A connection between Lorentzian distance and mechanical least action

Ettore Minguzzi

Università Degli Studi Di Firenze

Non-commutative structures and non-relativistic (super)symmetries,
LMPT Tours, June 24, 2010
Plato’s allegory of the cave

[...] they see only their own shadows, or the shadows of one another, which the fire throws on the opposite wall of the cave [...]. To them, I said, the truth would be literally nothing but the shadows of the images.

Plato, The allegory of the cave, Book VII of the Republic
Useful for clarifying

- the connection between relativistic and non-relativistic (classical) physics,
- the causality properties of gravitational waves,
- the problem of existence of solutions to the Hamilton-Jacobi equation and other problems in Lagrangian mechanics.

These apparently independent problems are strongly related as the study of lightlike dimensional reduction proves.
Let $E = T \times Q$, $T = \mathbb{R}$, be a classical $d + 1$-dimensional extended configuration space of coordinates (t, q). Let a_t be a positive definite time dependent metric on S, and b_t a time dependent 1-form field on S. Let $V(t, q)$ be a time dependent scalar field on S.

In 1929 Eisenhart pointed out that the trajectories of a Lagrangian problem

$$L(t, q, \dot{q}) = \frac{1}{2} a_t(\dot{q}, \dot{q}) + b_t(\dot{q}) - V(t, q),$$

$$\delta \int_{t_0}^{t_1} L(t, q, \dot{q}) dt = 0, \quad q(t_0) = q_0, \quad q(t_1) = q_1$$

may be obtained as the projection of the spacelike geodesics of a $d + 2$-dimensional manifold $M = E \times Y$, $Y = \mathbb{R}$, of metric

$$ds^2 = a_t - dt \otimes (dy - b_t) - (dy - b_t) \otimes dt - 2V dt^2,$$

The considered Lagrangian is the most general which comes from Newtonian mechanics by considering holonomic constraints.

Eisenhart had in mind Jacobi’s metric $(E - V)a$, and Jacobi’s action principle which holds for time independent Lagrangians and $b = 0$.
The Eisenhart metric takes its simplest and most symmetric form in the case of a free particle in Euclidean space $a_{bc} = \delta_{bc}, \ b_c = 0, \ V = \text{const.}$ Remarkably, in this case the Eisenhart metric becomes the Minkowski metric.

The Eisenhart metric is Lorentzian but Eisenhart did not give to this fact a particular meaning.
The vector field $n = \partial/\partial y$ is covariantly constant and lightlike.

It is better to proceed in steps starting from (M, g)

- Assume n is Killing and lightlike in such a way that the quotient projection $\pi : M \rightarrow E$ gives a principal bundle over \mathbb{R}.
- n is twist-free, $n \wedge dn = 0$, \Rightarrow E foliates into simultaneity slices, $n = -\psi dt$.
- n is covariantly constant \Rightarrow the foliation takes a natural ‘time parameter’ - the classical time $n = -dt$.
- Connection on principal bundles $\pi_t : N_t \rightarrow Q_t \Rightarrow$ Newtonian flow on E.
- Curvature \Rightarrow Coriolis forces.
- If the curvature Ω_t vanishes the observers are non-rotating.

The Brinkmann-Eisenhart metric

$$ds^2 = a_t - dt \otimes (dy - b_t) - (dy - b_t) \otimes dt - 2Vdt^2,$$

on $M = E \times Y$, $Y = \mathbb{R}$, describes the most general spacetime with a covariantly constant lightlike field (Bargmann structure, generalized wave metric). Brinkmann proved this result locally. The space metric a and 1-form field b are fixed only if the coordinate system is fixed and this is done by choosing a Newtonian flow on E which defines the space Q.
A figure
Let n be a lightlike Killing vector field on the spacetime (M, g). In any spacetime dimension $n \wedge d n = 0$ if and only if $R_{\mu \nu} n^\mu n^\nu = 0$.

Define the *Newtonian flow* as a vector field v on E such that $d t[v] = 1$. The Newtonian flows and the connections ω_t on the bundles $\pi_t : N_t \rightarrow Q_t$ are in one-to-one relation through the formula $\omega_t(\cdot) = -g(\cdot, V)|_{N_t}$.

The metric a_t on the space sections Q_t is defined by $a_t(w, v) = g(W, V)$.

