ix}e^{-y} - e^{-ix}e^{y}|}{|e^{ix}e^{-y} + e^{-ix}e^{y}|} \le \frac{e^{-y} + e^{y}}{e^{y} - e^{-y}} = \coth y, \tag{4.1}$$

da cui $|\tan z| \leq \coth y_0$ su $A := \{z \, | \, |\mathrm{Im}\,(z)| \geq y_0\}.$ Analogament

$$|\cot z| = \frac{1}{|\tan z|} = \frac{|e^{ix}e^{-y} + e^{-ix}e^{y}|}{|e^{ix}e^{-y} - e^{-ix}e^{y}|} \le \frac{e^{-y} + e^{y}}{e^{y} - e^{-y}} = \coth y. \tag{4.2}$$

- 4.5 Teorema (Inversa locale di una funzione olomorfa). Siano $\Omega \subset \mathbb{C}$ aperto, $f: \Omega \to \mathbb{C}$ olomorfa e $z_0 \in \Omega$. Se $f'(z_0) \neq 0$,
- (i) esiste un intorno U_{z_0} di z_0 tale che $f:U_{z_0}\to\mathbb{C}$ è aperta e invertibile. (ii) L'inversa $g:=\left(f_{\mid U_{z_0}}\right)^{-1}$ di $f_{U_{z_0}}$ è olomorfa in $f(U_{z_0})$ e

$$g'(w) = \frac{1}{f'(g(w))} \qquad \forall w \in f(U_{z_0}).$$

Come osservato piu' volte, cfr. Cap 4, se $f: \mathbb{R}^2 \to \mathbb{R}^2$ è di classe C^1 , la condizione $\det \mathbf{D} f(z) \neq 0$ in ogni punto di Ω non è piu' sufficiente a garantire l'esistenza di una inversa globale, contrariamente al caso unidimensionale. La funzione periodica $f(z) = e^z$ ne è un esempio.

Dimostrazione. Identifichiamo \mathbb{R}^2 con \mathbb{C} e indichiamo con f la stessa funzione $f:\Omega\subset\mathbb{R}^2\to\mathbb{R}^2$. Essendo f olomorfa,

$$\mathbf{D}f(z) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

se $f_x := a + ib$. Percio'

$$0 \neq |f'(z)|^2 = |f_x(z)|^2 = a^2 + b^2 = \det \mathbf{D}f(z).$$

Segue dal teorema di invertibilità che esiste U_{z_0} tale che $f_{|U_{z_0}}$ è aperta, invertibile con inversa $g\in C^1(f(U_{z_0}))$. Resta da provare che g è olomorfa. Siano $v,w\in f(U_{z_0})$ e $s:=g(v),\ z=g(w)$ in U_{z_0} . Poiche g è continua se $v \to w$ allora $s = g(v) \to z = g(w)$ e quindi per $v \to w$ si ha

$$\frac{g(v) - g(w)}{v - w} = \frac{s - z}{f(s) - f(z)} \to \frac{1}{f'(z)}.$$

4.6 OSSERVAZIONE. Si osservi che la difficoltà maggiore nella dimostrazione del Teorema 4.5 è provare la continuità dell'inversa.

Logaritmo complesso

Dato $z \in \mathbb{C}, z \neq 0$, ogni $w \in \mathbb{C}$ tale che $e^w = z$ si chiama logaritmo naturale di z. Poiche' $z \to e^z$ è $2\pi i$ periodica, vi sono infiniti punti w tali che $e^w = z$. Si usa dire la funzione inversa di e^z , il logaritmo complesso, è una funzione multivoca. Una semplice descrizione puo' essere data osservando che per ogni $k \in \mathbb{Z}$ la restrizione di e^z all'insieme

Versione Preliminare

$$S_k = \{z = x + iy, | -\pi + 2k\pi \le y < \pi + 2k\pi\}$$

è bigettiva con immagine $\mathbb{C}\setminus 0$. L'inversa, detto il foglio k-esimo del logaritmo, si indica con $\log^{(k)}: \mathbb{C}\setminus \{0\} \to S_k$. Quando k=0, la funzione $\log^{(0)} w$ si indica anche con $\log w$ e si chiama la determinazione principale del logaritmo, o anche il logaritmo principale. Per definizione

$$e^{\log^{(k)}w}=w \qquad \forall w \in \mathbb{C} \setminus \{0\}$$

е

$$\log^{(k)}(e^z) = z \qquad \text{se e solo se} \qquad z \in S_k, \tag{4.3}$$

mentre dal teorema di invertibilità segue

$$D\log^{(k)}(w) = \frac{1}{w} \quad \forall w \in \setminus \{0\}.$$

Ovviamente tutti i fogli del logaritmo sono legati fra loro

$$\log^{(k)}(z) = \log z + i2k\pi \qquad \forall k \in \mathbb{Z}.$$

Infine notiamo come la difficoltà nel descrivere l'esponenziale complesso è la stessa che si incontra nell'invertire il moto circolare uniforme $t \to e^{it}$, $t \in \mathbb{R}$. Ricordiamo che se |z|=1, l'argomento di z è un numero t tale che $e^{it}=z$. t è quindi definito a meno di 2π . Per ogni $k \in \mathbb{Z}$, definiamo il foglio k-esimo dell'argomento $arg^{(k)}(z)$ come l'unico $t \in [-\pi + 2k\pi, \pi + 2k\pi[$ tale che $e^{it}=z$. Se ora z=x+iy e $-\pi + 2k\pi \le y < \pi + 2k\pi$ e $w \in \mathbb{C} \setminus \{0\}$, allora

$$\begin{cases} w = e^z = e^x e^{iy}, \\ -\pi + 2k\pi \le y < \pi + 2k\pi \end{cases}$$
 se e solo se
$$\begin{cases} e^x = |w|, \\ e^{iy} = \frac{w}{|w|}, \\ -\pi + 2k\pi \le y < \pi + 2k\pi \end{cases}$$

da cui la formula polare per il logaritmo

$$\log^{(k)} w := x + iy = \log|w| + i\arg^{(k)} \left(\frac{w}{|w|}\right). \tag{4.4}$$

 $\forall k \in \mathbb{Z} \ e \ \forall w \in \mathbb{C} \setminus \{0\}.$

La descrizione fatta della funzione logaritmo con la descrizione dei suoi fogli come funzioni univoche non è senza problemi. Si perde infatti la continuità dei fogli. Segue infatti dalla (4.3) che $w \to \log^{(k)} w$ è discontinua lungo la semiretta $z = te^{i\pi}, t > 0$, perche'

$$\log^{(k)} w \to -\pi + 2k\pi$$
 se $w \to (-1,0)$, $\Im(w) < 0$
 $\log^{(k)} w \to \pi + 2k\pi$ se $w \to (1,0)$, $\Im w > 0$.

La semiretta $t \to t e^{i\pi}$, t > 0, si chiama la retta di diramazione del foglio $\log^{(k)} w$. Inoltre occorre fare attenzione nei calcoli. Dalla forma polare segue infatti che

$$\log(zw) = \log z + \log w + \begin{cases} 0 & \text{se } -\pi \leq \arg(z) + \arg(w) < \pi, \\ 2\pi i & \text{altrimenti.} \end{cases}$$

17 giugno 2004

Potenze reali

Per ogni $\alpha \in \mathbb{R}$ e $z \neq 0$ si puo' definire la funzione multivoca z^{α} su $\mathbb{C} \setminus \{0\}$ definendone i vari fogli con

$$(z^{\alpha})_k := e^{\alpha \log^{(k)} z}.$$

Poiche' l'immagine di $\log^{(k)} z$ è la striscia $S_k := \{ w = x + iy \, | \, -\pi + 2k\pi \leq y < \pi + 2l\pi \}$, l'immagine del k-esimo foglio di z^{α} manda $\mathbb{C} \setminus \{0\}$ in modo biunivoco sul settore

$$I_k := \left\{ w = re^{i\theta} \mid \alpha(2k-1)\pi < \theta < \alpha(2k+1)\pi, \, r > 0 \right\}.$$

Vediamo ora quanti sono i fogli distinti di z^{α} . Evidentemente $(z^{\alpha})_k = (z^{\alpha})_h$ se e solo se

$$\alpha(\log^{(k)} z - \log^{(h)} z) = 2\pi ri$$

per qualche $r \in \mathbb{Z}$, vale a dire se e solo se $\alpha(k-h)$ è intero. Si hanno dunque tre casi

(i) se $\alpha \in \mathbb{Z}$, tutti i fogli di z^{α} sono coincidenti, la funzione z^{α} è la solita funzione potenza

$$z^{\alpha} := z^{\alpha \log^{(k)} z} \qquad \forall k$$

e $I_k := \mathbb{C} \ \forall k$.

(ii) Sia $\alpha \in \mathbb{Q}$, $\alpha = p/q$ con p,q interi primi fra loro. Allora $\alpha(k-h)$ è intero se e solo se k-h è un multiplo di q. Segue che z^{α} ha q fogli distinti ottenuti ad esempio per $k=0,1,\ldots,q-1$. Se p=1, l'immagine del foglio k-esimo è il settore circolare

$$C_k := \left\{ z \in \mathbb{C} \left| \left| z \right| > 0, -\frac{\pi}{q} + \frac{2k\pi}{q} \le \arg\left(\frac{z}{|z|}\right) < -\frac{\pi}{q} + \frac{2k\pi}{q} \right\} \right.$$

Si noti che in questo caso le immagini dei fogli sono settori distinti per $k=0,1,\ldots,q-1.$

(iii) se a non è razionale, vi sono allora infiniti fogli distinti.

Osserviamo infine che, se si sceglie sempre lo stesso foglio, in generale

$$(zw)^{\alpha} \neq z^{\alpha}w^{\alpha}$$
.

Infatti

$$\begin{split} \frac{(zw)^{\alpha}}{z^{\alpha}w^{\alpha}} &= \exp\left(\alpha(\log(zw) - \log z - \log w)\right) \\ &= \begin{cases} 1 & \text{se } -\pi \leq \arg\left(z\right) + \arg\left(w\right) < \pi, \\ \exp\left(2\pi i\alpha\right) & \text{altrimenti.} \end{cases} \end{split}$$

file = cartanlibro.ps

Figura 4.1.

 ${\rm file} = {\rm steinlibro.ps}$

5 Singolarità puntuali di funzioni olomorfe

Cominciamo con una osservazione sugli zeri di una funzione olomorfa. Diciamo che $z_0 \in \Omega$ è uno zero di ordine m per $f \in \mathcal{H}(\Omega)$ se lo sviluppo f in serie di potenze centrato in z_0 ha la forma

$$f(z) = \sum_{k=m}^{\infty} a_k (z - z_0)^k = (z - z_0)^m \sum_{k=0}^{\infty} a_{k+m} (z - z_0)^k$$

con $a_m \neq 0$.

- 5.1 Proposizione. Siano $f \in \mathcal{H}(\Omega)$ e $z_0 \in \Omega$. Sono fatti equivalenti
- (i) f ha uno zero di ordine m in z_0 ,
- (ii) $f(z_0) = f'(z_0) = f''(z_0) = \dots = f^{(m-1)}(z_0) = 0$ e $f^{(m)}(z_0) \neq 0$,
- (iii) esiste $g \in \mathcal{H}(\Omega)$ tale che $f(z) = (z z_0)^m g(z)$ con $g(z_0) \neq 0$,
- (iv) m è il piu' grande intero k per cui $f(z)/(z-z_0)^k$ ha una singolarità eliminabile in z_0 .
- 5.2 ¶ Provare la Proposizione 5.1.

Sia Ω un dominio di \mathbb{C} e $z_0 \in \Omega$. Se $f \in \mathcal{H}(\Omega \setminus \{z_0\})$, si dice che z_0 è una singolarità per f. Distinguiamo tre casi

Singolarità eliminabili

Si dice che $f \in \mathcal{H}(\Omega \setminus \{z_0\})$ si estende in modo continuo (rispettivamente in modo olomorfo) in z_0 se esiste una funzione $F \in C^0(\Omega)$ (rispettivamente $F \in \mathcal{H}(\Omega)$) tale

17 giugno 2004

che F = f su $\Omega \setminus \{z_0\}$. Se $f \in \mathcal{H}(\Omega \setminus \{z_0\})$ si estende in modo olomorfo a tutto Ω , si dice che z_0 è una singolarità eliminabile per f. Una singolarità z_0 non eliminabile per $f \in \mathcal{H}(\Omega \setminus \{z_0\})$ si chiama anche punto singolare per f.

- 5.3 Teorema (Estendibilità di Riemann). Sia $f \in \mathcal{H}(\Omega \setminus \{z_0\})$. Sono fatti equivalenti
- (i) z_0 è una singolarità eliminabile per f,
- (ii) f si estende in modo olomorfo in z_0 ,
- (iii) f si estende in modo continuo in z_0 ,
- (iv) f è limitata in un intorno di z_0 ,
- (v) $\lim_{z\to z_0} (z-z_0)f(z) = 0$.

Dimostrazione. Ovviamente (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v). Proviamo che (v) \Rightarrow (i). Siano

$$g(z) := \begin{cases} (z - z_0) f(z) & \text{se } z \in \mathbb{C} \setminus \{z_0\} \\ 0 & \text{se } z = 0 \end{cases}, \quad \mathbf{e} \quad h(z) := (z - z_0) g(z).$$

L'ipotesi (iv) è equivalente alla continuità di g(z) in z_0 , conseguentemente

$$h(z) - h(0) = h(z) = (z - z_0)g(z_0) + (z - z_0)o(1)$$
 per $z \to z_0$.

In altre parole h(z) è derivabile in senso complesso in z_0 con $h'(z_0) = g(z_0) = 0$. Percio' $h \in \mathcal{H}(\Omega)$, e per la Proposizione 5.1

$$h(z) = (z - z_0)^2 k(z).$$

con $k \in \mathcal{H}(\Omega)$. Percio'

$$(z-z_0)^2 f(z) = h(z) = (z-z_0)^2 k(z),$$

e quindi la funzione k(z) è una estensione di f a tutto Ω .

- 5.4 COROLLARIO. Siano $z_0 \in \Omega$ e $f \in \mathcal{H}(\Omega \setminus \{z_0\})$.
- (i) z_0 è una singolarità eliminabile per f se e solo se

$$\limsup_{z \to z_0} |f(z)| < +\infty.$$

(ii) z_0 è un punto singolare per f se e solo se

$$\limsup_{z \to z_0} |f(z)| = +\infty.$$

file = alforhs.ps

Figura 5.1.

Poli

Sia $z_0 \in \Omega$ un punto singolare per $f \in \mathcal{H}(\Omega \setminus \{z_0\})$.

5.5 DEFINIZIONE. Sia m intero, $m \geq 1$. Si dice che z_0 è un polo di ordine m per $f \in \mathcal{H}(\Omega \setminus \{z_0\})$, o che f ha un polo di ordine m in z_0 , se e solo se z_0 è una singolarità eliminabile per $(z-z_0)^m f(z)$ e non lo è per $(z-z_0)^k f(z)$ per ogni $k, 0 \le k < m$.

file = hille.ps

In base al teorema di estensione di Riemann,

5.6 Proposizione. f ha un polo di ordine m in z_0 se e solo se m è il più piccolo intero k per cui $|(z-z_0)^k f(z)|$ è limitata in un intorno di z_0 .

