International Conference on Transport Theory - 18th ICTT Rio de Janeiro, July 20-25, 2003

Quantum hydrodynamic equations arising from the Wigner-Kane model

Stefano Biondini and **Giovanni Borgioli** Dipartimento di Elettronica e Telecomunicazioni Università di Firenze - 50139 Firenze

Giovanni Frosali

Dipartimento di Matematica Applicata "G.Sansone" Università di Firenze - 50139 Firenze Mathematical modeling for semiconductor devices has relied, from the beginning, on a **fluid dynamical approach**, in terms of macroscopic quantities (charge density, current, energy, ...).

When the quantum aspects become not negligible or even predominant, it is useful to formulate semi-classical models in terms of macroscopic variables (quantum hydrodynamic models).

Interesting results are present in literature (Gardner, Jüngel, Markowich, Ringhofer, Unterreiter, etc.). Published results are generally devoted to single-band problems.

In this work we face the problem of a fluid dynamical formulation for a semiconductor device characterized by a two-band (i.e. conduction and valence band) structure, where the carriers dynamics is driven by interband tunneling. **Physical description of the Kane model.** Let $\psi_c(x,t)$ be the conduction band electron wave (envelope) function and $\psi_v(x,t)$ be the valence band electron wave (envelope) function.

In the one-dimensional case, **the Kane model** reads as follows [kane56]:

$$\begin{cases} i\hbar\frac{\partial\psi_c}{\partial t} = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V_c\right]\psi_c - \frac{\hbar^2}{m}P\frac{\partial\psi_v}{\partial x} \\ i\hbar\frac{\partial\psi_v}{\partial t} = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V_v\right]\psi_v + \frac{\hbar^2}{m}P\frac{\partial\psi_c}{\partial x} \end{cases}$$

where m is the bare mass of the carriers, V_c and V_v are the minimum of the conduction band energy and maximum of the valence band energy respectively, and P is the **coupling coefficient** given by

$$P = \frac{m}{\hbar} \sqrt{\frac{m - m^*}{2mm^*}} E_g$$

which is obtained through the energy dispersion relation and where m^* is the effective electron mass depending, through the x-coordinate, on the layer composition, but otherwise isotropic, and $E_g = V_c - V_v$ is the x-dependent gap energy.

According to **the envelope function theory** approach it is sufficient to study the evolution of the so-called envelope function because it is not necessary to find the exact evolution of the full wave equation.

The **envelope function** is a smooth function which can be obtained by replacing the wave function by its average in each primitive cell.

Formulation of the Kane model in terms of Wigner functions

We define the density matrix $\rho_{ij}(r, s, t) = \overline{\psi}_i(r, t)\psi_j(s, t)$ i, j = c, v.

Taking formally the derivatives with respect to time t in the density matrix element and using Kane eqs. lead to a **set of four coupled** evolution equations for the density matrix elements ρ_{ij} .

The Wigner function is defined by the **inverse Fourier transfor**mation

$$w_{i,j}(x,v,t) = \mathcal{F}^{-1}\rho_{i,j}\left(x + \frac{\hbar}{2m}\eta, x - \frac{\hbar}{2m}\eta\right)$$

 \downarrow

Then we obtain the following system, which is **the Wigner function** formulation of the Kane model

$$\begin{cases} i\hbar\frac{\partial w_{cc}}{\partial t} = -i\hbar v \frac{\partial w_{cc}}{\partial x} + \Theta_{cc}w_{cc} + \frac{\hbar}{2m}P\left[\frac{\partial w_{vc}}{\partial x} - \frac{\partial w_{cv}}{\partial x}\right] - i\hbar Pv\left[w_{vc} + w_{cv}\right] \\ i\hbar\frac{\partial w_{cv}}{\partial t} = -i\hbar v \frac{\partial w_{cv}}{\partial x} + \Theta_{vc}w_{cv} + \frac{\hbar^2}{2m}P\left[\frac{\partial w_{vv}}{\partial x} + \frac{\partial w_{cc}}{\partial x}\right] - i\hbar Pv\left[w_{vv} - w_{cv}\right] \\ i\hbar v \frac{\partial w_{vv}}{\partial t} = -i\hbar v \frac{\partial w_{vv}}{\partial x} + \Theta_{vv}w_{vv} - \frac{\hbar^2}{2m}P\left[\frac{\partial w_{cv}}{\partial x} - \frac{\partial w_{vc}}{\partial x}\right] + i\hbar Pv\left[w_{cv} + w_{vv}\right] \end{cases}$$

where

$$\Theta_{ij}w_{ij} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left[V_j \left(x - \frac{\hbar}{2m} \eta, t \right) - V_i \left(x + \frac{\hbar}{2m} \eta, t \right) \right] w_{ij}(x, v', t) \cdot e^{i(v-v')\eta} d\eta dv'$$

with i, j = c, v.