Given a 1-parameter family of sections $\sigma_t : Q \rightarrow N_t$ of the 1-parameter family of principal bundles $\pi_t : N_t \rightarrow Q_t$, the potential b_t reads, $b_t = -\sigma_t^* \omega_t$.
Assume from now on that $M = T \times Q \times Y$ with $T \simeq Y \simeq \mathbb{R}$ is given the metric

$$ds^2 = a_t - dt \otimes (dy - b_t) - (dy - b_t) \otimes dt - 2V dt^2.$$

Every C^1 curve $(t, q(t))$ on $E = T \times Q$ is the projection of a lightlike curve on (M, g), $\gamma(t) = (t, q(t), y(t))$ where

$$y(t) = y_0 + \int_{t_0}^{t} \left[\frac{1}{2} a_t(\dot{q}, \dot{q}) + b_t(\dot{q}) - V(t, q) \right] dt = y_0 + S_{e_0, e(t)}[q|_{0,t}].$$

this result follows from

$$g(\dot{\gamma}, \dot{\gamma}) = a_t(\dot{q}, \dot{q}) - 2(\dot{y} - b_t[\dot{q}]) - 2V = 2(L - \dot{y}),$$

Conversely, every lightlike curve on (M, g) with tangent vectors nowhere proportional to $n = \partial / \partial y$ projects on a C^1 curve on E. Also, given a timelike curve γ we have necessarily

$$y(t) > y_0 + S_{e_0, e(t)}[q|_{0,t}].$$
A connection between Lorentzian distance...
The light lift III

Proposition

Every geodesic on \((M, g)\) not coincident with a flow line of \(n\) admits the function \(t\) as affine parameter and once so parametrized projects on a solution to the E-L equations. The light lift of a solution to the E-L equation is a lightlike geodesic.

It is based on

\[
\mathcal{I}[^\eta] = \frac{1}{2} \int_{\lambda_0}^{\lambda_1} g(\eta', \eta') \, d\lambda = \frac{1}{2} \int_{t_0}^{t_1} g(\dot{\eta}, \dot{\eta})(t') \, dt \\
= \int_{t_0}^{t_1} [L(t, q(t), \dot{q}(t)) - \dot{y}] (t') \, dt.
\]
The least action also called Hamilton’s principal function is $S : E \times E \rightarrow [-\infty, +\infty]$ given by

$$S(e_0, e_1) = \inf_{q \in C_{e_0, e_1}^1} S_{e_0, e_1}[q], \text{ for } t_0 < t_1,$$

$$S(e_0, e_1) = 0, \text{ for } t_0 = t_1 \text{ and } q_0 = q_1,$$

$$S(e_0, e_1) = +\infty, \text{ elsewhere.}$$
Proposition

Let \(x_0 = (e_0, y_0) \in M \), it holds

\[
I^+(x_0) = \{x_1 : y_1 - y_0 > S(e_0, e_1) \text{ and } t_0 < t_1\},
\]

\[
J^+(x_0) \subset \{x_1 : y_1 - y_0 \geq S(e_0, e_1)\},
\]

\[
E^+(x_0) \subset r_{x_0} \cup \{x_1 : y_1 - y_0 = S(e_0, e_1)\}.
\]

Analogous past versions hold.
The statement

Let \(x_1 \in J^+(x_0) \) and \(t_0 < t_1 \), thus in particular \(y_1 - y_0 \geq S(e_0, e_1) \). Let \(e(t) = (t, q(t)) \) be a \(C^1 \) curve which is the projection of some \(C^1 \) causal curve connecting \(x_0 \) to \(x_1 \) then \(y_1 - y_0 \geq S_{e_0,e_1}[q] \). Among all the \(C^1 \) causal curves \(x(t) = (t, q(t), y(t)) \), connecting \(x_0 \) to \(x_1 \), which project on \(e(t) \), the causal curve \(\gamma(t) = (t, q(t), y(t)) \) with

\[
y(t) = y_0 + S_{e_0,e(t)}[q|_{t_0,t}] + \frac{t-t_0}{t_1-t_0} (y_1 - y_0 - S_{e_0,e_1}[q])
\]

(1)

is the one and the only one that maximizes the Lorentzian length. The maximum is

\[
l(\gamma) = \{2(y_1 - y_0 - S_{e_0,e_1}[q])(t_1 - t_0)\}^{1/2}.
\]

(2)
The proof

Let \(\eta(t) = (t, q(t), w(t)) \) be a \(C^1 \) causal curve connecting \(x_0 \) to \(x_1 \), then since it is causal by Eq. \(-g(\dot{\eta}, \dot{\eta}) = 2(\dot{w} - L), \dot{w} \geq L \) and integrating \(y_1 - y_0 \geq S_{e_0,e_1} [q] \).