Le singolarità polari di una funzione olomorfa sono assai ben caratterizzate. Si ha

- 5.7 TEOREMA. $f \in \mathcal{H}(\Omega \setminus \{z_0\})$ ha un polo in z_0 se solo se $\lim_{z \to z_0} |f(z)| = +\infty$. Inoltre, dato $m \geq 1$, sono fatti equivalenti tra loro
- (i) f ha un polo di ordine m in z_0 ,
- (ii) esiste $g \in \mathcal{H}(\Omega)$ con $g(z_0) \neq 0$ tale che

$$f(z) = \frac{g(z)}{(z - z_0)^m} \qquad per \ z \in \Omega \setminus \{z_0\},$$

- (iii) $f(z) = \sum_{k=-m}^{\infty} a_k (z-z_0)^k$ in un intorno di z_0 , (iv) esistono r>0 tale che $B(z_0,r)\subset\Omega$ e $h\in\mathcal{H}(B(z_0,r))$ priva di zeri in $B(z_0,r)\setminus\{z_0\}$ e con uno zero di ordine m in z_0 tale che f = 1/h in $B(z_0, r) \setminus \{z_0\}$,
- (v) esistono $B(z_0, r) \subset \Omega$ e costanti positive λ, Λ dipendenti anche da r tali che

$$\lambda \, \frac{1}{|z-z_0|^m} \leq |f(z)| \leq \Lambda \, \frac{1}{|z-z_0|^m} \qquad \forall z \in B(z_0,r) \setminus \{z_0\}.$$

17 giugno 2004

Dimostrazione. Proviamo la seconda parte della tesi. La prima segue da (v).

(i) \Rightarrow (ii). Poiché $(z-z_0)^m f(z)$ è olomorfa fuori da z_0 e limitata, dal teorema di estendibilità di Riemann esiste g olomorfa in Ω tale che $(z-z_0)^m f(z)=g(z)$. Se $g(z_0)$ fosse zero, allora a sua volta $g(z)=(z-z_0)\widehat{g}(z)$ con \widehat{g} olomorfa. La funzione $(z-z_0)^{m-1}f(z)=\widehat{(g)}(z)$ sarebbe limitata, contraddicendo il fatto che f ha un polo di ordine m.

(ii) è evidentemente equivalente a (iii).

(ii) \Rightarrow (iv). Se $g(z_0) \neq 0$ allora g è non nulla in una palla $B(z_0,r)$ di centro z_0 e dunque $h(z) := (z-z_0)^m/g(z)$ è olomorfa in $B(z_0,r)$, non si annulla in $B(z_0,r) \setminus \{z_0\}$ ed ha uno zero di ordine m in $z=z_0$.

(iv) \Rightarrow (v) Sia $\rho > 0$ tale che $B(z_0, \rho) \subset \Omega$ e tale che $h(z) = (z - z_0)^m \hat{h} \in \mathcal{H}(B(z_0, \rho))$. Posto

$$\lambda := \inf_{z \in B(z_0, \rho/2)} |\widehat{h}(z)|^{-1}, \qquad \Lambda := \sup_{z \in B(z_0, \rho/2)} |\widehat{h}(z)|^{-1}$$

si ha $0 < \lambda \le \Lambda < \infty$ e, essendo $f(z) = (z-z_0)^m/\widehat{h}(z)$ in $B(z_0,\rho)$, il risultato segue con $r = \rho/2$. (v) \Rightarrow (i) La stima $|(z-z_0)^m f(z)| \le \Lambda$ per ogni $z \in B(z_0,r) \setminus \{z_0\}$ dice che $(z-z_0)^m f(z)$ è limitata vicino a z_0 , mentre la stima $|(z-z_0)^{m-1}f(z)| \ge \lambda |z-z_0|^{-1}$ diche che $(z-z_0)^{m-1}f(z)$ non è limitata in un intorno di z_0 . f ha dunque un polo do ordine f in f in f in f.

5.8 ¶ Se P,Q sono polinomi, z_0 è uno zero di ordine m di Q e se $P(z_0) \neq 0$, allora z_0 è un polo di ordine m per f(z) := P(z)/Q(z).

Singolarità essenziali

Quando un punto singolare isolato z_0 non è un polo, allora si dice che z_0 è una singolarità essenziale. Come conseguenza del Corollario 5.4 e del Teorema 5.7 si ottiene che z_0 è una singolarità essenziale se solo se

$$\liminf_{z \to z_0} |f(z)| < +\infty, \qquad \limsup_{z \to z_0} |f(z)| = +\infty.$$

In realtà si ha

5.9 Proposizione. z_0 è una singularità essenziale per $f \in \mathcal{H}(\Omega \setminus \{z_0\})$ se e solo se

$$\liminf_{z\to z_0}|f(z)|=0,\qquad \limsup_{z\to z_0}|f(z)|=+\infty.$$

Dimostrazione. Se per assurdo fosse $\liminf_{z\to z_0}|f(z)|>0,\ 1/|f(z)|$ sarebbe limitata in un intorno di z_0 . Dunque z_0 sarebbe una singolarità eliminabile per 1/f(z). Seguirebbe che $|f(z)|\to\lambda\in\overline{\mathbb{R}}$ per $z\to z_0$, e z_0 sarebbe o una singolarità eliminabile o un polo per f, un assurdo.

Dunque f ha una singolarità essenziale in z_0 se e solo se |f(z)| oscilla essenzialmente tra $0 \in \infty$ in ogni intorno di z_0 . Se si guarda ai valori di f si ha anche

5.10 TEOREMA (CASORATI-WEIERSTRASS). Se f ha una singolarità essenziale in z_0 allora per ogni $\delta > 0$ $f(B(z_0, \delta) \setminus \{z_0\})$ è denso in \mathbb{C} .

Dimostrazione. Supponiamo che esistano $c\in\mathbb{C}$ e $\epsilon_0>0$ tali che $|f(z)-c|\geq\epsilon_0$ per ogni $z\in B(z_0,\delta)\setminus\{z_0\}$. Segue che

$$\frac{f(z)-c}{z-z_0}$$

ha un polo in z_0 , poiche' $|z-z_0|^{-1}|f(z)-c|\to\infty$ per $z\to z_0$. Esiste quindi $m\ge 1$ tale che

$$|z - z_0|^m |f(z)| \to 0$$
, i.e., $(z - z_0)^m f(z)$

ha una singolarità eliminabile in z_0 ; assurdo.

Versione Preliminare

- 5.11 ¶ Provare che $e^{1/z}$ ha una singolarità essenziale in 0.
- 5.12 ¶ Provare che $1/\sin z$ ha una singolarità essenziale in ogni punto $z=k\pi,\,k\in\mathbb{Z}.$
- 5.13 ¶ Mostrare che la funzione $\frac{z}{z^2-1}$ ha una singolarità eliminabile in zero e poli di ordine 1 in tutti i punti $z_k = i2k\pi, \ k \in \mathbb{Z} \setminus \{0\}$. Segue che

$$\frac{z}{e^z - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} z^k, \qquad |z| < 2\pi.$$

I numeri $\{B_k\}$ sono detti numeri di Bernoulli. Mostrare che valgono le formule di ricorrenza

$$\begin{cases} B_0 := 1, \\ \sum_{j=0}^{n} {n+1 \choose j} B_j = 0 \quad \forall n \ge 1. \end{cases}$$
 (5.1)

Dedurne che

$$B_0=1, \quad B_1=-rac{1}{2}, \quad B_2=rac{1}{6}, \quad B_3=0, \quad B_4=-rac{1}{30}, \quad B_5=0.$$

5.14 ¶ Caratterizzare tutti i punti singolari della funzione $B(z) := z/(e^z - 1)$.

Singolarità all'infinito

5.15 DEFINIZIONE. Si dice che $f:\{|z|>R\}\to\mathbb{C}$ ha una singolarità eliminabile, un polo di ordine $m\geq 1$ o una singolarità essenziale all'infinito se f(1/z) ha rispettivamente una singolarità removibile, un polo o una singolarità essenziale in 0.

- 5.16 Esempio Ad esempio
- (i) z^n ha un polo all'infinito di ordine n,
- (ii) $e^{1/z}$ ha una singolarià essenziale in 0, equivalentemente, e^z ha una singolarità essenziale all'infinito.
- 5.17 ¶ Provare che una funzione $f \in \mathcal{H}(\mathbb{C} \setminus \{z_1, z_2, ..., z_n\})$ non costante ha almeno un punto singolare, al finito o all'infinito.

Punti singolari e raggio di convergenza

La definizione di punto singolare puo' estendersi a punti del $\partial\Omega$. Sia $f:\Omega\to\mathbb{C}$ olomorfa e $z_0\in\partial\Omega$. Si dice che z_0 è un punto singolare per f se non esiste un un intorno $B(z_0,\delta)$ di z_0 e una funzione olomorfa \widehat{f} definita in U tale che $\widehat{f}=f$ in $B(z_0,\delta)\cap\Omega$.

Il teorema seguente da' una proprietà della somma di una serie di potenze complessa.

5.18 TEOREMA. Sia $f: B(z_0, \rho) \to \mathbb{C}$ la somma di una serie di potenze di raggio di convergenza $\rho > 0$,

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k.$$

Esiste almeno un punto $\zeta \in \partial B(z_0, \rho)$ singolare per f.

Dimostrazione. Sia $\Omega \supset B(z_0, \rho)$ l'aperto piu' grande sui cui è possibile estendere f. Poiche' l'estensione di f ha sviluppo in serie di potenze centrate in z_0 con raggio $d(x_0, \partial \Omega)$, deve necessariamente essere $\rho = \text{dist}\,(z_0, \partial \Omega)$. Essendo $\partial \Omega$ chiuso, esiste almeno un punto $\zeta \in \partial \Omega$ tale che $|\zeta - z_0| = \rho$. Per costruzione ζ è un punto singolare per f.

- 5.19 ¶ La somma della serie $\sum_{n=1}^{\infty} \frac{z^n}{n}$ ha una singolarità in z=1.
- 5.20 ¶ La somma della serie $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ ha una singolarità in z=1. Perche'?

17 giugno 2004

Sviluppi di Laurent

Si chiama serie di Laurent centrata in z_0 la somma di una serie di potenze nella variabile $z-z_0$ di raggio di convergenza ρ_2 e di una serie di potenze nella variabile $1/(z-z_0)$ di raggio di convergenza $1/\rho_2$ con $\rho_1 < \rho_2$.

$$\sum_{k=-\infty}^{\infty} a_k z^k := \sum_{k=0}^{\infty} a_k (z - z_0)^k + \sum_{k=1}^{\infty} a_{-k} \frac{1}{(z - z_0)^k}.$$
 (5.2)

Segue dai teoremi sulle serie di potenze che

(i) la serie di Laurent (5.2) converge assolutamente nella corona aperta

$$A(z_0, \rho_1, \rho_2) := \{ z \mid \rho_1 < |z - z_0| < \rho_2 \},$$

e uniformemente in ogni compatto $K \subset A(z_0, \rho_1, \rho_2)$.

(ii) la somma della serie di Laurent (5.2) è olomorfa in $A(z_0, \rho_1, \rho_2)$,

Ogni funzione $f \in \Omega(B(z_0,r)) \setminus \{z_0\}$ con un polo di ordine m in z_0 , ha uno sviluppo di Laurent

$$f(z) = \frac{a_{-m}}{z - z_0}^m + \frac{a_{-m+1}}{z - z_0}^{m-1} + \dots + \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + \dots$$

con parte singolare (la parte dello sviluppo con potenze negative di $(z-z_0)$) finita, cfr. Teorema 5.7. Mostriamo ora che ogni funzione olomorfa in una corona $A(z_0, \rho_1, \rho_2)$ è la somma di una serie di Laurent convergente in $A(z_0, \rho_1, \rho_2)$.

5.21 Teorema. Sia f olomorfa nella corona $A(z_0, \rho_1, \rho_2), 0 \le \rho_1 < \rho_2 \le \infty$. Allora

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k \qquad \forall z \in A(z_0, \rho_1, \rho_2)$$

dove $\forall k \in \mathbb{Z}$

$$a_k = \frac{1}{2\pi i} \int_{\partial B(z_0, r)} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} d\zeta$$
 (5.3)

essendo r scelto arbitrariamente in $]r_1, r_2[$.

Dimostrazione. L'unicità dello sviluppo segue dal principio di indentita' per le funzioni olomorfe. Il calcolo dello sviluppo è invece conseguenza della formula di Cauchy. Infatti, per ogni $z \in A(z_0, \rho_1, \rho_2)$ siano $r_1 < r_2$ tali che $\rho_1 < r_1 < |z - z_0| < r_2 < \rho_2$. Dalla formula di Cauchy,

$$f(z) = \frac{1}{2\pi i} \int_{\partial + A(z_0, r_1, r_2)} \frac{f(\zeta)}{(\zeta - z)} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\partial + B(z_0, r_2)} \frac{f(\zeta)}{(\zeta - z)} d\zeta - \frac{1}{2\pi i} \int_{\partial + B(z_0, r_1)} \frac{f(\zeta)}{(\zeta - z)} d\zeta.$$
(5.4)

Se $\zeta \in B(z_0, r_2)$ si ha

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z} \sum_{k=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0} \right)^k = \sum_{k=0}^{\infty} \frac{(z - z_0)^k}{(\zeta - z_0)^{k+1}}$$

Versione Preliminare

17 giugno 2004

totalmente in $\partial B(z_0, r_2)$. Analogamente per $z \in \partial B(z_0, r_1)$

$$\frac{1}{\zeta - z} = \frac{-1}{z - z_0} \sum_{k=0}^{\infty} \left(\frac{\zeta - z_0}{z - z_0}\right)^k = \frac{-1}{z - z_0} \sum_{k=0}^{\infty} \left(\frac{\zeta - z_0}{z - z_0}\right)^k$$
$$= -\sum_{k=-\infty}^{-1} \frac{(z - z_0)^k}{(\zeta - z_0)^{k+1}}$$

totalemente in $\partial B(z_0, r_1)$. Sviluppando termine a termine i due integrali in (5.4), si ottiene percio'

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k$$

in $A(z_0, r_1, r_2)$, con

$$a_k = \begin{cases} \frac{1}{2\pi i} \int_{\partial^+ B(z_0,r_2)} \frac{f(\zeta)}{(\zeta-z_0)^{k+1}} \, d\zeta & \text{se } k \geq 0, \\ \frac{1}{2\pi i} \int_{\partial^+ B(z_0,r_1)} \frac{f(\zeta)}{(\zeta-z_0)^{k+1}} \, d\zeta & \text{se } k < 0. \end{cases}$$

Poiche' d'altra parte

$$\int_{\partial^+ B(z_0,r)} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} \, d\zeta$$

non dipende da r per ogni $\rho_1 < r < \rho_2$ $(\frac{f(\zeta)}{(\zeta - z_0)^k} d\zeta$ è chiusa in $A(z_0, \rho_1, \rho_2)$), la tesi segue.

5.22 (Serie di Laurent e serie di Fourier) Sia f olomorfa in $A(0; 1 - \epsilon, 1 + \epsilon), \epsilon > 0$ e sia

$$f(z) = \sum_{n = -\infty}^{+\infty} c_n z^n$$

il suo sviluppo di Laurent. Come sappiamo,

$$c_n = \frac{1}{2\pi i} \int_{|\zeta|=1} \frac{f(\zeta)}{\zeta^{n+1}} d\zeta = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) e^{-in\theta} d\theta.$$

Se poniamo $\varphi(t):=f(e^{it})=\sum_{n=-\infty}^{+\infty}c_ne^{int}$ si vede che la serie di Laurent è la serie di Fourier di $\varphi(t),\,t\in\mathbb{R}.$

In generale la serie trigonometrica nella variabile complessa z

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kz) + b_k \sin kz)$$

con il cambiamento di variabile $e^{iz}:=\zeta$ si puo' riscrivere come la serie di Laurent

$$\sum_{-\infty}^{+\infty} c_n \zeta^n$$

dove

$$c_0 := \frac{a_0}{2}, \qquad c_n := \begin{cases} \frac{a_n - ib_n}{2} & \text{se } n > 0\\ \frac{a_{-n} + ib_{-n}}{2} & \text{se } n < 0 \end{cases}$$

Se questa ultima serie converge in una corona $r < |\zeta| < R$, r < 1 < R, allora $\sum_{-\infty}^{+\infty} c_n \zeta^n$ è una serie di Laurent con somma olomorfa. Percio' la serie trigonometrica converge totalmente nella striscia $\log r < -y < \log R$ parallela all'asse reale e la somma è una funzione olomorfa. Nel caso degenere r = R = 1, la serie di Fourier puo' non convergere o convergere ad una funzione discontinua, come abbiamo visto, cfr. Vol. III.

