

Registro dell'insegnamento

Anno accademico 2015/2016

Prof. ETTORE MINGUZZI

Settore inquadramento MAT/07 - FISICA MATEMATICA

Scuola Scienze Matematiche, Fisiche e Naturali

Dipartimento Matematica e Informatica 'Ulisse Dini'

Insegnamento EQUAZIONI DELLA FISICA MATEMATICA

Moduli

Settore insegnamento MAT/07 - FISICA MATEMATICA

Corsi di studio MATEMATICA

N.B.- Ai sensi dell' art.2 della Legge 1-5-1941. n. 615, i direttori degli istituti e dei laboratori nei quali si eseguono esperimenti sugli animali dovranno allegare al presente registro delle lezioni anche il registro contenente i dati relativi agli esperimenti di cui sopra.

n.: 1 ☑ lezione □ esercitazione □ laboratorio □ seminario	
Data: 01/03/2016 Totale ore: 2	
Argomento: Definizione di equazione alle derivate parziali. Multiindice. Numero di derivate parzi indipendenti di una funzione C^k. Esempi che portano a equazioni alle derivate parziali. Teorie descritte da Lagrangiane con integrazione in una o piu' dimensioni. Corrispondenza tra Lagrangia e densita' Lagrangiana. Esempio di come derivare l'equazione delle onde da catena di oscillatori armonici. Richiamo alle equazioni di Maxwell. Come si deduce l'eq. di Poisson da quella di Coulc	ana
n.: 2 ☑ lezione ☐ esercitazione ☐ laboratorio ☐ seminario	
Data: 03/03/2016 Totale ore: 2	
Argomento: Distribuzioni di carica al bordo dei conduttori. Problema dell'elettrostatica in presenzi di conduttori. Analogia con potenziale gravitazionale ed assenza di onde gravitazionali in gravita' Nwwtoniana. Deduzione della legge di Ampere da Biot-Savart. Equazione di continuita'. Equazione delle onde per il campo elettromagnetico nel vuoto.	
n.: 3 ☑ lezione ☐ esercitazione ☐ laboratorio ☐ seminario	
Data: 08/03/2016 Totale ore: 2	
Argomento: Metodo delle caratteristiche per equazioni quasi-lineari. Punti caratteristici. Richiam sulle ODE del primo ordine. Esistenza locale della soluzione. Esercizio 2 x u_x-u_y=-u^2.	i
n.: 4 ☑ lezione ☐ esercitazione ☐ laboratorio ☐ seminario	
Data: 10/03/2016 Totale ore: 2	
Argomento: Richiami di teoria delle equazioni quasi-lineari del primo ordine. Le caratteristiche vanno a formare il grafo della soluzione u e non si intersecano. Le caratteristiche proiettate posso intersecarsi. L'equazione di Burges non viscosa u_y+u u_x=0 con u(q,0)=g(q). Caso g(1)=1-kq. Punti non raggiunti e intersezione delle caratteristiche. Esercizio, u_x+2u u_y=1, u(q,0)=1. Meccanica dei continui. Spazio e tempo. Punto di vista Lagrangiano e Euleriano. Derivata tempo di una grandezza. Accelerazione.	
n.: 5 ☑ lezione ☐ esercitazione ☐ laboratorio ☐ seminario	
Data: 15/03/2016 Totale ore: 2	