The curve \(\gamma \) is causal because (use Eq. \(-g(\dot{\gamma}, \dot{\gamma}) = 2(\dot{y} - L)\))

\[
-g(\dot{\gamma}, \dot{\gamma}) = \frac{2}{t_1 - t_0} (y_1 - y_0 - S_{e_0,e_1} [q]) \geq 0,
\]

taking the square root and integrating one gets

\[
l(\gamma) = \{2(y_1 - y_0 - S_{e_0,e_1} [q])(t_1 - t_0)\}^{1/2}.
\]

If \(\tilde{\gamma} = (t, q(t), \tilde{y}(t)) \) is another \(C^1 \) timelike curve connecting \(x_0 \) to \(x_1 \) and projecting on \(e(t) \)

\[
-g(\dot{\tilde{\gamma}}, \dot{\tilde{\gamma}}) = \frac{2}{t_1 - t_0} (y_1 - y_0 - S_{e_0,e_1} [q]) = \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} [-g(\dot{\tilde{\gamma}}, \dot{\tilde{\gamma}})] dt.
\]

Using the Cauchy-Schwartz inequality \(\int_{t_0}^{t_1} [-g(\dot{\tilde{\gamma}}, \dot{\tilde{\gamma}})] dt \geq (t_1 - t_0)^{-1} l(\tilde{\gamma})^2 \)

remplacig in the above equation, taking the square root and integrating

\(l(\gamma) \geq l(\tilde{\gamma}) \), thus \(\gamma \) is longer than \(\tilde{\gamma} \). In order to prove the uniqueness note that the equality sign in \(l(\gamma) \geq l(\tilde{\gamma}) \) holds iff it holds in the Cauchy-Schwarz inequality which is the case iff \(g(\dot{\gamma}, \dot{\gamma}) = const. \), that is iff \(\dot{y} - L = const. \) which integrated, once used the suitable boundary conditions, gives Eq. (1).
Corollary

Let $x_0, x_1 \in M$, $x_0 = (e_0, y_0)$, $x_1 = (e_1, y_1)$ then if $x_1 \in J^+(x_0)$,

$$d(x_0, x_1) = \sqrt{2[y_1 - y_0 - S(e_0, e_1)](t_1 - t_0)}.$$ \hfill (3)

In particular, $S(e_0, e_1) = -\infty$ iff $d(x_0, x_1) = +\infty$.

The triangle inequality

The function S is upper semi-continuous everywhere but on the diagonal of $E \times E$ and satisfies the triangle inequality: for every $e_0, e_1, e_2 \in E$

$$S(e_0, e_2) \leq S(e_0, e_1) + S(e_1, e_2),$$

with the convention that $(+\infty) + (-\infty) = +\infty$.
Relation between the triangle inequalities

What is the relation between the reverse triangle inequality satisfied by d and the usual triangle inequality satisfied by S?

An abstract framework

Suppose on X you are given a function $s : X \to (-\infty, +\infty]$ such that $s(x, x) = 0$. On the cartesian product $X \times \mathbb{R}$ define the relation

$$(x, a) \leq (y, b) \quad \text{if} \quad b - a \geq s(x, y)$$

Assume furthermore that \leq is a total preorder on X and that $t : X \to \mathbb{R}$ is an utility function, i.e. $x \leq y \iff t(x) \leq t(y)$. Finally, let $x \not\leq y \Rightarrow s(x, y) = +\infty$ be the compatibility condition of the total preorder with s. Define $d : (X \times \mathbb{R})^2 \to [0, +\infty]$ by

$$d((x, a), (y, b)) = \sqrt{2[b - a - s(x, y)](t(y) - t(x))} \quad (4)$$

if $(x, a) \leq (y, b)$ and 0 otherwise. Given $x_1, x_2, x_3 \in X$, the reverse triangle inequality

$$d((x_1, a_1), (x_2, a_2)) + d((x_2, a_2), (x_3, a_3)) \leq d((x_1, a_1), (x_3, a_3)) \quad (5)$$

holds for every triple $(x_1, a_1) \leq (x_2, a_2) \leq (x_3, a_3)$ if and only if for all $x, y, z \in X$, $s(x, z) \leq s(x, y) + s(y, z)$.
The causal ladder of spacetimes

Global hyperbolicity
↓
Causal simplicity
↓
Causal continuity
↓
Stable causality
↓
Strong causality
↓
Distinction
↓
Causality
↓
Chronology

How does it change for our case? Can this properties be related with properties of the Lagrangian problem and in particular of the least action S?
Why should we expect a connection with the least action?