17 giugno 2004

Versione preliminare

5.23¶ Determinare la serie di Fourier di

$$\varphi(t) = \frac{a \sin t}{1 - 2a \cos t + a^2}, \qquad |a| < 1.$$

[Sugg. Osservare che $f(e^{it})=\varphi(t),$ se,

$$f(t) := \frac{1-z^2}{2\,i\!\left[z^2-(a+\frac{1}{a})z+1\right]}$$

e calcolare lo sviluppo di Laurent di f(z). Il risultato è $\varphi(t) = \sum_{k=1}^{\infty} a^n \sin nt$.

6 Residui e calcolo degli integrali

Sia Ω aperto, $z_0 \in \Omega$ e $f \in \mathcal{H}(\Omega \setminus \{z_0\})$. Segue dal teorema di Goursat che

$$\int_{\partial^+ B(z_0,r)} f(z) \, dz$$

non dipende dalla scelta di r fintanto che $B(z_0,r)\subset\Omega$. Si chiama residuo di f in z_0 il numero

Res
$$(f, z_0) := \frac{1}{2\pi i} \int_{\partial^+ B(z_0, r)} f(z) dz$$

Analogamente se A è limitato e $f \in \mathcal{H}(\mathbb{C} \setminus \overline{A})$, si chiama residuo all'infinito di f il numero

$$\operatorname{Res}(f,\infty) := -\frac{1}{2\pi i} \int_{\partial^{+}B(0,r)} f(z) \, dz$$

dove r è scelto in modo che $\overline{A} \subset B(z_0,r)$. Cambiando variabile,

$$\operatorname{Res}(f, \infty) = -\frac{1}{2\pi i} \int_{\partial^{+}B(0,2r)} f(z) dz = \frac{1}{2\pi i} \int_{\partial^{+}B(0,1/(2r))} Big(\frac{1}{\zeta}) \frac{1}{\zeta^{2}} d\zeta$$
$$= \operatorname{Res}\left(-f\left(\frac{1}{\zeta}\right) \frac{1}{\zeta^{2}}, 0\right).$$

Ricordando poi il teorema di Goursat,

6.1 Teorema (dei residui, I). Siano A un dominio ammissibile per $\Omega \subset \mathbb{C}$, $\{z_1, z_2, \ldots, z_n\} \subset A$ punti singolari per $f \in \mathcal{H}(\Omega \setminus \{z_1, z_2, \ldots, z_n\})$. Allora

$$\int_{\partial^+ A} f(z) dz = 2\pi i \sum_{j=1}^n \text{Res}(f, z_j).$$

e analogamente

Versione Preliminare

17 giugno 2004

6.2 TEOREMA (DEI REIDUI, II). Siano Ω un dominio limitato, $A \supset \Omega$ un dominio ammissibile per Ω^c , $\{z_1, z_2, \ldots, z_n\} \subset A$ punti singolari per $f \in \mathcal{H}(\Omega^c \setminus \{z_1, z_2, \ldots, z_n\})$. Allora

$$\int_{\partial^{+}A} f(z) dz = -2\pi i \Big(\operatorname{Res} \left(f, \infty \right) + \sum_{j=1}^{n} \operatorname{Res} \left(f, z_{j} \right) \Big).$$

in particolare

6.3 COROLLARIO. Siano $z_1, z_2, \ldots, z_n \in \mathbb{C}$ e $f \in \mathcal{H}(\mathbb{C} \setminus \{z_1, z_2, \ldots, z_n\})$. Allora

$$\operatorname{Res}(f, \infty) + \sum_{i=1}^{n} \operatorname{Res}(f, z_i) = 0.$$

Il calcolo dei residui

Dal Teorema 5.21 segue

6.4 Proposizione. Sia $f \in \mathcal{H}(B(z_0,r) \setminus \{z_0\})$ e $f(z) = \sum_{k=-\infty}^{\infty} a_k (z-z_0)^k$ $z \in B(z_0,r), z \neq z_0$, il suo sviluppo di Laurent con centro z_0 . Allora

$$\operatorname{Res}\left(f,z_{0}\right)=a_{-1}.$$

Il calcolo del residuo di f in un punto z_0 puo' farsi quindi facilmente utilizzando lo sviluppo in serie di f con centro in z_0 . Ad esempio

(i)

Res
$$\left(\frac{1}{(z-z_0)^m}, z_0\right) = \begin{cases} 1 & \text{se } m = 1, \\ 0 & \text{altrimenti.} \end{cases}$$

- (ii) f ha una singolarità eliminabile in z_0 . Se f è prolungabile in senso olomorfo in z_0 , allora Res $(f, z_0) = 0$.
- (iii) f ha un polo semplice in z_0 . Se f ha un polo semplice in z_0 , allora

$$f(z) = \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + \dots$$

Moltiplicando per $z-z_0$, si trova

$$(z-z_0)f(z) = a_{-1} + o(|z-z_0|)$$
 per $z \to z_0$

vale a dire

Res
$$(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$
.

Un caso particolare è quello in cui f(z) = g(z)/h(z) dove g, h sono olomorfe e h(z) ha un polo semplice in z_0 . Allora $h'(z_0) \neq 0$. Segue

$$(z-z_0)\frac{g(z)}{h(z)} = \frac{z-z_0}{h(z)-h(z_0)}g(z) \to \frac{g(z_0)}{h'(z_0)}$$
 per $z \to z_0$.

i.e.,

$$\operatorname{Res}\left(\frac{g(z)}{h(z)}, z_0\right) = \frac{g(z_0)}{h'(z_0)}.$$

17 giugno 2004

(iv) f ha un polo multiplo in z_0 . Sia f una funzione olomorfa in $A(z_0, 0, \delta)$ con un polo di ordine m in z_0 . Allora

$$f(z) = \frac{g(z)}{(z - z_0)^m}, \qquad g(z_0) \neq 0.$$

moltiplicando per $(z-z_0)^m$, si ottiene una funzione con una singolarità eliminabile,

$$(z - z_0)^m f(z) = g(z), \qquad z \neq z_0.$$

Il coefficiente a_{-1} dello sviluppo di Laurent di f è dunque il coefficiente di $(z-z_0)^{m-1}$ dello sviluppo di g. Pertanto

Res
$$(f, z_0) = a_{-1} = \frac{D^{m-1}(g)(z_0)}{(m-1)!}$$

= $\frac{1}{(m-1)!} \lim_{z \to z_0} D^{m-1} ((z-z_0)^m f(z))(z_0).$

Un altro modo è procedere induttivamente calcolando successivamente tutto lo sviluppo singolare. Infatti se

$$f(z) = \frac{a_{-m}}{(z - z_0)^m} + \dots + \frac{a_{-1}}{z - z_0} + h(z)$$

allora

$$\begin{cases} a_{-m} = \lim_{z \to z_0} (z - z_0)^m f(z), \\ a_{-m+1} = \lim_{z \to z_0} (z - z_0)^{m-1} \left(f(z) - \frac{a_{-m}}{(z - z_0)^m} \right) \\ \dots \\ a_{-1} = \lim_{z \to z_0} (z - z_0) \left(f(z) - \sum_{k=-m}^{-2} a_k (z - z_0)^k \right) \end{cases}$$

Infine. nel caso di un rapporto di polinomi, si puo' procedere induttivamente con l'algoritmo di Hermite, cfr. Vol. II.

6.1 Il metodo dei residui

Calcolo di integrali

Si vogliono calcolare integrali definiti senza esplicitare una primitiva dell'integrando. Se l'integrando è la restrizione all'intervallo di integrazione di una funzione olomorfa in Ω con eventualmente qualche discontinuità, si puo' pensare all'intervallo di integrazione come alla frontiera orientata, o ad un pezzo della frontiera orientata, di un dominio ammissibile. La formula dei residui potrebbe quindi permettere di calcolare l'integrale. Abbiamo qui raccolto alcuni casi interessanti. Il lettore è avvisato che non vi sono regole generali, valide in ogni caso.

 ${\rm file} = {\rm sansone.ps}$

Figura 6.1.

 ${\rm file} = {\rm remmert.ps}$

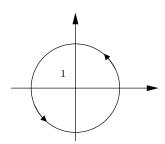


Figura 6.2.

6.5 (Integrali trigonometrici) Si voglia calcolare integrali del tipo

$$\int_0^{2\pi} R(\cos t, \sin t) \, dt,$$

dove ${\cal R}$ è una funzione razionale.

Si interpreta l'integrale come l'integrale sulla frontiera orientata di B(0,1). Poiche' su B(0,1) si ha

$$\frac{1}{2}\Big(z+\frac{1}{z}\Big)=\cos\theta, \qquad \frac{1}{2}\Big(z-\frac{1}{z}\Big)=\sin\theta, \qquad \text{se } z:=e^{i\theta},$$

ponendo

$$f(z) := \frac{1}{iz} R\left(\frac{1}{2}\left(z + \frac{1}{z}\right), \frac{1}{2i}\left(z - \frac{1}{z}\right)\right)$$

si ottiene

17 giugno 2004

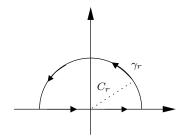


Figura 6.3.

$$\int_0^{2\pi} R(\cos t, \sin t) \, dt = \int_{\partial^+ B(0,1)} f(z) \, dz.$$

Se f non ha poli su $\partial B(0,1)$, si ottiene dal teorema dei residui, Teorema 6.1,

$$\int_0^{2\pi} R(\cos t, \sin t) dt = \int_{\partial^+ B(0,1)} f(z) dz = 2\pi i \sum_{z \in B(0,1)} \text{Res}(f, z).$$

6.6 ¶ Se f ha poli p_1, p_2, \ldots, p_k su $\partial B(0, 1)$, si sceglie come dominio ammissibile $B(0, 1) \setminus \cup_i B(p_i, \epsilon)$, $\epsilon << 1$. Ripetendo la dimostrazione del teorema dei residui, ei prova allora mandando $\epsilon \to 0$ che

$$\int_0^{2\pi} R(\cos t, \sin t) dt = \int_{\partial^+ B(0,1)} f(z) dz = 2\pi i \sum_{z \in B(0,1)} \text{Res}(f, z) + \pi i \sum_{z \in \partial B(0,1)} \text{Res}(f, z).$$

6.7 Esempio Mostrare che se a > |b| si ha

$$\int_0^{2\pi} \frac{1}{a + b\sin\theta} \, d\theta = \frac{2\pi}{\sqrt{a^2 - b^2}}.$$

Riscriviamo l'integrale come un integrale di linea sul bordo del cerchio unitario. Ricordando che sin $y = \frac{e^{iy} - e^{-iy}}{2i}$, si ha

$$\int_0^{2\pi} \frac{1}{a + b \sin \theta} \, d\theta = \int_{\partial^+ B(0,1)} \frac{dz}{iz(a + b(z - z^{-1})/2i)} = \int_{\partial^+ B(0,1)} \frac{2 \, dz}{bz^2 + 2iaz - b}$$

La funzione $bz^2 + 2iaz - b$ si annulla nei due punti

$$z_1 := \frac{-a + \sqrt{a^2 - b^2}}{b}i, \qquad z_2 := \frac{-a - \sqrt{a^2 - b^2}}{b}i.$$

e di questi solo il primo z_1 si trova all'interno del cerchio unitario. Si tratta evidentemente di un polo semplice per $f(z)=\frac{2\,dz}{bz^2+2iaz-b}$ e quindi

Res
$$(f, z_1) = \frac{2}{2bz_1 + 2ia} = \dots = \frac{1}{\sqrt{a^2 - b^2}i}$$
.

Dal teorema dei residui si conclude che

$$\int_0^{2\pi} \frac{d\theta}{a + b\sin\theta} = \frac{2\pi i}{\sqrt{a^2 - b^2}i} = \frac{2\pi}{\sqrt{a^2 - b^2}}.$$

6.8 (Integrali improprio del tipo

$$\int_{-\infty}^{+\infty} f(t) \, dt.$$

Supponiamo di avere una funzione f(z) olomorfa sul semipiano superiore $\{z \mid \Im z > 0\}$ tranne al piu' in un numero finito di punti, nessuno dei quali è reale, e tale che $zf(z) \to 0$ per $|z| \to \infty$. Dal Teorema 6.1 per r >> 1

$$\int_{-r}^{r} f(x) dx + \int_{\gamma_r} f(z) dz = 2\pi i \sum_{\Im z > 0} \operatorname{Res}(f, z)$$

essendo C_r il semicerchio in Figura 6.3 e γ_r il suo bordo superiore orientato in senso antiorario. Posto $M(r) := \sup_{z \in \gamma_r} |f(z)|$, dall'ipotesi segue che

$$\left| \int_{\gamma_r} f(z) \, dz \right| \le M(r) \cdot 2\pi \, r \to 0 \qquad \text{per } r \to \infty$$

e quindi fha integrale improprio su $\mathbb R$ e

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{r \to \infty} \int_{-r}^{r} f(x) dx = \sum_{\text{Im } z > 0} \text{Res}(f, z).$$

La ricetta precedente si applica in particolare al rapporto di due polinomi $f=\frac{P}{Q}$ in cui Q non ha zeri reali.

6.9 Esempio Si calcoli

$$\int_0^\infty \frac{dx}{1+x^6}.$$

Sia dunque C_r il semicerchio in Figura 6.3 di raggio r>>1. Dato che le radici di $z^6+1=0$ sono sei distinte $z_k:=e^{\frac{i(2k+1)\pi}{6}},\ k=0,\ldots,5$, esse sono tutte poli semplici di $f(z):=1/(1+z^6)$. Di questi solo $z_0,z_1,z_2\in C_r$. Il residuo di f in $z_k,\ k=0,1,2$, vale

Res
$$(f, z_k) = \frac{1}{6z_k^5} = \frac{1}{6}e^{-i\frac{5(2k+1)\pi}{6}}$$

Segue dal teorema dei residui che

$$\int_{-r}^{r} \frac{dx}{1+x^{6}} + \int_{\gamma_{r}} \frac{dz}{1+z^{6}} = -\frac{2\pi i}{6} \sum_{k=0}^{2} e^{-i\frac{5(2k+1)\pi}{6}} = \frac{2\pi}{3}.$$

essendo $\gamma_r(t) := re^{it}, t \in [0, \pi]$. Poiche' per $r \to \infty$ si ha evidentemente che $\int_{\gamma_r} \frac{dz}{1+z^6} \to 0$, si conclude che

$$\int_0^\infty \frac{dx}{1+x^6} = \frac{\pi}{3}.$$

6.10 Proposizione (Integrali di tipo Fourier). Sia $f: \Omega := \{z = x + iy \,|\, y \geq 0\} \to \mathbb{C}$ una funzione continua e olomorfa all'interno di Ω , con un numero finito di punti singolari in Ω nessuno dei quali è reale e tale che $|f(z)| \to 0$ per $|z| \to \infty$, $z \in \Omega$. Allora per ogni $\omega > 0$

17 giugno 2004

$$\lim_{r \to \infty} \int_{-r}^{r} f(x) e^{i\omega x} dx = 2\pi i \sum_{z \in \Im z > 0} \operatorname{Res} (f(z) e^{i\omega z}, z). \tag{6.1}$$

Analogamente sia $f: \Omega := \{z = x + iy \mid y \leq 0\} \to \mathbb{C}$ una funzione continua in Ω e olomorfa all'interno di Ω , con un numero finito di punti singolari nessuno dei quali è reale e tale che $|f(z)| \to 0$ per $|z| \to \infty$, $z \in \Omega$, e sia $\omega > 0$. Allora

$$\lim_{r \to \infty} \int_{-r}^{r} f(x) e^{-i\omega x} dx = 2\pi i \sum_{z \in \Im z < 0} \operatorname{Res} (f(z)e^{-i\omega z}, z). \tag{6.2}$$

Proviamo la prima parte del teorema, la seconda parte essendo del tutto simile. Premettiamo

6.11 Lemma. Sia $f: \Omega := \{z = x + iy \mid y \geq 0\} \to \mathbb{C}$ una funzione continua e olomorfa all'interno di Ω , con un numero finito di punti singolari nessuno dei quali è reale e tale che $|f(z)| \to 0$ per $|z| \to \infty$, $z \in \Omega$. Sia γ_r il bordo orientato superiore del semicerchio C_r in figura. Allora

$$\int_{\gamma_r} f(z) e^{i\omega x} dz \to 0 \qquad \text{per } r \to \infty.$$

Dimostrazione. Si ha

$$\int_{\gamma_r} f(z)e^{i\omega z} dz = \int_0^\pi f(re^{i\theta})e^{i\omega r\cos\theta}e^{-\omega r\sin\theta}ir d\theta$$

quindi

$$\left| \int_{\gamma_r} f(z) e^{i\omega z} \, dz \right| \le M(r) \int_0^{\pi} e^{-\omega r \sin \theta} r \, d\theta$$

dove si è posto $M(r) := \sup_{z \in \gamma_r} |f(z)|$. Basta allora provare che l'integrale a destra è limitato indipendentemente da r. Usando la diseguaglianza di Jordan $\frac{2}{\pi} \le \frac{\sin \theta}{\theta} \le 1$ per $0 \le \theta \le \frac{\pi}{2}$, segue infatti

$$\int_0^{\pi} e^{-\omega r \sin \theta} r \, dt = 2 \int_0^{\pi/2} e^{-\omega r \sin \theta} r \, dt \le \frac{\pi}{2\omega} (1 - e^{-r\omega}).$$

Dimostrazione della Proposizione 6.10. Scegliendo ora r cosi' grande che i poli di f siano tutti nel semicerchio C_r , si ottiene dalla formula dei residui

$$\int_{-r}^{r} f(x)e^{i\omega x} dx + \int_{\gamma_r} f(z)e^{i\omega z} dz = 2\pi i \sum_{\Im z > 0} \mathrm{Res}\,(f,z).$$

Per $r \to \infty$ il secondo integrale tende a zero per il Lemma 6.11 e quindi la tesi.