Argomento: Meccanica dei continui. Teorema del trasporto. Casi particolari: G=massa, volume. Equazione di continuita'. Teorema del trasporto per grandezze proporzionali a densita'. Tensore degli sforzi. Teorema di Cauchy su linearita'. Equazione della dinamica dei continui. Esempio: tensore degli sforzi per fluidi viscosi.
n.: 6 ☑ lezione ☐ esercitazione ☐ laboratorio ☐ seminario
Data: 17/03/2016 Totale ore: 2
Argomento: Tensore degli sforzi per fluidi viscosi. Equazioni di Navier-Stokes e Eulero. Equazione di Burgers non viscosa come caso particolare unidimensionale: u_y+c(u)u_x=0. Osservazione: se c(u) è limitato e continuo allora non c'e' svuotamento. Esercizio con svuotamento, c=sgn u/(1+ u). Equazione conservativa u_y+F(u)_x=0, forma integrale. Discontinuità e condizione di Rankine-Hugoniot. Modello di traffico, velocità del fronte di frenata.
n.: 7 ☑ lezione ☐ esercitazione ☐ laboratorio ☐ seminario
Data: 22/03/2016 Totale ore: 2
Argomento: Problema di Riemann per equazione di conservazione. Onda di rarefazione, esempio del semaforo. Ottenere soluzioni del problema di conservazione da Hamilton-Jacobi (una dimensione). Metodo delle caratteristiche per equazioni non-lineari del primo ordine. Le equazioni delle caratteristiche per la equazione di HJ sono le equazioni di Hamilton. La funzione u e' l'azione della caratteristica.
n.: 8 ☑ lezione ☐ esercitazione ☐ laboratorio ☐ seminario
Data: 31/03/2016 Totale ore: 2
Argomento: Richiamo su metodo delle caratteristiche per equazioni non lineari. Caso di Hamilton-Jacobi. Soluzione rough di HJ come inf sull'azione. I punti minimi dell'azione soddisfano le equazione di Lagrange e quelle di Hamilton. Caso con H indipendente da x e t. Formula di Hopf-Lax.
n.: 9 ☑ lezione ☐ esercitazione ☐ laboratorio ☐ seminario
Data : 05/04/2016
Argomento: Trasformata di Legendre-Fenchel per funzioni convesse superlineari. La trasformata preserva convessità e superlinearità ed è involutiva. Subdifferenziale e proprietà per le funzioni convesse. Cenni su definizione di varietà differenziabile.

n.: 10 ☑ lezione ☐ esercitazione ☐ laboratorio ☐ seminario
Data: 07/04/2016
Argomento: Introduzione alle varietà differenziabili. Atlante e carte. Cambio di coordinate. Esempio: sfera con proiezione stereografica. Il fibrato tangente e cotangente. Il fibrato dei getti J^2M.
n.: 11 ☑ lezione ☐ esercitazione ☐ laboratorio ☐ seminario
Data: 12/04/2016 Totale ore: 2
Argomento: Richiamo fibrato tangente, cotangente, tensoriale di tipo (i,j), getti di ordine k. Prodotto tensoriale. L'equazione alle derivate parziali e' una ipersuperficie F=0 nel fibrato dei getti. Importanza della formulazione indipendente dalla carta. Raccomandazione sul non usare la metrica euclidea indotta dall'uso arbitrario delle coordinate. La derivata di F rispetto alle derivate p_{ij} e' un tensore due volte controvariante. Classificazione delle equazioni lineari del secondo ordine con segnatura della metrica \p F/\p p_{ij}. Teorema di Cauchy-Kowaleski e analogia tra condizione non-caratteristica tra equazioni alle derivate parziali del primo e secondo ordine.
n.: 12 ☑ lezione ☐ esercitazione ☐ laboratorio ☐ seminario
Data: 14/04/2016 Totale ore: 2
Argomento: Motivazione della condizione di Cauchy-Kowaleski nel caso bidimensionale. Classificazione delle equazioni alle derivate parziali a partire dalla segnatura della metrica controvariante che compare nella parte principale. Caso bidimensionale, riduzione a forma canonica per equazioni iperboliche ed ellittiche.
n.: 13 ☑ lezione ☐ esercitazione ☐ laboratorio ☐ seminario
Data: 19/04/2016 Totale ore: 2
Argomento: Derivazione fisica dell'equazione del calore. Caratteristiche per equazione delle onde e per equazione del calore. Sistemi di coordinate utili nel caso ellittico dipendendo dalla dimensione. Ragionamenti qualitativi: n=2, metrica proporzionale all'identita', n=3 metrica diagonale, n=4 diagonale a blocchi. Caso n=2, equazioni di Beltrami e Cauchy-Riemann. Esempio di problema ellittico: derivazione dell'equazione delle superfici minime. Dimostrazione di ellitticita' nel caso n dimensionale.