Because some causality properties can be expressed in terms of the Lorentzian distance d

Global hyperbolicity

A strongly causal spacetime is globally hyperbolic if and only if whatever the chosen conformal factor d is finite.
Why should we expect a connection with the least action?

Because some causality properties can be expressed in terms of the Lorentzian distance d

Global hyperbolicity
A strongly causal spacetime is globally hyperbolic if and only if whatever the chosen conformal factor d is finite.

Global hyperbolicity II
A strongly causal spacetime is globally hyperbolic if and only if whatever the chosen conformal factor d is continuous.
Why should we expect a connection with the least action?

Because some causality properties can be expressed in terms of the Lorentzian distance d

Global hyperbolicity
A strongly causal spacetime is globally hyperbolic if and only if whatever the chosen conformal factor d is finite.

Global hyperbolicity II
A strongly causal spacetime is globally hyperbolic if and only if whatever the chosen conformal factor d is continuous.

Causal simplicity
A strongly causal spacetime is causally simple if and only if whatever the chosen conformal factor d is continuous wherever it vanishes.

and d and S are related...
The answer

Global hyperbolicity:
(i) \(S(e_0, e_1), t_0 < t_1, \) is finite,
(ii) \(S_{e_0, e_1}, t_0 < t_1, \) is coercive.

Causal simplicity:
(a) \(S \) attains its infimum \(S \) whenever \(S \) is finite,
(b) \(S \) is lower semi-continuous.

Causal continuity:
\[
\liminf_{e \to e_1} S(e_0, e) = \liminf_{e \to e_0} S(e, e_1),
\]
and this quantity vanishes for \(e_0 = e_1 \).
The answer II

\[\downarrow \]

Stable/Strong causality:

\[S \] is lower semi-continuous on the diagonal.

\[\downarrow \]

Distinction:

\[\liminf_{e \to \tilde{e}} S(\tilde{e}, e) = \liminf_{e \to \tilde{e}} S(e, \tilde{e}) = 0. \]

\((M, g) \) is always causal.
Locally the Lorentzian distance $d(x_0, x)$ satisfies the eikonal equation

$$g(\nabla d, \nabla d) + 1 = 0,$$

while $S(e_0, e)$ satisfies the Hamilton-Jacobi equation. They are related because, using the relation between S and d

$$g(\nabla d, \nabla d) + 1 = \frac{2(t - t_0)^2}{d^2} \left[\frac{\partial S}{\partial t} + \frac{1}{2} a_t^{-1}(dS - b_t, dS - b_t) + V \right].$$
The function $u : E \to \mathbb{R}$ is a viscosity solution of the Hamilton-Jacobi equation if

- It is a \textit{viscosity subsolution}: for every $(t, q) \in E$ there is a C^1 function $\varphi : E \to \mathbb{R}$ such that $u - \varphi$ has a local maximum at e and at e

 \[\partial_t \varphi + H(t, q, D_q \varphi) \leq 0. \]

- It is a \textit{viscosity supersolution}: for every $(t, q) \in E$ there is a C^1 function $\varphi : E \to \mathbb{R}$ such that $u - \varphi$ has a local minimum at e and at e

 \[\partial_t \varphi + H(t, q, D_q \varphi) \geq 0. \]
Viscosity solutions and the causal future

The slices of the causal future of the initial condition give a viscosity solution.

Smoothness properties follow from theorems in Lorentzian geometry.
This solution is that of the Lax-Oleinik semigroup

\[u(t, q) = \inf_{q_0 \in Q, \alpha \in C^1} \left\{ u(t_0, q_0) + \int_{t_0}^{t} L(t, \alpha, \dot{\alpha}) dt \right\} \]
Conclusions

- The study of spacetimes admitting a parallel null vector is tightly related with the study of Lagrangian mechanical systems.
- In this framework there is a simple relation between the Lorentzian distance and the least action.
- The causality properties of the spacetime are connected with lower semi-continuity properties of the least action.
- Tonelli’s theorem on the existence of minimizers is basically the statement that global hyperbolicity implies causal simplicity.
- The Hamilton-Jacobi equation and the Lax-Oleinik semigroup are nothing but the causal relation in disguise.