6.12 Esempio Mostrare che per k > 0 si ha

$$\int_0^\infty \frac{\cos kx}{1+x^2} \, dx = \frac{\pi}{2} e^{-k}.$$

La funzione $f(z):=e^{ikz}/(1+z^2)$ ha poli semplici in $z=\pm i$. Considerando il circuito in Figura 6.3, si ha

$$\int_{-r}^{r} \frac{e^{ikx} dx}{1+x^2} + \int_{\gamma_r} \frac{e^{ikz}}{1+z^2} dz = \text{Res} \left(f, i \right) = 2\pi i \frac{e^{-k}}{2i} = \pi e^{-k}.$$

Mandando quindi $r \to \infty$, il secondo integrale a sinistra tende a zero, pertanto

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^6} = \pi e^{-k}$$

e la tesi segue essendo $\int_{-\infty}^{\infty} \frac{dx}{1+x^6} = 2 \int_{0}^{\infty} \frac{dx}{1+x^6}.$

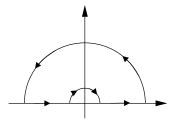


Figura 6.4.

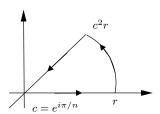


Figura 6.5.

6.13¶ Per $\alpha=1,\,\beta=0,$ le formule di Laplace dell'Esercizio 13.18 suggeriscono che

$$\lim_{r \to \infty} \int_0^r \frac{\sin x}{x} = \frac{\pi}{2}.$$

Si provi quest'ultima formula escludendo lo zero con un semicerchio con raggio piccolo. [Sugg. Considerare la funzione $f(z):=\frac{e^{iz}}{z}$, integrare sul cammino $\gamma_{\epsilon,r}$ in Figura 6.4 e usare l'Esercizio 13.23 e il Lemma 6.11.]

6.14 ESEMPIO Calcolare gli integrali (impropri) di Fresnel

$$\int_0^\infty \sin x^2 \, dx, \qquad \int_0^\infty \cos x^2 \, dx.$$

Si considera la funzione $f(z):=e^{iz^2}$ che non ha poli su $\mathbb C$ e si integra lungo la curva in Figura 6.5 composta delle tre curve

$$\gamma_1(t) = t, \ t \in [0, r], \qquad \gamma_2(t) = \frac{t(1+i)}{\sqrt{2}}, \ t \in [0, r]$$

e $\gamma_3(t):=re^{it},\,t\in[0,\pi/4].$ Si ha allora

$$\int_{\gamma_1} f(z) \, dz - \int_{\gamma_2} f(z) \, dz + \int_{\gamma_3} f(z) \, dz = 0$$

e d'altra parte

$$\begin{split} &\int_{\gamma_1} f(z) \, dz = \int_0^r e^{ix^2} \, dx \\ &\int_{\gamma_2} f(z) \, dz = \frac{1+i}{\sqrt{2}} \int_0^r e^{-t^2} \, dt \to \frac{1+i}{\sqrt{2}} \int_0^\infty e^{-t^2} \, dt = \frac{1}{2} \sqrt{\frac{\pi}{2}} (1+i) \\ &\int_{\gamma_3} f(z) \, dz = \int_0^{\pi/4} i r e^{ir^2 \theta^2} e^{i\theta} \, d\theta \end{split}$$

Poiche' $i(\cos\theta+i\sin\theta)^2=i\cos(2\theta)-r^2\sin2\theta$ il terzo interale si stima in modulo con

17 giugno 2004

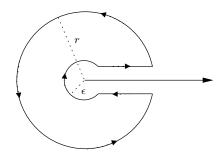


Figura 6.6.

$$\int_0^{\pi/4} re^{-r^2\sin(2\theta)} d\theta \le \int_0^{\pi/4} re^{-r^2\frac{4}{\pi}\theta} d\theta = \frac{\pi}{4r}(1 - e^{-r^2})$$

e dunque converge a zero per $r\to\infty$. In definitiva mandando $r\to\infty$ si conclude che l'integrale improprio di e^{ix^2} su $(0,+\infty)$ esiste e

$$\int_0^\infty e^{ix^2} \, dx = \lim_{r \to \infty} \int_0^r e^{ix^2} \, dx = \frac{1}{2} \sqrt{\frac{\pi}{2}} (1+i).$$

Con un cambiamento di variabile, $x = \sqrt{t}$, t > 0 si ottiene anche

$$\int_0^\infty \frac{\sin t}{\sqrt{t}} = \sqrt{\frac{\pi}{2}}, \qquad \int_0^\infty \frac{\cos t}{\sqrt{t}} = \sqrt{\frac{\pi}{2}}$$

6.15 Proposizione (Integrali di Tipo Mellin). Sia f una funzione olomorfa con un numero finito di singolarità, tutte fuori dal semiasse reale positivo e $\alpha \in \mathbb{R}$, $0 < \alpha < 1$. Supponiamo che $f(x) \to 0$ per $x \to \infty$, $x \in \mathbb{R}$. Sia z^{α} il foglio principale di z^{α} e $D = \mathbb{C} \setminus \{z = x + iy, x > -, y = 0\}$. Allora

$$(1 - e^{2\pi i\alpha}) \int_0^\infty \frac{f(x)}{x^\alpha} dx = \frac{1}{2\pi i} \sum_{z \neq 0} \operatorname{Res}\left(\frac{f(z)}{z^\alpha}, z\right).$$

Dimostrazione. Sia $g(z):=\frac{f(z)}{z^{\alpha}}, z\in\mathbb{C}\setminus\{0\}$. Indichiamo con $\gamma_{r,\epsilon,\delta}$ il bordo orientato di $D_{r,\epsilon,\delta}$ in Figura 6.6 avendo scelto r>>1, $\epsilon<<1$ e $\delta<<\epsilon$ in modo che tutti i poli di f escluso al piu' 0 siano contenuti in $D_{r,\epsilon,\delta}$. Dal teorema dei residui,

$$\int_{\gamma_{r,\epsilon,\delta}} g(z) dz = 2\pi i \sum_{z \neq 0} \text{Res} \left(g(z), z \right).$$

per ogni r, ϵ, δ . D'altra parte, se indichiamo con γ_+ e γ_- i due tratti orizzontali orientati come l'asse delle x e osserviamo che se $z=x+iy, \ x>0$ e $y\to 0^+$, allora, cfr. la (12.4),

$$\begin{split} z^{\alpha} &= e^{\alpha \log z} \to e^{\alpha \log x} = x^{\alpha} & \text{per } y \to 0^{+} \\ z^{\alpha} &= e^{\alpha \log z} \to e^{\alpha \log x + i2\pi\alpha} = e^{2\pi i\alpha} x^{\alpha} & \text{per } y \to 0^{-}. \end{split}$$

e dunque per $\delta \to 0$, si ottiene che

$$\int_{\gamma_{r,\epsilon,\delta}} g(z)\,dz \to (1-e^{2\pi i\alpha}) \int_e^r g(x)\,dx + \int_{\partial^+ B(0,r)} g(z)\,dz - \int_{\partial^+ B(0,\epsilon)} g(z)\,dz.$$

Percio'

Versione Preliminare

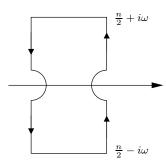


Figura 6.7.

$$(1 - e^{2\pi i\alpha}) \int_{\epsilon}^{r} \frac{f(x)}{x^{\alpha}} dx + \int_{\partial +B(0,r)} \frac{f(z)}{z^{\alpha}} dz - \int_{\partial +B(0,\epsilon)} \frac{f(z)}{z^{\alpha}} dz = 2\pi i \sum_{z\neq 0} \operatorname{Res}\left(\frac{f(z)}{z^{\alpha}}, z\right). \tag{6.3}$$

D'altra parte per il Lemma 6.11 $\int_{\partial^+ B(0,r)} \frac{f(z)}{z^\alpha} \, dz \to 0$ per $r \to \infty$ e

$$\left| \int_{\partial^+ B(0,\epsilon)} \frac{f(z)}{z^{\alpha}} \, dz \right| \le M(\epsilon) \epsilon^{-\alpha} 2\pi \epsilon \to 0 \quad \text{per } \epsilon \to 0.$$

Passando al limite nella (6.3) per $r \to \infty$ e $\epsilon \to 0$ si ottiene la tesi.

6.16 ¶ Mostrare che $\int_0^\infty \frac{dx}{\sqrt{x}(1+x)} = \pi$.

Somme di serie

6.17 (SOMME DI GAUSS) Sono definite da

$$S_n := \sum_{k=0}^{n-1} e^{\frac{2\pi i k^2}{n}}$$

Sia

$$f(z) := \frac{2 \exp(2\pi z^2/n)}{e^{2\pi i z} - 1}$$

i cui poli $0, \pm 1, \pm 2, \ldots$ sono semplici con residui rispettivi $\frac{1}{\pi i}e^{2\pi i k^2/n}$. Integrando sul percorso in Figura 6.7, si trova

$$S_n = 2i(1+i^{3n})\sqrt{n}\int_0^\infty e^{-2\pi i t^2} dt,$$

per cui

$$\sum_{k=0}^{n-1} e^{2\pi i k^2} n = \frac{1}{2} (1+i)(1+i^{3n}) \sqrt{n}.$$

6.18 ¶ Calolare lo sviluppo asintotico di $\int_x^\infty e^{-t}t\,dt.$

6.19 Teorema (Somme di serie di funzioni). Sia f(z) una funzione olomorfa su $\mathbb C$ con eventuali singolarità puntuali fuori dai punti $0,\pm 1,\pm 2,\ldots$ tale che per qualche $M,\alpha>1$ si abbia $|f(z)|\leq M/|z|^{\alpha}$ per ogni z con |z|>>1. Allora

17 giugno 2004

Versione preliminare

(i) la serie $\sum_{n=-\infty}^{\infty} f(n)$ converge assolutamente e

$$\sum_{n=-\infty}^{\infty} f(n) = -2\pi i \sum_{\substack{z \text{ polo di } f}} \operatorname{Res}\left(\frac{\pi f(z)}{\tan(\pi z)}, z\right),$$

(ii) la serie $\sum_{n=-\infty}^{\infty} (-1)^n f(n)$ converge assolutamente e

$$\sum_{n=-\infty}^{\infty} (-1)^n f(n) = -2\pi i \sum_{\substack{z \text{ polo } di \ f}} \operatorname{Res} \left(\frac{\pi f(z)}{\sin(\pi z)}, z \right),$$

Premettiamo la

6.20 Proposizione. Sia f una funzione continua con $|f(z)| \leq M/|z|^{\alpha}$ per qualche M>0 e $\alpha>1$ per ogni |z|>>1 e sia Q_n il quadrato

$$Q_n := \left\{ z = x + iy \mid |x|, |y| \le n + \frac{1}{2} \right\}$$

Allora $\int_{\partial^+Q_n} f(z) \frac{1}{\tan(\pi z)} dz \to 0$ per $n \to \infty$.

Dimostrazione. Verifichiamo che $1/\tan(\pi z)$ è limitata su ∂^+Q_n indipendentemente da n. Sia $z = x + iy \in \partial^+Q_n$ e distinguiamo due casi: se $|y| \ge 1/2$ allora, cfr. (4.2),

$$|\cot(\pi z)| \le \coth(\pi |y|) = \frac{1 + e^{-2|pi|y|}}{1 - e^{-2\pi|y|}} \le \frac{1 + e^{-\pi}}{1 - e^{-\pi}} =: C_1$$

mentre se |y| < 1/2, allora necessariamente |x| = n + 1/2 e quindi $\cot(\pi(x+iy)) = \cot(\pi/2 + i\pi y) = \tanh(\pi y)$ da cui

$$|\cot(\pi z)| \le \tanh \pi |y| \le 1$$

e dunque $|\cot(\pi z)| \leq C := \max(C_1, 1)$ su ∂Q_n . Segue

$$\left| \int_{\partial^+ Q_n} f(z) \cot(\pi z) \, dz \right| \le \frac{8C M}{\left(n + \frac{1}{2}\right)^{\alpha}} \left(n + \frac{1}{2}\right) \to 0$$

per
$$n \to \infty$$
.

Dimostrazione del Teorema 6.19. Dimostriamo (i). Sia $g(z)=f(z)\pi\cot(\pi z)$. e sia $Q_n:=\left\{x+iy\,|\,|x|,|y|\leq n+1/2\right\}$. Segue dal teorema dei residui e dalla Proposizione 6.20 che f non ha poli in Q_n per n grande e che

$$\sum_{z \in Q_n} \operatorname{Res} \Big(\pi f(z) \cot(\pi z) \big) \to 0 \qquad \text{per } n \to \infty.$$

Poiche' i punti singolari $k,\,k\in\mathbb{Z},$ di $\cot(\pi z)$ sono poli di ordine 1 e f è per ipotesi olomorfa in un intorno di k

Versione Preliminare

file = euler.ps

file = mittag - -leffler.ps

Figura 6.8.

$$\operatorname{Res}\left(g(z),k\right) = \operatorname{Res}\left(f(z)\pi \frac{\cos(\pi z)}{\sin(\pi z)}\right) = f(k)\frac{\pi \cos(\pi k)}{\pi \cos(\pi k)} = f(k)$$

Percio'

$$\sum_{k=-n}^{n} f(k) + \sum_{\substack{z \in Q_n \\ z \text{ polo di } f}} \text{Res}(g(z), z) \to 0 \quad \text{per } n \to \infty.$$

Poiche' la serie $\sum_{k=-\infty}^{\infty} f(k)$ converge assolutamente, la tesi segue. Si procede analogamente per la (ii).