n.: 14	☑ lezione	□ esercitazione	□ laboratorio	□ seminario
Data: 21/	/04/2016	Totale ore: 2		
unicità su della rifle	i convessi. M ssione come ale. La cons	letodo delle rifless ribaltamento dell'	sioni nel caso de 'onda. Problema	Formula di D'Alembert per il dominio=retta e ella semiretta e del segmento. Interpretazione a in piu' dimensioni. L'equazione d'onda e' essione per problemi variazionali. Unicita'
n.: 15	✓ lezione	□ esercitazione	□ laboratorio	□ seminario
Data: 26/	/04/2016	Totale ore: 2		
_				li propagazione. Deduzione della formula di della formula di Poisson (n=2).
n.: 16	☑ lezione	□ esercitazione	□ laboratorio	□ seminario
Data: 28/	/04/2016	Totale ore: 2		
Autofunzi Sviluppo d'onda su di Fourier	ioni del Lapla in serie della un segmen r. Forma volu	aciano. Analogia d a soluzione. Il mer to, dominio D=[0,l	con operatori au no Laplaciano ha]. Breve discuss Riemanniana. D	Equazione di Helmholtz per un dominio. toaggiunti in spazi di dimensione finita. a autovalori positivi. Esempio dell'equazione sione della convergenza uniforme della serie Derivazione variazionale del Laplaciano. Come ate generiche.
n.: 17	✓ lezione	□ esercitazione	□ laboratorio	□ seminario
Data: 03/	/05/2016	Totale ore: 2		
come car coordinat massimo	nbia la soluz e arbitrarie. debole per l	rione nel caso dell Equazioni ellittiche	'equazione del e. Problemi di D ano. Il principio	espansione della soluzione. Accenno su calore. Richiamo sul calcolo del laplaciano in drichlet e di Neumann. Il principio del del massimo debole per l'operatore lineare
n.: 18	☑ lezione	□ esercitazione	□ laboratorio	□ seminario
Data: 05/	/05/2016	Totale ore: 2		

REGISTRO NON CHIUSO

Argomento: Parte radiale dell'operatore laplaciano in coordinate sferiche. Soluzione fondamentale del laplaciano e sue proprietà. Equivalenza tra proprietà della media della palla e della sfera. Formula di Green. La media della derivata normale di una funzione armonica su un bordo chiuso è zero. Le funzioni armoniche soddisfano la proprietà della media. Le funzioni che soddisfano la proprietà della media sono C infinito (dim con mollificatore, vedi Evans) e armoniche. Il principio del massimo forte.

n.: 19	✓ lezione	□ esercitazione	□ laboratorio	□ seminario	
Data: 10)/05/2016	Totale ore: 2			
•		•		ed esterno con il principio di massimo umono modulo massimo nel bordo. Lemma di	
n.: 20	✓ lezione	□ esercitazione	□ laboratorio	□ seminario	
Data: 12	2/05/2016	Totale ore: 2			
di Green		per l'equazione di		minio compatto e non. Metodo delle funzioni ati al bordo. Funzione di Green per la palla e	
n.: 21	Iezione	□ esercitazione	□ laboratorio	□ seminario	
Data: 17	7/05/2016	Totale ore: 2			
Poisson L'integra	e' armonico lle del nucleo	(caso generale). V e' 1. Estensione d	'erifica che il nu della formula di	isando la formula di Green). Il nucleo di cleo di Poisson della palla e' armonico. Poisson per dati al bordo C^0. Dimostrazione di integrale) e della continuita` al bordo.	
n.: 22	☑ lezione	□ esercitazione	□ laboratorio	□ seminario	
Data: 19	9/05/2016	Totale ore: 2			
Araomo	Argamanta: Equaziona dal calara (vadi Evana). Interpretazione alternativa como aquaziona di				

Argomento: Equazione del calore (vedi Evans). Interpretazione alternativa come equazione di diffusione di un contaminante. Soluzioni autosimilari. La soluzione fondamentale. Soluzione in R^n tramite convoluzione con soluzione fondamentale. Tale soluzione e' C-infinito e continua col dato iniziale. Dominio parabolico relativo ad aperto limitato di R^n. Problema col dato al bordo. La palla di calore. Il teorema della media. Unicita' della soluzione nel dominio parabolico.

REGISTRO	NON C	CHIL	JSO
----------	-------	------	-----

REGISTRO NON CHIUSO

RIEPILOGO

lezione	n. ore	44
esercitazione	n. ore	0
laboratorio	n. ore	0
seminario	n. ore	0
	TOTALE	44
Il Presidente della Scuo	a (non a	ancora chiuso)

Il Direttore del Dipartimento

(non ancora chiuso)