Sviluppi di Mittag-Leffler

6.21 TEOREMA. Sia $\{a_n\} \subset \mathbb{C}$ un insieme finito di punti o una successione di punti ordinati di modulo crescente, e senza punti di accumulazione (al finito). Sia f una funzione olomorfa su $\mathbb{C} \setminus \{a_n\}$ con poli semplici in $\{a_n\}$ e siano $b_n := \operatorname{Res}(f(z), a_n)$ i rispettivi residui. Se esiste una successione crescente $\{r_n\}$ con $r_n \to \infty$ tale che $\partial B(0, r_n)$ non contiene alcun punto di $\{a_n\}$ e tale che $|f(z)| \leq M \ \forall z \in \partial B(0, r_n) \ \forall n$ per qualche M > 0, allora $\forall z, \zeta \in \mathbb{C}\{a_n\}$ la serie

$$\sum_{n=1}^{\infty} b_n \left(\frac{1}{a_n - z} - \frac{1}{a_n - \zeta} \right)$$

è convergente, $e \ \forall z, \zeta \in \mathbb{C} \setminus \{a_n\}$

$$f(z) - f(\zeta) = -\sum_{n=1}^{\infty} b_n \left(\frac{1}{a_n - z} - \frac{1}{a_n - \zeta} \right).$$
 (6.4)

Inoltre la convergenza è uniforme al variare di z e ζ sui compatti di $\mathbb{C} \setminus \{a_n\}$.

Dimostrazione. Sia $w \neq a_n \ \forall n$. La funzione g(t) := f(t)/t - w

(i) è olomorfa in $\mathbb{C} \setminus \{a_1, a_2, \dots, w\}$,

17 giugno 2004

(ii) ha un polo semplice in ogni a_n con residuo

$$\operatorname{Res}\left(\frac{f(z)}{z-w}, a_n\right) = \lim_{z \to a_n} \frac{(z-a_n)f(z)}{z-w} = \frac{b_n}{a_n - w},$$

(iii) ha un polo semplice in w con residuo

Res
$$\left(\frac{f(z)}{z-w}, w\right) = \lim_{z \to w} \frac{(z-w)f(z)}{z-w} = f(w).$$

Segue dal teorema dei residui che

$$f(w) + \sum_{a_k \in B(0,r_n)} \frac{b_k}{a_k - w} = \frac{1}{2\pi i} \int_{\partial^+ B(0,r_n)} \frac{f(z)}{z - w} dz.$$

e quindi calcolando per z e ζ al posto di w e sottraendo,

$$f(z) - f(\zeta) + \sum_{a_k \in B(0, r_n)} b_k \left(\frac{1}{a_k - z} - \frac{1}{a_k - \zeta} \right)$$

$$= \frac{1}{2\pi i} \int_{\partial^+ B(0, r_n)} f(t) \left(\frac{1}{t - z} - \frac{1}{t - \zeta} \right) dt$$

$$= \frac{1}{2\pi i} \int_{\partial^+ B(0, r_n)} f(t) \frac{\zeta - z}{(t - z)(t - \zeta)} dt.$$
(6.5)

Se ora $r_n \ge \max |z|, |\zeta|$ e $|t| = r_n$, si ha $|(t - \zeta)(t - \zeta)| \ge (r_n - |z|)(|r_n| - |\zeta|)$ e quindi

$$\left| \int_{\partial^+ B(0,r_n)} f(t) \left(\frac{1}{t-z} - \frac{1}{t-\zeta} \right) dt \right| \leq \frac{M|\zeta - z| 2\pi r_n}{(r_n - |z|)(r_n - \zeta)} \to 0 \qquad n \to \infty,$$

Segue dalla (6.5) che

$$f(z) - f(\zeta) + \sum_{a_k \in B(0,r_n)} b_k \left(\frac{1}{a_k - z} - \frac{1}{a_k - \zeta} \right) \to 0$$

per $n \to \infty$, i.e., la convergenza della serie $\sum_{n=1}^{\infty} b_n \left(\frac{1}{a_n - z} - \frac{1}{a_n - \zeta} \right)$ e la (6.4).

6.22 Esempio (Formula di Eulero per $\cot z)$ Si consideri la funzione

$$f(z) = \cot z - \frac{1}{z}$$

che ha singolarità nei punti $z=k\pi,\,k\in\mathbb{Z}.$ Ci si convine subito, essendo

$$\cot z - \frac{1}{z} = \frac{z\cos z - \sin z}{z\sin z}$$

che f ha una singolarità eliminabile in 0 e che si puo' supporre che f(0) = 0. D'altra parte f(z) ha poli semplici nei punti $z = k\pi$, $k = \pm 1, \pm 2, \ldots$ e per la Proposizione 6.20 f(z) è limitata sulla sucessione di cubi $Q_n\{x+iy \mid |x|, |y| \le n+1/2\}$. Infine

Versione Preliminare

$$\operatorname{Res}\left(f(z), k\pi\right) = \frac{k\pi \cos(k\pi) - \sin(k\pi)}{\sin(k\pi) + k\pi \cos(k\pi)} = 1.$$

Segue dal teorema di Mittag–Leffler che nei punti $z \neq k\pi, k \neq \mathbb{Z} \setminus \{0\},$

$$\cot z - \frac{1}{z} = f(z) - f(0) = -\sum_{\substack{n = -\infty, \infty \\ n \neq 0}} \left(\frac{1}{n\pi - z} - \frac{1}{n\pi} \right) = \sum_{\substack{n = -\infty, \infty \\ n \neq 0}} \left(\frac{1}{z - n\pi} + \frac{1}{n\pi} \right).$$

Sommando i termini con indici $\pm 1, \pm 2, \ldots$, si trova

$$\cot z - \frac{1}{z} = \sum_{n=1}^{\infty} \left(\frac{1}{z - n\pi} + \frac{1}{z + n\pi} \right) = 2z \sum_{n=1}^{\infty} \frac{1}{z^2 - k^2 \pi^2},$$

i.e., la celebre formula di Eulero per la cotangente

$$z \cot z - 1 + 2 \sum_{n=1}^{\infty} \frac{z^2}{z^2 - k^2 \pi^2}$$
 (6.6)

uniformemente sui compatti di $\mathbb{C} \setminus \pi \mathbb{Z}$.

Se ora si integra la (6.6), si ottiene

$$\log\left(\frac{\sin z}{z}\right) = \sum_{k=1}^{\infty} \log\left(1 - \frac{z^2}{k^2 \pi^2}\right)$$

e qindi, passando agli esponenziali la formula di Eulero per il seno

$$\sin z = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{j^2 \pi^2} \right).$$

6.2 Equazioni alle differenze

Il metodo dei residui è assai utile nel calcolo delle soluzioni di equazioni alle differenze. A titolo di esempio consideriamo il caso della successione dei numeri di Fibonacci

6.23 ESEMPIO (NUMERI DI FIBONACCI) la successione $\{f_n\}$ dei numeri di Fibonacci è definita da

$$\begin{cases} f_{n+2} = f_{n+1} + f_n, & n \ge 0, \\ f_0 = 0, f_1 = 0, \end{cases}$$

cfr. Vol. II, dove abbiamo calcolato esplicitamente

$$f_n := \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right), \qquad n \ge 0.$$
 (6.7)

Ritroviamo il risultato con il cosidetto metodo della z-trasformata. Si osservi anzitutto per induzione che $f_n \leq 2^n$ e quindi la serie

$$F(z) := \sum_{n=0}^{\infty} f_n \frac{1}{z^n},$$

detta la z-trasformata di $\{f_n\}$, converge per |z|>2. Moltiplicando l'equazione per $1/z^n$ e sommando su n, si trova

$$z^{2}(F(z) - f_{0} - f_{1}1/z) - z(F(z) - f_{0}) - F(z) = 0,$$

i.e.,

$$F(z) = \frac{z}{z^2 - z - 1}$$
 almeno in $|z| > 2$.

17 giugno 2004

La formula di Cauchy per coefficienti delle serie di Laurent da' quindi,

$$f_n = \frac{1}{2\pi i} \int_{\partial^+ B(0,r)} \frac{z^n}{z^2 - z - 1} dz$$

dove r è arbitrario con r > 2. Percio'

$$f_n = -\operatorname{Res}(g(z), \infty), \qquad g(z) = \frac{z^n}{z^2 - z - 1}.$$

Il calcolo del residuo è complicato dal fatto che il polo all'infinito di g(z) ha ordine crescente, e quindi ci si ritrova di nuovo a calcolare gli f_n mediante un processo induttivo. Tuttavia, la funzione g(z) è olomorfa in $\mathbb{C}\setminus\{a,b\}$ dove

$$a = \frac{1+\sqrt{5}}{2}, \qquad b = \frac{1-\sqrt{5}}{2}$$

sono le radici dell'equazione $z^2-z-1=0$. Dal teorema di Morera nella forma del Corollario 6.3

$$\operatorname{Res}(g(z), \infty) + \operatorname{Res}(g(z), a) + \operatorname{Res}(g(z), b) = 0,$$

da cui

$$f_n = -\text{Res}(g(z), a) + \text{Res}(g(z), b).$$

Essendo a e b poli semplici per g

$$\operatorname{Res}(g(z), a) = a^n \frac{1}{2a - 1} = \frac{1}{\sqrt{5}} a^n, \qquad \operatorname{Res}(g(z), b) = b^n \frac{1}{2b - 1} = -\frac{1}{\sqrt{5}} b^n,$$

e quindi la (6.7).

6.3 Ulteriori conseguenze della formula di Cauchy

Teorema dell'indicatore logaritmico

6.24 TEOREMA (INDICATORE LOGARITMICO). Sia $A \subset C$ un dominio ammisibile per Ω e $b_1, b_2, \ldots, b_k \in A$. Sia $f \in \mathcal{H}(\Omega \setminus \{b_1, b_2, \ldots, b_k\})$ tale che $f(z) \neq 0 \ \forall z \in \partial A$. Supponiamo che b_1, b_2, \ldots, b_k siano singolarità polari di ordine rispettivamente q_1, q_2, \ldots, q_k e siano a_1, a_2, \ldots, a_k gli zeri di f in A di moteplicità rispettivamente p_1, p_2, \ldots, p_k . Allora

$$\frac{1}{2\pi i} \int_{\partial +A} \frac{f'(\zeta)}{f(\zeta)} d\zeta = \sum_{j=1}^h p_j - \sum_{j=1}^k q_j,$$

i.e., #zeri – #poli di f in A, se contati con la loro molteplicità.

Dimostrazione. Dal teorema dei residui

$$\frac{1}{2\pi i} \int_{\partial^+ A} \frac{f'(\zeta)}{f(\zeta)} d\zeta = \sum_{j=1}^h \operatorname{Res}\left(\frac{f'}{f}, a_j\right) + \sum_{j=1}^k \operatorname{Res}\left(\frac{f'}{f}, b_j\right).$$

Ora, in un intorno di a_i si ha

$$f(z) = \varphi(z)(z - a_i)^{p_i}, \qquad \varphi \text{ olomorfa}, \ \varphi(a_i) \neq 0,$$

Versione Preliminare

da cui

$$\frac{f'(z)}{f(z)} = \frac{\varphi'(z)(z - a_j)^{m_j} + \varphi(z) m_j (z - a_j)^{m_j - 1}}{\varphi(z)(z - a_j)^{m_j}} = \frac{\varphi'(z)}{\varphi(z)} + \frac{m_j}{z - a_j},$$

e quindi Res $\left(\frac{f'}{f}, w_j\right) = m_j$.

Analogamente in un intorno di b_j , $f(z) = \psi(z)(z-b_j)^{-n_j}$ con ψ olomorfa e $\psi(b_j) \neq 0$. Segue che

$$\frac{f'(z)}{f(z)} = \frac{\psi'(z)}{\psi(z)} - \frac{n_j}{z - b_j},$$

i.e.,
$$\operatorname{Res}\left(\frac{f'}{f}, b_j\right) = -n_j$$
.

6.25 TEOREMA. Sia $A \subset\subset \Omega$ un dominio ammissibile per Ω , $b_1, b_2, \ldots, b_k \in A$, e sia $f \in \mathcal{H}(\Omega \setminus \{b_1, b_2, \ldots, b_k\})$ tale che $f(z) \neq 0 \ \forall z \in \partial A$. Supponiamo che b_1, b_2, \ldots, b_k siano singolarità polari di ordine rispettivamente q_1, q_2, \ldots, q_k e siano a_1, a_2, \ldots, a_k gli zeri di f in A di moteplicità rispettivamente p_1, p_2, \ldots, p_k . Infine, sia $g \in \mathcal{H}(\Omega)$. Allora

$$\frac{1}{2\pi i} \int_{\partial^+ A} g(z) \frac{f'(\zeta)}{f(\zeta)} d\zeta = \sum_{j=1}^h p_j g(a_j) - \sum_{j=1}^k q_j g(b_j).$$

6.26 ¶ Provare il Teorema 6.25.

6.27 ¶ Nelle ipotesi del teorema dell'indicatore logaritmico, calcolare

$$\frac{1}{2\pi i} \int_{\partial +A} \frac{zf'(z)}{f(z)} dz, \qquad \frac{1}{2\pi i} \int_{\partial +A} \frac{z^2 f'(z)}{f(z)} dz.$$

6.28 ¶ Provare il seguente

TEOREMA (JENSEN). Sia Ω una aperto limitato e $A \subset \Omega$ un dominio ammissibile per Ω . Sia f una funzione olomorfa con un numero finito di zeri a_1, a_2, \ldots, a_k di molteplicità p_1, p_2, \ldots, p_k e di poli b_1, b_2, \ldots, b_h di molteplicità q_1, q_2, \ldots, q_h . Supponiano inoltre che $0 \in A$, f(0) esista e sia non nullo. Allora

$$\frac{1}{2\pi} \int_0^{2\pi} \log|f(re^{i\theta})| d\theta = \log|f(0)| + \sum_{i=1}^k p_i \log(R/|a_i|) - \sum_{i=1}^h q_i \log(R/|b_i|).$$

[Sugg. Utilizzare il Teorema 6.25.]

6.29 TEOREMA (ROUCHÉ). Sia $\Omega \subset \mathbb{C}$ un dominio limitato $f, g \in \mathcal{H}(\Omega) \cap C^0(\overline{\Omega})$. Se

$$|f(\zeta) - g(\zeta)| < |g(\zeta)| \quad \forall \zeta \in \partial \Omega,$$

allora f e g hanno lo stesso numero di zeri in $\overline{\Omega}$ (se contati con le loro molteplicità).

Dimostrazione. Per ogni $t \in [0,1]$ la funzione $h_t(z) := g(z) + t(f(z) - g(z))$ è olomorfa in Ω e continua in $\overline{\Omega}$. Inoltre dall'ipotesi,

$$|h_t(\zeta)| = |q(\zeta) + t(f(\zeta) - q(\zeta))| < |\gamma(\zeta)| - t|f(\zeta) - q(\zeta)| > 0$$

per ogni $\zeta \in \partial \Omega$ e quindi per ogni z in un intorno tubolare di $\partial \Omega$. Sia $\{A_n\}$ una succesione di domini ammissibili per Ω con $\bigcup_n A_n = \Omega$ e tali che $h_t(z) \neq 0 \ \forall t \in \partial A_n$. Segue dal teorema dell'indicatore logaritmico che

17 giugno 2004

Versione preliminare

$$\int_{\partial^+ A_n} \frac{h_t(\zeta)}{h_t(\zeta)} d\zeta = \# \text{ zeri di } h_t \text{ in } A_n.$$

Ora la quantità a sinistra è continua in t. Dunque il numero di zeri di h_t in A_n (contati con la loro molteplicità), varia con continuità al variare di $t \in [0,1]$. Essendo una quantità intera, essa deve essere costante, in particolare

$$\#$$
 zeri $g = \#$ zeri $h_0 = \#$ zeri $h_1 = \#$ zeri f in A_n

Poiche' $\bigcup_n A_n = \Omega$, il numero di zeri di f e g in Ω è lo stesso.

6.30 ¶ Provare che Se $f \in \mathcal{H}(\Omega)$ è non costante e $z_0 \in \Omega$ è una radice di molteplicità k dell'equazione f(z) = a, allora per ogni intorno sufficientemente piccolo U di z_0 , esiste un intorno V di a tale che per ogni $b \in V$, l'equazione f(z) = b, ha esattamente k soluzioni distinte in U. [Sugg. Osservare che

$$k = \frac{1}{2\pi i} \int_{\partial^+ B(z_0,\rho)} \frac{f(\zeta)}{\zeta - a} \, d\zeta = \frac{1}{2\pi i} \int_{\partial^+ B(z_0,\rho)} \frac{f(\zeta)}{\zeta - b} \, d\zeta$$

per b vicino ad a, quindi l'equazione f(z)=b ha k radici in $B(z_0,\rho)$ se contate con la loro molteplicità. Esse sono poi semplici perché pur di prendere ρ sufficientemente piccolo si puo' supporre che $f'\neq 0$ in $B(z_0,\rho)\setminus\{z_0\}$.]

7 Principio di massimo

Sia Ω un dominio limitato di \mathbb{C} e $f \in \mathcal{H}(\Omega)$. Se $\overline{B(z_0,r)} \subset \Omega$, abbiamo dalla formula di Cauchy

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$
 (7.1)

Si dice che f ha la proprietà della media. Una conseguenza di (7.1) è

7.1 TEOREMA (PRINCIPIO DI MASSIMO). Sia $f \in \mathcal{H}(\Omega)$. Se |f| ha un massimo relativo interno, allora f è costante.

Dimostrazione. Sia z_0 un punto di massimo relativo interno per |f|. Possiamo supporre, moltiplicando f per una costante, che $f(z_0)$ sia reale e non negativo. Poniamo

$$M(r) := \sup_{\theta} |f(z_0 + re^{i\theta})|.$$

Per ipotesi $M(r) \leq |f(z_0)| = f(z_0)$ per r piccolo e per la proprietà della media $M(r) \geq |f(z_0)|$, da cui $|f(z_0)| = M(r)$ per ogni r piccolo, $r \leq r_0$. Ovviamente

$$\begin{split} \Re(f(z_0)-f(z)) &\geq 0 \qquad \text{per } z \in B(z_0,r_0), \\ \Re(f(z_0)-f(z)) &= 0 \qquad \text{se e solo se} \qquad f(z) = f(z_0). \end{split}$$

Versione Preliminare

Dalla proprietà della media

$$\int_{0}^{2\pi} \Re(f(z_0) - f(z_0 + re^{i\theta})) d\theta = 0$$

segue che $f(z) = f(z_0)$ su tutto il cerchio $\partial B(z_0, r)$ e, per l'arbitrarietà di r, f è costante in $B(z_0, r_0)$. Essendo Ω connesso, f è costante in Ω .

Una conseguenza immediata è il cosidetto

7.2 TEOREMA (PRINCIPIO DI MASSIMO). Se $f \in \mathcal{H}(\Omega) \cap C^0(\overline{\Omega})$, allora

$$|f(z)| \le \sup_{\partial \Omega} |f(z)| \qquad \forall z \in \overline{\Omega}$$

e, se f non è costante,

$$|f(z)| < \sup_{\partial \Omega} |f(z)| \qquad z \in \Omega.$$

7.3 COROLLARIO. Sia $F \in \mathcal{H}(\Omega)$ e sia $B(z_0, r) \subset\subset \Omega$ una palla. Se

$$|f(z_0)| < \min\{|f(\zeta)| \mid \zeta \in \partial B(z_0, r)\}$$

allora f ha uno zero in $B(z_0, r)$.

Dimostrazione. Per assurdo $f \neq 0$ in $B(z_0, r)$, la funzione g(z) := 1/f(z) sarebbe olomorfa in aperto Ω' tale che $B(x_0, r) \subset\subset \Omega'$. Si avrebbe allora dal principio di massimo che

$$|g(z_0)| \le \sup_{\zeta \in \partial B(z_0,r)} |g(\zeta)|$$

i.e.

$$\min \Big\{ |f(\zeta)| \, \Big| \, \zeta \in \partial B(z_0, r) \Big\} \le |f(z_0)|.$$

Un assurdo.

Dalla formula di Cauchy e dal principio do massimo seguono ora in modo immediato vari teoremi di convergenza per le funzioni olomorfe.

- 7.4 Teorema (Weierstrass). Il limite uniforme di funzioni olomorfe è olomorfo.
- 7.5 TEOREMA (MORERA). Sia $\{f_k\} \subset \mathcal{H}(\Omega)$. Se $\{f_k\}$ converge uniformemente ad f sui compatti di Ω , allora $f \in \mathcal{H}(\Omega)$ e per ogni intero j, $f_k^{(j)} \to f^{(j)}$ uniformemente sui compatti di Ω .

Le stime di Cauchy implicano l'equilimitatezza uniforme sui compatti delle derivate di una di una successione di funzioni olomorfe equilimitate sui compatti. Segue allora dal teorema di Ascoli-Arzelà

7.6 TEOREMA (MONTEL). Sia $\{f_k\}$ una successione di funzioni olomorfe in $\partial\Omega$ equilimitate su ogni compatto di Ω . Esiste allora una sottosuccessione di $\{f_k\}$ convergente uniformemente su ogni compatto di Ω ad una funzione $f \in \mathcal{H}(\Omega)$.

17 giugno 2004

Versione preliminare

7.7 TEOREMA (VITALI). Sia $\{f_k\} \subset \mathcal{H}(\Omega)$ una successione equilimitata su ogni compatto di Ω . Sia $\{z_n\}$ una successione con un punto limite $z_0 \in \Omega$. Se $\{f_k\}$ converge puntualmente in $\{z_n\} \cup \{z_0\}$, allora $\{f_k\}$ converge uniformemente sui compatti di Ω .

Proviamo ancora un teorema classico di convergenza

- 7.8 TEOREMA (HURWITZ). Sia $\{f_k\} \subset \mathcal{H}(\Omega)$ una successione convergente uniformemente su ogni compatto ad $f \in \mathcal{H}(\Omega)$. Allora
- (i) Se $B(z_0, r) \subset\subset \Omega$ e $f(z) \neq 0$ in $\partial B(z_0, r)$, allora esiste \overline{n} tale che per ogni $n \geq \overline{n}$ f_n e f hanno lo stesso numero di zeri in $B(z_0, r)$,
- (ii) Se le f_n sono iniettive ed f non è costante, allora f è iniettiva.

Dimostrazione. Sia $\delta := \inf\{|f(z)| | |z - z_0| = r\} > 0$. Poiche' $f_k \to f$ uniformemente sui compatti, esiste \overline{n} tale che per ogni $n \ge \overline{n}$

$$|f(\zeta)| \ge \delta > \frac{\delta}{2} \ge |f_n(\zeta) - f(\zeta)| \qquad \forall \zeta \in \partial B(z_0, r).$$

(i) segue allora dal teorema di Rouché. Proviamo ora la (ii). Supponiamo che f non sia inettiva ne' costante. Esisterebbero z,w distinti con f(z)=f(w). Poniamo $F(\zeta):=f(\zeta)-f(w)$ e $F_n(\zeta):=f_n(\zeta)-f_n(w)$. Poiche' F(z)=0 e F non è costante, z dovrebbe essere uno zero isolato per F. In questo caso esisterebbe $r<\min(\mathrm{dist}\,(z,\partial\Omega),\mathrm{dist}\,(z,w))$ tale che $F(\zeta)\neq 0$ per ogni $\zeta\in\partial B(z,r)$. Poiche' $F_n\to F$ uniformemente sui compatti, seguirebbe da (i) che F_n e F hanno gli stessi zeri, un assurdo perche' F_n è iniettiva e F(z)=0.

8 Lemma di Schwarz

8.1 Teorema (Lemma di Schwarz). Sia f olomorfa sul disco unitario di \mathbb{C} , $D:=\{z\,|\,|z|<1\}$. Supponiamo che

$$f(0) = 0$$
 e $|f(z)| < 1$ per $|z| < 1$.

Allora

- (i) $|f'(0)| \le 1$ $e |f(z)| \le |z| \ \forall z \in D$,
- (ii) se |f'(0)| = 1 o se |f(z)| = |z| per qualche $z \neq 0$, allora esiste $\alpha \in \mathbb{C}$, $|\alpha| = 1$, tale

$$f(z) = \alpha z \qquad \forall z \in D.$$

Dimostrazione. (i) La funzione

$$g(z) := \begin{cases} f(z)/z & \text{se } z \neq 0, \\ f'(0) & \text{se } z = 0, \end{cases}$$

è olomorfa in D. Essendo $|f(z)| \le 1$, per ogni 0 < r < 1 si ha $|g(z)| \le r^{-1}$ su $\partial B(0,r)$ e il principio di massimo da' $|g(z)| \le r^{-1}$ per ogni $z \in B(0,r)$. Per $r \to 1$, segue che $|g(z)| \le 1$ per ogni $z \in D$, i.e., $|f(z)| \le |z|$ e $|f'(0)| = |g(0)| \le 1$.

(ii) Se |f(z)| = |z| per qualche $z \neq 0$ in D o se |f'(0)| = 1, |g| assume massimo in un punto interno a D e quindi, per il principio di masssimo, g è costante, $g(z) = \alpha$ con $|\alpha| = 1$, quindi $f(z) = \alpha z$.

9 Informazioni locali

Abbiamo già mostrato mediante il teorema di invertibilità locale che se $f \in \mathcal{H}(\Omega)$ e $f' \neq 0$ in Ω , allora f è aperta. Si ha anche

9.1 Teorema. Ogni funzione $f \in \mathcal{H}(\Omega)$ non costante è aperta.

Dimostrazione. Sia $z_0 \in \Omega$ e $w_0 = f(z_0)$. Va provato che per ogni r > 0 piccolo esiste $\delta > 0$ tale che $B(w_0, \delta) \subset f(B(z_0, r))$. Essendo f non costante, $f(z) - w_0$ ha uno zero isolato in Ω . Dunque per ogni r sufficiente piccolo, $f(z) \neq 0$ in $\partial B(z_0, r)$. Sia

$$0<2\delta:=\min_{\zeta\in\partial B(z_0,r)}|f(z)-w_0|$$

Per ogni $w \in B(w_0, \delta)$ e ogni $\zeta \in \partial B(z_0, r)$ si ha

$$|f(\zeta) - w| \ge |f(\zeta) - w_0| - |w_0 - w| \ge \delta$$

e d'altra parte $|f(z_0) - w| < \delta$. Dunque per la funzione olomorfa $F_w(z) : f(z) - w$ si ha

$$|F_w(z_0)| < \min_{\zeta \in \partial B(z_0,r)} |F_w(\zeta)|$$

 F_w ha dunque uno zero in $B(z_0, r)$, i.e., per ogni $w \in B(w_0, \epsilon)$ esiste $z \in B(z_0, r)$ tale che f(z) = w. In altri termini $B(w_0, \delta) \subset f(B(z_0, r))$. Per l'arbitrarietà di r, la tesi è provata.

9.2 TEOREMA. Sia $f \in \mathcal{H}(\Omega)$ biunivoca. Allora f' non è mai zero, $f(\Omega)$ è aperto e $f^{-1}: f(\Omega) \to \Omega$ è olomorfa con $Df^{-1}(y) = 1/f'(f^{-1}(f(y)))$.

Dimostrazione. Abbiamo già provato che f è aperta e quindi f è un omeomorfismo di Ω su $f(\Omega)$. Proviamo ora che $f' \neq 0$ in Ω . Poiche' f non è costante, gli zeri della funzione olomorfa f' costituiscono un insieme S chiuso, discreto e senza punti di accumulazione in Ω , Segue che f(S) è chiuso, discreto e senza punti di accumulazione in $f(\Omega)$. Poiche' $f' \neq 0$ in $\Omega \setminus S$, dal teorema di differentiabilità locale segue che f^{-1} è olomorfa nell'aperto $f(\Omega) \setminus f(S)$,

$$(f^{-1})'f(z)f'(z) = 1 \qquad \forall z \in \Omega \setminus S. \tag{9.1}$$

con singolarità isolate in ciascun punto di f(S). Essendo f^{-1} continua, ogni punto singolare in f(S) è una singolarità eliminabile per f^{-1} , i.e., $f^{-1} \in \mathcal{H}(f(\Omega))$. Se ora $z_0 \in S$, passando al limite nella (9.1) per $z \to z_0$ si conclude che $(f^{-1})'(f(z_0))f'(z_0) = 1$, i.e., $f'(z_0) \neq 0$.

10 Biolomorfismi

Sia Ω aperto di \mathbb{C} . Una funzione $f:\Omega\to f(\Omega)$ si dice un biolomorfismo tra Ω e $f(\Omega)$ se f è olomorfa, invertibile con inversa olomorfa. Ovviamente un biolomorfismo è anche un omeomorfismo e, come si è visto, cfr. Teorema 9.2, f è un biolomorfismo se e solo se $f \in \mathcal{H}(\Omega)$ è iniettiva. Se $\Omega = f(\Omega)$ si parla di automorfismo. Qui consideriamo il solo caso del disco unitario D = B(0, 1).

10.1 Definizione. Sia |a| < 1. La mappa

$$\varphi_a(z) := \frac{z-a}{1-\overline{a}z}, \qquad z \neq \frac{1}{\overline{a}}$$

si dice una trasformazione di Moebius.

Si verifica facilmente che

- (i) φ_a è olomorfa in $\{z \neq 1/\overline{a}\}$, in particolare $\varphi_a \in \mathcal{H}(D)$, (ii) φ_a manda D in D in modo bigettivo e $\varphi_a^{-1} = \varphi_{-a}$ perche' $\varphi_a(\varphi_{-a}(z)) = z = 0$
- $\begin{array}{ll} \varphi_{-a}(\varphi_a(z)),\\ \text{(iii)} & |\varphi_a(e^{i\theta})| = \frac{|e^{i\theta} a|}{|e^{-i\theta} \overline{a}|} = 1, \text{ i.e., } \varphi_a : \partial D \to \partial D \text{ in modo bigettivo} \\ \text{(iv)} & \varphi'(0) = 1 |a|^2, \ \varphi_a'(a) = (1 |a|^2)^{-1}. \end{array}$

Le trasformazioni di Moebius sono essenzialmente le uniche trasformazioni olomorfe da D in se'.

10.2 Teorema. Se $f: D \to D$ è olomorfa e biunivoca, allora $f = \alpha \varphi_a$ per qualche $a \in D$ e $\alpha \in \mathbb{C}$ con $|\alpha|$ di modulo 1, i.e., è la composizione di una trasformazione di Moebius con una rotazione. In particolare f si estende in modo biolomorfo ad un intorno di \overline{D} ed ad un omeomorfismo da \overline{D} in \overline{D} .

Dimostrazione. Resta da dimostrare la (ii). Supponiamo che f(0) = 0; allora il lemma di Schwartz applicato a $fe f^{-1} da'$

$$|f(z)| \le |z| \le |f^{-1}(f(z))| \le |f(z)| \qquad \forall z \in D,$$

quindi |f(z)| = |z| ed ancora il lemma di Schwartz da' f(z) = cz. Per il caso generale si considera $F := f \circ \varphi_{-a}, \ a = f^{-1}(0).$

Si dimostra anche, ma non lo faremo, che

- 10.3 Teorema. Si ha
- (i) gli automorfismi di C sono tutte e sole le mappe

$$z \to az + b, \qquad a \in \mathbb{C} \setminus \{0\}, \ b \in \mathbb{C},$$

(ii) gli automorfismi di $\mathbb{C} \setminus \{0\}$ sono tutte e sole le mappe $z \to az$, o $z \to b/z$, con $a, b \in \mathbb{C} \setminus \{0\}.$

11 Il teorema di Riemann sulle rappresentazioni conformi

Dati due domini Ω e Ω' è naturale chiedersi se esiste un biolomorfismo tra Ω e Ω' , cioè una applicazione olomorfa ed biunivoca tra Ω e Ω' . È chiaro che $\Omega \to \Omega'$ dovranno essere omeomorfi, ma come si vede non basta. Si ha

11.1 Proposizione. \mathbb{C} e il disco unitario $\{|z| < 1\}$ non sono biolomorfi.

Dimostrazione. Se per assurdo esistesse $f:\mathbb{C}\to D$ olomorfa e biunivoca, f sarebbe costante per il teorema di Liouville: una contraddizione.

Si puo' anche dimostrare

11.2 Proposizione. Due corone $\{r_1 < |z| < R_1\}$ e $\{r_2 < |z| < R_2\}$ sono biolomorfe se e solo se $R_1/r_1 = R_2/r_2$; in tal caso il biolomorfismo è dato da $z \to e^{i\theta} \lambda z$, $\lambda := r_2/r_1$.

In generale, discutiamo solo il caso in cui Ω e Ω' sono semplicemente connessi.

11.3 TEOREMA (RIEMANN). Ogni dominio $\Omega \neq \mathbb{C}$ semplicemente connesso è biolomorfo al disco unitario.

Piu' precisamente se $\Omega \neq \mathbb{C}$ è semplicemente connesso e $z_0 \in \Omega$, allora esiste un'unica funzione olomorfa f(z) in Ω con $f(z_0) = 0$, $f'(z_0) > 0$ e tale che f sia un biolomorfismo tra Ω e il disco $\{|z| < 1\}$. L'unicità segue per assurdo: se f_1, f_2 sono biolomorfismi, allora $f_2 \circ f_1^{-1}$ è un biolomorfismo del disco unitario. Il lemma di Schwarz implica quindi che $f_2 \circ f_1^{-1}(z) = z$.

L'esistenza si prova per passi. Seguendo Koebe¹ si considera la famiglia

$$\mathcal{F} := \left\{ g \in \mathcal{H}(\Omega), \ g \text{ iniettiva}, \ |g(z)| \le 1, \ g(z_0) = 0 \text{ e } g'(z_0) > 0 \right\}$$

e si dimostra che esiste $f \in \mathcal{F}$ con $f'(z_0)$ massimo e che questa f ha le proprietà volute.

Dimostrazione. Per ipotesi esiste $a \notin \Omega$ ed, essendo Ω semplicemente connesso, possiamo cnsiderare in Ω un ramo (univalente) di $\sqrt{z-a}$, che indichiamo con h(z). L'immagine di Ω tramite h copre un disco $|w-h(z_0)|<\rho$ e non incontra il disco $|w+h(z_0)|<\rho$, quindi $|h(z)+h(z_0)|\geq\rho$ $\forall z\in\Omega$, in particolare $2|h(z_0)|\geq\rho$. Affermiamo che la funzione

$$g_0(z) := \frac{\rho}{4} \frac{|h'(z)|}{|h'(z_0)|^2} \frac{h(z_0)}{h'(z_0)} \frac{h(z) - h(z_0)}{h(z) + h(z_0)}$$

appartiene alla famiglia \mathcal{F} . Infatti è univalente perche' h è univalente, inoltre $g_0(z_0)=0,\,g'(z_0)>0$ e, essendo

$$\frac{|h(z)-h(z_0)}{h(z)+h(z_0)} = |h(z_0)| \Big| \frac{1}{h(z_0)} - \frac{2}{h(z)+h(z_0)} \Big| \leq 4 \frac{|h(z_0)|}{\rho},$$

si ha anche $|g_0(z)| < 1 \ \forall z \in \Omega$. Sia $\{g_n\} \subset \mathcal{F}$ una famiglia tale che $|g_n'(z_0)| \to \sup_{g \in \mathcal{F}} |g'(z_0)|$. Poiche' $\{g_n\}$ è equilimitata, è possibile trovare una sottosuccessione, che chiamiamo ancora $\{g_n\}$, tale che $\{g_n\}$ converge uniformemente sui compatti di Ω ad una funzione olomorfa f. Chiaramente $|f(z)| \le 1$ in Ω , $f(z_0) = 0$ e $f'(z_0) = \gamma$, $|\gamma| = \sup_{g \in \mathcal{F}} |g'(z_0)| < +\infty$. La funzione f è non costante, affermiamo che è anche iniettiva. Infatti per ogni $g \in \mathcal{F}$ $g(z) - g(z_1) \ne 0$ in $\Omega \setminus \{z_1\}$, il teorema di Hurwitz dice allora che anche per f $f(z) - f(z_1) \ne 0$ in $\Omega \setminus \{z_1\}$. Rimane da dimostrare che f ha immagine tutto

¹ Si veda Alfhors, *Complex Analysis*, Mc Graw Hill, New York, 1966.

|z| < 1. Supponiamo che esista w_0 con $|w_0| < 1$ e $f(z) \neq w_0 \ \forall z \in \Omega$. È possibile allora definire un ramo di

$$F(z): \sqrt{\frac{f(z)-w_0}{1-\overline{w_0}f(z)}}$$

che è ancora iniettiva e $|F| \le 1$. Consideriamo ora

$$G(z) := \frac{|F'(z_0)|}{F'(z_0)} \frac{F(z) - F(z_0)}{1 - \overline{F(z_0)}F(z)}$$

che si annulla ed ha derivata positiva in z_0 . Si verifica che

$$G'(z_0) = \frac{1 + |w_0|}{2\sqrt{|w_0|}} \gamma > \gamma,$$

che dà una contraddizione.

Ci si puo' chiedere cosa succede quando $z \to z_0 \in \partial \Omega$. Si verifica, ma non lo facciamo che $f(z_n)$ converge al bordo del disco. SI puo' dimostrare che se $f:\Omega \to \Omega'$ è un biolomorfismo su tutto e $\partial \Omega$ e $\partial \Omega'$ sono curve di Jordan, allora f si estende ad un omeomorfismo di $\overline{\Omega}$ in $\overline{\Omega'}$. Lo studio dei valori al bordo delle funzioni olomorfe è in generale piuttosto complicato.

12 Funzioni armoniche e teorema di Riemann

Sia u armonica in Ω' e $f:\Omega\to\Omega'$ un biolomorfismo, posto

$$U(z) := u(f(z)), \qquad z \in \Omega,$$

è facile verificare che u è armonica in Ω' se e solo se U è armonica in Ω . Il teorema di Riemann riconduce quindi la risolubilità del problema di Dirichlet in un dominio semplicemente connesso Ω

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ u = g & \text{su } \partial \Omega \end{cases}$$

alla risolubilità del problema di Dirichlet sul disco unitario D

$$\begin{cases} \Delta v = 0 & \text{in } D, \\ v = \varphi & \text{su } \partial D. \end{cases}$$

Vale anche il vicerversa. Si voglia costruire un biolomorfismo $f: \Omega \to D$. Cerchiamo f con $f(z_0) = 0$: f dovrà avere uno zero del primo ordine in z_0 e nell'intorno di z_0

$$f(z) = c_1(z - z_0) + \dots, \qquad c_1 := f'(z_0) \neq 0.$$

Segue

Versione Preliminare

$$\frac{f(z)}{z - z_0} = c_1 + c_2(z - z_0) + \dots$$

è olomorfa vicino a z_0 ed anche in Ω e sempre non zero (perche' f si annulla solo in z_0), dunque

$$F(z) := -\log \frac{f(z)}{z - z_0}$$

è olomorfa e la sua parte reale

$$u(z) := -\log \frac{|f(z)|}{|z - z_0|}$$

è armonica. D'altra parte se un biolomorfismo da Ω in D esiste, |f(z)|=1 su ∂D . Si determina quindi u come la solutione di

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ u(z) = \log \frac{1}{|z - z_0|} & \text{su } \partial \Omega. \end{cases}$$

Risolto questo problema, se v è l'armonica coniugata, f(z) := v(z) + iv(z), dovrebbe essere (ed infatti è) il biolomorfismo cercato.

Le formule di Schwarz e Poisson

Sia $f \in C^0(B(0,R)) \cap \mathcal{H}(\Omega)$ e scriviamo f(z) come u(x,y) + iv(x,y). Le funzioni u e v sono armoniche e v si chiama l'armonica coniugata di u, infatti, come vedremo fra poco, v è individuata a meno di costanti da u ed in effetti dai valori di u sul bordo di B(0,R), visto che il problema di trovare u tale che

$$\begin{cases} \Delta u = 0 & \text{in } B(0, R), \\ u = g & \text{su } \partial B(0, R) \end{cases}$$

ha un'unica soluzione. Piu' precisamente si ha

12.1 TEOREMA. Sia B := B(0,R) e sia $f \in \mathcal{H}(B) \cap C^0(\overline{B})$, $f(z) = u(r,\theta) + iv(r,\theta)$, (r,θ) essendo le coordinate polari i B. Si ha

$$\begin{split} u(r,\theta) &= \frac{1}{2\pi} \int_0^{2\pi} u(R,\varphi) \Big(\frac{\zeta}{\zeta - z} - \frac{\overline{z}}{\overline{\zeta} - \overline{z}} \Big) \, d\varphi, \\ i \, v(r,\theta) &= i \, v(0) + \frac{1}{2\pi} \int_0^{2\pi} u(R,\varphi) \Big(\frac{\zeta}{\zeta - z} - \frac{\overline{z}}{\overline{\zeta} - \overline{z}} \Big) \, d\varphi, \end{split}$$

da cui la formula di Schwarz

$$f(z) = iv(0) + \frac{1}{2\pi} \int_0^{2\pi} u(R,\varphi) \frac{\zeta + z}{\zeta - z} d\zeta,$$

dove $\zeta=Re^{i\varphi},\,z=re^{i\theta},$ o, equivalentemente, le formule di Poisson

17 giugno 2004

$$\begin{split} u(r,\theta) &= \frac{1}{2\pi} \int_0^{2\pi} u(R,\varphi) \frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - \varphi) + r^2} \, d\varphi, \\ v(r,\theta) &= v(0) + \frac{1}{2\pi} \int_0^{2\pi} u(R,\varphi) \frac{2Rr\sin(\theta - \varphi)}{R^2 - 2Rr\cos(\theta - \varphi) + r^2} \, d\varphi. \end{split}$$

Dimostrazione. Ponendo $\zeta := Re^{i\varphi}$ e B := B(0,R), si ha

$$f(z) = \frac{1}{2\pi i} \int_{\partial +B} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi} \int_0^{2\pi} f(\zeta) \frac{\zeta}{\zeta - z} d\varphi$$
 (12.1)

se $z \in B$ e

$$\frac{1}{2\pi i} \int_{A+B} f(\zeta) \frac{\zeta}{\zeta - z} d\varphi = 0 \tag{12.2}$$

se $z\notin \overline{B}.$ Scegliamo ora

$$\overline{z}:=\frac{r^2}{\overline{z}}=\frac{\zeta\overline{\zeta}}{\overline{z}}.$$

La (12.2) diventa

$$0 = \frac{1}{2\pi} \int_0^{2\pi} f(\zeta) \frac{\overline{z}}{\overline{z} - \overline{\zeta}} d\varphi$$

e sottraendo dalla (12.1)

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(\zeta) \left(\frac{\zeta}{\zeta - z} - \frac{\overline{z}}{\overline{z} - \overline{\zeta}} \right) d\varphi \tag{12.3}$$

mentre sommando alla (12.1)

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(\zeta) \left(\frac{\zeta}{\zeta - z} + \frac{\overline{z}}{\overline{z} - \overline{\zeta}} \right) d\varphi$$

= $f(0) + \frac{1}{2\pi} \int_0^{2\pi} f(\zeta) \left(\frac{\zeta}{\zeta - z} - \frac{\overline{z}}{\overline{\zeta} - \overline{z}} \right) d\varphi$. (12.4)

da cui segue la formula di Schwartz.

12.2 \P Sviluppare $\frac{\zeta+z}{\zeta-z}$ in serie geometrica e trovare che

$$u(r,\theta) = \frac{1}{2}a_0 + \sum_{i=1}^{\infty} \left(\frac{r}{R}\right)^{\nu} (a_{\nu}\cos\nu\theta + b_{\nu}\sin\nu\theta),$$

$$v(r,\theta) = v(0) + \sum_{i=1}^{\infty} \left(\frac{r}{R}\right)^{\nu} (-b_{\nu}\cos\nu\theta + a_{\nu}\sin\nu\theta),$$

dove

$$a_{\nu} := \frac{1}{\pi} \int_0^{2\pi} u(R, \varphi) \cos(n\varphi) d\varphi, \qquad b_{\nu} := \frac{1}{\pi} \int_0^{2\pi} u(R, \varphi) \sin(n\varphi) d\varphi,$$

La trasformata di Hilbert

12.3 Teorema. Sia $H:=\{z\,|\,\Im z>0\}$ e $f\in\mathcal{H}(H)\cap C^0(\overline{H})$. Siano u e v rispettivamente le parti reale ed immaginaria di f sull'asse reale, $f(x+i\,0)=:u(x)+iv(x)$. Se

(i)
$$\lim_{|z| \to \infty} \frac{f(z)}{z} = 0$$
,

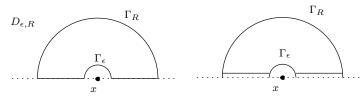


Figura 12.1. Il dominio $D_{\epsilon,R}$.

(ii) $f \in C^{0,\alpha}$ localmente in \overline{H} , cioè

$$|f(z) - f(x+i0)| \le C|z-x|^{\alpha}$$
 per ogni $x+i0, z \in \overline{H}, |x-z| \le 1$

per qualche costante C > 0,

allora

$$f(x+i0) := \frac{1}{i\pi} \int_{ii}^{\infty} f(t) \frac{1}{t-x} dt,$$

o, equivalentemente,

$$\begin{cases} u(x) := -\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{v(t)}{x - t} dx, \\ v(x) := \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{u(t)}{x - t} dx. \end{cases}$$

Si osservi che gli integrali vanno intesi come integrali generalizzati

$$\int_{-\infty}^{+\infty} \frac{u(t)}{t-x} dx = \lim_{\epsilon \to 0} \int_{\{|t-x| > \epsilon\}} \frac{u(t)}{t-x} dx.$$

Dimostrazione. Si considera la funzione $g(z) := \frac{f(z)}{z-x}, z \in \overline{H} \setminus \{x\}$. Siano $0 < \epsilon < R$. Poiche' g è olomorfa in H e continua in $\overline{H} \setminus \{x\}$,

$$\int_{\partial^+ D_{\epsilon,R}} g(z) \, dz = 0,$$

dove $D_{\epsilon,R}$ è il dominio in Figura 12.1. Si ha quindi

$$\int_{\partial^+\Gamma_R} \frac{f(z)}{z-x} dz + - \int_{\partial^+\Gamma_\epsilon} \frac{f(z)}{z-x} dz + \int_{-R}^\epsilon \frac{f(t)}{t-x} dt + \int_\epsilon^R \frac{f(t)}{t-x} dt = 0.$$
 (12.5)

Dalla decresceenza all'infinito di f segue che

$$\int_{\partial^+ \Gamma_R} \frac{f(z)}{z - x} \, dz \to 0 \qquad \text{per } R \to \infty,$$

mentre dalla hölderianità di f attorno ad x,

$$\int_{\partial^+\Gamma_\epsilon} \frac{f(z)}{z-x} dz = f(x) \int_{\partial^+\Gamma_\epsilon} \frac{1}{z-x} dz + \int_{\partial^+\Gamma_\epsilon} \frac{f(z)-f(x)}{z-x} dz = i\pi f(x) + O(\epsilon^\alpha)$$
 per $\epsilon \to 0$.

Pertanto la tesi segue dalla (12.5) per $R \to \infty$ e $\epsilon \to 0$.

17 giugno 2004

Versione preliminare

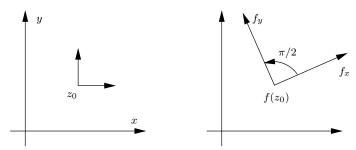


Figura 13.1. Una trasformazione C-lineare.

13 Esercizi

13.1¶ Sia $f:\Omega\subset\mathbb{R}^2\to\mathbb{C}$ differenziabile. Mostrare che

$$(w|z)_{\mathbb{R}^2} = -2i\Im(f_z\overline{f_z}), \quad \det \mathbf{D}f = |f_z|^2 - |f_{\overline{z}}|^2.$$

 $[Sugg.\ {\rm Dalla}\ (1.1)$ segue che

$$(f_x|f_y)_{\mathbb{R}^2} + i \det Df = f_y \overline{f_x}$$
].

 $13.2~\P~{\rm Se}~f:\Omega\to\mathbb{C}$ è differenziabile in senso complesso allora

$$|f'(z_0)|^2 = \det \mathbf{D}f(z_0).$$

13.3 ¶ Sia $f \in \mathcal{H}(\Omega)$ essendo Ω un aperto connesso. Se $f'(z) = 0 \ \forall z \in \mathbb{C}$, allora f è constante.

13.4 ¶ Sia $f \in \mathcal{H}(\Omega)$. Allora f è costante in Ω se e solo se vale una delle seguenti

- (i) $\Re f(z)$ è costante in Ω ,
- (ii) $\Im f(z)$ è costante in Ω ,
- (iii) |f(z)| è costante in Ω .

13.5 ¶ Sia $\ell: \mathbb{C} \simeq \mathbb{R}^2 \to \mathbb{C} \simeq \mathbb{R}^2$ una applicazione \mathbb{R} -lineare e \mathbf{A} la matrice associata. Mostrare che ℓ è \mathbb{C} -lineare, $\ell(z) = az$, $a \in \mathbb{C}$, se e solo se

$$AJ = JA$$

essendo ${\bf J}$ la matrice $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ associata alla rotazione di $\pi/2$ in senso antiorario.

13.6 ¶ Una matrice $\mathbf{A} \in M_{2,2}(\mathbb{R}), \mathbf{A} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ si dice conforme se

$$a^2 + b^2 = c^2 + c^d$$
, $ac + bd = 0$.

Se \mathbf{A} è conforme, mostrare che esiste $\lambda \in \mathbb{R}$ e una matrice di rotazione \mathbf{R} , $\mathbf{R}^T \mathbf{R} = \mathrm{Id}$, det $\mathbf{R} = 1$, tale che $\mathbf{A} = \lambda \mathbf{R}$. Mostrare anche che se $\mathbf{A} \neq 0$ \mathbf{A} è conforme se e solo se \mathbf{A} conserva il coseno degli angoli, i.e.,

$$\cos(\mathbf{A}u, \mathbf{A}v) = \frac{(\mathbf{A}u|\mathbf{A}v)}{|\mathbf{A}u||\mathbf{A}v|} = \frac{(u|v)}{|u||v|} = \cos(u, v).$$

13.7 ¶ Notare che

$$4\frac{\partial^2 u}{\partial z \partial \overline{z}} = 4\frac{\partial^2 u}{\partial \overline{z} \partial z} = \Delta u.$$

13.8 ¶ Sia $\Omega \subset \mathbb{C}$ aperto e A un dominio ammissibile per Ω . Allora

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \begin{cases} f(z) & \text{se } z \in A, \\ 0 & \text{se } z \notin \overline{A}. \end{cases}$$

[Sugg. Mostrare che

$$I(\partial^+ A, z) = \begin{cases} 1 & \text{se } z \in A, \\ 0 & \text{se } z \notin \overline{A}. \end{cases}$$

13.9 ¶ Provare che

$$\cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2, \qquad \cos^2 z + \sin^2 z = 1,$$

$$\sin(z_1 + z_2) = \cos z_1 \sin z_2 + \cos z_2 \sin z_1, \qquad \cosh^2 z - \sinh^2 z = 1,$$

$$\cos(-z) = \cos z, \sin(-z) = -\sin z, \qquad \cos\left(z - \frac{\pi}{2}\right) = \sin z,$$

$$e^z = \cosh z + \sinh z, \qquad e^{iz} = \cos z + i \sin z,$$

$$\sin(x + iy) = \sin x \cosh y + i \cos x \sinh y, \qquad \cos(x + iy) = \cos x \cosh y - \sin x \sinh y.$$

- 13.10 ¶ Calcolare le derivate delle funzioni tangente, cotangente, tangente iperbolica, cotangente iperbolica. Quindi scrivere e provare alcune uguaglianze relative a queste funzioni complesse.
- 13.11 ¶ Mostrare che la funzione $\sin z$ ristretta a $\{a = x + iy \mid |x| < \pi/2\}$ è invertibile e $\sin^{-1} z = \frac{1}{4} \log(iz + \sqrt{1-z^2})$.
- 13.12 ¶ Mostrare che tanh z ristretta a $\{z = x + iy \mid |h| < \pi/2\}$ è invertibile e che tanh $x = \frac{1}{2} \log \frac{1+z}{1-z}$.
- 13.13 ¶ Provare che

$$\int_0^{2\pi} \frac{\cos k\theta}{5+3\cos\theta}\,d\theta = \frac{(-1)^k\pi}{2\,3^k}, \qquad \int_{-\infty}^\infty \frac{e^{i\alpha x}}{a^2+x^2}\,dx = \frac{\pi}{a}e^{\alpha\,a}.$$

13.14¶ Calcolare i residui di

$$f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}, \qquad f(z) = \frac{e^z}{\sin z}$$

direttamente e usando lo sviluppo in serie di Laurent.

13.15 ¶ Calcolare

$$\frac{1}{2\pi i} \int_{\partial^+ B(0,3)} \frac{e^{zt}}{z^2 (z^2 + 2z + 2)} \, dz.$$

13.16 ¶ Mostrare che

$$\begin{split} & \int_0^{2\pi} \frac{dt}{1 - 2p\cos t + p^2} = \begin{cases} \frac{2\pi}{1 - p^2} & \text{se } |p| < 1, \\ \frac{2\pi}{p^2 - 1} & \text{se } |p| > 1, \end{cases} \qquad p \in \mathbb{C} \setminus \partial B(0, 1), \\ & \int_0^{2\pi} \frac{dt}{(p + \cos t)^2} = \frac{2\pi p}{(\sqrt{p^2 - 1})^3}, \qquad p > 1. \end{split}$$

13.17 \P Mostrare che

$$\int_{-\infty}^{+\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}},$$

$$\int_{-\infty}^{+\infty} \frac{dx}{(x^4+a^4)^2} = \frac{3\sqrt{2}}{8} \frac{\pi}{a^7}, \qquad a > 0,$$

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)^2 (x^2+2x+2)} dx,$$

$$\int_{0}^{+\infty} \frac{x^{p-1}}{1+x^q} dx = \frac{1}{p} \frac{\frac{p}{q} \pi}{\sin\left(\frac{p}{q}\pi\right)},$$

per ogni $p, q \in \mathbb{N}$, 0 .

13.18 ¶ Si provi che se a>0 e b>0

$$\int_{-\infty}^{+\infty} \frac{e^{iax}}{x-ib} \, dx = 2\pi i e^{-ab}, \quad \int_{-\infty}^{+\infty} \frac{e^{iax}}{x+ib} \, dx = 0.$$

Da queste sommando e sottraendo ritrovare le formule di Laplace

$$\int_0^\infty \frac{\beta \cos \alpha x}{x^2 + \beta^2} dx = \int_0^\infty \frac{x \sin \alpha x}{x^2 + \beta^2} dx = \frac{1}{2} \pi e^{-ab}, \qquad a, b > 0.$$

Da notare che il secondo è un integrale improprio

13.19 ¶ Calcolare

$$\int_{-\infty}^{+\infty} \frac{x \sin x}{x^2 - \sigma^2} \, dx.$$

13.20 ¶ Calcolare

$$\sum_{i=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6},$$

$$\sum_{i=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90},$$

$$\sum_{i=1}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{a} \coth a, \ a \in \mathbb{R},$$

$$\sum_{i=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12},$$

$$\sum_{n=-\infty}^{\infty} \frac{1}{n^4 + 4a^4} = \frac{\pi}{4a^3} \left(\frac{\sinh 2\pi a + \sin 2\pi a}{\cosh 2\pi a - \cos 2\pi a} \right)$$

13.21 ¶ Si provi che

$$\int_0^\infty \frac{\log(1+x^2)}{1+x^2} \, dx = \pi \log 2, \qquad \qquad \int_0^\infty \frac{(\log x)^2}{1+x^2} dx = \frac{\pi^3}{8}.$$

13.22 ¶ Provare le seguenti formule

$$\frac{1}{\sin z} = \frac{1}{z} + 2z \sum_{k=1}^{\infty} \frac{(-1)^k}{z^2 - k^2 \pi^2}$$
$$\frac{1}{\cos z} = \pi \sum_{k=1}^{\infty} \frac{(-1)^k (2k+1)}{((2k+1)\pi/2)^2 - z^2}$$

13.23 ¶ Mostrare che se g è olomorfa, e γ_e è il bordo superiore del semicerchio $B(0,\epsilon)\cap\{y>0\}$ allora

$$\lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{\gamma_{\epsilon}} \frac{g(z)}{z} dz = \frac{g(z_0)}{2} = \frac{1}{2} \operatorname{Res} \left(\frac{g(z)}{z}, z \right).$$

13.24 ¶ Provare che

$$\int_{-\infty}^{\infty} \frac{\sin^2 \pi x}{x^2} dx = \pi^2,$$

$$\int_{-\infty}^{\infty} \frac{\sin^2 \pi x}{(a+x^2)(1-x^2)} = \frac{\pi}{8} (1 - e^{-2\pi}) + \frac{\pi^2}{4},$$

$$\int_{-\infty}^{\infty} \frac{e^{\alpha x}}{e^{2x} - 1} dx = \frac{\pi}{2} \cot \frac{\pi \alpha}{2}.$$

13.25 ¶ Mostrare che

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n = -\infty}^{\infty} \frac{1}{(z - n)^2}.$$

13.26 ¶ Calcolare

$$F(a) := \frac{1}{2\pi i} \int_{\partial B^{+}(0,1)} \frac{1}{\zeta(\zeta-2))(\zeta-a)}$$

per $a \in \mathbb{C}$, $|a| \neq 1$.

13.27 \P Mostrare che li funzioni F(z) seguenti sono olomorfe nei domini specificati

$$\begin{split} & \int_0^\infty \frac{e^{-tz}}{1+t^2} \, dt, \ \Re(z) > 0 & \qquad \int_0^\infty \frac{t^{z-1}}{t^2+1} \, dt, \ \Re(z) < 2 \\ & \int_0^1 \frac{\cot tz}{z+t} \, dt, \ \Re(z) \notin [-1,0] & \qquad \int_0^1 \frac{t \sin z}{t^2+z^2} \, dt \ Re(z) > 0. \end{split}$$

13.28¶ Mostrare che 0 è una singolarità eliminabile per le funzioni

$$\frac{\sin z}{z}, \qquad \frac{z}{\tan z}, \qquad \cot z - \frac{1}{z}, \qquad \frac{1}{e^z - 1} - \frac{1}{\sin z}.$$

13.29 ¶ Mostrare che z=0è un polo per le funzioni

$$\frac{z}{1 - \cos z} \qquad \frac{z}{(e^z - 1)^2}$$

mentre $z=\infty$ è una singolarità essenziale per le funzioni

$$\sin z$$
, e^z , e^{-z^2}

e z=0è una singolarità essenziale per

$$z^2 \cos \frac{\pi}{z}, \qquad z(e^{1/z} - 1).$$

13.30 ¶ (LEMMA DI SCHWARZ) Sia $f \in \mathcal{H}(B), B = B(0,1),$ tale che $|f(z)| \leq 1$ e $f(z_0) = 0.$ Mostrare che

$$|f(z)| \le M \frac{|z - z_0|}{|1 - z\overline{z_0}|}, \qquad |f'(z)| \le \frac{M}{|1 - |z_0|^2}.$$

13.31 ¶ Sia f olomorfa sulla striscia $\Re(z) < \pi/4$ e tale che |f(z)| < 1 e f(0) = 0. Mostrare che $|f(z)| \le |\tan z|$.

13.32 ¶ Sia f olomorfa e |f(z)| < 1 in |z| < 1. Provare che

$$|f(z) - f(0)| \le \frac{1 - |f(0)|^2}{1 - |f(0)||z|} |z|, \qquad 0 < |z| < 1.$$

[Sugg. Applicare il lemma di Schwarz a

$$g(z) := \frac{1 - |f(0)|z}{1 - |f(0)|} \frac{f(z) - f(0)}{1 + |f(0)|}.$$

13.33 ¶ (Principio di Riflessione di Schwarz) Siano Ω e Ω^* aperti disgiunti di $\mathbb C$ con $\Gamma:=\partial\Omega\cap\partial\Omega^*$ una curva regolare e siano $f\in C^0(\Omega\cup\Gamma)\cap\mathcal H(\Omega),\ g\in C^0(\Omega^*\cup\Gamma)\cap\mathcal H(\Omega^*)$ con f=g su Γ . Mostrare che la funzione

$$F(z) := \begin{cases} f(z) & \text{se } z \in \Omega \cup \Gamma, \\ g(z) & \text{se } z \in \Omega^* \end{cases}$$

è olomorfa in $\Omega \cup \Gamma \cup \Omega^*.$

13.34 ¶ Supponiamo che Ω sia una aperto contenuto in $\{x+iy \mid y>0\}$, Ω^* il suo simmetrico rispetto all'asse delle ascisse e che \mathbf{G} sia un intervallo. Se $f \in C^0(\Omega \cup \mathbf{G}) \cap \mathcal{H}(\Omega)$, allora

$$F(z) := \begin{cases} \frac{f(z)}{f(\overline{z})} & \text{se } z \in \Omega \cup \mathbf{G}, \\ \text{se } z \in \Omega^* \end{cases}$$

è olomorfa in $\Omega \cup \mathbf{g} \cup \Omega^*$.

17 giugno 2004

13.35 ¶ Sia D il disco unitario di \mathbb{C} e $f \in C^0(\overline{D}) \cap \mathcal{H}(D)$. Provare che, se |f(z)| = 1 per |z| = 1, allora f è costante. [Sugg. Estendere f come $f(z) := \overline{f(1/\overline{z})}$ a tutto \mathbb{C} .]

13.36 ¶ (Rappresentazione dell'inversa) Sia f(z) olomorfa in |z| < R con f(0) = 0, $f'(0) \neq 0$ et ale che $f(z) \neq 0$ in $0 < |z| < r \le R$. Sia $C := \{z \mid |z| = \rho\}$ con $\rho < r$.

(i) Provare che

$$g(w) := \frac{1}{2\pi i} \int_C \frac{zf'(z)}{f(z) - w} dz$$

definisce una funzione olomorfa per $|w| \leq \inf_{z \in C} |f(z)|$.

(ii) Si ha f(g(w)) = w se $|w| \le \inf_C |f|$.

[Sugg. Osservare che per $|w| < \inf_C |f|$, si ha |f(z)| > |w|, quindi f(z) e f(z) - w) hanno lo stesso numero di zeri in C, peril teorema di Rouché. La generalizzazione del teorema dell'indicatore logaritmico, Teorema 6.25, dimostra che l'inversa di f è g.]

13.37 ¶ (IL LEMMA DEI TRE CERCHI DI HADAMARD) Sia f olomorfa in un aperto contenente $0 < R_1 < |z| < R_2$, e continua in $R_1 \le |z| \le R_2$. Posto

$$M(R) := \max\{|f(z)| \mid |z| = R\},\$$

provare che per $R_1 < R < R_2$,

$$M(R)^{\log \frac{R_2}{R_1}} \le M(R_1)^{\log \frac{R_2}{R}} M(R_2)^{\log \frac{R}{R_1}}$$

in altre parole: M(R) è una funzione convessa di log r. [Sugg. Osservare che per ogni z con $R_1 < |z| < R_2$ si ha

$$|z|^{\alpha}|f(z)| \le \max \{|z|^{\alpha}|f(z)| \ \Big| \ |z| = R_1 \text{ o } |z| = R_2 \}$$

e scegliere

$$\alpha := \frac{\log \frac{M(R_2)}{M(R_1)}}{\log \frac{R_1}{R_2}}.]$$

13.38 ¶ Sia f olomorfa in $H:=\{z\,|\,\Im(z)>0\}$ e continua in $\{\Im(z)\geq 0\}$. Mostrare che se f=0 su $\{z=x+iy\,|\,y=0,x\in[0,1]\}$, allora f è identicamente nulla.

